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A two-dimensional computational study is performed on the texturing of fibre-filled nematic

liquid crystals using the Landau-de Gennes model describing the spatio-temporal evolution

of the second moment of the orientation distribution function or quadrupolar tensor order

parameter. The investigation is performed on a consistent computational domain comprising

a square array of four circular fibres embedded within a unit square containing a uniaxial low

molar mass calamitic liquid crystal. Interest is focused on the role of temperature, boundary

conditions and their effect on the nucleation and evolution of defect structures. Thermal

effects are characterised below and above the temperature at which the nematic state is stable.

Simulations in the stable nematic state serves as a scenario for investigating the effect of

imposing different external boundary conditions, namely periodic and Dirichlet; the former

describes a square lattice array of fibres embedded in a nematic liquid crystal, and the

latterdescribes a four-fibre arrangement in an aligned nematic material. In each case, the

influence of temperature is characterised, with defect structures forming and either remaining

or splitting into lower strength defects. For fibre lattices, splitting transitions of defects at

the centre of the domain occur at a critical temperature, but for the four-fibre arrangement,

defect transitions occur continuously over a temperature range. The discontinuous defect

splitting transition in fibre arrays occurs at lower temperatures than the continuous defect

transformation in the four-fibre arrangement. At sufficiently low temperatures, the four-

fibre arrangement and the fibre lattice give the same texture consisting of two disclination

lines close to each fibre. The evolution of the texture with respect to temperature can be

characterised as a change from single-fibre mode at low temperature to a collective mode with

a centre-located heterogeneity at higher temperature. At higher temperatures, in the stable

isotropic state, it is shown that surface-induced ordering arising from the fibre/liquid crystal

interaction propagates into the bulk forming thin disclination lattices around the four-fibre

configuration.
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1 Introduction

Liquid crystals are functional and structural materials with uses ranging from optical

devices to superstrong fibres. Nematic liquid crystals (NLCs) have orientational order and

are visco-elastic anisotropic materials. Their elasticity arises from orientational gradients

and the characteristic modulus is in the pN range, thus placing them in the family of soft
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matter. Synthetic or natural liquid crystals can exhibit novel properties through blending

or mixing second phases. Filled nematic liquid crystals (FNs) are one class of two-phase

blends.

Filled nematics refer to the suspension of second phases such as fibres, particles, drops,

bubbles, etc. in a nematic liquid crystalline matrix. These materials arise spontaneously

through phase separation processes between a polymer melt and a nematic liquid crystal,

through dispersion of the second phase [13] or through flow of the NLC into a bundle

of aligned fibres [17]. The latter form the basis of carbon/carbon composites formed by

injecting a carbonaceous discotic nematic mesophase into the fibre tow [13]. Since nematic

liquid crystals display gradient orientation elasticity, the interaction between the filler and

nematic matrix phases usually leads to texturing and defect nucleation. Filled nematics

form novel colloids with distinctive self-assembly properties and are precursors to high-

performance composites in which the mesophase matrix itself possesses orientational order.

The interested reader is referred to [27] for a comprehensive overview of the capillary

modelling science of nematic liquid crystals and their applications to the stability, structure

and shape of films, membranes, fibres and drops. The fundamental physics as well as

engineering applications of filled nematics (and other phases such as cholesterics and

smectic) are a fascinating evolving field.

A fundamental feature of FNs is that for sufficiently strong interaction between the

filler and the NLCs, orientational anchoring at the curved interface propagates into the

bulk, usually creating frustration that leads to the nucleation of orientational defects, such

as disclinations [28].

One technique for characterising orientational defects is to consider the partial molecu-

lar order with respect to the average molecular order or director, n. As any orientation

of n is possible, this leads to the possibility of defects or spatial discontinuities in n.

The director profile associated with a defect will depend on the imposition and nature

of anchoring conditions imposed by fibres within the system, such as whether these con-

ditions are normal or tangential to the fibre surface. Figure 1(a) shows a representative

orientation visualisation of a four-fibre arrangement under normal (homeotropic) bound-

ary conditions, where the central dot represents a disclination line of strength +1. Under

tangential anchoring conditions, (not shown), the central defect has strength –1 instead

of +1. Figures 1(b) and (c) shows schematics of director path lines around the integer

strength disclinations that typically arise in the centre region of a fibre-filled nematic.

The emphasis of this paper is on identifying and characterising the texture structures

observed in fibre-filled nematics, of relevance to carbon/carbon structural composites

and other FNs for potential device applications. The order of NLC is described by the

molecular order parameters and the average macroscopic orientation. Localised hetero-

geneities in the liquid crystalline order are related to the presence of defects. Defects

are commonly observed in NLCs and have been studied extensively [1, 5, 9, 16–18, 20,

32]. Defect structures play an important role in such phenomena as response to external

stresses and the nature and type of phase transitions. The presence of these defects and

their evolution may be attributed to anchoring conditions, surface geometry and external

fields. Defects are classified into singular or non-singular depending on whether their core

retains the equilibrium nematic order or not. In non-singular defect lines, the director

escapes into the third dimension, the molecular order remains unchanged and the defect
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Figure 1. Examples of director (orientation) profiles in a fibre-filled nematic. The image in (a) is

generated from a numerical solution where there is a disclination occurring in the centre, represented

by the black dot; Dirichlet orientation conditions have been placed on the internal boundaries,

normal to the surface. In the case of tangential Dirichlet orientation conditions, the centre region

disclination would be of strength –1. The images, (b) and (c), are schematics representing director

profiles associated with defects s= + 1 and s= − 1, respectively.

core size is in the micron range. In singular defect lines, the core is usually biaxial, and

at the centreline, it is negatively uniaxial (as opposed to positively uniaxial in the equilib-

rium bulk state). Defects are classified in terms of strength, s, and dimensionality, D. The

strength s of a defect refers to the number of rotations that the director experiences while

encircling the defect, whereas the dimensionality refers to points, lines and inversion wall

defects (D= 0, D= 1, D= 2), respectively. Point defects are usually disclination rings [8,9].

