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We consider the parabolic one-dimensional Allen—Cahn equation
ut = Uge +u(l —u?), (2,t) € R x (—o0,0].

The steady state w(z) = tanh(z/v/2) connects, as a ‘transition layer’, the stable
phases —1 and +1. We construct a solution u with any given number k of transition
layers between —1 and +1. Mainly they consist of k£ time-travelling copies of w, with
each interface diverging as t — —oo. More precisely, we find

k

u(m, t) ~ > (—1)7 Tw(z — (1) + 5(=DF1 = 1) ast— —oo,
j=1

where the functions &;(t) satisfy a first-order Toda-type system. They are given by

1 . k+1 .
&) = ﬁ(ﬂ - T>108(—t)+7jk7 j=1,...,k,

for certain explicit constants ;.
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1. Introduction and statement of the main result

A classical model for phase transitions is the Allen—Cahn equation [1]

uy = Au+ f(u) in RY, (1.1)
where f(u) = —F'(u). F is a balanced bi-stable potential, i.e. it has exactly two
non-degenerate global minimum points, u = +1 and v = —1. The model is given

by
F(u) = —1(1—u?)?,
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so f(u) = (1 — u?)u. The constant functions u = 41 correspond to the stable
equilibria of (1.1). They are idealized as two phases of a material. A solution u(z),
whose values lie at all times in [—1, 1], and takes values close to either +1 or —1 in
most of the space RY, corresponds to a continuous realization of the phase state of
the material, in which the two stable states coexist. There is a large literature on
this type of solution (in the static and dynamic cases). The main object is to derive
qualitative information on the ‘interface region’, that is, the walls separating the two
phases. A close connection has been established between these walls and minimal
surfaces and surfaces evolving by mean curvature in many works. We refer the
reader to, for example, [5,7,9-13]. On the other hand, the main difference between
interfaces and surfaces that evolve mean curvature surfaces is that, in the phase
transition model, different components interact, giving rise to interesting patterns
of motion.

The aim of this paper is to study multiple-interface interaction in the simplest,
one-dimensional, scenario. We shall construct non-stationary solutions defined at
all times. In the ancient regime, multiple, quite separate, transitions are present,
with a dynamical law that is rigorously established. More precisely, we consider the
problem of building ancient solutions u(z,t) to the one-dimensional Allen—Cahn
equation [1]

Uy = Ugp +u(l —u?) in R x (—o0,0] (1.2)
that exhibit a finite number of transitions that connect the values —1 and +1.

The building blocks of these solutions are the single-transition-layer equilibrium
solutions to (1.2),

u”" +u(l—u?)=0 inR, lim u(x) =1, lim wu(z)=-1,
r— 00 r—r—00
which represent a heteroclinic monotone connection between the constant equilibria
+1 in the phase plane. These solutions are unique up to translations. The unique
solution with u(0) = 0 will hereafter be denoted by w(x), and is given in closed
form by

w(z) = tanh (\%) (1.3)

Given an even number k, we want to build a solution u(z,t) to (1.2) that satisfies
u(z,t) = tw(r —§;(t))

near each k-ordered, very distant ‘transition point’ §;(t), j = 1,..., k. More pre-
cisely, we want to find a solution of the form

k
ult,z) = —1+ Z(ﬂ)jﬂw(;p —&(1) + w(t, z), (1.4)
with
§1(t) < &at) < --- < &(2), §(t) = —&—jr(t), (1.5)

where the perturbation function (¢, x) goes to zero uniformly as ¢ — —oo and
satisfies the orthogonality conditions

/ Pt z)w' (x —&(t)de =0 foralli=1,...,k t<-T, (1.6)
R
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for a suitable large T > 0. We shall establish the existence of a solution with this
characteristic. In fact, as we shall see, the interface dynamic is driven mainly by
the following system of differential equations (a first-order Toda system)
%f}76XP(*\/§(£J'+1*Ej))+exp(f\/§(£jffj_1)) =0, j=1,...,k te€ (*O0,0}.
(1.7)

The dynamic law of interface interaction was formally derived in a related Neu-
mann problem by Fusco and Hale [8] (see also [2,3]). In [4] Chen et al. built a
solution with two transition layers travelling in opposite directions (our k = 2 case).
Their argument was based on barriers, and it is not clear to us how to extend it to
multiple transitions. In [6] the first-order Toda system appears in the construction
of ancient solutions for the Yamabe flow.

More precisely, we shall find

&) =) +hi(t), j=1,....k

for some suitable parameter functions h;(t), such that these functions will decay in

|t| as t — —oo for all j = 1,...,k, and the functions 5? solve the first-order Toda
system
1 .
B%—eXp(—\/ﬁ(fjH—fj))+eXP(—\/§(§j—€j—1)) =0, j=1,...,k te&(-o0,0],
(1.8)
with the conventions
§ky1 =00 and & = —oo,
where Ty > 0 and
5 6 [5 e2/V2(1 — w(z))w' () dx (1.9)
N Jp(w'(z))? dz '
We shall see that a solution of the above system is given by
1 k+1
0(4) — : -

for certain explicit constants ;.
Our main result is as follows.

THEOREM 1.1. Let k > 2 be an even integer and let «f? be the solution (1.10) of the
Toda system (1.8). Then there exist a number T > 0 and a solution u(t,x) to (1.2)
defined on (—oo, —=T| x R, of the form (1.4)-(1.6), with

&) =& M) +hi(t), j=1,...k

where the functions ¥(t,x) and h;(t) tend to zero in suitable uniform norms as
t — —oo.

If k is odd, a similar construction can be made with slightly different asymptotic
configurations. For notational simplicity we shall only consider the case of an even
k in this paper.
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2. The first approximation
We want to solve the following problem:

Ut = Uge + f(u) in (—oo,—T) xR,

where f(u) = u(l — u?), and T is a large positive number whose value can be
adjusted at different steps.
Let k£ > 2 be an even integer. We set

wi(t, z) = w(z = &(1)),
where the functions &;(t) are ordered and symmetric:
§1(t) < &alt) < < &ppalt) <O <&ppoyr <o <&k(t), &) = —Ep—jr1(t).
We set £(t) = (&1(), ..., & (t)T and write
£(t) = €°(t) + (1), (2.1)

where

k
¢ = % (j _ ;—1) log(—2V2t) + 5,

B is as defined in (1.9) and v, are constants which we shall determine later. In
addition, h(t) satisfies

I(t) [ + (6 = DR (B~ <1 and  Tim[h(t)] + |1(8)] = 0.

We seek a solution of the form

k
u(t, z) = Z(q)jﬂwj(t,x) —1+(t,x). (2.2)
Set i
z(t,x) = Z(—l)jﬂwj(tx) -1 (2.3)

We would like v to satisfy

k
b = Vua + ['(2(L2)0 + E+ N(p) = Y ei(tw'(z — &(t),
=1

(t,z) € (—oo,—T) xR, (2.4)

and
/ Yt z)w' (x —&(t)de =0 foralli=1,...,k t<-T, (2.5)
R
where
k ‘ k
E =) (—1)"w' (@ — &(6)&)(1) + Z 17 fwy(t,x)),  (26)
Jj=1 1

N(@) = (it x) + 2(t, ) = f(2(t, 2)) — ['(2(t,2))¢
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and ¢;(t) have been chosen such that 1 satisfies the orthogonality condition (2.5),
i.e. in such a way that the following (nearly diagonal) system holds:

>alt) [ wle—&On'a =& o)

=1

= /me(t,z) + 1 (2(t,2)(t 2))w' (x = &5(t)) da

- §;(t) /}R Pt 2)w" (@ — &;(t)) de + /R(E + N(¢)w'(z — &(t)) dz,

foralli=1,...,k t<-T.

