Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2008), 22, 399-419. Printed in the USA.

Copyright © 2008 Cambridge University Press 0890-0604/08 $25.00
doi:10.1017/S0890060408000279

Kuaba approach: Integrating formal semantics and design
rationale representation to support design reuse

ADRIANA PEREIRA DE MEDEIROS ano DANIEL SCHWABE

TecWeb Lab, Department of Informatics, Pontificia Universidade Catdlica do Rio de Janeiro, Rio de Janeiro, Brasil

(Recervep May 1, 2007; Acceptep May 9, 2008)

Abstract

This article presents Kuaba, a new design rationale representation approach that enables employing design rationale to sup-
port reuse of model-based designs, particularly, software design. It is shown that this can be achieved through the adoption
of an appropriate vocabulary that allows design rationale representations to be computationally processed. The architecture
and implementation of an integrated design environment to support recording design rationale using Kuaba is also shown.
The Kuaba approach integrates the design rationale representation model with the formal semantics provided by the meta-
model of the design method or modeling language used for describing the artifact being designed. This integration makes
the design rationale representations more specific according to the design methods and enables a type of software design
reuse at the highest abstraction level, where rationales can be integrated and reemployed in designing a new artifact.

Keywords: Design Rationale Processing; Design Reuse; Design MetaModel; Integrated Support Systems; Ontology

1. INTRODUCTION

Design rationale (DR) is an explanation of why an artifact, or
some part of an artifact, is designed the way it is (Lee, 1997).
The research developed in the DR area seeks to provide
models and tools that allow explicitly recording the reasons
behind design decisions.

Currently, there is no consensus in the literature about
the definitions of design. Different definitions can be found
in Simon (1981), Schon (1983), Goel and Pirolli (1989),
Hubka and Eder (1996), and Winograd (1996). In the scope
of this work, design is an activity carried out to create an ar-
tifact according to a method or process. We specifically deal
with model-based design that can be seen as an instantiation
process of a metamodel, in which the produced artifacts are
models, instances of this metamodel.

DR has a potential value for supporting design reuse, be-
cause it prevents the experience and the knowledge invested
in a design from being lost. All the experience acquired dur-
ing a design can be transmitted and augmented by the use of

Reprint requests to: Adriana Pereira de Medeiros, TecWeb Lab, Depart-
ment of Informatics, Pontificia Universidade Catdlica do Rio de Janeiro,
Rua Marqués de S@o Vicente 225, 22453-900, Rio de Janeiro, RJ, Brasil.
E-mail: adri@inf.puc-rio.br

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

399

recorded DRs in new designs. Nevertheless, despite much
research, DR has not been very much used for software de-
sign. One of the reasons is the time consumption and the
cost generally required for the capture and representation of
DR. This can be explained by the lack of a representation ap-
proach that enables the development of an integrated tool that
supports the capture, representation and use of DR as part of
the software design process.

Generally, the representation approach determines how
DR can be captured and used in new designs. Argumenta-
tion-based approaches have been extensively used to represent
DR, by providing a structure to indicate which decisions were
made (or not), and the reasons behind them. Although there are
several argumentation-based approaches for representing DR,
such as IBIS (Kunz & Rittel, 1970), DRL (Lee, 1991), QOC
(MacLean et al., 1991), and TEAM (Lacaze, 2005), most of
them generate incomplete or informal representations, not en-
abling the effective use of DR in the design of new artifacts.
Furthermore, when applying them to formally defined artifacts
(such as software artifacts), their informality prevents automat-
ically taking into consideration alternatives prescribed by the
design methods, as well as incorporating their restrictions. In
other words, it is not possible to leverage the semantics of

https://doi.org/10.1017/S0890060408000279

400

the artifact provided by the formal model that describes it. This
informality severely hinders the computational processing of
the recorded rationale and its use in new designs.

This article describes the Kuaba' approach (Medeiros,
2006), a new approach for representing DR that integrates
the DR representation model with the formal semantics pro-
vided by the metamodel of the design method or modeling
language used for describing the artifact being designed.
The main objective of this approach is to permit the compu-
tational processing of DR for supporting the reuse of model-
based designs, particularly, software design. This approach
proposes the Kuaba ontology (Medeiros et al., 2005) as a
formal representation model for DR and the use of the arti-
facts’ formal semantics, as defined by the design methods,
as part of the instantiation process of this ontology.

A formally defined DR representation, enriched with the
formal semantics of the metamodel that describes the artifacts
being designed, allows attributing explicit meaning to the
recorded content, making it easier for computers to automat-
ically process and integrate the recorded knowledge. This
enables a new type of design reuse, in which rationales can
be integrated and reemployed in designing a new artifact.

This article also presents the conceptual architecture of an
integrated design environment for supporting the capture,
representation, and use of DR using the Kuaba approach.
Some layers of this architecture are being implemented in
the HyperDE+DR environment (Santos, 2007) that is also
presented in this article. Different from other systems to sup-
port DR, such as Compendium (Conklin et al., 2003) and
DRed (Bracewell et al., 2004), the integrated environment
proposed in this work aims at supporting the semiautomatic
capture and representation of DR based on the metamodels’
formal semantics. In addition, it also aims at supporting
design reuse by computationally processing the recorded
DR when integrating partial designs into a new design.

In the remainder of this article, we first present the Kuaba
approach and address the issue of how the formal semantics
of the metamodel that describes the artifacts can be integrated
with the representation model for recording DR. Next, we
present the conceptual architecture of the integrated design
environment and the operations to support designers through
processing of these representations. The HyperDE+DR
environment that implements part of this architecture is also
presented. Finally, we conclude by discussing related work,
pointing out further work, and drawing some conclusions.

2. THE KUABA APPROACH

Kuaba is an argumentation-based approach for representing
DR. Its main objective is to support the use of DR in the reuse
of model-based designs, particularly, software design.
The Kuaba approach integrates the DR representation model
defined by the Kuaba ontology with the formal semantics of

! Kuaba means “knowledge” in Tupy-guarany, the language of one of the
native peoples in Brazil.

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

A. Pereira de Medeiros and D. Schwabe

the artifacts provided by the metamodel of the design method
or modeling language that describes them. This integration is
performed by the use of this formal semantics in the instantia-
tion of the Kuaba ontology described in F-Logic (Kifer &
Lausen, 1989), a formal language for ontology specification.

The DR representation using a formal language and incor-
porating the metamodels’ formal semantics allows attributing
semantics to the captured DR content and performing infer-
ences and other computable operations on this content. In
this way, all knowledge recorded during an artifact design
can be computationally processed and used in the design of
new artifacts.

Theoretically, when formal semantics for the artifacts are
available, fully automated systems could be constructed to
automatically synthesize artifacts, but this is neither the
approach taken in nor the focus of this article. Kuaba ex-
plicitly requires human intervention in defining design steps
or operations to produce the final design.

2.1. The Kuaba ontology

The Kuaba ontology formally specifies a knowledge represen-
tation model for supporting the recording of DR in model-
based designs. It provides a vocabulary and a set of rules
described in F-logic, which permits defining computable
operations to support the reuse of designs by the processing
and integration of their rationales.

The Kuaba ontology vocabulary describes a set of elements
(classes, properties, relations and constraints) for representing
DR. It extends and enriches the IBIS argumentation structure
by explicating the representation of the decisions made during
design and their justifications. The extension includes also the in-
tegration of this argumentation structure with descriptions of the
artifacts produced, and with information about the design history
(when decisions were made, who made them, what design
method was used, and so forth). Figure 1 shows the elements
of the vocabulary defined by the Kuaba ontology, using an
UML-like graphical notation to help visualization (see http:/
www.uml.org). Notice that such object oriented model is used
only as a suggestion for presenting the ontology vocabulary;
some relations and constraints were hidden to simplify its presen-
tation.

Briefly described, the Kuaba ontology vocabulary repre-
sents the reasoning elements used by designers during the
design process, their decisions, information about the
artifacts that results from these decisions, and information
about the formal models used to specify the produced arti-
facts. Similarly to IBIS, the reasoning elements represent
the design problems (questions) that the designer should
deal with, the possible solution ideas for these problems
and the arguments for or against the presented ideas. These
arguments record the experiences and the knowledge that
the designers have employed in the artifact design.

In the Kuaba ontology vocabulary, each element has a set of
properties and relations that compose the structure of the ratio-
nale developed by the designers during the design. For

https://doi.org/10.1017/S0890060408000279

Kuaba: A design rationale approach to support design reuse approach 401
is defined by
: : 0.1
|[Expected Duration | | Method %
0.1)
1.* 1.4
Activity i
* 3.) Fig
%Rﬁsomﬂg Element| =21 _1[""person | |Relation Type |
|
i " iy
Z]S‘ is version of 1
-1 1.* . 1 * infavorof _*1°l 0.1 i
..* address 1.. . creates , o
i Artifact
Question |, . .| Idea {xor} Argument
1.. l 1. 1 results 0..1 1.*
Ao | » F0.1 I * objectsto * - Iil &
is version of : is version of Atomic Composite
. i ifact Artifact

1.0 has 1[5 stification | ooved of SrRE e
Is version of is version of

Fig. 1. The elements of the Kuaba ontology vocabulary.

example, the element Question has a “type” property, with pos-
sible values “AND,” “OR,” and “XOR.” The value “XOR” in-
dicates that all ideas that address this question (i.e., are possible
answers) are mutually exclusive, meaning that only one idea
can be accepted as a solution to the question. The value
“AND” indicates that the designer should accept all ideas
that address the question or reject all of them. Finally, the value
“OR” indicates that various ideas can be accepted as a solution
to the question. This kind of information allows us to define
rules that can suggest decisions about the acceptance or not
of the proposed solution ideas.