Inversion wall defects are non-singular and describe localised continuous orientation

gradients.

The literature on the forming of defect structures in liquid crystals from both com-

putational and experimental discipline is wide and varied [3, 7, 19, 20]. For brevity, we

concentrate on works of direct implication to texture the simulation of fibre-filled nemat-

ics on the basis of quadrupolar tensor order parameter models. Some of the earlier

contributions were discussed by Zimmer and Weitz [32] which discuss both a compu-

tational and experimental study on the formation of defect structures in fibre lattices.

More recently, the advancement of computational resources has allowed for an in-depth

computational investigation. Fukuda and Yokoyama [11] have performed a very elegant

numerical investigation into a liquid crystal nematic around a two-dimensional spherical

https://doi.org/10.1017/S0956792510000331 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792510000331


158 P. M. Phillips and A. D. Rey

particle where an adaptive grid scheme is used to locally adjust with respect to the spatial

gradient of the orientation parameter. They present computations where a hedgehog

defect around the particle becomes unstable and splits from a -1 defect to 2 (-1/2) defects.

The interface plays a significant role in texturing in FNs, and new phenomena are

expected with deformable inclusions. It is shown that the anisotropic elastic stress con-

tribution to the surface stress tensor gives rise to bending stresses and tangential forces.

When the tensor order parameter that predicts the NLC structure has surface gradients, a

tensor order parameter-driven Marangoni flow is predicted. The strength of the predicted

effect is proportional to the nematic–isotropic interaction energy characteristic of the in-

terface, and the direction of flow is from low-energy regions towards high-energy regions.

The role of convection on texturing in FNs remains poorly explored.

The work of Desmet et al. [22] has considered the liquid crystal director orientation

in geometries with sharply defined edges and surfaces that impose strong anchoring and

preferred direction. They have shown that the liquid crystal orientation behaviour close

to an edge with planar anchoring may be approximated by a set of analytical formulas.

The work of Grecov and Rey [12] has provided results on numerical simulations on

the Landau-de Gennes system which provide insight into textural transformations and

dependence on temperature. The simulations have captured well-known and important

nucleation processes such as defect–defect annihilation, defect pinching and defect escape.

Grecov et al. [6] discuss other works on liquid crystal structuring and defect formation.

The works of Gupta et al. [14,17] have discussed the characterisation of defect structures

in defect lattices further. In one case, [17], an integrated computational microstructural

and optical model of disclination lattices in carbonaceous mesophase filled with small

fibres has been developed, solved and validated from hydrodynamic structuring. The

microstructural model that these authors have used has predicted the orientation and

defect texture in the discotic nematic ordering of the carbonaceous mesophase. They have

shown that the insertion of micron-sized particles on the mesophases creates a disclination

network.

In the other case, [14], the defect textures in concentrated fibre-filled polygonal networks

in nematic liquid crystals are analysed. The modelling is performed on the micron scale by

using differential geometry and computational modelling based on the Landau-de Gennes

theory. The topological rules of disclination strength have been established which state

that for a polygonal network of N sides, the strength s is related as

s =
(N − 2)

2
. (1.1)

It is known that in such a system, the energy, E, of a defect is related to the disclination

charge s by E ∝ s2. This explains the apparent defect splitting that is observed within these

structures, as higher strength disclinations split into components of lower s and remain

stable because of a lower energy state.

Temperature is known to affect disclination splitting under confinement. For example,

in a capillary of radius R, defect splitting is given by

T

Tu

=
9

8
− 3

(
R

ε
− C

)−0.65

, (1.2)
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where T ,Tu denote the temperature and the transition temperature for which the nematic

phase is stable, respectively and ε denotes the correlation length (equation (2.16)). This

function defines a curve on the texture phase diagram giving capillary radius as a function

of temperature, such that above this curve a pure splay radial texture with a singular

+1 disclination exists, while below a splay-bend texture with two +1/2 disclinations

are found. Hence, the situation of sufficiently large capillary confinement approaching

the nematic–isotropic transition temperature leads to the emergence of a single-singular

defect with an expanded core. A similar trend is thus expected for the FN studied here

with the difference that confinement is partial and complex.

With the advancement of computational resources in the last few years, we are able to

extend texture simulation in fibre-filled nematics to a different length scale from Gupta

et al. [14,17], and we consider our problem in the nanometre range. Wincure and Rey [36]

have discussed the defect forming mechanism for liquid crystals undergoing an isotropic

to nematic phase transition. Free energy density, defect core shapes and the evolving

defect core structure are presented at the nanoscale to better understand liquid crystal

anisotropy and orientation during interfacial defect spreading for a 5CB nanodroplet.

We consider the spatio-temporal evolution of our defect structures as a function of

temperature, characterising the regime transitions that exist. The influence of temperature

regimes on texturing has been associated with the nematic–isotropic transition [18]. For

the well-characterised compound 5CB [4], there are five important temperature ranges

relating the temperature, T , to the stability criterion for the isotropic and nematic

stages.

(1) T <T ∗ = 307.2: the isotropic phase is unstable, and the nematic phase is stable [4].

T ∗ is referred to as the spinodal temperature [24] or the supercooling limit.

(2) T ∗ <T <Tc: the isotropic phase is unstable and the nematic phase is stable.

Tc = 307.44, is known as the critical temperature [24] or supercooling temperature.

(3) T =Tc: the free energy of the isotropic phase is equal to the free energy of the nematic

phase.

(4) Tc <T <Tu: the isotropic phase is stable, and the nematic phase is metastable where

Tu is known as the superheating limit, Tu = 307.47.