(2.7)
Later we shall choose h(t) such that ¢;(t) =0 for alli=1,... k.
In the remainder of the paper we use the following notation.
NOTATION 2.1.
(i) We set
£=¢+h, (2.8)
where h: R — R” is a function that satisfies
sup |h(t)| + sup [t||A'(t)| < 1. (2.9)
t<—1 t<—1

(ii) We define
z(t,x) = zk:(—l)j+1w(x —&(t) — 1.
j=1
In the following lemma we find a bound for the error term E = E(¢,x) in (2.6).
LEMMA 2.2. Let Ty > 1 and 0 < o < /2. We define

O(t,x) = exp(o(—z + & 1 (1)) + exp(o(z — §]41 (1)),
Zf %(E?(t) + f?—l(t)) ST < %(ﬁg(t) + £?+1(t))a .7 = 17 et k’ (210)

with £ = —oo and 5/3+1 = o0o. Then there exists a uniform constant C' > 0 that
depends only on k, such that

|E(t,z)| < CP(t,z) for all (t,x) € (—oo, —Tp] X R,
where E is the error term in (2.6) and £ satisfies the assumptions (2.8) and (2.9).

Proof. First, note that there exists a positive constant ¢ := ¢(vy1,...,7,5) > 0
such that the following inequality holds:

ap { 250

<tV forallj=1,...
) } clt| or all j ,

reR
Using the fact that
|§_;‘ < Cl(ﬂa k)|t‘717
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we obtain that there exists a positive constant Cy = Ca(k) such that

w'(z —&(t)) o/Va-1 o
ilélg{ (1, ]) }f | < Csolt forall j =1,...,k.

Now, let
GO+ 1) <z <F(EW) +E0), =1k

with £§ = —oco and &}, = co.
If i« < j7—1, by our assumptions on &; there exists a uniform constant C' > 0 such
that

w(z = &(t) = 1] < Cexp(V2(—z + &_ (1))
Similarly, if ¢ > j + 1,
w(z = &(t) + 1 < Cexp(vV2(x = &41(1)))-

We set
j—1 k
g=> (DM (w@-& -1+ > (1) (wE-&) +1)
i=1 i=j+1
Then

z:l
k
C|g+‘ - Y U )
i=1,i#£j
-1 2 '
<0(Z|w<x—si>—1|+ 3 <—1>2“|w<x—§i>+1|).
i=1 i=j+1

Combining the above and using the properties of £, we obtain the desired result. [

3. The linear problem

This section is devoted to finding a solution to the linear parabolic problem

k
Y = aa + f'(2(62)0 + h(t,2) = Y e(hw'(z = &(t)) in (=00, —Tp] x R,
=1
’ (3.1)

/ Pt z)w' (x —&(t)de =0 foralli=1,...,k t€ (—o0,—Tp], (3.2)
R

for a bounded function h, and T > 0 fixed sufficiently large.
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The ¢;(t) are exactly those that make the above relations consistent. Namely, by
definition, for each ¢t < —Tj, they solve the following linear system of equations:

St [ we - &) e~ &(0) do

i=1 R

- / (s + f (20 (& — &(8)) da
0 / Bt )" (z — &(t)) da
—|—/hw’(x—§j(t))dz, j=1,...,k. (3.3)
R

This system can indeed be solved uniquely, since if T is taken to be sufficiently
large, the matrix with coefficients

/ W' (x — &)W (x — &(t) da
R

is nearly diagonal.

Our aim is to build a linear operator ¢ = A(h) that defines a solution of (3.1),
(3.2) which is bounded for a norm suitably adapted to our setting.

Let Cs((s,t) x R) is the space of continuous functions with norm

u

@

Hu”Cqs((sJ)x]R) = )
Lo ((s,t) xR)

where @ is as defined in (2.10).
PROPOSITION 3.1. There exist positive numbers Ty and C' such that for each h €

Co((—00,0) xR) there exists a solution of problem (3.1), (3.2) ¥ = A(h) that defines
a linear operator of h and satisfies the estimate

[ llea((—oo,tyxr) < Cllllcs (oo, yxry  for all t < —Th. (3.4)

We obtain the proof via intermediate steps that we state and prove next. Let
g(t,z) € Co((—00,—T) x R). For T > 0 and s < —T we consider the Cauchy
problem

d)t = 1/)9056 + f/(Z(t,I))1/) + g(t,l‘) in (57 _T] X R’} (35)

P(s,z) =0 inR,

which is uniquely solvable. We call its solution T°(¢,x). By standard regularity
theory we have T° € C%((s,—T) x R).

3.1. A priori estimates for the solution of problem (3.5)

In this subsection we shall establish a prior: estimates for the solutions T° of
(3.5) that are independent of s.
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LEMMA 3.2. Let T% € Cs((s,—T) xR) be a solution of problem (3.5). Then g(t,x) €
Co((s,—T) x R) satisfies

/g(t, p)w'(x —§(t)) dw = 7/(T£x(t,z) + [1(2(t )T (8, 2))w' (@ = &5 (t)) de
R R
+E4(t) / T (t, z)w’ (x — &(t)) dz
R

foralli=1,... )k s<t<-T.
(3.6)

Then there exists a uniform constant Ty > 0 such that for any t € (s, —Tp| the
following estimate is valid:

1T lleq ((s.)x) < Cligllcs (st xm)» (3.7)
where C' > 0 is a uniform constant.

Proof. We note here that the assumption (3.6) implies
/ T*(t,z)w'(x — &(t)dz =0 foralli=1,...,k, s<t<-T. (3.8)
R

Indeed, since T* is the solution of (3.5), using w’(z — §;(t)) as a test function, for
any t € (s, —T] we have

/ TPw' (z — &(t) de = — / Tiw" (z — &(t)) dz
R R
—i—/Rf'(z(t,w))Tsw'(x _ () de + /Rg(t,x) dz.
But, by (3.6), for all ¢t € (s, —T] we have
/ g(t, z)w'(x — &;(t)) dz = / T3t x)w" (z — &(t)) da
R R
— /Rf’(z(t7 e))T°(t, z)w' (x — &;(t)) da
+&;(1) /RTS(t,:r)w (x—¢&(t))de.
Thus, combining all the above, we obtain that
/ Tyw' (z — &(t)) do = &(t) / T3t x)w" (z — &(t)) dz
R R
= % RTSw’(x —&(t)dz =0
— /RTSw (x—¢(t)de =c.

Using the fact that T°(s,z) = 0, by above the equality we deduce that T° satisfies
the orthogonality condition (3.8).
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Set
APY = {(1,) € (5,8) x R: 2(E2(r) + €0, (7) < = < 3(&0(7) + &1 (1)}
with &) = —oo0, §2+1 = 00 and

Al = {(r,2) € (5,t) x R: [z — €2(r)| < R+ 1}.

