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Direct numerical simulation is used to investigate the integral behaviour of buoyant plumes
subjected to a uniform crossflow that are infinitely lazy at the source. Neither a plume
trajectory defined by the centre of mass of the plume zc nor a trajectory defined by the
central streamline zU is aligned with the average streamlines inside the plume. Both zc
and zU are shown to correlate with field lines of the total buoyancy flux, which implies
that a model for the vertical turbulent buoyancy flux is required to faithfully predict the
plume angle. A study of the volume conservation equation shows that entrainment due to
incorporation of ambient fluid with non-zero velocity due to the increase in the surface
area (the Leibniz term) is the dominant entrainment mechanism in strong crossflows. The
data indicate that pressure differences between the top and bottom of the plume play a
leading role in the evolution of the horizontal and vertical momentum balances and are
crucial for appropriately modelling plume rise. By direct parameterisation of the vertical
buoyancy flux, the entrainment and the pressure, an integral plume model is developed
which is in good agreement with the simulations for sufficiently strong crossflow. A
perturbation expansion shows that the current model is an intermediate-range model valid
for downstream distances up to 100�b–1000�b, where �b is the buoyancy length scale based
on the flow speed and plume buoyancy flux.

Key words: plumes/thermals, turbulent mixing

1. Introduction

Turbulent buoyant plumes have long been studied due to their ubiquity in nature and
in industry, and their importance in fields such as disaster management and industrial
pollution. Examples are volcanic eruptions, pollutant dispersion via chimneys, fires, ocean
outfalls and jet engines (Woods 2010; Mahesh 2013). A significant number of parameters
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play a role in the evolution of a buoyant plume. These include the source velocity, release
angle, density and the state of the atmosphere the plume ascends through via the velocity
profile U(z) and the stratification, characterised by the (square) buoyancy frequency N2(z).
Volcanic applications feature another level of complexity due to the initial ash volume
fraction and its size distribution, ash reactivity and compressibility effects including shock
waves due to supersonic conditions at the source.

Buoyant plumes are typically modelled via integral models. The now-classical plume
equations were presented in Morton, Taylor & Turner (1956), and comprise a set of three
coupled ordinary differential equations for the volume flux Q, (streamwise) momentum
flux M and buoyancy flux F, respectively. This theory was formulated in the absence
of a crossflow such that the plume only evolves in the vertical coordinate z. One of the
cornerstones of the theory is the entrainment assumption, which links the entrainment of
fluid into the plume to the characteristic velocity inside the plume. Morton et al. (1956)
assumed that the entrainment coefficient α was constant, although different values of α

are typically used for jets and plumes. Recent work by van Reeuwijk & Craske (2015)
has clarified the relation between the Morton et al. (1956) model and the Priestley & Ball
(1955) model, who used a closure involving the production of turbulent kinetic energy.
Analysis of experimental and numerical data by van Reeuwijk & Craske (2015) indicated
that for jets and plumes the more suitable model is that of Priestley & Ball. In fully
self-similar conditions, and with the buoyancy and velocity profiles having an equal width
(List 1982), it follows directly that αplume ≈ (5/3)αjet (van Reeuwijk et al. 2016).

Integral plume models were extended to crossflows by, for example, Briggs (1982)
and Weil (1988) and references therein: for strongly bent-over plumes they showed that
analytical expressions could be derived for the level of neutral buoyancy and the maximum
rise height of the plume. This involved adding an ordinary differential equation for the
horizontal momentum excess flux Mx. The presence of a crossflow fundamentally alters
the entrainment properties of a plume: it typically causes the flow to bend over and organise
itself into a double-roll structure with two turbulent counter-rotating vortices (Fischer et al.
1979; Weil 1988; Huq & Dhanak 1996). For jets in a crossflow, Mahesh (2013) summarises
the research of the double-roll structure and describes the horseshoe and wake vortices
which form upstream of the jet’s leading edge as a result of adverse pressure gradients.

In parallel with the effort to develop a suitable integral plume model, there is a
large body of literature documenting experimental and numerical surveys of plumes in
a crossflow (e.g. Cintolesi, Petronio & Armenio 2019). One of the earliest experimental
studies (Fan 1967) investigates two categories of plumes: inclined plumes discharged
into a stratified but quiescent environment, and plumes discharged into a homogeneous,
uniform crossflow. Subsequent studies have been carried out for a wide range of initial
and boundary conditions, resulting in a large catalogue of experimental work. For
example, Gaskin (1995) compares a plume in a quiescent environment to a plume with a
uniform crossflow, and Huq & Stewart (1996) assess the effects of atmospheric turbulence
on plume development. With the increasingly widespread availability of high-powered
computing, numerical studies and particularly large-eddy simulations (LES) have become
an additional powerful tool for investigating plume dynamics. Yuan, Street & Ferziger
(1999) were early innovators in this regard, simulating jets in a crossflow (without
buoyancy) by utilising a dynamic Smagorinsky model for the subgrid scales. They used
their LES to analyse the counter-rotating vortex structure, concluding that it was the result
of the hanging vortices which appear in the region close to the source of the jet. More
recently, De Wit, Van Rhee & Keetels (2014) examined a real-world application of LES
to overflow dredging plumes resulting from a moving dredger. They discovered that the
average horizontal velocity of the plume exceeds the speed of the crossflow. We discuss
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this intriguing phenomenon in §§ 6 and 7. Another pertinent numerical study is that of
Devenish et al. (2010) presenting LES of purely buoyant plumes released into stratified
and uniform environments. They compared the results of their LES with plume integral
models and proposed a modified entrainment assumption in which the contributions from
the horizontal and vertical velocity components are not equally weighted.