(5) T <Tu: the nematic phase is unstable, and the isotropic phase is stable.

The influence of temperature regimes on the formation of defect structures has been

discussed by Mottram and Sluckin [21]. They have characterised the critical temperature

required for the nucleation of defect structures. The behaviour of the core radius as a

function of temperature has also been considered and compared with a previous numerical

model of the effect [16].

As mentioned above, this paper considers a four-fibre square arrangement of an FN. In

addition to temperature, this paper will also consider the influence of two characteristic

types of external boundary conditions (Dirichlet and periodic) representing two different

physical scenarios of a four-fibre square arrangement in an FN. Outer Dirichlet conditions

represent four fibres embedded in an aligned nematic matrix. Outer periodic boundary

conditions represent an infinite fibre lattice with square symmetry. Figure 2 shows the two

FNs.
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Figure 2. Schematic of the computational domain. The application of periodic external boundary

conditions in (a) creates the effect of an infinite square lattice of fibres embedded in a nematic

liquid crystal. The application of external Dirichlet boundary conditions in (b) creates the effect of

a four-fibre arrangement in an aligned nematic material.

The boundary conditions in all internal boundaries are homeotropic, with the ori-

entation radial to the circular fibre and with a level of molecular ordering dictated by

temperature when the nematic phase is stable. When the isotropic state is stable, we also

investigate the possible texturing effect that arises because of surface-induced ordering

and long range order.

The specific objectives of this paper are as follows:

(1) To provide a brief introduction and history of the modelling of liquid crystal structures

and current founded knowledge contributed by previous authors.

(2) To discuss our problem under investigation and the reason it is distinguished from

previous work and provides a novel contribution to the area of liquid crystal

modelling.

(3) To propose and solve a computational model for the evolution of defect structures in

these systems.

(4) A discussion of our results and conclusions.

The present paper is restricted to two dimensions in physical space and five in phase

space. The two-dimensional restrictions capture [14] the important features observed

experimentally in carbonaceous mesophases filled with carbon fibres since the texture

formation is a cross-sectional plane process. Likewise, two-dimensional texturing by

carbonaceous mesophase flow through screens with square symmetry [17] is also efficiently

characterised by a reduced two-dimensional model. Hence, we expect the present results to

retain the essential defect physics that arises when embedding long and parallel cylindrical

fibres in a nematic matrix.
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2 Microstructural model for carbonaceous mesophases

The microstructual modelling of NLCs requires spatio-temporal specification of the

orientation and degree of molecular order and their time evolution when driven by

visco-elastic processes. Here, the microstructure is defined, the elastic energies involved in

molecular distortions and the evolution equations that govern the emergence of multiscale

patterns and structures. The Landau-de Gennes liquid crystal model for NLCs [7, 15, 30]

is considered.

2.1 Description of microstructure

The Landau-de Gennes theory of liquid crystals, [7], describes the visco-elastic behaviour

of nematic liquid crystals by using the second moment of the orientations distribution

function known as the tensor order parameter Q(x, t) and the velocity field v(x, t). Further

details on the modelling of orientation are given by [26]. In the absence of macroscopic

flow, v= 0, the visco-elasticity of liquid crystals is described solely by Q(x, t). Then, spatio-

temporal changes in the order parameter may occur even in the absence of flow. In this

paper, problems are considered where flow does not occur, v= 0, and so the system is

governed by Q(x, t). Then, reorientation-induced flow is neglected. The macroscopic and

molecular description of the microstructure is defined by the second-order symmetric and

traceless tensor Q, expressed as

Q = S
(
nn − 1

3
δ
)

+ 1
3
P (mm − ll). (2.1)

In addition, the symmetric traceless order parameter Q may be written as an expansion

of its eigenvectors:

Q = λnnn + λmmm + λl ll, (2.2)

λn + λm + λl = 0, (2.3)

where the uniaxial director n corresponds to the maximum eigenvalue µn = 2/3S , the

biaxial director m corresponds to the second largest eigenvalue µm = −1/3(S −P ) and the

second biaxial director l (= n × m) corresponds to the smallest eigenvalue µl = −1/3(S+P ).

The orientation is defined completely by the director triad (n,m, l). The magnitude of the

scalar order parameter S is the molecular alignment along the uniaxial director n and is

given by S = 3/2(n ·Q ·n). The magnitude of the scalar order parameter P is the molecular

alignment in a plane perpendicular to the direction of the uniaxial director n and is given

by P = 3/2(m · Q · m − l · Q · l). On the principal axis, Q is represented as

Q =

⎡
⎣ −1/3(S − P ) 0 0

0 −1/3(S + P ) 0

0 0 2/3S

⎤
⎦ , (2.4)

where S, P � 0 for uniaxial nematic liquid crystals. From equation (2.4), we are able to

describe the state of the system by considering the region that the (S, P ) duplet lies

in, such as biaxial (S�0, P�0), uniaxial (S�0, P = 0), (P = ± 3S) [25] and isotropic

(S = 0, P = 0) states. The isotropic state corresponds to the zero tensor, Q= 0. Defects
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are regions where the orientation order (S, P ) sharply changes. Biaxiality may also be

measured by the normalised parameter β, where β ∈ (0, 1) and

β2 = 1 − 6[(Q · Q) : Q]2

(Q : Q)3
, (2.5)

ranging from fully uniaxial, β2 = 0, to fully biaxial, β2 = 1. The eigenvalues of Q capture

molecular information and the eigenvectors describe orientation, and hence, the Landau-

de Gennes model is a multiscale model [20] with internal and external length scales. The

biaxial parameter β is an efficient index to identify singular disclinations [8]. The typical

signature of the β profile across the centre of a singular disclination is a double peak

whose maximum is 1 and minimum is zero (uniaxial core). The β landscape is thus a

circular ridge that separates the uniaxial far-field equilibrium domain from the uniaxial

state at the centre of the defect. In this paper, we use this feature of the biaxial parameter

to characterise disclination lines in FNs.