The acceptance or the rejection of an idea as a solution to a
question is recorded by the “Decision” element. Differently
from other DR notations, in the Kuaba ontology the acceptance
or rejection of an idea is represented as a property of the relation
between the elements Question and Idea, as shown in Figure 1.
Thus, the acceptance or rejection of an idea is not an intrinsic
property of the “Idea” element. It must be defined with respect
to acertain “Question,” because the same idea can address more
than one question, and be accepted for one and nor for the other.
Each decision must have a justification that explains “why” an
idea was accepted or rejected as a solution for a particular ques-
tion. Justification is always derived from one or more arguments
presented during the design activity. Although a justification
typically includes the arguments for or against the presented
ideas, justification and argument are represented as two distinct
elements in the Kuaba ontology. This allows to define and
represent the final justification of a decision that can, for
instance, explicate how the arguments for or against the
accepted idea were consolidated.

An artifact corresponds to a final design solution, made up
of a set of accepted ideas in the DR representation. Therefore,
in a DR representation every artifact must be associated with
at least one idea, and at least one of them must have been ac-
cepted. Clearly, an artifact cannot be associated with an idea
that was rejected. The relation between “Idea” and ““Artifact”
integrates the artifact description with the DR description,

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

making the rationale representation useful in the evolution
of this artifact or in its reuse during the creation of new arti-
facts. So, it is possible to analyze the design decisions related
to the artifact to see all the reasoning used by the designer to
achieve the final design of this artifact.

Artifacts are represented by two elements: atomic artifact
and composite artifact. These elements are instantiated ac-
cording to formal semantics of the artifact being produced.
For example, in the metamodel of the Unified Modeling
Language (UML; OMG, 2003) a class can be seen as an
aggregate of attributes and, therefore, an information item
modeled as a class can be represented as a composite artifact.

The Kuaba ontology vocabulary also has elements to record
the design method used by the designers, the activities pre-
scribed by this method, the people involved in each design ac-
tivity and their respective roles. A person can present one or
more reasoning elements, make decisions about the solution
ideas considered and produce the final artifact, according to
the formal model that describes it. This formal model is, in
turn, the metamodel prescribed by the design method or model-
ing language used by the designer. Recording this information
facilitates the processing and the interpretation of the repre-
sented rationale, providing part of the context in which the arti-
fact was designed. This helps to better understand the reasoning
employed in a design, because the majority of the questions and
solution ideas is defined by the metamodel prescribed by the de-
sign method. Moreover, recording information about the arti-
facts formal models allows attributing semantics to the DR
representation, improving the consistency verification and pro-
cessing of the rationale by a computational environment.

Finally, all reasoning elements (Question, Idea, and Argu-
ment) and artifacts have an “is-version-of” relation, represent-
ing the fact that any one of them may be based on a previously
existing element. This element may be either part of a pre-
vious version of the artifact, and therefore, the design is actu-
ally evolving it, or part of a different design that is being
reused in a new context.

https://doi.org/10.1017/S0890060408000279

402

We show below a portion of the Kuaba ontology shown in
Figure 1 expressed using F-Logic.

/I CONCEPTS

A. Pereira de Medeiros and D. Schwabe

Question element that defines if the solution ideas proposed
for a particular design question are mutually exclusive or not.

question::reasoning_element.
idea::reasoning_element.

reasoning_element[hasText->STRING; hasCreationDate->STRING;
islnvolved->activity; suggests->>question;
isPresentedBy->person;isDefinedBy->formal_model].

question[hasType->STRING; isAddressedBy->>idea; hasDecision->>decision;
isSuggestedBy->>reasoning_element; isVersionOf->question].

idea[address->>question; results->artifact;
isConcludedBy->decision; isVersionOf->ideal.

decision[isAccepted->BOOLEAN; hasDate->STRING; isMadeBy->>person
concludes->idea; hasJustification->justification].

/I RULES (INVERSE RELATIONS) -----

FORALL X)Y X[address->>Y] <-> Y[isAddressedBy->>X].
FORALL XY X[concludes->>Y] <-> Y[isConcludedBy->>X].

/I AXIOMS

FORALL Q,I1,12,D1,D2 D2[isAccepted->'false']
<- Q:question[hasType->'XOR'isAddressedBy->>{I1,12},
hasDecision->>{D1,D2}],
AND D1:decision[isAccepted->'true’,concludes->11:ideal],
AND D2:decision[concludes->12:idea],

AND not (equal(l1,12)).

The Kuaba ontology portion shown above contains the
specification of some rules and axioms used in inferences
and validations on the recorded DR. The first rules specify in-
verse relations of some properties defined in the Kuaba ontol-
ogy vocabulary. For example, the “isAddressedBy” relation
is defined as the inverse of the “address” relation between
the Question and Idea elements. These rules are used by in-
ference engines to guarantee correct answers for the queries
formulated by the designers about the recorded rationale.
For example, given the relation “idea A address question
X in a DR representation, when necessary, a system can ap-
ply the first rule above to infer that question “X” is addressed
by idea “A,” even though this last relation is not explicitly
specified in this representation.

The second rule (axiom) is defined to support decisions for
questions of the type “XOR.” According to this rule, if an
idea associated with a question of type XOR is accepted by
the designer, then all other ideas associated with this question
must be rejected. An example the use of this rule is presented
in the next section. This rule is used for supporting decisions
about the acceptance or not of the solution ideas proposed for
a particular question during the design. These rules use the
values (AND, OR, or XOR) of the fype property of the

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

The Kuaba ontology also allows specifying rules to vali-
date the represented DR, to verify the well-formedness and
completeness of the rationale structure with respect to the de-
cisions made. For example, it is possible formulate questions
such as the following: Are there questions without solution
(without associated decisions)? Are there ideas that have no
arguments? Are there nonconcluded ideas (without associ-
ated decisions)? Are there justifications that are not derived
from at least one argument? Are there artifacts related to rejec-
ted ideas?

3. AN EXAMPLE OF DR REPRESENTATION
WITH KUABA

The following example describes the use of the Kuaba ap-
proach to represent the DR used by two designers during
the design of the conceptual schema shown in Figure 2.
This schema models a music CD catalog. The example shows
how the formal semantics of the UML metamodel, used for
describing class diagrams, is integrated with the representa-
tion model defined by the Kuaba ontology.

Normally, the first activity done by a designer in designing
a software artifact is the choice of design method or process

https://doi.org/10.1017/S0890060408000279

Kuaba: A design rationale approach to support design reuse approach 403
Artist
> Song
name : String 1.* COMposes iy .
photo : String [*] | composer R name : String
biography : Text |+ performs lyrics : Text
1”,[performer
. &
participates Is version of
1. | .
CcD Track
title : String contains 1.* [number : Integer 1.*
genre : String [1..7] duration ; String
price : Real sound ; Audio

Fig. 2. A conceptual schema modeling a CD catalog.

that will be used to achieve the design. When the designer
selects a design method or process, she or he implicitly
determines the formal model(s) that will be used to describe
the artifact. In this example, let us assume that the designers
selected the Unified Process (Jacobson et al., 1999) to do the
conceptual schema design. Thus, they implicitly adopted the
formal model defined by the UML metamodel to describe
this artifact. This information is recorded as part of the DR,
as shown in the F-Logic code snippet below. It shows part
of an instance of the Kuaba ontology representing general in-
formation about the design, such as method used, activity per-
formed, expected duration and people involved.

/* Facts */
/IDesign Activity Information -------------—-

formal model, the next step in the design is to produce the
conceptual schema that, in this example, is represented as
an UML class diagram. First, the designers need to identify
the domain information items that are relevant for the design,
which represent the possible elements of the conceptual
model being created. Notice that these information items
are determined by the designers’ knowledge of the domain.
They also could be obtained from domain ontology, or ex-
tracted from the DR of a previous phase in the software pro-
cess, requirements elicitation, which is not addressed in this
article. In this example, we consider that the designers ini-
tially propose the items CD, Genre, Song, and Artist. Next,

up:method[hasName->'Unified Software Development Process’,

prescribes->>{uml}].

uml:formal_model[hasName->'Unified Modeling Language (UML)’

hasLocalization->'http://www.omg.org/technology/documents/formal/uml.htm’;

isPrescribedBy->>{up}].

domainModelActivity:activity[hasName->'Designing the domain Model’;
hasStartDate->'2004-08-25T09:30:00;
hasFinishDate->'2004-08-28T10:10:00";

hasExpectedDuration->duration1;

requires->>{role1};

isExecutedBy->>{ana,carlos}].

duration1.expected_duration[hasAmount->3;

hasUnitTime->'day'].

ana:person[hasName->'Ana Soares'].
carlos:person[hasName->'Carlos Silva'].
role1:role[hasName->'designer].