We shall prove (3.7) by contradiction. Let {s;} and {f;} be sequences such that
s; < t; < =Ty, and s; | —o0, t; | —oo. We assume that there exists g; satisfying
(3.6) and such that 1; solves (3.5) with s = s;, =T = #; and g = g;. Finally, we
assume that

s 1
4 Lo ((s;,t;)XR) (3 9)
‘ Ji — 0,

@ L“((si,ﬂ)XR)

First, note that we can assume
s +1 <t
Indeed, let A > 0. Then the function 1; = e**=31);(¢, ) satisfies

Ut = Vgg + (_>‘ + fl(z(ta .’L’)))U + e_)\(t_Si)g(t7 37) in (87 _T] xR,
. (3.10)
v(s,z) =0 inR.
Let M > 0 be sufficiently large. Set
¢j(t,x) = M(exp(o(—z + &, 1(1))) + exp(o(z — &1 (1))))-
Next observe that there exists C' > 0 independent of ¢ such that
D(t,z) < Co;(t,x) for all (t,z) € (—oo,—1) x R. (3.11)

Now, since | f/(z(t,x))| < Co, where Cy does not depend on ¢, we can choose A > 2CY
independent of ¢ such that for any (¢,z) € (s, —1] x R the function ¢; satisfies

(@) = (8))aa + A = [/ (2(t,2)))8; = 16, (t, ) = caMb(t,x) > e Mg, (¢, ),
where c¢q, co > 0 are independent of ¢ and

1

gi

P

C2

Lw((si,fi)XR) -

Thus, we can use ¢; as a barrier to obtain

gi

lvi(t, )| < ¢(t,x) = |[¢i(t,x)| < CeA(t_si)Q(t,x) 3

(3.12)

Lm((si,fi)XR)

Thus, by the above inequality, we can choose s; + 1 < ;.
To prove by contradiction we need the following assertion.
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ASSERTION 3.3. Let R > 0. Then we have

=0 foralj=1,... k. (3.13)

lim %
P

Let us first assume that (3.13) is valid. Set

% 1—00
P

220 forallj=1,...,k
L= (AfE")

Hi,j = ‘

and let
(&) + &) <z < 5(EM) + 1), F=1,...,k,

with & = —oo and &1 = o0.
If n < j—1, then by our assumptions on &, we have

(@ = &(t)) = 1] < Cexp(V2(—z + &n 1 (1)) < Cexp(— (& — &-1(1)) <

S

Similarly, if n > j + 1,

<

7

Moreover, if we assume that |z — &;(t)| > R+ 1, then we have that
w(z = &;(1))] = w(R).

Combining all the above for any 0 < ¢ < \/5, there exist ig € N and R > 0 such
that

[w(z — &a(t) + 1| < 2exp(V2(z — &nra(t))) <

k
—fl((tw) 22— forallt <f, z e R\ [J A" andi>dip.  (3.14)
j=1

Consider the function
Gij(t,x) = M(exp(o(—z + &)1 (1))

+ exp(o(z — ;?_1(t))))(‘

gi

P

+ sup Mm‘), (3.15)
Loo((s;,E)xR)  1<j<k

where M > 1 is sufficiently large and does not depend on s; or ;.
Let ¢ > 0 be such that 2 — 2 > ¢2. Then we can choose i such that, for any
i > g and for all (¢,z) € ((s;,t;) x R)\ U§=1 Ags}%’ti), the function ¢; ;(t, z) satisfies

(i)t = (Dij)ea — f'(2(t,2))ij = 104 = caMP(t, x) = g(t, x), (3.16)
where the constants 0 < ¢y < ¢; < 1 are independent of ¢, M > 1/cy and we have
used (3.11).

Let 0 < 7 < 1 be a smooth function in C§°R such that n =1if || <1 and n =2
if || > 2. Set ¢ = n?(t/R) max(¢;(t,z) — ¢ (¢, x),0).
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Note that by (3.12) we can choose M > 0 such that

3
max(¢; (¢, z) — ¢i;(t,x),0) =0 for all (t,x) € U A;f;'%’ti).

Thus, by (3.14) and (3.16) we can easily obtain

// ¢thCdxdt+// — ¢i.j)aCe dz dt
2 —¢? // — ¢i.5)¢dxdt <0.

By the above inequality and using standard arguments, we obtain

i (t,2)] < [ (t)] for all (t2) € ((si,E) x UA““”,

Thus, we have
[Vi(t, )| < |di(t,x)| forall (t,2) € (si,t;) xR, j=1,... k.

Hence, by (3.10) we can easily obtain that

i ] W R
((si,t:) XR)

which is clearly a contradiction if we choose i large enough.

9i

P

+ sup Hi,j)>
Lo ((ss,t:)xR)  1<j<k

Proof of assertion 3.3. We shall prove assertion 3.3 by contradiction in four steps.
Let us first set out the contradiction and give some notation. We assume that
(3.13) is not valid. Then there exists j € {1,...,k} and § > 0 such that

sz

>0>0 forallieN.
Lo A(gz 1))

Let (t;,vy:) € Agfgm such that

‘wz i
'L’yl

> 0. (3.17)

We observe here that, by the definition of @,
P(ti,yi) = exp(o(—yi +§-1(t))) + exp(o(yi — &1 (t))- (3.18)
Weset y=a+&(t+1t), yi =z +&(t;) and

it +ti,x+a; + &+ )

¢ilt, ) = D(ti, i +&5(t:))
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Then ¢; satisfies
(0i)e = (Pi)aa — &t + 1) (i)
+ G+t o4z +&E+))d
git+ti,z+a, + &t +1t))

+
D(ti, xi +&(ti))
(bi(si - ti,x) =0 inR.

(3.19)

n (s; —t;,0] X R,

Also set

By, n,; = {(t,x) € (s; —t;,0] x R:
%(62(t+ti>+£2 1t 1)) =&t +t) —wi <@
S3En(t+t) + & (t+t) — &t +t:) — i}
and
BN, =By N {(t,2) € (5i — 15,0] x R |z + &t + ;) + 2 — E3(E+ )| > M},

where n = 1,...,k and M > 0. We note here that |z;] < R+ 1 for all i € N,
|0:(0,0)| = |w;(ts,y:)/P(ti,y:)] > & > 0. Also, in view of the proof of (3.12) and the
assumption (3.17), we can assume that

liminf¢; — s; > oo.

Without loss of generality we assume that x; — xg € Br11(0), lim;_ o0 t; — $; = 00
(otherwise we take a subsequence).

STEP 1. We assert that ¢; — ¢ locally uniformly, that ¢(0,0) > § and that ¢

satisfies
Oy = (bm + f(w(z + 20))$ in (—o0,0] x R. (3.20)
Let (t,x) € By, nj, 1 < k. By (3.9) and (3.18) we have that
it ‘wzt+tz,x+xz+@(t+t))‘

P(ti, vi + &5(ti))
Pt +t,x+a; +&(t+ 1)) ‘
P(t, i + &§(ti))
e (= @4+ (t4t)) +n—1(t4+t:)) o oo (T+mi+&5(t+ti) =€t (t41:))
- o (—(wi+&; () +&5-1(t)) 4 eo(wit&;(Bi)—E541(t:))
< @0 ((@tait &y (thts) =€n (t48:)) = (§n (t1) —En -1 (t48:)) F2i (&5 (1)) =€ -1 (82))

X

+ o0 (@4mi+&; (t4t:) =& (t4:))+(En () —Enpr (EH6)) Fit+ (€541 (6) €5 (8)

V2
Co(B, [|h||Lee, sup |vj|,0 R)(t—&-t.) o0 |T+E (t4t:)—En (t+1))]

1<5<
for all i € N, (t,x) € By, nj,
(3.21)

where in the last inequality we have used (2.1).
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Now note here that -
U Btivjaj = (700, 0] x R.
Thus, the proof of this step for the assertion is complete.