2.2 Mesophase elasticity

In the Landau-de Gennes theory, the free energy density difference between nematic and

isotropic states is expressed in terms of Q and its spatial gradients (∇Q) [37]. The total

elastic free energy density, f, is given by the sum of homogeneous, fh, and gradient, fg ,

contributions:

f = fh + fg. (2.6)

The homogeneous free energy density fh represents the free energy difference between

the liquid crystal and isotropic states and may be expressed as a power series in Q [20]:

fh = 1
2
a(Q : Q) − 1

3
b(Q · Q) : Q + 1

4
c(Q : Q)2, (2.7)

a = a0(T − T ∗), (2.8)

where a0, b and c are material constants. In the isotropic state, fh = 0, and in the stable

liquid crystal state, fh � 0. The gradient elasticity fg(∇Q) is expressed as

fg = 1
2
l1(∇Q : ∇Q) + 1

2
l2(∇ · Q) · (∇ · Q) + 1

2
l3Q : (∇Q : ∇Q), (2.9)

where l1, l2, l3 are constant phenomenological parameters dependent on the liquid crystal.

For all states, we have the condition fg � 0, and in the presence of defects, we have fg > 0.

The equilibrium scalar order parameter, Seq , is defined by

Seq =
b

4c

[
1 +

√
1 − (24a0c(T − T ∗))

b2

]
, (2.10)

where T is the temperature within the system and T ∗ is the liquid crystal isotropic

transition temperature. The term Seq is also known as the corresponding region in the

system where energy is lowest, and therefore in the absence of a defect, we have S = Seq .

Figure 3 displays Seq as a function of T with material parameters corresponding to

5CB [4]. The term Seq monotonically decreases with respect to T prior to entering a
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Figure 3. Behaviour of Seq with respect to T for parameters corresponding to 5CB [4]. The vertical

lines correspond to the temperatures Tc, T
∗ and Tu discussed in the introduction. In this paper,

we study texturing in the stable phase for T <Tc, texturing in the metastable nematic phase for

Tc <T <Tu and also texturing in the unstable nematic phase for T >Tu.

region of T for which Seq vanishes and the system lies in a stable isotropic state. This

corresponds to the region of T satisfying the inequality,

T > T ∗ +
b2

24a0c
,

corresponding to T > 307.47 for 5CB material parameters, indicated in Figure 3. In this
temperature regime, the system is in an isotropic state as S = 0 throughout the domain.

This temperature regime will form an important investigation for considering fibre

inclusions which impose localised ordering interactions in S .

2.3 Microstructure evolution

To describe the texture evolution, dynamical equations for the tensor order parameter

must be derived. The dynamics of the system must obey the following equations:

−γ(Q)
dQ

dt︸ ︷︷ ︸
Viscous resistance

= −
[
δF

δQ

][s]

︸ ︷︷ ︸
Elastic driving force

, (2.11)

where the viscous resistance is due to the rotational viscosity of the mesophase and the
driving force originates from a decrease in the total elastic free energy of the system where

F = Fh + Fg, Fh =

∫
V

fh dV and Fg =

∫
V

fg dV . (2.12)
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The term γ in equation (2.11) is the rotational viscosity, δF/δQ is the Volterra variational

derivative [10] and the superscript [s] denotes a symmetric and traceless property.

2.4 Material properties

For this investigation, the material constants corresponding to 5CB [4] are employed,

namely

a0 = 1.4 × 105 (J/m3), b = 1.8 × 106 (J/m3) and c = 3.6 × 106 (J/m3). (2.13)

For simplification, the rotational viscosity is kept constant such as

γ(Q) = η = 0.084 Pa s.

An equibend–splay assumption is used resulting in l1, l2 > 0 and l3 = 0, namely

l1 = 3.0 × 10−12 (J/m), l2 = 3.1 × 10−12 (J/m) and l3 = 0 (J/m).

This simplifying assumption is made on the basis of previous work; splay-bend aniso-

tropy is a second-order effect in the present problem which does not affect the essential

nature of the results [33–36].

The corresponding Frank constants, (K11, K22, K33), representing twist and bend are

given by

K11 = 6.2 × 10−11 (J/m), K22 = 3.9 × 10−11 (J/m) and K33 = 6.2 × 10−11 (J/m).

2.5 Geometry, auxiliary data and output vector

Results will be presented for an evolutionary texturing problem where the computational

domain consists of a unit square, (0, 1) × (0, 1), with an embedded two-by-two array of

circular fibres (Figure 4).

The internal boundaries are defined as the boundaries corresponding to the fibres

perimeter, and the external boundaries correspond to the boundaries associated with the

square. The geometric composition is such that for a square of width, W , the distance

between fibre centres along a horizontal or vertical plane is equal to (1/2W ), and

the distance between a fibre centre to its nearest external boundary is equal to (1/4W ).

The equations are solved within the bulk of the system only (outside the internal domain

of the fibres). In our case, the ratio of domain width, W , to fibre radius, R, is given by

(W/R) = 20.

In every computation, the application of initial conditions and internal boundary

conditions is constant, namely

Initial conditions

Q= 0 throughout the domain (isotropic).

Internal boundary conditions
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Figure 4. Schematic of the computational domain consisting of a square lattice of four fibres

embedded within a unit square, (0, 1) × (0, 1). Internal boundaries are defined as the boundaries

corresponding to the fibre perimeters, and external boundaries correspond to the boundaries

associated with the square. The domain is such that for a square of width W , the distance between

fibre centres along a horizontal or vertical plane and from fibre centre to its nearest external

boundary is equal to (1/2W ) and (1/4W ), respectively. In this problem, the ratio of width, W , to

fibre radius, R, is given by (W/R) = 20.