Once the unified process has been chosen as design
method and the UML metamodel defined as the artifact

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

the designers must decide how each one of them will be mod-
eled using the UML to make up the final artifact, the class

https://doi.org/10.1017/S0890060408000279

404

diagram. This decision process is driven by the formal seman-
tics of the UML metamodel for class diagrams that deter-
mines, to a great extent, the questions and solution ideas
that the designers can propose, because they are predefined
by this metamodel. Figure 3 shows part of the UML meta-
model (see OMG, 2003, for the complete metamodel).

According to this part of the UML metamodel an element
in a class diagram can be a “Class,” an “Attribute,” an “Asso-
ciation,” a “Generalization,” or an “Association Class.” By
the inheritance relation, an element of the type Class can be
seen as an aggregate of elements of the type Attribute.
Similarly, an element of the type Association can be seen
as an aggregate of elements of the type Association End,
where each Association End must specify the class element
that participates in the association.

The definitions described in the UML metamodel represent
design options that can be used to model the information
items of the knowledge domain in which the designers are
working. The following rationale examples show how these
design options are used in the Kuaba ontology instantiation
to represent the DR for the conceptual schema being
designed.

3.1. Rationale for CD and genre

The DR representation usually starts with a general question
that establishes the problem to be solved. According to the
UML metamodel (Fig. 3), the first problem to be solved in de-
signing a class diagram is the identification of its constituting
elements. Applying the vocabulary described by Kuaba, this
results in instantiating the “Question” element with the
instance, What are the model elements? Figure 4 depicts a

AN

A. Pereira de Medeiros and D. Schwabe

graphical representation we have created to help visualize
instances of the Kuaba ontology. It shows the portion of the
DR regarding the solution ideas to model the “Genre” infor-
mation item. In this representation, the root node is an initial
question (represented as rectangles), “What are the model ele-
ments?” which is addressed by the ideas “CD,” “Genre,” and
“Name,” represented as ellipses.

Once these first ideas for the CD Catalog model elements
have been established, the designers must decide how each
one of them will be modeled using the UML. This next
step is represented in Figure 4 by the “suggests” relation,
which determines questions entailed by proposed ideas:
How to model CD? How to model Genre? How to model
Name?

The possible ideas that address these questions are deter-
mined by the UML metamodel for class diagrams: elements
can essentially be a class, an attribute, or an association. Ac-
cordingly, the Class and Attribute ideas linked to the “How to
model Genre?” node are established as an instantiation of the
UML metamodel. Strictly speaking, designers consider all
the other alternatives proposed by the UML, but for the
sake of simplicity we have shown only these two. The proper-
ties and types specified in the UML metamodel elements also
represent design options that can be used in the Kuaba ontol-
ogy instantiation to represent DR. The questions Type?,
Minimum Multiplicity?, and Maximum Multiplicity? and
their corresponding solution ideas are an example.

This example illustrates how the formal semantics of the
UML metamodel “drives” the instantiation of the Kuaba ontol-
ogy providing the design options used to represent the DR of
the artifact being designed. Therefore, when the selected de-
sign method has a well-defined metamodel it is possible

Model Element

name

£x

Relationship
AN

—

Feature NameSpace Generalizable Element | *Parent | *generalization
visibility : ZA isAbstract : Boolean ' .. |Generalization
+child +specialization
: ~
Structural Feature o
= participant
multiplicity - - Classifier — -] Association End
ZP agregateType foreeied Association
- multiplicity 2.t
Attribute isNavigable {ordered}
InitialValue

{Association Class |

Fig. 3. A partial UML metamodel for class diagrams.

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000279

Kuaba: A design rationale approach to support design reuse approach

What are the model

405

/ elements?
A A R R
L]
.
<> :
[}
. ¥) H
AV 4 AV [} R eecewwekwas .
How to model CD? How to model Genre? “ How to model Name?
T 7 < [} ' Question
A A R . R
) -
i
N Argument
22 .] \ : : s _9___ J
A ’ ’ k] | \ R suggests
’ ’ L) inf of » v T T E X]
’ 8) niavor objects to in favor of .
Whose? ’ (]] X . \ Whose? accepted idea
"] |. \ Jl \ A—>
e ~f \ | . rejected idea -
Type? Minimum Maximum x"; “““ g 'D"“ g ““““““““ \\ e R
iplici inlicity? | ! enre is a enre is an enumerated . G
Multlpllcrly? Multlphclty I *infavor offobjects to

“® b & |

' feature. It does not
| define an object type
in this application.

-_____.___

type. Itis a good practice |
to model enumerated
types as classes.

-.___________

______ > !

/
|
|
| I
l

|
i
i
:
J'

Fig. 4. An example of DR for the Genre element.

automate the instantiation of a large part of the reasoning ele-
ments (questions and solution ideas) that must be recorded dur-
ing the design of an artifact. In this case, the designers only
need to provide the information items of the domain and the
arguments for and against each design option. Notice that, in
the example of the Figure 4, only the solution ideas addressing
the initial question and the arguments (represented as dashed
rectangles) have informal content provided by the designers.

The portion of the Kuaba ontology instance shown below
represents this part of the rationale used for the Genre element
design expressed using F-Logic.

In this Kuaba instance example, observe that the reasoning
elements based on the UML metamodel have the “isDefi-
nedBy” relation that distinguishes them from the reasoning
elements provided by the designers.

The UML metamodel defines a class can as an aggregate of
attributes. Thus, to model Genre as a class is necessary to de-
fine its attributes. This is represented by the suggest relation
between the Class idea and the initial question, “What are
the model elements?,” shown in Figure 4. This relation repre-
sents that the designers need to identify other information
items related to Genre, before making a decision about the

/* Facts */
/I Reasoning Elements

genre:idealhasText->'Genre’;

hasCreationDate->'2004-08-25T09:12:06'; address->>{whatElements};

hasArgument->>{genreArgument}; is
isPresentedBy->carlos; suggests->>{

Involved->domainModelActivity;
hwModelGenre}].

hwModelGenre:question[hasText->'How to model Genre?"; isDefinedBy->uml;
hasCreationDate->'2004-08-25T09:15:02'"; hasType->'XOR';

islnvolved->domainMo

delActivity; isPresentedBy->carlos;

hasDecision->>{genreAttribDecision;genreClassDecision}].

genreAttribute:idea[hasText->'Attribute’;

hasCreationDate->'2004-08-

25T09:21:02"; address->>{hwModelGenre};

hasArgument->>{genreAttribArgument}; isDefinedBy->uml;

isPresentedBy->ana; isInvolved->domainModelActivity;

suggests->>{whoseAttrGenre;minMultAttribGenre;maxMultAttribGenre}].

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000279

406

genreClass:idealhasText->'Class’;

A. Pereira de Medeiros and D. Schwabe

hasCreationDate->'2004-08-25T09:21:12";
address->>{hwModelGenre;whoseAttribGenreName}; isDefinedBy->uml;

hasArgument->>{genreClassArgument1;genreNameAttribArgument2};

isInvolved->domainModelActivity; isPresentedBy->carlos;

suggests->>{whatElements}].

genreAttribArgument:argument[hasCreationDate->'2004-08-25T09:21:56";

inFavorOf->>{genreAttribute}; objectsTo->>{genreClass};

isinvolved->domainModelActivity; isPresentedBy->ana;

hasText->'Genre is a feature of CD. It does not define an

object type in this application'].
genreClassArgument:argument[hasCreationDate->'2004-08-25T09:22:00";
inFavorOf->>{genreClass};

isInvolved->domainModelActivity; isPresentedBy->carlos;

hasText->'Genre is an enumerated type. It is a good practice

to model enumerated types as classes'].

its design. Otherwise, the design could be inconsistent. Thus,
in the rationale shown in Figure 4, the designers also pro-
posed the “Name” information item and considered modeling
it as an attribute. Because the Aftribute idea, in turn, must be
associated with a Class according to the UML metamodel,
the question “Whose?” is suggested, which in turn, will be
addressed by the idea corresponding to the class whose attri-
bute it is.

Figure 4 also shows the decisions made, labeling each
solution idea to each question with an “A” (for accepted)
or “R” (for rejected). Thus, the example represents the
fact that the designers decided to accept the Attribute
idea as a solution to the question “How to model Genre?,”
in detriment of the Class idea. The subgraph of the DR
made up of Question and Ideas is actually an AND/OR
graph (Nilsson, 1986) that can be seen as a goal decompo-
sition of the root node, which is always a Question. Accord-
ing to Section 2.1, the Question element in the Kuaba
ontology has a “type” property, whose possible values
(AND, OR, and XOR) are used in rules to suggest
decisions about the acceptance or not of the proposed
solution ideas.