There are various entrainment assumptions (see § 5), and all involve some mix of
the plume velocity and the crossflow speed. Most models assume that the pressure is
hydrostatic within the plume at least when averaged over the plume cross-section, and
that the effects of pressure can be represented by an added-mass coefficient. Most models
also neglect the Leibniz term: the increase in (for example) integral volume flux as
a result of the spreading of the plume into a non-quiescent atmosphere. Schatzmann
(1978), on the other hand, fully integrated the governing equations and was the first
to describe an integral plume model incorporating the Leibniz term. He argued that
this term should not be counted towards entrainment, since it requires a fundamentally
different interpretation of the entrainment coefficient. In addition, he noted the need
for a pressure term, although at the time not enough was known to fully model it.
Limitations of his analysis are the assumption of axisymmetry and the assumption that the
turbulence terms are negligible. We avoid these assumptions in our analysis by integrating
the Reynolds-averaged equations directly, allowing us to assess all terms in the integral
budgets and to determine which are physically relevant and which can be ignored.

One pertinent example of an application in which integral models play a key role is in
the determination of the mass flux of a volcanic eruption. It is not possible to measure
this quantity directly, so the mass flux is often inferred from the rise height of the plume,
which is where the plume has the same density as the surrounding atmosphere and starts
spreading laterally like a gravity current. Turbulent entrainment thus plays a key role in
the rise height, since this is the sole mechanism by which the plume dilutes. Appropriately
incorporating the influence of crossflow in these estimates is key for appropriate estimation
of the source mass flux (Devenish 2013; Woodhouse et al. 2013; Costa et al. 2016; Rossi,
Bonadonna & Degruyter 2019).

The aim of this paper is to examine the assumptions underlying integral models of
plumes in a crossflow, including entrainment, by means of direct numerical simulation
(DNS). In order to manage the complexity of the problem, we restrict ourselves to a neutral
atmosphere (N = 0) with a uniform crossflow speed U and a momentumless source (i.e.
an infinitely lazy plume). The only parameter that is varied is the crossflow speed. We
focus our attention on the behaviour exhibited by plumes with a strong crossflow, and on
developing a model for the entrainment and pressure drop over the plume.

2. Theory

2.1. Integral equations
In this section, equations for the integral volume, momentum and buoyancy fluxes are
derived. The derivation is consistent with that of Weil (1988) and Schatzmann (1978), but
is performed here without any simplifications, such as the assumption of axisymmetry
(Schatzmann 1978) or neglecting turbulence and pressure terms. A schematic detailing the
nomenclature used here is given in figure 1. Cartesian coordinates (x, y, z) are used which
represent the streamwise, transverse and vertical directions, respectively. The crossflow
speed in the x direction is denoted U and is uniform in z. It is convenient to also introduce
a plume-following coordinate system (s, y, η), where s is the distance from the source
along the plume centreline, y is the transverse direction (which remains unchanged) and
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Figure 1. A schematic of the plume with the Cartesian (x, z) coordinate system and the curvilinear (s, η)

coordinate system. The y direction is perpendicular to this plane. Values for Lx, Lz and Ln for the five
simulations can be found in table 1.

η is the coordinate perpendicular to s in the (x, z) plane. The plume centreline makes an
angle ϕ with the x axis. The plume source is positioned at (0, 0, 0) and the release is
momentumless with a constant integral buoyancy flux F0 = r2

0φb, where r0 is the source
radius and φb is the (diffusive) buoyancy flux. This infinitely lazy plume condition is
chosen so as not to introduce a further parameter, namely the source momentum flux, and
to manage the complexity of the problem.

The incompressible Navier–Stokes equations with the Boussinesq approximation are

∇ · u = 0, (2.1a)

∂u
∂t

+ u · ∇u = −∇p + ν∇2u + bk̂, (2.1b)

∂b
∂t

+ u · ∇b = κ∇2b, (2.1c)

where u = (u, v, w) is the velocity of the fluid, b = g(ρ0 − ρ)/ρ0 is the buoyancy
and p = p̃/ρ0 + gz is the kinematic pressure perturbation, where g is the gravitational
acceleration, ρ0 is a constant reference density and p̃ is the standard pressure. The
kinematic viscosity and scalar diffusivity are denoted by ν and κ , respectively. Assuming
high-Reynolds-number and high-Péclet-number flow, applying Reynolds averaging to (2.1)
and making use of the fact that the flow is statistically steady results in

∇ · ū = 0, (2.2a)

∇ · (ūui + u′u′
i) = − ∂ p̄

∂xi
+ b̄δi3, (2.2b)

∇ · (ūb̄ + u′b′) = 0, (2.2c)

where the overbars denote time averaging and fluctuating quantities are defined as φ′ =
φ − φ̄ for any variable φ.
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Using that uφ̄ + u′φ′ = uφ, the equations above are all of the form (e.g. Weil 1988)

∇ · (
uφ

) = G, (2.3)

which can be integrated over the plume cross-section A, whose domain is denoted Ω , to
obtain (van Reeuwijk, Vassilicos & Craske 2021) (see Appendix A)

d
ds

∫∫
Ω

ūsφ̄ + u′
sφ

′ dA =
∫∫

Ω

G dA + πE[φ] + πL[φ], (2.4)

where ūs = ū cos ϕ + w̄ sin ϕ is the mean velocity in the s direction and Ω(s) represents
the domain occupied by the plume. See § 3.2 for a description of how Ω is determined
practically. In deriving the equation above it was assumed that the curvature of the plume
trajectory dϕ/ds � 1 (see Appendix A for more details). The boundary terms E[φ] and
L[φ] are line integrals of the form

E[φ] = 1
π

∮
∂Ω

u⊥φ · n d�, L[φ] = 1
π

∮
∂Ω

usφ
Ns

|N⊥| d�, (2.5a,b)

where ∂Ω denotes the plume boundary, N = (Ns, Ny, Nη)
T denotes the three-dimensional

inward-pointing normal along ∂Ω , N⊥ = (Ny, Nη)
T and u⊥ = (uy, uη)

T are the vector
components in the ( y, η) plane and n = N⊥/|N⊥| is the inward-pointing two-dimensional
normal in the ( y, η) plane. As the plume boundary will be detected via the average
buoyancy field b̄ (see § 4), N is defined as N = ∇b̄/|∇b̄| (see also van Reeuwijk et al.
2021). The factor 1/π in the definition of L[φ] and E[φ] is introduced for consistency
with the convention in plume theory of dividing the integral quantities through by π (see
(2.7)).