STEP 2. In this step we prove the following orthogonality condition for ¢:
/ o(t, x)w' (x + xo)dz =0 for all t € (—o0,0]. (3.22)
R
Let t € (;=;, (si — ti, 0] for some 7o € N, and

2 € Biyyn;={reR:
JEn+t) + e (t 1) =&t +t) 2 <
< (E 1) + &yt + 1) — &t + 1) — a3}
By (3.21) we have that

‘/B W (z + 1) da

sti.3,7

<0y / e~ (V2mallel gz < . (3.23)
R

Let n > j. Then there exists i¢ such that for any ¢ > iy we have x > 0. Also, by
(3.21), the assumptions on ¢ (see notation 2.1) and the fact that x| < R+ 1, we
obtain

/ ¢i(t,x)w' (x + x;) dz
Bi,t; n,j

(go(t t;) §n+1(t t:))/2—=&; (t+t:)—z;
OO/
(

o~ V2rtolz & (tt) —En(t+ti)] qp
€9 (t+t:)+E0 1 (t+t:)) /2—€; (t+t:) —s

(€0 (t+E:)+E0 4y (t48:)) /2= En (t+t:) — s
= Cpe— V2(En(t4t) =& (t41:) / o e—VErtalyl gy

(€5 (tHt:)+ED _ (t+8:)) /2= En (t+ti) —;

Now

(€0 (1) +E0 41 (t+1:)) /2= En (t+ti) —4
/ 1 e—\/§y+0|y| dy
(€0 (t+t)+E0 1 (t+t:))/2—En(t+ts)—s

/(fg(t+ti)+§g+1(t+ti))/2§n(t+ti)zl

- e~ V2utalul gy

0

0
+/ e—ﬁy+0|y|dy
0 (t+t:)+E0 1 (t+8:)) /2= &n (t4t) —2s
C(e~(V2Z=0)/D(En i (tHt) €L (t4) 4 o(VZH0)/2)(E0 (1) =0 1 (HH6))) 4 ¢
c

(e” V2-0)/2V2)(log(—2V28(t+t:))) e((\/iﬂf)/?\/?)(10g(*2\/§ﬁ(t+ti)))) + ;.

NN

But
o~ V2(En (t+t:)—€; (t+1:)) < Ce™ V2(En(t+ti)—En—1(t+t:)) < Ce™ log(—2V2f(t+t:))
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Thus, combining all the above, we obtain

[ aitanias s da] < conamemmbsoamisi 5 (g
Bt,t;,n,j

Similarly, the estimate (3.24) is valid if n < j. Now note that

/%t;v (z + ;) dx—/w’ +tl;i;i’g(§§§+t))w’(:c—i—xi)dx

M/% (t+ti, x)w' (x — &t + ;) da

= 0. (3.25)
By (3.23)—(3.25) we have that

0= /qui(t, r)w'(z + z;) de — /Rgb(t, )w' (z + xo) dz
and the proof of this assertion follows.
STEP 3. In this step we prove the following assertion.
ASSERTION 3.4. There exists C = C(R,0) > 0, such that
lp(t, z)| < Ce™1l for all (t,z) € (—o0,0] x R. (3.26)
Now, note that if (t,2) € By, n j, by definition of { (notation 2.1), we have

ol 85 (t+t:) —&n (t+t:)] <0, (@ |hllLs, sup |,m707 R)ea\zl_
1<ji<k

Thus, in view of the proof of (3.21) we have that

gilt +ti, o+ + &(t+1;))
D(t;, m; + &(t:))

In view of the proof of assertion 3.3 we can find ig and M > 0 by using

eaz|>
Lw((si,ﬂ;)XR)
as barrier, to prove

|ps(t, )| < G(t,x) for all (t,z) € BM

e’l#l for all i € N.

LOO((S7{1)><R)

gi
<O||=

i
P

G(t,z) = M(e”' +

t..5.; foralli>ig.
The proof of (3.26) follows if we send i — oco.

STEP 4. Here we prove (3.13).
If we multiply (3.20) by ¢ and integrate with respect to x, by proposition 3.5 we
have

_1 2), da 2 fl(w(x))|¢)? da
0= 5 [@dot [ fo - Flw@)iol a

> %/R(¢2)tdx+c/ﬂk|¢(t,m)|2dm.
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Setting a(t) = [, |#(t, 2)|? dz, we have that there exists a ¢ such that

d'(t) < —coa(t) = a(t) > a(0)el,
which is a contradiction since

”eU'm‘QSHLOC((foo,fToffo)xR) <C.
O

The following proposition is well known; we give a proof for the reader’s conve-
nience.

PRrROPOSITION 3.5. Consider the Hilbert space

H= { c H'(R / ((x o}.
Then the following inequality is valid:

/|g (w(a))|C]2 dz > /\g J2dz forall¢ € HNI2(R).  (3.27)

Proof. Let ¢ € H and set ¢ = w’¢. Then

L@ = i e = [ juFlof do+ [ P @)
/ ! (R da /f D' da
= [P
>0

Thus,
/K (w(z ))|C\2dx—0 if and only if ¢ = cw’

for some constant ¢, which implies that ¢ = 0.
Now we assume that there exists a sequence {¢,}52; € H such that

/¢idx:1
R

/|¢ (w(@))]énl? do <

Thus, ¢, — ¢ in H and ¢,, — ¢ in L?>(K) for any compact subset of R, which

implies
0= / ¢ (z)w' dz — / ow' dz = 0,
R R

and
(3.28)

:.\H
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¢ € H and
[16@P = Futlo as = o.

Thus, ¢ = 0.
But, by (3.28) we have

2— 2/ 62 dz < 3/(1 — w?)|g|2 da.
R R
This implies that ¢ # 0, which is clearly a contradiction. O

3.2. The problem (3.5) with g(t,z) = h(t,xz) — 2?21 c(t)w' (z — & (1))
In this subsection, we study the following problem:

k

Yy = Yuw + f(2(t, 7)) + h(t,x) — Z ci(t)w'(x — &(t) in (s,—Tp] x R,
j=1
Y(s,z) =0 in R,
(3.29)
where h € Co((s, —T) X R) and ¢;(¢) satisfies the following (nearly diagonal) system

> a0 / W'z — (0w (z — (1) da

- /R (bralt, 2)0 (@ — &(1)) + F/(2(t, 2)b(t,2)))
—g(t) / bt 2y (@ — & (1)) da
+ / h(t,z)w'(x — &(t))de foralli=1,....k, t<-=T. (3.30)
R

We note here that if ¢ is a solution of (3.29) and ¢;(t) satisfies the above system,
then g(t,x) = h(t,z) — Z?Zl ci(t)w'(z — &;(t)) satisfies (3.6). Thus, in view of the
proof of (3.8) we have that 1 satisfies the orthogonality conditions

/zb(tw)w'(a:—fi(t))dxzo foralli=1,...,k, s<t<—Tp.
R

The main result of this subsection is the following.

LEMMA 3.6. Let h € Co((s,—T) x R). Then there exist a uniform constant Ty >
T > 0 and a unique solution T* of problem (3.29).

Furthermore, we have that, for all s < t < =Ty, T® satisfies the orthogonality
conditions (2.5) and the following estimate:

IT*(lca((s,tyxr) < Cllllcs((s,t)xR) (3.31)
where C' > 0 is a uniform constant.

To prove the above lemma we need the following result.
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LEMMA 3.7. Let T > 0 be sufficiently large, h € Co(s,—T) and ) € Co((s, —T)xR).
Then there exist ¢;(t), i = 1,...,k, such that the nearly diagonal system (3.30)
holds.