/* Facts */
/I Decisions and Justifications ------------—---

In the representation shown in Figure 4, if the decision to ac-
cept the idea of modeling Genre as an attribute was the first one
made by the designers, a support system can apply the rule
above, and automatically propose that the idea of modeling
Genre as a class be rejected, given that there are only two ideas
associated to the question “How to model Genre?” and this
question is of type XOR. At this point, the designer also has
the option of not accepting this suggestion, and revising the
possible answers to the original question “What are the model
elements?,” rejecting Genre altogether. In any case, the sup-
port environment can apply the rules defined by the Kuaba on-
tology, as well as those expressed by the metamodel used, to
validate the decisions made by the designers, flagging eventual
inconsistencies. Therefore, the order of acceptance or rejection
of an idea does not affect the represented rationale.

The decisions made about the design options to model
Genre, expressed in F-logic, are presented below. Notice
that the representation of each decision contains a final justi-
fication specification. The representation of this justification
helps to better understand how the arguments presented dur-
ing the design influenced or did not influence the final deci-
sions made by the designers.

genreAttribDecision:decision[concludes->genreAttribute; isAccepted->'true’;
hasDate->'2004-08-25T09:28:12"; isMadeBy->>{carlos};
hasJustification->genreAttribJustification].

genreAttribJustification:justification[isDerivedOf->>{genreAttribArgument};
hasText->'In this application we only need to record what is
the genre of a CD. In the conceptual model we
can represent it defining an attribute genre for the
CDclass..

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000279

Kuaba: A design rationale approach to support design reuse approach 407

genreClassDecision:decision[concludes->genreClass; isAccepted->'false’;
hasDate->'2004-08-25T09:28:12"; isMadeBy->>{carlos};
hasJustification->genreClassJustification].
genreClassJustification:justification[isDerivedOf->>{genreClassArgument};
hasText->'Important properties were not found to justify the
representation of genre as a class. Thus, | decided
to model genre as an attribute with multiplicity 1..n
to simplify the conceptual schema.'].

Concluding the rationale example for the CD element
design, we assume that the designers considered other in-
formation items related to a CD, besides Genre, for in-
stance, the “Title” and “Price” items. The DR representa-
tion for these items is not shown, because it is very
similar to the rationale shown in Figure 4 for the Genre
and Name items.

The resulting artifact of the DR represented in Figure 4 is
the CD class illustrated in Figure 2. In the Kuaba ontology

metamodel used. According to the UML metamodel, a class
is an aggregate of attributes. Therefore, the CD class shown in
Figure 2 is represented in Kuaba as a composite artifact of
several atomic artifacts, which represent its attributes (title,
genre, and price).

Below we show a portion of the Kuaba ontology instance
representing the CD artifact. This representation contains
the “resultsIn” relation, which records the solution idea
that originates the CD artifact. Notice that the Title, Price,

vocabulary, an artifact can be represented as atomic artifact
or composite artifact. The decision about how to represent
an artifact depends on artifact type and its definition in the

and Genre items are represented as atomic artifacts, be-
cause the designers decided to model them as attributes
of CD.

/* Facts */
/I Artifacts -------——--——--
titleArtifact:atomic_artifactfhasName->'Title attribute’,
hasCreationDate->'2004-08-26T09:30:52";
hasDescription->'Attribute of the CD class that contains the name
of the album’,
isCreatedBy->>{carlos}; isDescribedBy->uml;
resultsin->>{title}].
genreArtifact:atomic_artifactfhasName->'Genre attribute’;
hasCreationDate->'2004-08-26T09:31:12",
hasDescription->'Attribute of the CD class that contains the musical
genre of the album’;
isCreatedBy->>{carlos}; isDescribedBy->uml;
resultsin->>{genre}].
priceArtifact:atomic_artifactthasName->'Price attribute’;
hasCreationDate->'2004-08-26T09:32:02",

hasDescription->'Attribute of the CD class that contains the price
of the album’;

isCreatedBy->>{carlos}; isDescribedBy->uml;
resultsin->>{price}].
cdArtifact.composite _artifactthasName->'CD class’;
hasCreationDate->'2004-08-26T09:48:02",
isCreatedBy->>{carlos}; isDescribedBy->uml;
compositionOf->>{titleArtifact; genreArtifact; priceArtifact};
resultsln->>{cd};
hasDescription->'Main class that contains all attributes that an

object CD can have in this application'].

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000279

408

3.2. Rationale about Song

Figure 5 shows the DR used by the designers for modeling the
Song information item. This DR example shows the use of
other design options defined by the UML metamodel in the
Kuaba ontology instantiation, besides the options Class and
Attribute.

This DR representation shows the “Track” idea as a possible
information item related to the Song element and the ideas
Attribute, Class, and Association Class as possible design op-
tions for modeling this item in the class diagram. According to
the UML metamodel, shown in Figure 3, an association class is
a specialization of the elements Class and Association. As a
specialization of the Association element, an association class
must have at least two association ends. Thus, the type property
of the question “Association Ends?” shown in Figure 5 must be
recorded in the rationale representation with value “OR,” be-
cause more than one solution idea must be accepted for this
question. In this example, the decisions of accepting or reject-
ing the ideas “Destination” and “Origin” must be the same, that
is, they must be both accepted or both rejected.

In the UML metamodel, each end proposed for an associa-
tion must be related to one of the classes participating in the
association. This is represented by the questions “Partici-
pant?” shown in Figure 5. The ideas that address these ques-
tions indicate that the designers considered modeling the
Track element as an association class between the CD and
Song elements, both modeled as classes. However, this
solution idea was rejected according to the argument

A. Pereira de Medeiros and D. Schwabe

presented against the idea Association Class. Figure 6 shows
the rationale behind other decisions made about the design of
the Track element.

This example shows that the information items proposed
by the designers during the conceptual schema design also
can be modeled as associations. In this DR, the designers pro-
pose the items “Contains” and “Version of”” as elements of the
class diagram and decide to model them as associations be-
tween the elements CD, Track, and Song. The ideas “1”
and “n” addressing the “Minimum Multiplicity?” and “Max-
imum Multiplicity?” questions indicate that a CD can have
one or more tracks and a song can be recorded in one or
more tracks. Figure 7 shows the resulting class diagram after
the decisions made about the modeling of the elements Song
and Track. The DR representation for the attributes of the
classes Track and Song is not presented, because it is very
similar to the DR representation shown in Figure 4 for the at-
tributes of the CD class.

3.3. Rationale about Artist

Concluding the example of DR representation using the
Kuaba approach, this section presents part of the designers’
reasoning during the design of the “Artist” information
item. Suppose that this reasoning begins with the argument
against the idea of modeling the “Singer” element as a class,
shown in Figure 8. This could be validated by searching the
creation data and hour of each reasoning element included

What are the model elements?

/ -
A . ﬁ.\ A
'
! .
M '
' '
' '
~ V) vy v
How to model CD? How to model Song? |y '. How to model Track?
T 7 T] 1] T
A R L] 1 3 A > R
'
i \ ~
R ' bi : in favor of
ol s o in
Jed\ = A" "4 \\ Mo
\ ssociati e o ~
\ E?]dls?on % [Track is a concept directly \
v . — obecisto | related to CD, but with its |

-~

R ,’Song is not only a CD property.\
|The requirements descriptions !
I contain some data, such as name |
:and lyrics, which make up the |

R
Destination
V)

1 own properties. J

\\ S e SR /
@D i
/There can be two tracks in a cDY,

I with different versions of the |

| structure of an object of the type j
\:song'. /

______________ -

U
v | same song. Therefore, we |
Participant? | |Participant? | | would have two Track instances |

I | associated to the same CD and |

| same song, which is not :
\ possible in an association class. ,

~

e o i i s s s ! s

Fig. 5. A partial example of the DR for the Song element.

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000279

Kuaba: A design rationale approach to support design reuse approach 409

What are the model elements"

‘qbd-%\.

How to model How to model How to model How to model How to model
cD? Contains? Track'?‘ Versmn of? Song?
T T AN T
A A A A A
b
A " ti \ A Vt'
ssociation ssociation
2
Ends? Vihoes? Ends’?
A A
A
. a Participant? Participant? ! ' Pamcmant? 1
Participant? 0 ’]
i _\ _ = o
Minimum Maximum Minimum Maximum
Multiplicity? | | Multiplicity? Multiplicity? || Multiplicity?

b

b

Fig. 6. A partial example of the DR for the Track element.

in the DR representation. The “suggests” relation between
this argument and the initial question “What are the model
elements?” indicates that the designers needed to propose
new information items to model the different participation
types of an artist in a CD, for instance, the items Artist, Per-
former, and Composer.