The terms E[φ] and L[φ] represent distinct physical processes by which the quantity
φ enters the plume. The term E[φ] represents the advection of φ into the plume; the
term L[φ] represents incorporation of the quantity φ via expansion of the plume into
a non-quiescent atmosphere – if the plume surface area A over which the governing
equations are integrated changes as a function of s, and the value of φ at the boundary
of the plume is non-zero, then the surface integral will be increased by a quantity equal to
[usφ]b dA/ds, where [usφ]b is the average value of usφ at the boundary.

Integrating the Navier–Stokes equations over the plume cross-section and applying (2.4)
with φ = 1, u − U, w and b, respectively, results in

dQ
ds

= E[1] + L[1] = E + L, (2.6a)

dMx

ds
+ dM′

x

ds
= −Px + E[u − U] + L[u − U], (2.6b)

dMz

ds
+ dM′

z

ds
= −Pz + B + E[w] + L[w], (2.6c)

dF
ds

+ dF′

ds
= E[b] + L[b], (2.6d)

where the integral volume flux Q, the horizontal momentum excess flux Mx, the vertical
momentum flux Mz, the buoyancy flux F and the integral horizontal and vertical pressures
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Px and Pz are defined as

Q = 1
π

∫∫
Ω

ūs dA, F = 1
π

∫∫
Ω

ūsb̄ dA,

Mx = 1
π

∫∫
Ω

ūs(ū − U) dA, Px = 1
π

∫∫
Ω

∂ p̄
∂x

dA,

Mz = 1
π

∫∫
Ω

ūsw̄dA, Pz = 1
π

∫∫
Ω

∂ p̄
∂z

dA,

M′
x = 1

π

∫∫
Ω

u′
su′ dA, F′ = 1

π

∫∫
Ω

u′
sb′ dA,

M′
z = 1

π

∫∫
Ω

u′
sw′dA, B = 1

π

∫∫
Ω

b̄ dA.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

The scalar ū − U is chosen for the x-momentum equation so as to be consistent with
the work of Weil (1988) in the definition of Mx. The integral therefore represents the
momentum flux in the x direction in excess of the x-momentum flux of the ambient
atmosphere. A consequence of this choice of variable is that the Leibniz and entrainment
terms for the x-momentum equation are significantly reduced, due to the fact that to first
order u ≈ U at the boundary of the plume.

2.2. Plume models
In conventional plume theory ū − U, w̄ and b̄ are assumed to vanish at the plume boundary.
In addition L[1] is assumed to be small. It thus follows that all entrainment and Leibniz
terms are negligible except for E ≡ E[1]. Furthermore, it is commonly assumed that the
pressure at the plume boundary is equal to the ambient pressure, which implies that Px
and Pz are zero (although vertical pressure gradients are taken into account implicitly via
an added-mass coefficient). The buoyancy integral B = π−1 ∫

b̄dA is generally modelled
as B = F/Us (Weil 1988), where Us is the characteristic velocity of the plume, defined as

Us = (U + um) cos ϕ + wm sin ϕ. (2.8)

Here, um is is the characteristic horizontal plume velocity relative to the crossflow
(horizontal velocity excess), wm is the characteristic vertical velocity and ϕ is the angle
of the plume. These characteristic quantities are linked to the integral quantities by

Q = r2
mUs, Mx = r2

mUsum, Mz = r2
mUswm, F = r2

mUsbm. (2.9a–d)

Here, bm is the characteristic buoyancy or reduced gravity and rm is the characteristic
plume radius. Equation (2.9a–d) implicitly provides the definition of um, wm and bm
as Mx/Q, Mz/Q and F/Q, respectively. The characteristic radius rm is defined as rm =
(Q/Us)

1/2 (i.e. using the definition of Q; (2.9a)), which encapsulates both the pure
plume definition rm = Q/M1/2

z for U � wm, um � wm, and the bent-over solution rm =
(Q/U)1/2 for U � um, U � wm.

The entrainment term E is typically parameterised as (Weil 1988; Devenish et al. 2010)

E = 2γ rmwm, (2.10)

where γ is the entrainment coefficient and rm and wm are a characteristic radius and
vertical velocity, respectively. Invoking the assumptions stated at the start of this section

932 A47-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
01

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1001


Under pressure: turbulent plumes in a uniform crossflow

(L � 1 and E ≡ E[1]), neglecting turbulent fluxes and substituting (2.10) into the integral
equations (2.6a–d) result in

dQ
ds

= 2γ
Mz

rmUs
,

dMx

ds
= 0, (1 + k)

dMz

ds
= F

Us
,

dF
ds

= 0. (2.11a–d)

Here k is the added-mass constant which takes into account the effects of an adverse
pressure gradient on the vertical motion (e.g. Weil 1988), which compensates for the fact
that no explicit integral pressure terms are present. It is introduced by analogy with the
motion of a solid body and is equivalent to using a drag term (see Briggs 1982; Schatzmann
1978; Davidson 1989). Kinematic relations for the plume trajectory are required to evolve
the plume in space:

dx
ds

= cos ϕ,
dz
ds

= sin ϕ. (2.12a,b)