Furthermore, the following estimates for c; are valid, for some constant C > 0
that does not depend on T, s, t, Y or f:

oi<c((4 )HUM

2|

1\ V2| n

Lo ((s,—T) xR) " (|t> P L°°((s,T)><]R)>

forallt € [s,—=T] foralli=1,... k,

; |3 )
Lo ((s,~T) xR) Lo ((s,~T) xR)

forallt €[s,—=T] foralli=1,... k.

v
7

h

el i)

Proof. For i < j, we have
[wta =& - g0
R
- / (4 () — (6! (z) da

2

1
=C
/R (e(\/i/Q)(w—(fj(t)—Ei(t))) + e(\/§/2)(—w+(€j(t)—€i(t))))

1 2
x (e\/ix/2+e—\/§x/2> dz

_c 1 / 1 ¥
T VG O-60) Jg \ o(V2/2)(@=2(E (O-6(1) 4 o—V2a/2

1 2
x (e\/ia:/2+e\/§w/2) dz

1
=C e [P

where
2 2
1 1
F(t,z) = .
e(V2/2)(z=2(§; (1)=& (1)) L o—V22/2 eV22/2 | o—V21/2
Now,
oo 0
/ F(t,z)dz < C, / F(t,z)dz < C,
2(&5 (1)=& (1)) —o0

2(&;(t)—=&i(1))
/0 F(t,z)de < C((&(t) — &(1) + 1),

where the constant C' > 0 does not depend on t.
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Thus, we can easily obtain

log |t
% for all i # §, i,j=1,...,k

[ v =g -gma<c

where in the above inequality we have used the assumptions on &; (see notation 2.1).
Thus, the system is nearly diagonal and we can solve it for sufficiently large 7T'.
In addition, we have

/_O:O &(t,x)dx

k M+, 1 ()/2 o o
_ / exp(o(—z + €2, (1)) + exp(o( — €2, (1)) dz
(E9(1)+€9_1(1))/2

1 a/2V2
< C(Itl) : (3.32)

where £§ = —o0, £, | = o0 and

/R (e + (2t 2))0)0 (@ — (1)) da

/R(f’(w(w = &(1)) = f'(2(t,2))(t, 2)w' (z = &;(t)) do

( (w()) = (2t 2+ &(8)e(t z + &§(0)w' (z) de

1

Lo ((s,—T)xR)

/‘ 1 w(z) — 2t + & () |0t 2 + & (t))w' () dz
Y

o] B i J 2o T &) d
H@ . S_T)XR)|t|/R (t,x +&;(t)) dz

1 14+0/2v2
‘ () . (3.33)
—7yxr) \[t]

In the last inequality we have used the fact that, if 4 > j, then

1
Oe\f(ﬁg ®)—¢&i(t)

lw(z + & — &) + 1w'(z) <

Similarly, we have that

" 1 14+0/2v2
! t)/z/}(t,x)w"(x—ﬁj(t))dx iCH () ,
R P || oo (s, xR) \ ]
. o (3.34)
/h(t,x)w'(x—ﬁj(t))dx QCH () .
R P || Lo ((s,-T)xr) \ ]
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Thus, by the above inequalities we have

Hw foralli=1,...,k.

|ci(t)

1 >1+a/2\/§

L>((s,—T)xR) <|t|
Now if 260, (£) + €2(t) < & < 160, (£) + £2(¢), we have
ci(b)w' (@ — &(1)) ’

d(t,x)
14+0/2v2 a/V2
<o *((m) s () s )
2| Pl Loo((s,-T)xR) lt] Pl Loo ((s,~T)xE)
1 1-0/2V2 n

co((L)™ o I

2] Lo ((s,—T)xR) Lo ((5,—T)xR)
Combining all above the proof of lemma is complete. d

Proof of lemma 3.6. First, we recall that

<
I\Mw
-
o
&
H
|
I
4
=
\_/
\_/
—~
=2
|
@
—
S—
S—

- / baa(t )0 (@ — & (1) + F ((t,2)ib(2, 2))0 da
—e / Bt 2y (z — (1)) da
+/h(t,x)w’(x—gj(t))dx foralli=1,... .k t<-T. (3.36)
R

We shall prove that there exists a unique solution of problem (3.29) by using a
fixed-point argument.
Let

X* = {1/} H¢||C<p((s,s+1)><]R) < OO}
We consider the operator A%: X*® — X* given by
A*() =T°(h — C(¥)),
k

where 7*(g) denotes the solution to (3.5) and C'(¢) = > i ci(t)w'(z — &;(1)). Also
by standard parabolic estimates we have

1A% () leg ((s,s+1)xr) < Colllh — C()lles((s,s+1)xR)) (3.37)

for some uniform constant Cy > 0. We shall show that the map A° defines a
contraction mapping, and we shall apply the fixed-point theorem to it. Towards
this end, set ¢ = Co||h||c,((s,—)xr) and

Xg = {1/’ ||77[}||C<1>((s,s+1)><]R) < 26},

where constant Cy is taken from (3.37) for C(T, s) = C(s+1, s). We note here that,
by standard parabolic theory, C(T,s) = Co|(=T — s)|.
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We claim that A°(X?) C X¢. Indeed, by inequality (3.37) we have

A% (W) llca((s,s+1)xr) < Co(llh — C(¥)llca((s,s+1)xR))
< Co(|hlles((s,—m)xr) + 1CW) e ((s,54+1)xR))
Co
< W(Hw”Cqs((s,erl)xR)) +c

<c+e,

where in the above inequalities we have used lemma 3.7 and we have chosen |s|
to be sufficiently large. Next, we show that A® defines a contraction map. Indeed,
since C(v)) is linear in ¢ we have

A% (1) — A%(2)ll e ((s,541) xR)
<NCW1) = C(¥2)lles((s,s41)xr) = IC (W1 — ¥2) o ((s,54+1) xR)
C
< ﬁ”(% —Y2)llea ((s,541)xR)

< 311 — ¥2) e ((s,541) xR) -

Combining all the above, by the fixed-point theorem we have that there exists
a ¥* € X° such that A*(¢*) = ¢°, meaning that (3.29) has a solution * for
-T=s+1.

We claim that ¢*(¢, ) can be extended to a solution on (s, —Tp] x R while still
satisfying the orthogonality condition (2.5) and the a priori estimate. Towards this
end, assume that our solution *(t,-) exists for s < t < =T, where T > Tj is the
maximal time of the existence. Since ¢® satisfies the orthogonality condition (2.5),
by (3.7) we have

19 lew ((s,—T)xR) < Cllh = C(W¥) ey ((s,—T) xR)-

Thus, if we choose Tj sufficiently large, we have by lemma 3.7 that

19 lea((s,—~Tyxr) < Cllhlles((s,—)xr) < Cllbllcs((s,—1v)xR)-

It follows that ¥*° can be extended past time —T', unless T' = Ty. Moreover, (3.31)
is satisfied as well and ° also satisfies the orthogonality condition. O

Proof of proposition 3.1. Take a sequence s; — —oo and ¥; = 9%, where % is
the function (3.29) with s = s;. Then, by (3.7), we can find a subsequence {¢;}
and v such that 1; — 9 locally uniformly in (—oo, —Tp) x R.

Using (3.7) and standard parabolic theory, we have that v is a solution of (3.29)
and satisfies (3.4). This concludes the proof. O

4. The nonlinear problem

Going back to the nonlinear problem, function ¢ is a solution of (2.4) if and only
if € Cp((—00, —Tp) x R) solves the fixed-point problem

¥ = B(1), (4.1)
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where
B(¢) == A(E(Y))
and A is the operator in proposition 3.1.
Let Ty > 1, we define
A= {h € Ol (00, ~Tp): sup |h(t)|+ sup |tH(1)] < 1}
t<—To t<—To
and
[Plla = sup (Ih(t)]) + sup ([E[R'(#)]).
t<—To t<—To

The main goal in this section is to prove the following proposition.