In this example, we can observe that the designers consid-
ered the “Generalization” idea to model the “Participation”
information item that suggests the questions “Parent?” and
“Child?” According to the UML metamodel (Fig. 3), a gen-
eralization is a relation between an element “parent” and at
least one element ““child” that inherits the properties defined
in the “parent” element. Generally, these elements are known
in object oriented modeling as “superclass” and “subclass,”
respectively. However, we use the terms “parent” and “child”
adopted in the UML metamodel as instance values for the
Question element of the Kuaba ontology, because the gener-
alization concept also can be used to represent specializations

of associations between classes. Thus, the DR represented in
Figure 8 shows that the designers considered the solution of
modeling the Participation element as a generalization rela-
tion between the element Artist (parent) and the elements
Performer and Composer (children).

When the designers propose the ideas Artist, Performer, and
Composer as elements of the conceptual schema new design
problems are suggested. These problems are represented by
the questions about how to model these elements in the concep-
tual schema and how they are related to other model elements.

In Figure 8, the relation “suggests” between the Class idea
proposed as a solution for modeling Performer and the initial
question indicates that it was necessary for the designers to
define new information items, for instance, ‘“Photo.” This
item could be modeled as an attribute of the Performer ele-
ment, which could justify the modeling of this element as a
“child” (subclass) of Artist. However, the rationale shows
that the designers decided to model Photo as an attribute of

CcD > Track > s°ng
title : String contains 1.." |number : Integer |1." Versionof For ™ einng
genre : String [1..%] duration : String lyrics : Text
price : Real sound : Audio

Fig. 7. A partial class diagram with the Song and Track elements.

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000279

410

A. Pereira de Medeiros and D. Schwabe

|j"=ccccca= -* What are the model elements?
L] / 7 7 T A T \
] R A A R ' A A
(] (]
(]
- =
(] [}
¢ — V2 o W Ne o
¢ |How to model | | How to model | |[How to model| |How to model | , | How to model How to model
(] Singer? Photo? Artist? Participation? | ¢ | Performer? Composer?
{] T T T L} T T
{] R A A] R R
(] [}
(] (]
\ ~
A [N I .

______ ot
f§inger is a restrict cuncept?\

.’ I:*:I 7 I R R
objects to Whose? R U |- : R Wy
/ Parent? | | | Child? \\\I\
[|
I

I It does not allow modeling !

| other participation types of | |/ It allows definition of
__ anartistinaCD. _ _/ | common properties :

1 related to different artist |
| types in a particular CD

/
-

| T objects to
in favor of Infavoref Nug: -
| S & /" The properties proposed
——==!/ Photoisimportantdata \ ! for performer during the :
| of performer. Many users : | requirements specification |
| access the CD catalogue | | are not specific to this |
1 to visualize their favorite : I concept. They can be also :
\\ artist's photo. X properties of artist. /.r

Fig. 8. An example of part of the rationale about the Artist and Performer elements.

Artist element, designed as a class. So, the idea of modeling
the Performer element as a specialization class of Artist was
rejected by the designers.

Notice that it is not possible understand the arguments
presented for the Class idea in the subtree of the Performer

element without also considering the questions “How to
model Performer?” and “Whose?”” addressed by this idea. Al-
though the existing relation between the arguments and these
questions is not graphically represented in Figure 8, it is re-
corded, as shown below.

/* Facts */
/Il Reasoning Elements -------------—-
performerClass:idealhasText->'Class’;

hasCreationDate->'2004-08-26T19:21:13";
address->>{hwModelPerformer; whoseAttribPhoto};
isDefinedBy->uml; suggests->>{whatElements};

hasArgument->>{performerClassArgument1; performerClassArgument2};

isInvolved->domainModelActivity; isPresentedBy->carlos].
performerClassArgument1:argument[hasCreationDate->'2004-08-26T19:22.56";
inFavorOf->>{performerClass};

isInvolved->domainModelActivity; isPresentedBy->ana;

hasText->'Photo is an important data of performer. Many

users access the CD catalogue to see the photo
of their favorite artist’;

considers->whoseAttribPhoto].
performerClassArgument2:argument[hasCreationDate->'2004-08-26T19:24:00";
objectsTo->>{performerClass};

isInvolved->domainModelActivity; isPresentedBy->carlos;

hasText->'The properties proposed for performer during the

requirements specification are not specific of this
concept. They can be also properties of artist.’;

considers->hwModelPerformer].

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000279

Kuaba: A design rationale approach to support design reuse approach

This example shows the relation “considers” represented
for the two arguments associated to the Class idea in the sub-
tree of the Performer element. This relation allows represent-
ing that each argument is valid only for one of the questions
addressed by this idea. In this way, the first argument (perfor-
merClassArgumentl) is valid only when the Class idea ad-
dresses the “Whose?” question, and the second one is valid
only when this idea addresses the question “How to model
Performer?”

4. DESIGN REUSE USING RATIONALE

Formalizing DR representation using the model defined by
Kuaba enriched with the formal semantics of the metamodel
that describes the artifacts makes the DR more specific ac-
cording to the design methods and allows design reuse, which
is anew kind of reuse. It is achieved through the integration of
existing DRs when beginning the design of a new artifact.
This type of reuse requires different kinds of computable op-
erations on the recorded DR. These operations involve match-
ing instances of the Kuaba ontology (DR representations) to
compose a more complete solution of design.

The operations on the recorded DR are performed by the
rationale processor, one of the components of the conceptual
architecture defined for the integrated design environment
proposed in this work. This environment aims at making
the capture, representation and use of DR part of the design
process, and allowing the computational processing of DRs
to support reuse. Figure 9 shows the conceptual architecture
of this integrated environment.

Because most software design support tools already use
some kind of formal description (metamodel) of the artifacts
being designed, we propose to extend them to allow their in-
tegration with the DR processor developed in this work. As
we can observe in Figure 9, this extension enriches the design
tools by adding two layers to support the editing and search-
ing of DR. In the editing layer, the designer informs the argu-
ments for and against the design alternatives considered, and

Design T ool

Meta Model

I Rationale Editor I

Designer

| Rationale Searching |

411

the justifications for the decisions made. In the search layer,
s/he searches existing designs with their rationales, formu-
lates questions about the designs found, and starts the
integration of rationales. In this layer the designer can also
graphically visualize the rationale of the artifact being
designed, or the rationale of the designs being reused in her
or his design.

The extension of a software design tool to support DR
using the Kuaba approach allows the designers capturing
and representing DR while designing the software artifacts.
In this extended tool, a large part of the rationale (questions
and design ideas) is automatically obtained from the design
metamodel used. Therefore, the effort required from the de-
signers to record their rationale can be reduced, because
they need to inform manually only their arguments and justi-
fications instead of informing all rationale structure.

In the proposed architecture, the design tool transfers the
design options and the rationale information provided by
the designer to the rationale processor. This processor is re-
sponsible for creating the DR representations and processing
the rationales integration, when requested by the designer. In
a future version, the design tool will also be capable of gen-
erating the artifact based on the modifications and decisions
made by the designer over the integrated DR.

4.1. The rationale processor

The representation and the integration of DRs involves differ-
ent types of operations such as queries, operations to create
instances of the Kuaba ontology, and operations to match
or integrate elements of two or more instances of this
ontology.

Queries and operations to create instances of ontology have
already been implemented in several ontology editors such as
Protégé (Noy et al., 2001). The operations to perform the in-
tegration of instances of the same ontology have not been
considered in majority of the systems proposed to support
DR. Basically, these operations involve the search, copy,

Kuaba
Ontology

e
>
N

Rationale
Processor

Inference
Engine
o

g ey
e—]

Rationale
Repository

N~——

Fig. 9. The conceptual architecture of an environment supporting DR.

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000279

412

substitution and union of elements of the instances being in-
tegrated.

Search operations allow the designer to select which ele-
ments of the representations considered for the integration
will be included in the new design. For example, the designer
could provide a question, and request that the search tool re-
cover only the ideas that address this question and have argu-
ments for them.

Substitution operations allow the designer substitute an
element in one representation by a corresponding element
in another representation. This operation can be used, for ex-
ample, when the designer wants to use the DR of one repre-
sentation, but needs to substitute one of its elements by an ele-
ment specified in another representation.

Copy operations allow the designer copy elements of one
representation into another.

Finally, union operations allow joining the reasoning ele-
ments described in the representations involved in the inte-
gration to generate a new design. These operations can be
implemented in different ways, allowing the designer to de-
termine how the union of elements will be performed. One
way would be to permit the designer to specify which parts
of the representations considered should be integrated. For
example, the designer could define the Question element
that would be the root of the union of the representations.
Or still, the designer could restrict the elements considered
during the integration, such as, for instance, requiring the
union to consider only the ideas that were accepted in their
respective representations.

Currently, the rationale processor implements the complete
union of two DR representations. This operation consists of a
set of rules implemented in the Flora-2 language (see http:/
flora.sourceforge.net) that translates F-Logic into tabled
Prolog code and processes this code in the XSB deductive
system (see http:/xsb.sourceforge.net/). These rules consist
basically in the recursive processing of the various subtrees
of questions and solution ideas that compose the DR
representations.