To close the set of equations, the plume angle ϕ is conventionally assumed to be the angle
of the local streamlines ϕu, defined via

tan ϕu = wm

U + um
. (2.13)

Under the assumption that ϕ = ϕu, Us represents the velocity magnitude
√

(U+um)2+w2
m,

which can then be equivalently expressed in terms of the integral quantities as

Q−1
√

(QU + Mx)2 + M2
z . Here, we make an explicit difference between ϕ and ϕu since it

will turn out that these quantities are not identical for the flow cases under consideration
(see § 4). When ϕ /=ϕu, there is a component of velocity in the η direction:

Uη = −(U + um) sin ϕ + wm cos ϕ. (2.14)

2.3. Bent-over plumes
In this section we briefly provide an overview of analytical results for bent-over plumes in
a neutral stratification and a uniform crossflow. Bent-over plumes are defined to have their
centreline inclined at a very small angle to the horizontal (in which case the equations are
formally equal to those for a line thermal; Briggs 1984; Lee & Chu 2003). This implies
that wm � U, um � U and ds ≈ dx. Assuming that in this case the entrainment rate is a
constant, γ = β ′, the following relations can be derived (e.g. Weil 1988). Integrating the
volume flux equation (2.11a) yields

rm = β ′zc + r0, (2.15)

where r0 is the source radius. Integrating the vertical momentum flux equation (2.11c)
twice and making use of (2.12a,b), (2.13) and (2.15), assuming ϕ = ϕu, results in

zc

�b
=

(
3

2β2

)1/3 (
x − xv

�b

)2/3

(2.16)

for r0 � β ′zc, where �b = F/U3 is the buoyancy length scale and xv is a virtual origin
correction, which is a constant subtracted from the x coordinate of the plume trajectory
that compensates for any near-field effects. It is necessary because the region close to
the source (where r0 � β ′zc no longer holds) is not expected to obey the two-thirds law.
The value of β is not equal to β ′, because of added-mass effects (Lee & Chu 2003), and
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the two can be related as β = β ′√1 + k (Weil 1988, p. 164; see also § 8), where k is
the same added-mass coefficient as in (2.11a–d). Experiments indicate that 0.3 � k � 1.3
(e.g. Briggs 1982; Weil 1988; Contini et al. 2011) and 0.45 � β ′ � 0.75 (e.g. Hewett,
Fay & Hoult 1971; Hoult & Weil 1972; Briggs 1984; Weil 1988; Huq & Stewart 1996).
Although β ′ is a constant coefficient, it may vary between simulations or experiments
dependent on factors such as the strength of the crossflow and the initial buoyancy flux F0
(Briggs 1984).

Several entrainment models are in use for plumes in a crossflow (Costa et al. 2016). The
classical model for a bent-over plume (e.g. Briggs 1984; Weil 1988) assumes γ = β ′. An
entrainment model which is also valid for weak-crossflow plumes is given by (Devenish
et al. 2010, DRWT)

γ =
n
√

(αwm)n + (β ′U)n

Us
. (2.17)

The DRWT model uses two parameters, α and β ′, to account for entrainment due to
vertical and horizontal motion, respectively, and assumes that the added-mass coefficient
k = 0. Here, β ′ refers to the same bent-over entrainment coefficient as the one that is used
in (2.15). A further parameter n determines the function used to combine the entrainment
resulting from the vertical and horizontal momentum into a single entrainment quantity. In
their paper, Devenish et al. (2010) test the values n = {1, 1.5, 2} and conclude that n = 1.5
provides the best match between the model and their LES data.

3. Numerical modelling

3.1. Simulation details
The simulations concern the evolution of a plume in an unstratified environment with
a uniform crossflow speed U. A constant integral buoyancy flux F0 is imposed on a
circular area source of diameter 2r0, which is positioned at x = 0. The source has no initial
velocity, which implies the plume is infinitely lazy at the source (Hunt & Kaye 2005).
The buoyancy flux is therefore imposed as a diffusive flux using a Neumann boundary
condition, which will be transported through a very thin thermal boundary layer before it
becomes convectively unstable and starts rising as a conventional plume.

The relevant non-dimensional parameters for buoyant plumes in a crossflow can
be formed from the exit velocity w0 = M1/2

0 /r0, the buoyancy velocity scale Ub =
(F0/r0)

1/3, the crossflow speed U, and for completeness the viscous and thermal velocity
scales ν/r0 and κ/r0, respectively. All quantities with subscript zero represent their
respective quantities at the source (e.g. M0 represents M evaluated at the source). From
these five velocity scales, four dimensionless quantities can be constructed:

R0 = w0

U
, Ri0 = F0

r0w3
0

= b0r0

w2
0

, Re0 = 2F1/3
0 r2/3

0
ν

, Pr = ν

κ
, (3.1a–d)

where R0 is the jet-to-crossflow speed ratio, Ri0 is the source Richardson number, Re0
is the source Reynolds number and Pr is the Prandtl number. Note that the Froude
number, which is also commonly used, is the square root of the reciprocal of Ri0. These
dimensionless groups are not ideal for the current simulation set-up since w0 = 0 which
implies that w0/U = 0 and Ri0 = ∞. In this study, we thus use the crossflow Richardson
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Under pressure: turbulent plumes in a uniform crossflow