Dirichlet conditions in Q, namely

qij = Seq(NiNj − 1/3δ), (2.14)

where N = (Ni,Nj) is a unit vector normal to the boundary surface. Note from equation

(2.10) that this is a temperature-dependent expression. In this case, an initially isotropic

system is influenced by a localised order interaction with a long range effect causing

an evolutionary texturing process. With this constant methodology, the evolution of the

texturing process is considered by quenching the isotropic state to the nematic state at

different T . The governing equations (2.11) and (2.12) are a set of five non-linear PDE’s,

and the solution vector is Q(x, t). The equations are solved in dimensionless form. Time

and space are scaled as follows:

a∗ = a0T , b∗ =
bo

a0T ∗ , c∗ =
c0

a0T ∗ ,

l∗1 =
l1

l2a0T ∗2
, l∗2 =

l2

l2a0T ∗2
, T =

T − T ∗

T ∗ , t∗ =
µ

a0T ∗ , (2.15)

where l is the simulation-specific imposed length scale and the asterisk represents non-

dimensionality. For convenience, this notation is dropped.

Since the model is made dimensionless, it is instructive to translate the spatial dimen-

sionless scales into real scales. The temperature-dependent correlation length of a defect

core, ε(T ), is given as

ε(T ) =

√
l1

a
. (2.16)
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For 5CB at T = 307.3 K, the scale of a defect core radius is ε≈ 1.46 × 10−8 m. Using

representative results at this temperature, we find that the box size, the fibre radius, R,

and the centre-to-centre fibre distance are ≈(34.24ε, 1.71ε, 17.12ε), respectively.

Finite element software (COMSOL Multiphysics) [5] is employed for all computations

where a static mesh is used for each simulation. Convergence, mesh independence and

accuracy were implemented using standard numerical procedures.

In practice, it is feasible to place fibres in a regular array experimentally as discussed

by Gupta, Hwang and Rey [17].

2.6 External boundary conditions and fibre arrangement

A large theme of this paper is to present results for the cases of two different types of

conditions imposed on the external boundaries which create two clearly distinct physical

problems. In the first case, we apply periodic conditions in some terms, namely

Q and grad(Q) =

(
∂Q

∂x
,

∂Q

∂y

)
. (2.17)

Periodicity of the terms in equation (2.17) creates the effect that the computational

domain is replicated over an infinite displacement in the horizontal and vertical planes

dually. Then, the situation of an infinite lattice is solved.

In the second case, Dirichlet conditions are placed on the external boundaries, namely

qij = Seq(µiµj − 1/3δ) where µ = (0, 1). (2.18)

Equation (2.18) imposes a far-field effect where the texturing process is bounded with

the imposition of a vertical director.

Hence, one key goal of this paper is to establish the fundamental differences when

applying these two different conditions on the external boundaries, equations (2.17) and

(2.18), which generate these two distinct physical situations.

2.7 Determination of temperature gap to observe higher-order unsplit defects

In this paper, the defect splitting mode is observed as a function of temperature and given

fibre radius size for an ensemble of fibres with quadrilateral symmetry. The previous work

of Gupta and Rey [37] has predicted the phase transition line between defect split and

non-split with respect to temperature and fibre radius, as described by equation (1.2). The

transition criterion is geometry dependent at lower fibre sizes and temperature dependent

at greater fibre sizes. This predicted behaviour may be extended to a fibre ensemble with

quadrilateral symmetry by using a three parameter power law model as

Tu − Ts =
a

(R/ε − b)n
, (2.19)

where Ts represents the greatest temperature for which defect splitting occurs, a, b and n

are parameters representing the curves vertical and horizontal displacement and concavity,

respectively. The left-hand term of equation (2.19) represents the temperature gap between
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Tu and Ts. This has the limits

lim
R/ε→b

(Tu − Ts) = ∞ and lim
R/ε→∞

(Tu − Ts) = 0.

2.7.1 Analysis of touching fibres

For a quadrangular arrangement of touching fibres of radius R, the radius of the inner

gap is equal to Rh = 0.414R. Then, the maximum temperature gap observed for this fibre

ensemble is given by

max{Tu − Ts} =
a

(0.414R/ε − b)n
.

Assuming that 1K is the limit beyond which fluctuations are not important, i.e. max{Tu−
Ts} = 1, the maximum fibres size that may be used for touching fibres is

Rmax = 2.41ε((a)1/n + b).

2.7.2 Analysis of non-touching fibres

Here, we consider a square fibre arrangement with constant lattice L and with fibres of

radius R. In this case, we find that the radius Rh of the enclosed lattice is given by

Rh =

√
2L

2
− R.

Replacing this expression into the power law model given in equation (2.19) provides

Tu − Ts =
a

((
√

2L/2 − R)/ε − b)n)
=

aεn

((
√

2L/2 − R) − εb)n
.

The value of the fibre radius that will give a transition at a given Ts for a lattice

constant L is

R =

√
2L

2
− ε

((
a

Tu − Ts

)1/n

+ b

)
.

Then, we have the following rules:

(1) For a given L, the larger (Tu − Ts) is required, the larger value of R is required.

(2) For a given R, the larger (Tu − Ts) is required, the smaller L is required.

(3) For a fixed (Tu − Ts), the greater L, the greater R is required to split the defect.

Then, in summary, to maximise the temperature gap at which we have a defect splitting

event, we have

max{Tu − Ts} =
aεn

min{((
√

2L/2 − R) − εb)n}
.

In order to minimise the denominator, we require

√
2L

2
− R ≈ εb = constant ≈ 100 nm.
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Then if we choose

R ≈
√

2L

2
− 100 nm,

we will obtain a large temperature gap. In this paper, we use L/H = 0.5 and R/H = 0.05

where H is the box size. Under these conditions, (Tu − Ts) is then small, but the results

derived in this section show how to modify the geometry (L,R) to increase (Tu − Ts). An

example of this technique is provided in Figure 13.