4.2. An example of DR integration

To exemplify the design reuse by DR integration, consider
the scenario where a designer wants to design a class dia-
gram to represent information that will be used in a CD

v 1
performance !
Z Performance
fyve
(a) (b)

]Musicianl“ T I CcD |

A. Pereira de Medeiros and D. Schwabe

Store application. Because the online stores domain is a
common domain in software design, the designer decides
to perform a search for existing designs in a distributed
environment, trying to find similar artifacts, before he or
she begins a new design. As a result, s/he finds some differ-
ent class diagrams for the CD domain with their respective
DR representations.

After receiving the search result and analyzing the artifacts
found, the designer decides to reuse these artifacts taking ad-
vantage of the knowledge already used by other designers, re-
corded in the available DR representations. Thus, the de-
signer selects two artifacts representing different solution
alternatives to model information about how an artist partici-
pates in a CD. According to the DR representations of these
artifacts, this participation can be modeled in different
ways, as Figure 10 shows.

The DR representation of the first artifact, depicted in
Figure 11, shows that the author considered two design so-
lutions for modeling the artist’s performance in a CD: mod-
eling it as a simple association between the classes “CD”
and “Musician” (Fig. 10a) or as an association class between
these two classes (Fig. 10b). Examining the decisions re-
corded in this DR (labels A and R), the designer verifies
that the author decided to model Performance as an associa-
tion class with an attribute “type” related to the classes CD
and Musician.

Analyzing the DR of the second artifact, shown in Figure 12,
the designer verifies that the author instead of considering the
Musician element in the class diagram considered the Artist
element and decided to model this element as a class. In addi-
tion, the author also decided to model Participation as a gen-
eralization and the item Participates as an association between
the elements Artist and CD (Fig. 10c).

After analyzing the solution ideas and the decisions made
by the authors of these artifacts, the designer decided to inte-
grate the DRs shown in Figures 11 and 12 to start her or his
design with a larger set of options. This integration is possible
because the designs being reused are described by the formal
semantics of the same metamodel (UML) and represent the
same application domain (CD catalog).

The integration of two DR representations involves the def-
inition of the representation that will be used as the basis for
the integrated DR, the equality specification between equiva-
lent elements in the two representations, and the union of

|Performer | [Composer |

(c)

Fig. 10. Design options for modeling an artist’s participation in a CD.

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000279

Kuaba: A design rationale approach to support design reuse approach

s’

\What are the model elements?

AJ
Q
N

b

How to How to model How to model How to model
model CD? Performance? Type? Musician?
1 T
A A A
B Attribute @
Y \ u“j.
' !
\ﬁ |
A ? 1
ob]ects " EﬂdS Whose?| |
i A
R f in favor of
0‘"9"‘I ," Destination \ =
' gaucﬂ' of “
J
/ 1
1 — Paruaipant? Particupanl? " F’artlcipant? Partici pant‘? \ ‘l
/ \
b [[} | \ \
/] \ 1
- ____] e __ R . T

I Il does not allow representlng\

| the types of performance that l | performance type for each musician hy

\ 2 musician can have in a CD \ that participates in a CD
e

Fig. 11. An example of DR about the Musician’s performance modeling (Fig. 10a and b).

What are the model elements?

“’ It permits representing only a smgle Ay It prevents future rnodlﬂcatlons \
in the model if new types of |
s perfocmance will be necessary ,’

413

’/ 7 T T < \\
G (Fartoaio <>
e e
How to model How to model How to model How to model How to model How to model
CD'? F'articipates’? Participation? Musician? Composer? Artist?
' ;) A
b
L)
: A A A
Ends'? Father? | | | Son?
| | |
A !
Destmahon in fa\'ﬂf of /7 It allows defining common X A
—-— ——{ properties related to different |
\ artist types in a particular CD /

Partlctpant?

—

Parhm pant?

Fig. 12. An example of DR about the elements Artist and Participation (Fig. 10c).

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000279

414

the reasoning elements (equivalent or not) of these DR
representations.

The definition of the base representation and the equality
specification between domain ideas are performed by the de-
signer. In this example, we assume that the designer defined
the DR representation shown in Figure 12 as the base, and
specified the identity of the elements Musician and Artist,
as well as the equality between the elements Performance
and Participation of the DRs that will be integrated (Figs.
11 and 12). These equalities are specified in Flora2 using

tt)

the predicate “: = :” as

Musician:=:Artist.
Performance:=:Participation

Based on this equality specification, the rationale processor
first identifies the equivalent ideas, applying the equivalence
rules shown below. According to these rules, questions are
considered equal if they have the same text (or they are in
the equality specification defined by the designer) and are
suggested by equivalent ideas. Domain ideas are considered
equal if they have the same text (or they are in the equality
specification) and address equivalent questions. Finally, de-
sign ideas are considered equal if they have the same text
and address at least one common equivalent question.
When the rationale processor finds an equivalent idea among
the DR representations being integrated, it simply copies the
arguments of this idea from the original representation, add-
ing them to the base representation.

A. Pereira de Medeiros and D. Schwabe

After identifying and treating the equivalent ideas, the ra-
tionale processor identifies the questions that are different
(nonequivalent) in the two representations and copies
(adds) them to the base representation. The operations
used by the processor to treat these questions are shown
below.

?- L=collectset{Q|Q[isSuggestedBy->>|]@mod1},
L2=collectset{Q|Q[isSuggestedBy->>[@mod2},
get_non_equivalent_question(L,L2,List), copy_question(List).

In the code above, the rationale processor creates two
lists (L, L2) with the questions of the two DR repre-
sentations being integrated. Note that the questions re-
trieved must be suggested by some idea. This restriction
allows distinguishing them from the initial questions of
each representation, which are always equal because
they are defined by the metamodel used. The get _non_
equivalent_question operation processes these lists return-
ing a new list with the different questions. The copy_
question operation, shown below, copies the questions
from this list to the base representation. For example,
the questions “How to model type?” and “Whose?” in
the subtree of the idea “Type” (Fig. 11) are copied to
the base representation. If one of these questions is ad-
dressed by an idea equivalent to an idea already existent
in the base representation, the processor updates this rep-
resentation making the existing idea address the question

equivalent_question(Question1, Question2) :- Question1[hasText->_TQ1, isSuggestedBy->>_|1]@mod1,
Question2[hasText->_TQ2, isSuggestedBy->>_[2]@mod2,
(_TQ1=_TQ2;Question1:=:Question2),
(equivalent_domainldea(_I1,_12);

equivalent_designidea(_I1,_12);
M=12).

equivalent_domainldea(ldea1, Idea2) :- Ideal[not (isDefinedBy->_X),hasText->_TI1,
address->>_Q1[hasText->_TQ1]J@mod1,
Idea2[not (isDefinedBy->_Y),hasText->_TI2,
address->>_Q2[hasText->_TQ2]j@mod2,
(T=_TI2;ldeat:.=:[dea2),
(TQ1=_TQ2;_Q1:=_Q2), not(_Q1=_Q2).

equivalent_designldea(ldeal, Idea2) :- Ideal[hasText->_TI1]@mod1,
Idea2[hasText->_TI2]@mod2,

_TH=_TI2,

LQ1=collectse{Q1|Q1[isAddressedBy->>|deal]@mod1},
LQ2=collectset{Q2|Q2[isAddressedBy->>Idea2]@mod2},
get_equivalent_question(LQ1,LQ2,List),

not(List =[]).

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000279

Kuaba: A design rationale approach to support design reuse approach 415

just copied. This is achieved by the “identify_equivalent_
idea” operation.

copy_question([]).
copy_question([Question1|Tail]) :-

The rationale processor first creates two lists (L, L2) with
the ideas of the two DR representations being integrated.

insert{(Question1:question, Question1[hasText->X, hasCreationDate->Y,
hasType->T, isinvolved->Z, isDefinedBy->W])@mod2 |
Question1[hasText->X, hasCreationDate->Y, hasType->T,
islnvolved->Z isDefinedBy->W]@mod1},

LI1=collectset{l||[address->>Question1]@mod1},

LI2=collectset{l|.idea@mod2},

identify_equivalent_idea(LI2,L11,Question1),

copy_question(Tail).

After treating the nonequivalent questions, the rationale
processor identifies the ideas that are different (nonequiva-
lent) in the two representations and copies them to the base
representation. The operations used by the processor to treat
these ideas are shown below.

?- L=collectset{l|l:idea@mod1},
L2=collectset{l|l:idea@mod?2},
get_non_equivalent_idea(L,L2,List), copy_idea(List).

copy_idea([]).
copy_idea([ldea|Tail]) :-
if not(ldea1:idea@mod2) then

Then, the get_non_equivalent_idea operation processes these
lists returning a new list with the different ideas. The copy_-
idea operation, shown below, copies the ideas in this list to the
base representation. For example, the ideas Type and Attri-
bute as well as the ideas Association Class, Origin, and Desti-
nation in the subtree of the element Performance (Fig. 11) are
copied to the base representation (Fig. 12). For each idea cop-
ied, the processor copies also its arguments (copy_argument
operation) and treats questions equivalent to the questions ad-
dressed by it in the original representation (identify_equiva-
lent_guestion operation). Figure 13 shows part of the resulting
integrated DR.