Simulation RiU Nx × Ny × Nz (Lx × Ly × Lz)/r3
0 β β ′ k xv/r0

S1 8.0 1152 × 768 × 1152 24 × 24 × 36 0.68 0.49 0.91 0.45
S2 2.4 1536 × 768 × 960 32 × 24 × 30 0.97 0.76 0.62 1.24
S3 1.0 1728 × 768 × 768 36 × 24 × 24 1.05 0.83 0.62 1.85
S4 0.5 1728 × 576 × 576 36 × 18 × 18 1.15 0.88 0.71 1.91
S5 0.3 1728 × 576 × 576 36 × 18 × 18 1.15 0.84 0.86 2.95

Table 1. Simulation details. The source Reynolds number Re0 = 1000 and Prandtl number Pr = 1 for all
simulations.

number RiU , defined as

RiU = Ri0R3
0 = F0

U3r0
= U3

b

U3 , (3.2)

which is the cube of the ratio of the buoyancy velocity scale Ub to the crossflow speed
U. Equivalently, using the buoyancy length scale �b = F0/U3, RiU can be interpreted as a
ratio of length scales, RiU = �b/r0.

Five simulations S1–S5 have been performed at different values of RiU , details of
which are presented in table 1. Simulation S1 reproduces a case characterised by a weak
crossflow, with RiU = 8, which corresponds to a flow in which the crossflow speed U
is equal to half the buoyancy velocity scale Ub. Simulation S2, with RiU = 2.4, also
represents a weak crossflow. Simulations S4 and S5, with RiU = 0.5 and RiU = 0.3,
respectively, correspond to strong crossflow cases for which U > Ub. Simulation S3 has
RiU = 1, which implies that U = Ub. All simulations use an identical source Reynolds
number Re0 = 1000 and Prandtl number Pr = 1. This value is chosen because it is the
highest value at which the simulations may currently be conducted, due to computational
cost. This value of Re0 does ensure that the flow is fully turbulent.

Due to the fact that the strength of the crossflow affects the evolution of the plume, the
domain sizes were chosen large enough such that each plume can evolve inside the domain
without interacting with its boundaries, but tight enough not to waste computational
resources on flow regions where only ambient flow is present. The domain dimensions are
given in table 1. Note that the x coordinate ranges from x/r0 = −5 to x/r0 = Lx/r0 − 5.
For all simulations, the percentage of the domain occupied by the plume in the ( y, z) plane
is less than 9 %. This is sufficient to ensure that the interactions with the boundaries are
negligible. For a row of plumes in a quiescent environment, the mean plume boundaries
plotted by Rooney (2015) show that a plume which spans ∼25 % of the domain is
not significantly affected by the competing entrainment of the other plumes. The grid
resolution was chosen such that �x/ηK peaks at just below 3 close to the source for all
simulations, where ηK = (ν3/ε)1/4 is the Kolmogorov length scale and �x = Lx/Nx is the
grid resolution. The same grid resolution is used in the transverse and vertical directions,
so �x is also equal to Ly/Ny and Lz/Nz. The ratio �x/ηK inside the plume decays rapidly
as a function of x; it is below 2 within 4r0 downstream of the source for all simulations,
indicating that the grid resolution is sufficiently high to be considered DNS. Indeed, the
peak of the dissipation rate takes place at a scale of ∼24ηK for isotropic turbulence (Pope
2000).

The simulations were performed using the DNS code SPARKLE (Craske & van
Reeuwijk 2015), which integrates (2.1) on a cuboidal domain and is fully parallelised
using domain decomposition in two directions. The spatial differential operator employs
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a fourth-order symmetry-preserving central difference scheme. Incompressibility was
enforced by taking the divergence of (2.1) and solving the resulting Poisson equation
for p by performing fast Fourier transforms in the lateral directions. A third-order
Adams–Bashforth method is used for the time integration.

Periodic boundary conditions were applied in the lateral directions and free-slip
boundary conditions were applied at z = 0 and z = Lz. Zero-flux Neumann boundary
conditions were used for buoyancy at z = 0 and z = Lz, with the exception of a circular
region of radius r0, centred at (0, 0, 0), through which a constant buoyancy flux was
imposed. In order to enforce a uniform inflow boundary condition at x/r0 = −5 on
our periodic domain we used a nudging region of length Ln at the end of the domain
over which the fluid velocity and buoyancy were gradually adjusted to become those
of the environment (Stevens, Graham & Meneveau 2014). Denoting the distance from
the beginning of the nudging region as x∗, we adjusted the velocity according to u∗ =
(1 − x∗/Ln)u + (x∗/Ln)ua, where u is the original DNS velocity and ua = (U, 0, 0) is
the ambient environmental velocity. The same linear transition method is used for the
temperature. This procedure was implemented immediately prior to applying the pressure
correction to maintain incompressibility. For all simulations the nudging length was set
to Ln/r0 = 4. Careful analysis of the simulation results was carried out to ensure that
the nudging does not affect the statistics upstream, which for an incompressible flow
could occur via pressure gradients generated by the nudging. No pressure gradients were
observed near the nudging region, implying that it does not contaminate the upstream
statistics.

3.2. Plume identification
The determination of all integral quantities requires identification of the plume fluid. This
was performed by applying a threshold on the average buoyancy b̄ with a value of 1 % of
the maximum mean buoyancy at fixed x. Examples of the identified plume boundary are
shown with a red line in figure 3.