If we consider the term

N =

√
2

2

L

ε
− R

ε
= b,

then for N → 10 from above, large temperature gaps may be obtained. From simulations

given in Figure 6(c), R/ε≈ 3, L/ε≈ 30 and so N ≈ 20. Then, these simulations will generate

small temperature gaps.

3 Results and discussions

Sections 3.1 and 3.2 discuss results with the applied periodic and Dirichlet conditions

imposed on the external boundaries respectively and for temperatures corresponding

to stable nematic phases. Section 3.3 discusses an alternative methodology where the

fibre surfaces impose a localised ordering effect in S and nucleate defect structures in a

regime of temperature for which the system would normally lie within an isotropic state

and Seq = 0. As mentioned above, we use β to visualise topological defects with a grey

scale defined by black (β = 0) and white (β = 1) such that a disclination under circular

confinement appears as a white ring. To include the full fibre arrangement, the ensuing

visual (not computational) resolution will give a white dot instead of a ring. Furthermore,

owing to the complex fibre embedding, the classical ring-like domain may be distorted to

other shapes.

3.1 Periodic conditions

On the basis of previous work [14, 17] for an infinite periodic square fibre lattice, we

expect an infinite array of disclinations whose charge per lattice is +4. In addition, we

also expect a centreline +1 disclination to exist only close to the NI transition but split

at lower T .

Figure 5(a) displays the biaxial parameter β grey-scale visualisation obtained at steady

state for T = 307.37. At the centre region, we find an asteroid (star-shaped) disclination

encircled by a ring along the perimeter reflecting the boundary condition periodicity.

At this T , the structure’s topology remains constant, and this is the lowest critical

temperature which does not result in a defect splitting at the centre. Figure 5(b) displays

the corresponding director field.

This is in contrast to the situation for T = 307.36. Figure 6 displays the β profile

at different stages of the computation, (a),(b) and (c), at t= 6 × 103, 1.2 × 105, 5 × 105,

respectively. Here, the biaxial asteroid and the biaxial ring are formed at the initial time

steps, but at this lower T , a topological change occurs in β and the centre region asteroid

splits into two +1/2 defects that move towards the fibre boundaries; the peripheral ring
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Figure 5. The biaxial parameter, β, obtained with applied periodic external boundary conditions

as a steady state solution for T = 307.37, t= 106, is presented in (a). The asteroid-star-shaped

disclination obtained in the centre remains fixed for this temperature. The corresponding director

field is presented in (b).

Figure 6. The biaxiality parameter β obtained with periodic external boundary conditions,

T = 307.36, at different time steps, (a), (b) and (c), corresponding to t= (6 × 103, 1.2 × 105, 5 × 105)

respectively. The biaxial asteroid forms at low t prior to splitting into two +1/2 defects propagating

towards the fibre boundaries.
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Figure 7. Evolution of total energy, equation (2.12), for T = 307.37 and T = 307.36, periodic

external boundary conditions. These temperatures represent the critical transition point for which

the asteroid-shaped region of biaxiality splits into two defects.

breaks and forms six +1/2 defects. The net topological charge inside the computational

box is (8 × (+1/2) = + 4). Hence, the system possesses a clear topological transition in

structure when below the critical temperature (Figure 5) by a numerical factor (=10−5).

For all T below this critical transition temperature, the same observed topological

change and the final steady state solution are observed with the regime changes occurring

at smaller time steps for decreasing T .

The regime change (Figures 5–6c) is characterised by the evolution of the total energy

shown in Figure 7 for T = 307.36 and T = 307.37, corresponding to the two cases. The

figure shows that the total free energy follows an initial monotonic decay that reaches

a plateau. The lower T regime displays two sharp drops separated by an intermediate

plateau.

At a dimensionless time t= 44719, the first plateau is reached, and there is a split in

which the energy of the lower temperature texture decreases but the higher temperature

texture remains invariant. The split in energy between the high and low T regimes

is due to the breakage of the centre asteroid and the peripheral filament into four

disclinations. Once the high T texture with eight disclinations reaches the second plateau,

disclination/disclination and disclination/fibre repulsion and attraction forces further

coarsen the texture such that each fibre is surrounded by two +1/2 disclinations (see

Figure 6c).

Figure 8 shows the total free energy temporal evolution for T = 307.3 (low T regime)

and the corresponding grey-scale visualisation of the uniaxial scalar order parameter S ,

where black denotes S = 0 and white denotes S = Seq . The figure clearly captures how
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Figure 8. Evolution of total energy and time for T = 307.3, periodic external boundary conditions

and corresponding grey-scale visualisations of S . The profiles of S corresponding to (a),(b),(c) and

(d) indicate clear transformations within the system such as isotropic → asteroid and peripheral

filament defects → nucleation of 8 × (+1/2) defects → defect relocation → quadruple single fibre

+ two defect at steady state.

the matrix undergoes the following textural transformation: isotropic → asteroid and

peripheral filament defects → nucleation of 8 × (+1/2) defects → defect relocation

→ quadruple single fibre + two defect at steady state.

3.2 Dirichlet conditions

Results are considered where the boundary conditions assigned on the external boundaries

are of Dirichlet type (equation (2.18)). Similar to section 3.1, the regime of T is considered

such that Seq is positive. Figure 9 displays the steady state solutions for β for the data

sets T = (307.46, 307.45, 307.44, 307.43), corresponding to the critical regime prior to defect

break-up at T = 307.42 (Figure 11). The lower symmetry of the textures of four fibres

embedded in an aligned nematic matrix when compared with an infinite fibre lattice is

evident when comparing Figures 5 and 9. The asteroid defect in the periodic case now

becomes an asteroid attached vertically to two Y-shaped domains; similarly, the peripheral

defect ring (see Figure 5) becomes a heterogeneous, segmented series of domains. In terms

of rotational symmetries, the periodic fibre lattice case has a π/2 identity, but the Dirichlet

has a π identity. This is due to the vertically aligned orientation at the boundary of the

latter.
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Figure 9. Profiles of β for T = (307.46, 307.45, 307.44, 307.43) at t= 106 and Dirichlet external

boundary conditions. This temperature range corresponds to the critical regime prior to defect break-

up corresponding to T = 307.42. There is lower symmetry associated with four fibres embedded in

an aligned nematic matrix compared with the case of an infinite lattice (Figure 5).