PROPOSITION 4.1. Let ¢ < /2 and v = (V2 — 0)/2\/5. There exists a number
Ty > 0 depending only on o such that, for any given functions h in A, there is a
solution 1 = W(h) of (4.1) with respect to & = £° + h. The solution ) satisfies the
orthogonality conditions (2.9) and (2.10). Moreover, the following estimate holds:

C
¥ (h1) = ¥(h2)llcs((~oo,~1o)xr) < 7y lIP1 = halla, (4.2)
0

where C is a universal constant.

In order to prove proposition 4.1 we first need to prove some lemmas.
Set o
0
X, = {0 Iolleacon,-mpny < 250 |
0
for some fixed constant, Cj.
We denote by N (1, h) the function N () in (3.2) with respect to ¢ and & = £°+h.
In addition, we denote by z; the corresponding function in (2.3) with respect to
5261260+hl7’t:1)2

LEMMA 4.2. Let hy,hy € A and 1,v2 € X1,. Then there ezists a constant C =
C(Cy) such that

[N (11, h1) = N (32, ha)llcg (—co,~T0) xR)

C
< F(H% — Y2l ((—oo,—To)x&) T 11 — halla).
0

Proof. First, we shall prove that there exists a constant C' > 0 that depends only
on Cy such that

C
[N (11, h1) = N (b2, h1)ll ey ((—o0,—To) xR) < FH% —V2lles((—o0,—To)xR)-  (4.3)
0

By straightforward calculation we can easily show that
C
IN (1, ha) = N (2, )| < 7 [ — 12| (@ + 27),
0

where the constant C' depends on Cy and the proof of (4.3) follows.
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Now we shall prove that
[N (%2, 1) = N (b2, ha)lleg ((—o0,~To) xr) < Cllh1 = h2| 4, (4.4)

where the constant C' depends on Cj.
By straightforward calculations we have

IN (42, h1) = N (32, ha)| = |=(21 + ¥02)* + 2} + 32792 + (22 + 12)° — 23| — 3234,
C
—|hy — ho|®? 4.
T(,),\ 1 2| D7, (4.5)
which implies (4.4). By using (4.3) and (4.4), the result follows. O

We denote by E(¢, h) the function N (¢)) in (3.2) with respect to ¢ and & = £9+h.

LEMMA 4.3. Let hy,he € A. Then there exists constant C = C(Cy) such that

C
[E(h1) = E(h2)llcs((—oo,~To)xR) < ﬁ”hl — hal|a. (4.6)
0

Proof. Set € = &%+ hy, ( = €% + hy. Let

3O+ 1) <z <G G L), =1,k
with £§ = —oco and &, = co. Note here that there exists y € [—1,1] such that

w(z = &-1(t) = w(@ = (-1 (O)] < Clhy = hallw' (@ = &1 () + p)]

<
< COlhy = hollw'(z — €51 (1))
Thus, in view of the proof of lemma 2.2 and the above inequality we have

k

D0 ) et )+ D1 x—@ﬂ

J:1 J=1
< Clhy = ho| [0’ (z = &1 (1))

M»

‘ zltx

Also, we can easily show that

k k
C
J+1 _ J+1 iy / < = _
> (-1 e - GO0~ -1 - GO D] < Sl ol
Jj=1 j=1
But, for any

3G+ (1) <z <3O +Ea0), J=1... .k

we have ) )
3 <O and Sz =& 1 (1)] < Clil ™.
On combining all of the above, we obtain the desired result. O
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LEMMA 4.4. Let hi,hy € A, 1,2, € X. Also let C(’(/),h,t) = (Cl(t), .. .,Ck(t))
satisfy

> alt) [ w'le =g - g 0)do

= /R(—f'(w(ff = &) + [ (2t )t 2)w' (x — &(t)) dz
— ) [ wlta (o= () da
+ /(E(h) + N, h)w'(z —&(t))de forallj=1,....k t<-T,
R
with respect to ¥ and & = £° + h. Then

‘O(wh h17 t) - C('(/JQ, hQ, t)l
¢ C
< W"wl - wZHC@((*OO,fTo)X]R) + thl — h2||/1 (47)

for some positive constant Cy that depends only on Cy.

Proof. We omit the proof here, as we can make very similar calculations to those
in lemmas 3.7, 4.2 and 4.3. O

Proof of proposition 4.1. (a) We consider the operator B: Cg((—o00, —Tp) x R) —
Co((—o00,—Tpy) x R), where B(¢)) denotes the solution to (4.1). We shall show that
the map B defines a contraction mapping and shall apply the fixed-point theorem
to it. First, we note by lemma 2.2 and proposition 3.1 that

Co

HB(O> ||C<p((foo,7T0)><]R) < F
0

By proposition 3.1 and lemma 3.6, we obtain

C
1B(1) = B(¥2)llea((—o0,~10)x®) S 7o (101 = Y2l ((—o0,~m0) xR) )
0

providing that
Co

HwiHCqs((foo,ng)xR) < ZTi(,)j-

Thus, if we choose Ty sufficiently large we can apply the fixed-point theorem in

Co
Xr, = {ﬂf: [Pl ((—oo~T0)xm) < 2T”}’
0

to obtain that there exists 1 such that B(¢) = 1.

(b) For simplicity we set 1> = ¥(h1) and 1?2 = ¥(hs). The estimate will be obtained
by applying the estimate (3.7). However, because each 1/ satisfies the orthogonality
conditions (2.5) with £(¢) = £(t) := £°(t) + hi(t), the difference ¢! — 1% does not
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satisfy an exact orthogonality condition. To overcome this technical difficulty, we
shall consider instead the difference Y := ¢ — )2, where

k
PP =97 = Nt (- &),
=1

with

k

S0 [ wa e - o) = [ ap' - ge)
i j=1,...,k.

Clearly, Y satisfies the orthogonality conditions (2.5) with £(¢) = £1(t). Denote by
Li the operator

Lyt =y — gy + /(' (8, )0
By lemmas 4.2-4.4 and the fact that
o — €]
w <CORTVE foralli=1,...,k

we can easily prove

C
1Y Mg ((—00,—To) xR) < F(ll% — Y2lles ((—oo,—10)xR) T+ [[h1 — h2l[4)
0

k
+C’<Z sup |t|“/ﬁ|)\i(t)|). (4.8)

i—1 t€(—00,~To)

Then, by the orthogonality conditions (2.5) and (3.32), we have

/ VAt 2y ( — €1(t)) da
R

/R Gt ) (' (2 — E1(t)) — ' (x — E2(1))) da

c —o
< 7772 b — halla. (4.9)
0
Now,
i/1/12(15 z)w' (x — £ (t)) da

- |5 [Pt ow e —gm) - we-gena) @
But,
/R Gt 2) ! (z — €1(1)) — ' (z — £2(t)) da
_ / R, (1) (' ( — E4(1)) — ' (x — E2(1)) da
+ / 202w (x — (1)) — w'(x — €2())) da
R
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- /Rf’(zz(t’ @) (t,z) (W' (x = & (1) — w'(z = £ (t))) dz
= [t @ g0) — v - ) da
+ [ L@ - 6(0) - w'(e - E0) da
R
- /Rf'(f(t, 2))?(t, x) (W' (x — (1)) — w'(x = £ (1)) da.