3.3. Budget calculations
For the presentation of the budgets (2.6a–c) that are discussed in §§ 5 and 6, the
entrainment terms E and L need to be determined. Calculating these directly from the
definition in (2.5a,b) can be challenging, since it requires a boundary integral in the
plane perpendicular to the plume, which in turn requires defining the computational
cells which constitute the boundary, taking account of any disconnected regions, defining
normal vectors and taking into account the fact that the underlying grid is staggered. It
is computationally more convenient to use the divergence theorem in reverse to calculate
E[φ] via

E[φ] = −
∫∫

Ω

∂vφ

∂y
+ ∂uηφ

∂η
dA (3.3)

and to use the original definition of L[φ] (van Reeuwijk et al. 2021):

L[φ] = d
ds

∫∫
Ω

usφ dA −
∫∫

Ω

∂usφ

∂s
dA. (3.4)
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Under pressure: turbulent plumes in a uniform crossflow
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Figure 2. Cross-section at the y = 0 centre plane of the instantaneous (a–c) and time-averaged (d–f )
buoyancy field. (a,d) Simulation S1. (b,e) Simulation S3. (c, f ) Simulation S5.

4. Plume evolution and geometry

4.1. General plume behaviour
Instantaneous and time-averaged snapshots of the buoyancy field b in the (x, z) plane are
shown in figure 2, normalised by bmax(x) = maxy,z b̄. The plume, which is infinitely lazy
at the source, must first diffuse through the thermal boundary layer at the wall, during
which time it is advected downstream by the crossflow. Once the plume has traversed the
thermal boundary layer (which typically occurs between 0.5 and 2 source radii downstream
depending on the crossflow speed), the plume accelerates upwards, causing some necking
in the y direction. Following this, the plume angle ϕ gradually decreases as the plume rises
through the ambient, and the plume radius increases due to turbulent entrainment. This
increase is clearly dependent on the flow speed: the plumes are observed to be narrower
for higher crossflow speeds. Another notable feature of these snapshots is that there is a
tendency for a small amount of buoyancy to be swept into the wake of the plume. The
buoyancy detrains from the plume close to the source as a result of the initial transition
instabilities, and remains close to the z = 0 boundary. This requires some careful attention
when it comes to determining the plume boundary because in general it is inappropriate to
regard this region, which may have a small amount of buoyancy but is otherwise quiescent,
as being within the plume. For clarity we have removed the buoyancy concentration
that would be in these quiescent regions from the figure. Cross-sections in the ( y, η)

plane at s/r0 = 5 are shown in figure 3. These clearly show a buoyant core structure
with twin vortices, which becomes narrower and less diffuse as the crossflow speed
increases.
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Figure 3. The buoyancy field in the ( y, η) plane at s/r0 = 5, for the (a–c) instantaneous buoyancy and (d–f )
time-averaged buoyancy. (a,d) Simulation S1. (b,e) Simulation S3. (c, f ) Simulation S5. The red line in (d–f )
is the applied threshold on buoyancy at 1 % of the maximum of the time-averaged value.

4.2. Plume centreline
The plume centreline is a fundamental quantity in integral plume models. Theoretically,
it is typically represented as the central streamline of the plume (e.g. Weil 1988). This is
relatively straightforward to do using numerical simulation when the full velocity field is
known (Yuan & Street 1998; Yuan et al. 1999; Muppidi & Mahesh 2005; De Wit et al.
2014; Cintolesi et al. 2019) via a streamline that starts at the centre of the source. Most
laboratory studies, but also some numerical studies (Devenish et al. 2010), use either the
maximum velocity or buoyancy or use the centre of mass of the buoyancy/passive scalar
or velocity (Contini et al. 2011).

Shown in figure 4 are a number of centreline definitions as a function of x, plotted
together with isolines of the buoyancy averaged over the plume width (in y) for simulation
S3. The centre of mass was calculated according to

zc(x) =

∫∫
Ω

zb̄ dy dz∫∫
Ω

b̄ dy dz
. (4.1)

Here, integration is performed over the plume fluid area Ω . Extracting the central
streamline zU required some careful consideration as the plume is infinitely lazy at its
source, implying that the velocities are zero on the boundary. This makes it impossible
to start a streamline in the centre of the source. Instead, we let the streamline start at
zc(x = 2r0), which is where the plume lifts off from the surface. As can be seen, all
the other plume trajectory indicators are practically identical at that stage. The maximum
buoyancy, velocity and turbulent kinetic energy were determined by taking the mean value
across the plume width (in the y direction), and then finding the maximum value for

932 A47-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
01

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1001


Under pressure: turbulent plumes in a uniform crossflow

18

zc = centre of mass b̄
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Figure 4. Various estimates for the plume centreline, based on simulation S3 (tke, turbulent kinetic energy).
The isocontours denote the average buoyancy across the plume width.

each x. By averaging over the plume width, the centreline represents the entire plume area.
Finally, a trajectory is shown that is based on the centre of mass of the velocity V =√

ū2 + w̄2, using (4.1) but substituting b̄ with V .
Near x = 0, some discontinuities can be seen in the buoyancy isocontours which are

associated with the plume lift-off from the ground and that will not be considered in the
analysis in the remainder of the paper. The central streamline zU and centre of mass zc
evolve very similarly, although zU has a slightly higher trajectory initially and then follows
a slightly smaller slope further downwind. The maxima of the buoyancy and velocity
are very similar, and follow a trajectory which is lower than the centres of mass and
the maximum turbulent kinetic energy. Figure 2 suggests that the maximum of buoyancy
will roughly align with the vortex centres of the double-roll structures, where buoyancy
accumulates. Unsurprisingly, the centres of mass change much more smoothly than the
centrelines based on finding a maximum. The centre of mass trajectory based on V is
slightly higher than that of b̄, but this is a small difference compared with the difference
between zc and zU .