In contrast to the case of periodic boundary conditions, the break-up regime occurs

at higher T and is continuous when the β profile changes topology prior to break-up.

Figure 10 shows the β profiles for Y = 0.5 across the centre section of the computational

domain corresponding to Figure 9. At high T (T = 307.46), the β profile has the usual

double peak associated with a disclination. As T increases, the two peaks merge into

a large peak (T = 307.44), and a further decrease in T leads to a narrow biaxial single

peak at T = 307.43. It is emphasised that the textures shown in Figure 9 are at steady

state and the continuous nature of the texture transformation refers to the temperature

change. This temperature corresponds to the pre-transitional defect splitting temperature

that occurs at T = 307.42 K, and at this temperature, the texture is composed of four

outer +1/2 disclinations and inner regions with a large biaxial rectangular domain linked

to four small biaxial ellipses.

Figure 10 shows that at T = 307.46, β replicates the classic profile of a defect structure,

where β = 0 in the defect centre and rises to two peaks of β = 1. Decreasing the temperature

generates a transformation from a double peak to a single peak in β.

Figure 11 displays the texture formation for T = 307.42. The defect structure enters a

topological transition and splits as in Figure 11(a), t= 3.65 × 104, and defects propagate

towards the fibre boundaries as in Figure 11(b), t= 1.2 × 105. This is an identical result

to the situation of periodic boundary conditions (Figure 6). Then, it is apparent that the

final steady state solution at lower T is independent from the applied external boundary

conditions. The structure formation is sensitive to the nature of boundary conditions for

high T only prior to defect break-up. The structure in both cases will undergo a transition

from a collective mode (defects are shared by the four fibres) to a single-fibre mode (each

fibre is surrounded by two defects), which must be insensitive to matrix and boundary

conditions.

Comparing Figures 8(d) and 11(b), it is clear that the external boundary conditions

solely influence the collective modes that arise at higher temperatures. In characterising

the system and the accuracy of the model, the distribution of gradient energy, Fg , may
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Figure 10. Cross-section profiles of β (X ∈ (0.2, 0.8), Y = 0.5) for T = (307.46, 307.45, 307.44,

307.43), t= 106 and Dirichlet external boundary conditions. The profile undergoes rapid changes

with respect to T such as forming the usual double peak associated with a disclination for

T = 307.46, merging into a large peak, T = 307.44, and forming a narrow biaxial peak, T = 307.43.

Figure 11. Profile of β for T = 307.42 where (a) and (b) correspond to t= (3.65 × 104, 1.2 × 105),

respectively and Dirichlet external boundary conditions. There is a clear topological transition at

this temperature where the asteroid region splits and defects propagate towards the fibre boundaries.

This is in agreement with the situation in Figure 6.
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Figure 12. Profiles of Fg as a function of t for varying T and applied Dirichlet external boundary

conditions are presented in (a). A linear regression for (T , Fg) is presented in (b).

be considered and also the change in Fg required for structure break-up for varying T .

From theory, the relationship between the Landau-de Gennes and Frank constants are

given by [29]:

l1 =
k22

2S2
eq

, l2 =
k11 − k22

S2
eq

,

and from

S2
eq ∝ 1

T
,

there is the established theoretical prediction that at higher T , less energy is required to

break up the elasticity of the structure and the magnitude of energy required ∝(1/T ).

This result is established within the simulations (Figure 12), which displays the mag-

nitude of Fg released on defect break-up, decreasing with T (Figure 12(a)) and a plot of

the total gradient energy as a function of T for (T , Fg) (Figure 12(b)).

Over this small range of temperature, the plot is linear but may generate a curved

profile over greater ranges of temperature.

Figure 13 displays the biaxial structure obtained for T = 307 within this different

arrangement of smaller fibres that are situated in nearer proximity such that L/H = 0.1

and R/H = 0.03. It is evident that this new arrangement is able to maintain biaxial

structures at lower temperatures, then increasing (Tu − Ts). This result provides an

example of the theory discussed in section 2.7.

3.3 Surface-induced ordering effects

For temperatures in which the nematic phase is unstable (T >Tu = 307.47), no bulk order-

ing is expected. Nevertheless, surface-induced ordering may arise from strong interactions

between the fibre and the mesophase [23, 31], a case known as surface-induced ordering.

This section seeks to demonstrate that surface-induced ordering in FN may also create
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Figure 13. Profile of β for T = 307 and t= 106. Here the splitting temperature has been clearly

lowered because of the effect of reducing the fibre distance and radius. In this case, L/H = 0.1 and

R/H = 0.03.

texturing in the bulk through the gradient elasticity that propagates order and orientation

from the internal surfaces. Since the propagated orientation carries the fibre curvature

information, we expect that defect-like structures will nucleate through the frustration

effect. To capture surface-induced ordering, we use the following Dirichlet condition on

the internal surfaces:

qij = α(NiNj − 1/3δ), (3.1)

where α is a constant arising from the surface-induced ordering. Equation (3.1) is identical

to equation (2.14) with the exception of the Seq term being replaced by α. This modification

removes dependence of T , and when in the regime of T for which the system lies in a

naturally isotropic state, a localised ordering interaction may be nucleated by applying

equation (3.1) as the internal Dirichlet conditions and considering α
 0.