(insert{(ldea1:idea,ldea1[hasText->X, hasCreationDate->Y, isInvolved->Z])@mod2 |

Idea1[hasText->X, hasCreationDate->Y, isInvolved->Z]@mod1},
insert{ldea1[address->>{Q}|@mod2 | Idea1[address->>Q]@mod1},
insert{ldea1[hasArgument->>{A}J@mod2 | Idea1[hasArgument->>Al@mod1},

LA=collectset{A1|A1[inFavorOf->>ldea1]@mod1;A1[objectsTo->>|deal]@mod1},

copy_argument(LA ldea),
LQ1=collectset{Q1|Q1[isAddressedBy->>Ideal]@mod1},
LQ2=collectset{Q2|Q2:question@mod2},
identify_equivalent_question(LQ2, LQ1, Idea1),
if Idea1[suggests->>_ X]@mod1 then
(insert{ldeal[suggests->>{Q1}J@mod2 | |[deal[suggests->>Q1]@mod1}),
if Idea1[isDefinedBy->M]@mod1
then
(insert{ldea1[isDefinedBy->M]@mod2 | Idea1[isDefinedBy->M]@mod1}))
else
(insert{ldeal[address->>{Q}J@mod2 | Idea1[address->>Q]@mod1}),
copy_idea(Tail).

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060408000279

416

A. Pereira de Medeiros and D. Schwabe

What are the model elements?

N

N 2

How to model How to model How to model Particioation? How to model How to model How to model | | How to model
CcD? Participates? il Performer? Composer? Type? Arlist?
Class Class Class
y ﬁl “—-"‘n
U
’ Whosa"
in Iavof of

—i Participant? ”Pammpant? H F'arHprant? l F‘arhclpant"l

\ \e‘d / It allows defining common j'

o e e

propemes related to different |]

\ _artist types in a particular CD ,‘,

I
]

\ !

\ [
T

/Ik permits representing only a smgle \
| performance type for each musician I
\ that participates in the CD

P N, I

{ It prevents future madnﬁcahons y

in the model if new types of (

\perforrnance will be necessary J

Fig. 13. A partial example of the integrated DR. Newly included elements are shown in gray background.

Finishing the integration, the processor verifies the base
representation and makes the necessary modifications to
guarantee the consistency of the relations between questions
and ideas in the integrated representation. For instance, in
Figure 13, the idea Association Class is associated to the
question “How to model Participation?” that is equivalent
to the question “How to model Performance?” in the original
representation (Fig. 11).

In the integrated DR (Fig. 13), all design options in Fig-
ure 10 were joined in one unique DR representation. Notice
that the decisions made for the reused artifacts, shown in Fig-
ures 11 and 12, are not incorporated to this representation.
This reflects the fact of this integrated DR represents a new
design, in which the designer can do modifications and
make new decisions according to her or his objectives, creat-
ing a new artifact.

5. THE HYPERDE+DR ENVIRONMENT

HyperDE-+DR is an extension of the HyperDE environment
(Nunes & Schwabe, 2006), in which the layers of editing and
searching of DR proposed in the architecture illustrated in
Figure 9 are being initially developed. HyperDE is a support
environment for hypermedia application development using
the design methods OOHDM (Object Oriented Hypermedia
Design Method; Schwabe & Rossi, 1998) and SHDM (Se-
mantic Hypermedia Design Method; Lima & Schwabe,
2003). In its current version, the designers dynamically de-
velop their applications, in an interactive way, informing
the items that compose the previously elaborated navigation

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

model of their application. These items are recorded as in-
stances of the metamodel used by the HyperDE environment,
which is based on the metamodels that describe the primitives
of the OOHDM and SHDM methods. In HyperDE+DR, this
metamodel was extended with the representation model de-
scribed by Kuaba ontology. This integration permits to cap-
ture and track part of the reasoning developed by the designer
during the use of the environment to construct the hyperme-
dia application.

The HyperDE+DR environment was designed for captur-
ing part of the DR behind the design solutions used by the de-
signers during the hypermedia application construction, be-
cause they have previously elaborated the navigational
model and the context schema according to the OOHDM or
SHDM method. Therefore, HyperDE+DR follows the cur-
rent functioning of the environment HyperDE, on which it
is based: the user builds the application after having conclu-
ded the previous steps of modeling (requirements gathering,
conceptual model, navigational model, navigation context
schema). In a future version, the environment will also sup-
port the design of the models. Therefore, HyperDE+-DR is
only a first experiment in the implementation of the layers
of editing and searching of DR (Fig. 9) and automation of
part of the rationale capture (questions and design ideas) en-
abled by the use of the metamodels’ formal semantics.

In the HyperDE+DR, the designers construct their hyper-
media applications by informing the set of objects (applica-
tion concepts) that will be explored during the navigation
and the way how they will be organized for navigation ac-
cording to the primitives of the OOHDM and SHDM

https://doi.org/10.1017/S0890060408000279

Kuaba: A design rationale approach to support design reuse approach 417

methods. This information is used by the environment to au-
tomatically generate some questions and ideas that must com-
pose the application DR. The decision linking each question
and the ideas that address it is also automatically generated.
The explicit interaction of the designer is required only to
add arguments for or against the created ideas and justify
the decisions made. All arguments provided are included in
the list of existing arguments and, thus, they can be reused
for other ideas. The goal is that this process be (semi) auto-
matic, once there is a database of predefined arguments ac-
cording to the experience in using the primitives of the
OOHDM and SHDM methods. The idea is to reduce the ef-
fort required from the users for capturing DR.

To support the design reuse through the use of DRs, the
HyperDE+DR environment allows importing the recorded
DRs. After selecting the application repository in which the
union of the rationales will be done, the designer chooses
the reasoning elements that must be imported. Besides select-
ing the elements that will be imported, the designer must also
inform the identities between these elements and those in the
application being developed. The identity specification is
necessary when elements with different names represent the
same concepts in the two applications being integrated.

As a further development of this implementation, the com-
munication of the HyperDE+4DR with the existing ratio-
nale processor is still being investigated. If this communica-
tion is not possible, the implementation of the computable
operations proposed in this work will be reimplemented in
the HyperDE+DR environment to support the rationales in-
tegration, currently is performed by the stand alone rationale
processor.

6. RELATED WORK

The Kuaba approach provides an argumentation-based
representation model for DR. Different from other argumen-
tation-based models, such as IBIS, DRL, QOC e TEAM, the
vocabulary used by Kuaba allows explicitly representing the
decisions made by designers, including a specific element to
describe decisions. Furthermore, Kuaba integrates these
decisions with the argumentation used by designers during
the design and with the artifact descriptions that result from
these decisions, making the DR representation more complete.

Considering the DR approaches proposed for software de-
sign, Kuaba is similar to the Potts and Bruns model (Potts &
Bruns, 1988), which was extended by Lee (1991) in defining
DRL. Both integrate the DR representation with semantics
provided by the software design methods. However, the Potts
and Bruns model and the Kuaba approach differ in the way
they use this semantics. In Potts and Bruns, the generic model
entities are refined to accommodate a particular design
method vocabulary for deriving new artifacts. For example,
a new entity specific to the design method used is incorpo-
rated into the IBIS model. In the Kuaba approach the formal
semantics of the metamodel prescribed by the design method
is used in the instantiation of the reasoning elements

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

(Question and Idea), which allows to automate the generation
of part of the rationale that is informed by designers during
the artifact design. In other words, Kuaba works at the meta-
model level, whereas the Potts and Bruns approach works at
the model level, requiring a change in the vocabulary for each
different software design method.

Many systems have been also proposed to support DR. How-
ever, they usually do not permit the DR processing
by computable operations. In Pefia-Mora and Vadhavkar
(1997), the authors proposed a framework combining DRIM
(Design Recommendation and Intent Model) with design pat-
terns to offer active assistance to software designers in design-
ing reusable software systems. This combined approach leads to
the “patterns by intent” approach. This approach refers to the
process of selecting patterns based on their initial intents and
then refining the choice of the patterns by specific constraints.
Although this approach focuses on software reuse, it does not
address the integration of rationales proposed in this work to
create new software artifacts. Basically, the framework supports
the reuse of components by recording and allowing the retrieval
of decisions made during the software design process.

The SEURAT (Software Engineering Using Rationale)
system (Burge & Brown, 2004) has architecture similar to
the architecture of the integrated support environment pre-
sented in this work. However, SEURAT supports the use of
rationale to identify inconsistencies during the software main-
tenance process. Differently from the environment proposed
here, SEURAT does not consider computable operations
over the DR as a support for the design reuse. Similarly to
the Kuaba approach, the SEURAT system also propose the
integration of the software design tools with tools for support-
ing the capture and representation of DR. But, SEURAT does
not contain a component equivalent to the rationale processor
developed in this work, capable of processing the rationales
integration to support reuse.