4.3. Plume angle
Having calculated the integral plume quantities, we verify whether the plume slope ϕ is
identical to the mean velocity streamline angle ϕu (2.13), which would imply that

dzc

dx
= wm

U + um
= Mz

QU + Mx
. (4.2)

This relation is plotted in figure 5 for simulation S3, together with the gradient of zc and zU .
Figure 5 shows that wm/(U + um) = Mz/(QU + Mx) is nearly half of dzc/dx and dzU/dx,
and therefore implies that the ratio of the integral momentum fluxes is a poor estimate
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Figure 5. Slope of the plume centreline for simulation S3, together with several integral-quantity estimates.

of the plume slope. Note that zc was approximated by two cubic splines in order to avoid
numerical errors resulting from repeated differentiation (see Jordan (2021) for details).
Simulation S3 is representative of the other simulations. Figure 5 shows that the streamline
angle wm/(U + um) is not identical to the plume angle for zc or zU . The assumption that
the plume centre of mass follows a streamline dictated by wm and U + um is central to
the integral theory of plumes in a crossflow. Therefore, the implications of the observed
discrepancy are substantial.

Figure 6(a) shows the velocity streamlines through the plume for simulation S3. The
streamlines were constructed from the velocity inside the plume, by integrating the
velocity over the y direction within the plume and then dividing through by the local
plume width, thereby obtaining a velocity field representative across the width of the
plume. Figure 6(a) is consistent with figure 5 in demonstrating that the angle of the
streamlines is substantially different from the plume centreline (thick black line), for both
zc and zU . The reason that zU is not aligned with the mean streamlines across the plume is
the double-roll structure which causes positive vertical velocities on the centreplane and
negative velocities away from the centreplane. For the case under consideration (S3), the
streamlines enter the top of the plume (indicated by a dashed line) at nearly 45◦, but have
much smaller angles near the bottom boundary. However, neither the centre of mass of
the plume zc (thick black line) nor the central streamline zU (thick dashed black line) is
parallel to the streamlines. Thus, the plume angle ϕ is different from the velocity angle
ϕu, which implies that the conventional assumption of the plume aligning with the central
velocity streamline (ϕ = ϕu) is violated.

Since zc was determined from the centre of mass of the buoyancy of the plume, it
stands to reason to investigate whether it is more suitable to consider field lines based
on the local mean buoyancy flux f̄ = (ūb̄, w̄b̄), which are shown in figure 6(b). Similar to
the mean velocity, the mean buoyancy flux was determined by integrating the individual
components over y and dividing by the local plume width. Although the mean buoyancy
field lines follow the bottom boundary almost perfectly, it is clear that the behaviour is
nearly identical to that of figure 6(a).

It is only when turning to the field lines of the total buoyancy flux f = (ūb̄ + u′b′, w̄b̄ +
w′b′) that the field lines are found to be fully representative of zc. The central streamline zU
also correlates well with these field lines, even when zU is based on the velocity field only.
A secondary conclusion that can be drawn from comparing figures 6(b) and 6(c) is that the
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Under pressure: turbulent plumes in a uniform crossflow
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Figure 6. Streamlines (blue) for simulation S3, together with zc (thick black line), zU (thick dotted line), the
plume boundaries (dashed line) and the y-averaged buoyancy field (in grey). Streamline quantities are averaged
in y across the local plume width. (a) Streamlines of u = (ū, w̄). (b) Field lines of f̄ = (ūb̄, w̄b̄). (c) Field lines
of f = (ūb̄ + u′b′, w̄b̄ + w′b′).

region below the plume centreline is dominated by mean buoyancy transport and the top
by a combination of mean and turbulent buoyancy fluxes. This is consistent with previous
observations (Huq & Stewart 1997). Furthermore this image suggests that the plume is
entraining strongly at the top. It is likely that the high degree of turbulence towards the
top of the plume and the impinging crossflow contribute to the strong entrainment there.
The fact that the total buoyancy transport determines the angle of the plume is verified in
figure 5, which is shown to follow dzc/dx very closely.

Similar conclusions can be drawn from the integral fluxes by defining decomposed
fluxes for F and F′:

Fx = 1
π

∫∫
Ω

ūb̄ dA, Fz = 1
π

∫∫
Ω

w̄b̄ dA, (4.3a,b)

F′
x = 1

π

∫∫
Ω

u′b′ dA, F′
z = 1

π

∫∫
Ω

w′b′ dA. (4.4a,b)

Shown in figure 5 is Fz/Fx, which is the approximation of dzc/dx based on mean buoyancy
fluxes in the horizontal and vertical directions. It is clear that this result is very similar to
that given by the wm/(U + um) estimate for dzc/dx, consistent with figure 6(a,b). Defining
the slope based on the total buoyancy flux as dzc/dx = (Fz + F′

z)/(Fx + F′
x), consistent

with figure 6(c), produces an accurate estimate of the plume slope dzc/dx. For this reason,
zc is used to represent the plume trajectory from this point onwards. From the observation
that Mz/(UQ + Mx) ≈ Fz/Fx (figure 5), the plume angle can be approximated as follows:

dzc

dx
≈ Fz + F′

z

Fx + F′
x

≈ tan ϕu + F′
z

Fx
= sin ϕu + θf

cos ϕu
, (4.5)

where θf = F′
z/F. In arriving at the result above, use was made of (2.13), F′

x �
Fx (justified from analysing the DNS data) and using that Fx/F ≈ cos ϕu since
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Figure 7. Plume trajectories. (a) Centreline zc as a function of x. (b) z3/2
c as a function of x. (c) Plume radius

rm as a function of zc.

F =
√

F2
x + F2

z . The ratio of the turbulent buoyancy flux to the mean buoyancy flux F′
z/F

was denoted θf in van Reeuwijk & Craske (2015), which motivates its name in the current
paper. An a priori calculation of dzc/dx using (4.5) is shown in figure 5 which shows good
agreement with the observed plume angle. The comparison of dzc/dx with parameterised
θf for all cases is shown in § 5.