By the fixed-point argument in (a) we have that

[ vt @ - 0) — v~ GO ds| < Tl = ol (@11)
15
By (4.9)—(4.11) and definitions of A; we have that
/ C —a/V2
M@+ 1X:(1)] < 7 [¢] (71 = halla.
0

Combining all the above we have that

C
1Y lleg ((—o0,—T0) xR) < ﬁ”i//l —V2lles (oo, —To)x®) + Cllh1 — h2|| 4.

0

However,

191 — ¥2llca ((—oo,—To)xR)
k

<||Y||c@<<oo,To>xR>+0(Z sup |t|”/ﬂ|xi<t>|)

i—1 t€(—00,—To)

C C
= 11— 2lle, (—oo,—T0)x®) + 755 1P1 — D24,
Ty 2 (( 0)XR) T}
and the proof of inequality (4.2) follows if we choose Ty to be sufficiently large. O

5. The choice of &;

Let Ty be sufficiently large, let ‘[ <o <+v2andlet ¢ € Co((—o00,—Tp) X R) be
the solution of problem (2.4). We want to find §; such that

0= /R(—f'(w(x — &) + f'(2(t, )0 (t, 2)w' (x — &(t)) dx
e /R Bt 2y (@ — &(¢)) de

+/(E+N(w))w’(3:—£j(t))dx forall j=1,.. . k t<—T,
R
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where

E

k
E =Y (-1 w(@ — &) + f(2(t,2)) = Y (=17 f(w(x — &(1))),
j=1

j=1
N(p) = f(0(t, ) + 2(t, 2)) — f(2(t, 2)) = [(2(t, 2)).
First, we study the error term F. Let 1 < j < k. Then we have that

/( Z D (w x—&(t))))w’(x—gj(t))dz
= /R (f(z(t,x +&(t)) — i(l)i“f(w(x +&(t) — &(t))))w’(z) .

For simplicity we assume that ¢ is even. Set

j=2 k

9= () wla+ &)~ &1)) ~ D+ Y (1) (wle + (1) — &(t) + 1),

i=1 i=j+2
gr=w@+§ —§-1)—
g2 =w(x+§& — 1) + 1.
Using the fact that [, f(w(z))w'(x) dz = 0, we have

/R Fe(ty o — & () (2)) da
- / 9+ 91 —w(@) + g2)(1 = (g + g1 + g2 — w(z))>)w' (x) da
- / (61 + g2 — 3P (2)g1 — BwP(2)g2 + 3w (x)g? + Bw(x)g? — ¢ — g (z) da

+ / Fo(t,z)w'(z) dz, (5.1)
R
where
Fy(t,z) = O(g) + O(g192)-
We note that

k
Jllw@a<ce Y el -0
i#j—1,5,j+1
/}R e’ (2) dz < C exp(—V2I541(t) — &1 (8)])-

Let
k

Fi(t,e)= Y flw@+&1) —&1).
i#£j 1113 J+1
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Then

k

/R (Z(—l)j+1f(w(x +&(t) — gi(t)))) W' (z) dz

i=1

- / g+ 1) + fga — D)o () d + / Fy(t, 2)o (z) dz
R

R

— [(-200— 39t — gt~ 200+ 363 ~ /(@) do + [ Fit,a)u(z) da.
R R
(5.2)
In addition, we have that
k
/ |F1(t,2)|w'(z) dz < C exp(—ol&i(t) — &(0)])-
R _

i=1,
i#j—1,5,5+1
By (5.1), (5.2) we have
k .
/]R (f(Z(t, z=&(1) = Y (=1 flwle +&(t) - Ei(ﬂ)))w/(%‘) dz

i=1

= —w? () (z) dz 2 w(z))w'(z) dz
=3 [ (n+ @)1 =)@ de+3 [ G+ u@)e/(e)d
—|—3/Rg§(w(x)—1)w'(x)dx—|—/RFO(t,m)w’(a:)dx—/RFl(t,x)w’(a:) dz
and

/ g1(1 —w?(z))w' (z) dx
R

/ —26_\/5(3:4_53'_51’1)/2

= a2 /
e o(V2/2) (@€ 1) +ef¢§<w+s,-75j71>/2<1 wi(@))w' () dz

1
- _9 —ﬁ(fj—fj—l)/ 1 — w? / d
€ R eﬁz + e_\/i(éj_gj—l) ( w (x))w (‘T") T

= —2¢7 VA& &) / V2 (1 — w(2))w' (z) dz
R

_ e 1 _ 3
— 2e \/5(51 5]_1)/1%<eﬂm+e—\/§(§j—§j1) — € V2 )(1_w2(x))’w/($)dl'

= 2 V&40 </ e V2 (1 — w(z))w' (z) da
R

+ [ Bt - w0 ).
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Now,

/ Fo(t,z)(1 — w?(z))w' (z) dz
R

_ o VEE 1) ! — W (e
¢ /R eV2z(ev2e 4 e—\/ﬁ(ﬁj—ﬁjﬂ)) (1 —w(@)w(z)d
<O — fj_l)efx/i(éjfﬁjfl)'
Similarly, for go we have
/ go(1 — w?(x))w' (x) dx
R
— 90— V2(&—¢-1)
X (/ e V2 (1 — w(2))w' (z) dz + / Fy(t,)(1 — w?(2))w' () d$>,
R R

where

<O — Ej)e—\/i(éjﬂ—éj)_

/]R Ryt 2)(1 — w?(@)w'(z) de

Now,

/R G2(1 + w(z))w! () dz

1
< Ce2V2(6-¢-1) / )
< Ce i=& RO TN (14 w(x))w' (x)dz

But,

/ 1 (1 +w(z))w (r)dx
R

62\/530 —+ e_Qﬂ(éj_fj—l)

_ / e 1 (1 + w(@))w' () de

oo e2V2z 1 o—2V2(§—€-1)

0
—|—/ ! (1+w(z))w' (z)de

Ej*&j—l 62\/593 + 6_2\/5(51'_5]'—1)

(oo} 1 ,
+/0 2vis +e72\/5(5]_7&_71)(1 + w(z))w'(z) da
<SCO((& —&-1)+1).

Thus, we have
/ G+ w(z)w' () dv < O(& — &-1)e VA& 8-,
R
Similarly,

/ g3 (1 — w(a)w'(x) dw < C (&1 = &) >V,
R
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By assumptions on ¢ we have

[ V@' - g 0)dz
R

< C’/Réz(t,x)w’(x—fj(t))dx: CA@Q(t,x+€j(t))w’(x)dx

ko (€ @®)+E0411(1)/2-¢; (1) 0
<cy | (exp(20(—2 — & (1) +£0,)
(€2 ()+E)_1 (1) /2-&; (1)
+exp(20(x + &(t) — £4y)))w' () da.
Now, note that
/(fg(t)+£?+1(t))/2_£j (t)
(

eza(x+§j(t)—fg+1)w/(x)d

z < Cexp(—0 — 2)(E41 — (1))
0(D)+E0_, ()/2-¢;(1)

Thus, we can easily prove that

k
/|N '@ — @) de <0 S elmrmVRIEO-60I,

i=1,i#j
Also, we have

k
g [ 0l - GO - G0 do = -€(0) [ W' @P do+ Fu(o)
R R
where
JAGIENe; Z [€flee 181,
i=1,i#j
Finally,

! t)/R?/)(t,:c)w"(m—fj(t)) dz

< ClE) /Ri)(t,x + &) (x) da
< Clg5(B)I(exp(—50 — V2)I€j1 () — &(2)]
+ exp(—30 — V2)[§_1(t) — (1))

Similarly, for j = 1,..., k, we obtain the respective ordinary differential equation

fOI‘ f = (61,...,§k)1

%5;— —exp(—V2(&11 — &) +exp(—V2(& — &-1)) = Fi(€,€6),

i=12,... k, te(0,-Tpl, (5.3)
with £x411 = 0o and £y = —o0.
We recall here our assumption Ty > 1 and we define

A= {he Ol (—o00, ~Tp]: sup |h(t)|+ sup [t|R ()] < 1}

t<—To t<—To
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and
[hlla = sup ([h(t)]) + sup ([L]|A(£)]).

t<—Top t<—Top
We set
F(h',h) = F(¢,¢),

where ¢ = £° + h. Determining the above, and using lemmas 4.9-4.11 and (4.2), we
prove the following result.