It is clearly noted that this methodology is physically different from that discussed in

sections 3.1 and 3.2 where the fibres nucleated defects through a distortion in the director

field and not the ordering parameter. Results will be considered in the regime of T for

which (Q = 0, S = 0) is the natural state. Results will be considered with the application of
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Figure 14. Profiles of β for T = (307.5, 308, 310) with applied periodic external boundary conditions,

Seq = 0 in each case, t= 106. The localised ordering clearly takes effect and nucleates defect structures.

The star-shaped region of biaxiality is obtained in all cases similar to Figure 5.

Figure 15. Cross-section (S, P ) profile (X ∈ (0.5, 1), Y = 0.5), periodic external boundary conditions,

T = 310, Seq = 0 and t= 106. The profiles intersect with the lines (S = 0) and (P = 3S ). The latter

case corresponds to the core of the defect in the centre.
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periodic boundary conditions imposed on the external boundaries as defined in equation

(2.17).

Figure 14 displays the profiles of β obtained at steady state for T = (307.5, 308, 310).

In each case, α= Seq|T=T ∗ ≈ 0.19. The star-shaped region of biaxiality is obtained in all

cases similar to the profiles obtained in Figure 5. Then, there is the clear result that the

concept of imposed localised ordering takes effect within systems which will naturally lie

in an isotropic state.

There is an apparent reduction in the biaxiality region with increasing T as the star-

shaped cluster is forming higher gradients, indicating that the gradient energy is becoming

less costly.

Surface-induced ordering creates a boundary layer around each fibre, but the value of

S in the bulk shows localised heterogeneities as shown in Figure 14. To characterise the

order in this defect mesh, we can use the trajectory in the S − P plane. As is known [9],

defects cores lie on the (P = 3S) uniaxial line on which β = 0.

Figure 15 shows the trajectory on the S −P phase plane and the (P = 3S) uniaxial line,

showing that at the centre of the computational domain (x= 0.5, y= 0.5), the nematic

order is uniaxial as in normal disclinations (although not shown, the actual values of S

and P are small but not zero). In partial summary, surface-induced ordering in a periodic

FN results in a defect mesh structure that does not penetrate the fibres.

The mesh thins out with increasing temperature, and the order at the mesh nodes obeys

the uniaxial defect rule P = 3S found in the nematic temperature range.

4 Conclusions

In this paper, a two-dimensional simulation on the Landau-de Gennes equations has

been employed to characterise the influence of temperature on defect structures arising in

fibre-filled nematics. The theme of this research may be regarded broadly as being divided

into two physically different investigations due to the regime of temperature. In the first

case, the temperature is low enough for non-zero ordering parameters to exist, Seq > 0,

and in the second case, a natural isotropic state would occur, Seq = 0.

Firstly, the investigations at lower temperatures are considered, Seq > 0. In this regime,

the problem is investigated for two physically different types of boundary conditions

imposed on the external boundaries of the computational domain. In one case, periodic

boundary conditions are imposed, creating a repeating fibre lattice. In the second case,

Dirichlet conditions are imposed, representing a far-field aligned director orientation effect.

The same methodology is applied in each case with the same temperature-dependent

expression applied as Dirichlet conditions in Q on the internal boundaries. For a given

T , the texture formation is evolved from the same initial conditions (Q = 0, S = 0).

The evolution of texture formation is considered through a temperature sweep.

Figure 16 displays a schematic illustrating the steady state solutions observed for β

with varying T and the two external boundary conditions. In both cases, there is a clear

transition change in the defect structures with respect to temperature with an initial cluster

of biaxiality forming as steady state solutions at higher temperatures, (b) and (e). There is

an evident transition regime in temperature for which this region of biaxiality will break

into defects of lower strength that move towards the fibre boundaries, (a) and (c). The
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Figure 16. Schematic of β structures at steady state solutions (t= 106) with respect to T for applied

periodic and Dirichlet external boundary conditions, Seq > 0 in each case. There is a clear transition

in the defect structures in both cases with clusters of biaxiality forming at higher T . There is a

transition regime where the biaxiality cluster splits into defects of lower strength that move towards

the fibre boundaries. At lower T , there is exact agreement between the two boundary condition

types.

nature of external boundary conditions clearly contributes a significant difference to the

behaviour of defect structure with respect to T . The transition temperature for defect

break-up varies considerably between the periodic and Dirichlet cases. In the former, the

defect structure exhibits an abrupt transition from a steady state region of biaxiality to

the defect splitting stage due to a numerical difference in temperature (=10−5). In the

latter case, the transition is continuous where the steady state biaxiality region displays

the classic β structure at higher temperatures, continuously changing topology, (d), prior

to entering the regime of defect break-up. The primary rotational symmetry angle between

the two cases, (b) and (e), varies from (π/2) to π respectively.

At the lower values of T , there is exact agreement between the two boundary conditions,

(a) and (c). In this regime, there is a transition from a collective mode to a single-defect

mode which is insensitive to the matrix and external boundary conditions. In this regime,

each fibre is surrounded by two defects, different from the situation of collective mode

associated with higher temperatures. In summary, the influence of external boundary

conditions on the steady state solution has affect at the higher temperature ranges solely,

prior to the nucleation of defect break-up and single-fibre mode defects.

This investigation has been complimented by considering the surface-induced ordering

at temperature regimes for which the system would normally remain isotropic. Dirichlet

conditions have been imposed on the internal boundaries such that (Q�0), and this has

generated a clear boundary layer within the ordering parameter across the domain. Thin

defect lattice structures have been nucleated within these systems that would normally

remain isotropic, which indicates the propagation of localised ordering on fibre surfaces
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through the bulk of the domain. The observed defect is a mesh-like localised structure

whose nodes obey the classical P = 3S uniaxial rule that prevails at lower temperatures.
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