Compendium and DRed are argumentation based systems
that allow DR to be captured graphically. In both, all the reason-
ing elements (questions, ideas, arguments, decisions) are cre-
ated, positioned, and linked manually by the user. In the inte-
grated design environment proposed in this article, a great
part of the rationale (questions and design ideas) is automati-
cally obtained from the design metamodel used while the de-
signers are designing the artifacts. In other words, the rationale
is captured as the design proceeds according to the artifact de-
sign options selected by the designers at each moment in the de-
sign tool. Therefore, the designers do not need to know the ele-
ments of the Kuaba representation model. They need inform
only their arguments and the justifications for the decisions
made. Furthermore, neither one of them support computations
(or reasoning) over the recorded rationales, as Kuaba does.

7. CONCLUSIONS

In this article we have proposed a new approach for the DR
representation to support the reuse of model-based designs,

https://doi.org/10.1017/S0890060408000279

418

particularly, software design. To allow a more effective use of
DR to support design reuse, this approach integrates the DR
representation model defined by the Kuaba ontology with
the formal semantics provided by the metamodel of the de-
sign method or modeling language used for describing the ar-
tifact being designed. This integration makes the DR repre-
sentations more specific according to the design methods
and enables a new type of design reuse, where rationales
can be integrated and re-employed in designing a new artifact.

The examples of DR representation considering different
design metamodels show that the Kuaba representation ap-
proach can also facilitate the DR capture, because it allows
automating part of generation of DR. Therefore, the large
amount of data produced in DR representations of actual de-
signs is significantly hidden from the designer through the
use of automated support. This automated support can reduce
the overheads of DR authorship, because a great part of the
rationale (questions and design ideas) is automatically ob-
tained from the design metamodel used. However, the imple-
mentation of this automated support is still in its early days,
and empirical evaluation must and will follow.

In addition, we have also proposed the conceptual architec-
ture of an integrated design environment for supporting the
capture, representation, and processing of DR. The proposed
environment integrates the software design tools with a ratio-
nale processor capable of generating and integrating DR
representations during the design process using a set of rules
and computable operations. Thus, the design reuse is sup-
ported by the computational processing of the recorded DR
in the new artifacts production.

Our current research includes the investigation of the
use of the Kuaba approach to represent DR considering other
activities of the software development process, the imple-
mentation of the proposed conceptual architecture in the
HyperDE+DR environment and in other software design
tools, and the investigation of visualizations techniques to
support the presentation of DR using the Kuaba graph. We
are also investigating the use of Kuaba in other domains,
with different kinds of metamodels, such as engineering
and geophysics. The goal here is to further experiment with
the semantics of the metamodels and the degree of automa-
tion it enables within the support environment. A first study
has been done in a large oil company, in which we are using
the Kuaba approach to capture the rationale behind the best
practices used by the company in oil well engineering. This
initial rationale will be used to support the formalization of
the metamodels used in these domains.

REFERENCES

Bracewell, R.H., Ahmed, S., & Wallace, K.M. (2004). DRed and design
folders: a way of capturing, storing and passing on knowledge generated
during design projects. Design Automation Conf., ASME Design
Engineering Technical Conf., Salt Lake City, UT.

Burge, J., & Brown, D.C. (2004). An integrated approach for software design
checking using rationale. Design Computing and Cognition, pp. 557-576.
New York: Kluwer Academic.

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

A. Pereira de Medeiros and D. Schwabe

Conklin, J., Selvin, A., Buckingham, S.S., & Sierhuis, M. (2003). Facilitated
hypertext for collective sensemaking: 15 years on from gIBIS. Proc.
LAP’03: 8th Int. Working Conf. Language-Action Perspective on Com-
munication Modelling, Tilburg, The Netherlands.

Goel, V., & Pirolli, P. (1989). Motivating the notion of generic design within
information processing theory: the design problem space. AI Magazine
10, 19-36.

Hubka, V., & Eder, E'W. (1996). Design Science: Introduction to Needs,
Scope and Organization of Engineering Design Knowledge, 2nd ed.
London: Springer—Verlag London Limited.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Unified Software
Development Process. Reading, MA: Addison—Wesley.

Kifer, M., & Lausen, G. (1989). F-Logic: a higher-order language for reason-
ing about objects, inheritance and scheme. ACM SIGMOD, pp. 134-146.

Kunz, W., & Rittel, H-W.J. (1970). Issues as Elements of Information
Systems, Working Paper 131. Berkeley, CA: University of California,
Berkeley, Institute of Urban and Regional Development.

Lacaze, X. (2005). Conception rationalisée pour les systemes interactifs—
une notation semi formelle et un environnement d’édition pour une
modélisation des alternatives de conception. PhD Thesis. Université
Toulouse I.

Lee, J. (1991). Extending the Potts and Bruns model for recording design ra-
tionale. Proc. 13th Int. Conf. Software Engineering, pp. 114—125, Austin,
TX.

Lee, J. (1997). Design rationale systems: understanding the issues. [EEE
Expert 12(13), 78-85.

Lima, F., & Schwabe, D. (2003). Application modeling for the semantic web.
Proc. LA Web 2003, p. 93. Taiwan: IEEE-CS Press.

MacLean, A., Young, R., Bellotti, V., & Moran, T. (1991). Questions, op-
tions, and criteria: elements of design space analysis. Human—Computer
Interaction 6(3—4), 201-250.

Medeiros, A.P. (2006). Kuaba: an approach for representation of design ra-
tionale for the reuse of model-based designs. PhD. Thesis. PUC Rio de
Janeiro, Department of Informatics.

Medeiros, A.P., Schwabe, D., & Feijo, B. (2005). Kuaba ontology: design ra-
tionale representation and reuse in model-based designs. In Proc. 24th
Int. Conf. Conceptual Modeling (ER2005), Lecture Notes in Computer
Science, Vol. 3716, pp. 241-255. Berlin: Springer—Verlag.

Nilsson, N. (1986). Principles of Artificial Intelligence. San Mateo, CA:
Morgan—Kaufman.

Noy, N.E,, Sintek, M.; Decker, S., Crubézy, M., Fergerson, R.W., & Musen,
M.A. (2001). Creating semantic web contents with Protégé-2000. [EEE
Intelligent Systems 16(2), 60-71.

Nunes, D.A., & Schwabe, D. (2006). Rapid prototyping of web applications
combining domain specific languages and model driven design. Proc.
15th Int. Conf. World Wide Web, pp. 889-890. New York: ACM Press.

OMG. (2003). Unified Modeling Language Specification. Version 1.5.

Pefia-Mora, F., & Vadhavkar, S. (1997). Augmenting design patterns with
design rationale. Artificial Intelligence for Engineering Design, Analysis,
and Manufacturing 11(2), 93—-108.

Potts, C., & Bruns, G. (1988). Recording the reasons for design
decisions. Proc. 10th Int. Conf. Software Engineering, pp. 418—427,
Singapore.

Santos, D.R.G. (2007). Support for recording and using design rationale for
web application design, Rio de Janeiro. Master’s Dissertation. PUC Rio
de Janeiro, Department of Informatics.

Schon, D. (1983). The Reflective Practitioner: How Professionals Think in
Action. New York: Basic Books.

Schwabe, D., & Rossi, G. (1998). An object-oriented approach to Web-based
application design. Theory and Practice of Object Systems (TAPOS),
207-225.

Simon, H.A. (1981). The Sciences of the Artificial, 2nd ed. Cambridge, MA:
MIT Press.

Winograd, T. (1996). Bringing Design to Software. Reading, MA: Addison—
Wesley.

Adriana Pereira de Medeiros is a Researcher with the
TecWeb Laboratory Research Group, Department of Infor-
matics, Catholic University, Rio de Janeiro. She received a
PhD in computer science. Adriana has worked in software de-
velopment projects for 4 years and has been teaching since

https://doi.org/10.1017/S0890060408000279

Kuaba: A design rationale approach to support design reuse approach 419

2001. She has been investigating the use of DR to support the
reuse of model based designs. Dr. Pereira de Medeiros’ main
research interests include software engineering, DR, ontol-
ogy, knowledge management, metamodeling, and Web engi-
neering.

Daniel Schwabe is a Professor of informatics at the Catholic
University, Rio de Janeiro. He attained his PhD in computer
science from UCLA in 1981. Daniel has been investigating
the design and implementation of information systems seen

https://doi.org/10.1017/50890060408000279 Published online by Cambridge University Press

as part of human—machine teams that perform tasks to solve
problems, integrating formal and informal knowledge. The
former is expressed through computational models, often in-
tegrated with the latter through hypermedia models. Current
Web-based applications are a particular case of this type of
system. Dr. Schwabe has investigated the use of DR as a nat-
ural way to record reuse design knowledge, which seamlessly
integrates with the underlying domain model.

https://doi.org/10.1017/S0890060408000279