PROPOSITION 5.1. Let % <o < V2 and h,hi,ho € A. Then there exists a con-
stant C' = C(o) such that

_ C

!
F R —
LAUSIDIES |t|1/2+0/V2
and

C

[F(Ry, ha) = F(RY, ho)| < thl -

h2HA-

In the remainder of this section we shall study system (5.3) using some ideas
from [6].

5.1. Choice of £°

Let & > 4 be an even number. First, we want to find a solution of the problem

%f;*—exp(—\/i(fj-ﬂ—fj))‘f'exp(—\/i(fj_gj—l)) =0, j=12,..., k,te (0’ _TO]>
(5.4)
with €41 = 0o and & = —oo0. We set
Ri(€) = —exp(—V2(&j41 — &) + exp(—=V2(&5 — &5-1))

and

Ry(§)

R =| :
Ry ()

We want to solve the system & + SR(§) = 0. To do so we find first a convenient
representation of the operator R(§). Let us consider the auxiliary variables

defined in terms of £ as

k
=& —§& withl=1,...,k—1, Uk=Z€z7
=1
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and define the operators

S5 51(131)
sw= "] sw=| 1.
Sk—1(v1)
where
e~V _ V22 ifl=1,
Si(®) s Riga(€) — Ri(€) =  —e¥2U-1 427V — oVt if 2 <1<k -2,
2e™V20r — gV2uh ifl=Fk—1.

Then the operators R and S are correlated through the formula
S(v) = BR(B™'v),

where B is the constant, invertible k x k matrix

0 -1 1 0
B =

0 0 -1 1

1 1 1 1

Then, through the relation ¢ = B~ !w, the system ¢ + BR(£) = 0 is equivalent to
v’ 4+ 8S(v) = 0, which decouples into

v+ BS(v) =0, v}, = 0,

where
2 -1 0 - 0
e~ V21 -1 2 -1 - 0
S(v)=C : ,oC=| e (5.5)
e V2vk-1 0 - -1 2 -1
-1 2

We choose simply vx = 0 and look for a solution v°(¢) = (9(t)°,0) of the system,
where 9°(t) has the form

0 (1) = J5 log(—2v/23t) + by (5.6)

for constants b; to be determined.
Substituting this expression into the system, we find the following equations for

the numbers b;:
e~ V2h 1

cl  |=1
C*\/ibk—l 1
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We compute

1 1
bl_—log<2ﬁ(k—z)z), l=1,... k-1,

V2

explicitly. Now, we note that b = by_; for l =1,...,k — 1. Thus, by (5.4) we have
that

Choji1 ==&, J< ik,
and

&= (j - ’T) log(—2v/24t) + 75,
where
1 .
—Yj = Vh—jl = 521)1- for j < ik.
i=j

5.2. Solution of problem (5.3)

We keep the notation of the previous subsection, and we write problem (5.3) in
the form

¢ +BR(E) =F(,§) in(—oo, Tl
Let &0 = (&9,...,&N)T, where
€ = % ( - k;l) log(~2v/281) + 7.

We look for a solution of the form & = £9 4 h. Thus, h satisfies
W + 8D R(O)h = F(* + 1, €% + h) + BD: R(¢°)h — SR(£)

= E(h',h) in (—oo,—Tp]. (5.7)
By proposition 5.1, we have
1 1/240/V2
po.ol<c(y)
1 1/240//2 1 1/240/V2
Bl - B < (1) -t eo(3) -t

(5.8)
Also, restricting ourselves to symmetric &, h then satisfies the symmetry condition

hi—jr1 = —hj, 3§ < 3k

In addition, this implies that the solution % is even with respect to x, and thus we
have that
Ei_jy1=FE;, j<3ik (5.9)
Set
0 = B¢ and p= Bh.

Then we have that E(h/,h) = E(B~'h', B~th) = E(p/,p), and by
S(v) = BR(B™'v)
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we have that
S(v°) = BR(¢)B™!.

Thus, (5.7) is equivalent to
P+ BD,S(v°)p = BE(®,p) := L(p),p) in (—o0, —Tp). (5.10)

By (5.9) we have that L, = 0. Thus, writing p = (p, px) and L = (L, Ly,), the latter
system decouples as

P +BDsS(v0) = L(p',p) in (00, ~To],  pi =0, (5.11)

where we have simply chosen p; = 0.
Now, by (5.6) we have

e—\/§U1 0 e 0
0 e Ve ... 0
DyS(v0) = —V2C :
0 0 e V2ui-1
a1 0 0
1 0 ag 0
= T/@t . B
0 O Af—1

where a; = (1/208)(k—1)l, 1 =1,...,k —1, and the matrix C' is given in (5.5). C is
symmetric and positive definite. Indeed, a straightforward computation yields that
its eigenvalues are given explicitly by

1 k-1

We consider the symmetric, positive definite square-root matrix of C' and denote
it by C''/2. Then, setting

p= CI/QU}’ Q(w’,w) _ 071/21*-1(01/2,“}/7 C’l/zw),

we see that (5.11) becomes

1
wl+§tAw:Q(w/7w)7 (5.12)

where

aq 0 0

0 ay -- 0

A= Cl/2 . ) . CI/Z.

0 0 - ap

In particular, A has positive eigenvalues \1, Ao, ..., Ax—_1. Let there be an orthogonal

matrix A such that D = AT AA, where D is the diagonal matrix such that A;; = \;,
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t=1,...,k— 1. Now, setting
w=ATw, I'w,w)=ATQ(AV, Aw),

(5.12) becomes equivalent to

1
W+ %Dw =I'(w,w) in (—o0,—Tp). (5.13)
We shall solve (5.13) by using the fixed-point theorem in a suitable space with
initial data w(Tp) = 0. If w is a solution of problem (5.13) with initial data, it takes
the following form:

1 —to
- Vi /
i(t) = ———+ —5 I (W' w)ds. 5.14
wl) =~ | 9w ) 5.14)
Let A(w) be a solution of (5.14). Then I satisfies the same estimates in (5.8) and
we have
1 o/V2-1/2
A0 < Oy () . (5.15)
T
Similarly,
1 o/vV2-1/2
1401 < Ca( 7. ) (5.16)
To

if we choose tg > 1. Thus, we consider the space
X = {h € O (=00, —to]: [|h]l4 < 20},

where ¢cg = C1 + Cs are the constants in (5.15) and (5.16). Thus,

1 o/V2-1/2
) At = halla.

() — A(ha)| < c(T

0

1 o/V2-1/2

[H1A" (ha) = A'(ha)| < Clhy — hQHA(TO) ’

and we have

1 >a/ﬁ1/2

1A(1) — A(ha)l4 < C(o)(TO

The result follows by the fixed-point theorem if we choose T} sufficiently large. [
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