4.4. Integral fluxes
The plume centrelines zc are shown as a function of x/r0 in figure 7(a) for all simulations.
In order to validate the simulations, we compare these centrelines with the analytical
prediction (2.16) of a bent-over plume. Shown in figure 7(b) is (zc/�b)

3/2 against x. As can
be observed, all plume trajectories evolve in a linear fashion, confirming scaling consistent
with the expected bent-over plume behaviour. The advantage of plotting (zc/�b)

3/2 against
x in a linear plot, rather than (zc/�b) against x in a log–log plot, is that the power-law
exponent extracted from a log–log plot can be strongly influenced by the virtual origin
correction. Comparison with experimental and numerical data of plumes in crossflow is
carried out based on the fit to (2.16), rather than displaying them in figure 7 (as the main
difference would be the slope, which depends on R0; Briggs 1984).

By fitting a straight line through the last part of the trajectory for each simulation shown
in figure 7(b), β ′ and the virtual origin xv can be identified. Figure 7(c) shows the linear
dependence between rm and zc, conforming with the bent-over plume predictions (2.15).
The values of β, β ′, k and xv/r0 are presented in table 1 for each simulation. They are
calculated from (2.15) and (2.16) and from the observations in figure 7.

We find values of β ′ in the range 0.49 ≤ β ′ ≤ 0.88 which is higher than in the
experiments of De Wit et al. (2014), and the LES of Cintolesi et al. (2019), suggesting
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Under pressure: turbulent plumes in a uniform crossflow
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Figure 8. Integral plume quantities as a function of s for each simulation. (a) Volume flux Q.
(b) Horizontal momentum excess flux Mx. (c) Vertical momentum flux Mz. (d) Buoyancy flux F.

the plumes considered here ascend less rapidly. We suspect these higher values of β ′ are
due to the fact that the plume under consideration is infinitely lazy at the source. Indeed,
Briggs (1984) developed an empirical prediction β ′ = 0.4 + 1.2/R0 for the dependence of
β ′ on R0 = w0/U, demonstrating that this parameter depends on conditions at the source,
particularly at low values of R0.

Once the plume trajectory and the plume fluid have been identified, the integral volume
flux Q, horizontal momentum excess flux Mx and vertical momentum flux Mz can be
calculated from their definitions (2.9a–d). These quantities are shown in figure 8 as
a function of s. The volume flux Q grows increasingly fast as it evolves due to the
plume’s increasing size (see § 5). Contrary to the conventional assumptions, the horizontal
momentum excess flux Mx is not conserved for the plumes. Instead, it increases with s. This
is caused by the pressure gradient term Px in (2.6b), which is non-zero. Simulation S1 is
clearly of a different character from the other simulations, as the second derivative of Mx
is of opposite sign. The vertical momentum flux Mz also grows as a function of s. Unlike
Mx, this quantity is expected to be non-zero due to the influence of buoyancy in (2.6c).
However, the influence of pressure is non-negligible for this quantity also. Consistent
with figure 8(a,b), the larger the crossflow speed U, the smaller the gradient, but this
can be partially explained by the way in which the figures are normalised. The physical
interpretation of these effects on the momentum fluxes is that the pressure field, which is
generated by the interaction of the crossflow with the leading edge of the plume, transfers
some of the upward momentum generated by the buoyancy into horizontal momentum.
This leads to Mx being higher than expected, while Mz is lower than expected. The role of
pressure is investigated in further detail in § 6.

The mean buoyancy flux F increases rapidly as measured from the centre of the source
as it is advected by the mean flow, and the initially diffusive buoyancy flux is transferred
to an advective flux, which is displayed here. The buoyancy flux is practically constant
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Figure 9. Entrainment coefficients based on different parameterisations. (a) Coefficient
γ = dQ/ds/(2rmwm). (b) Coefficient γU = dQ/ds/(2rmUs).

across all simulations within two source diameters of the source, and remains close to its
initial value F0. This is consistent with the buoyancy flux equation (2.11d). The value of
the mean buoyancy flux F0 differs from unity because a part of the buoyancy transport is
due to turbulence. Turbulence transports a higher percentage of the buoyancy for weaker
crossflows, reaching a limiting value of approximately 20 % in the absence of wind (van
Reeuwijk et al. 2016).

5. Entrainment parameterisation

The DNS data enable direct evaluation of the relationship between the entrainment flux
and characteristic plume radius and vertical velocity (2.10). If (2.10) holds, implying that
rm and wm are the appropriate length and velocity scales to be used to parameterise the
entrainment coefficient, then the entrainment coefficient γ ≡ dQ/ds/(2rmwm) will be
constant and the same for all simulations. Figure 9(a), where we plot γ as a function
of s/r0, shows that this is not the case. Indeed, γ is an increasing function of s for all
simulations and the slope of γ (s) does not suggest an asymptote to a limiting value. It
appears though that S3–S5 converge to an identical value. The fact that γ is not constant
in figure 9(a) indicates that the parameterisation (2.10) is inadequate to describe the data
from these simulations. Given that rm represents the plume circumference over which
entrainment takes place in (2.10), there are no obvious other candidate length scales
for this quantity. This suggests that wm might not be the appropriate velocity scale for
parameterising the entrainment in these cases.

Another choice of the characteristic plume velocity is to use Us, which implies an
entrainment closure given by

E + L = 2γUrmUs, (5.1)

where γU is the entrainment coefficient based on Us. From figure 9, it can be seen that
γU is approximately constant as a function of s, although the value of γU decreases with
increasing crossflow speed U. The ansatz (5.1), therefore, can serve as the basis for a
parameterisation.

Shown in figure 10 is the integral budget for the continuity equation (2.6a) for
simulations S1, S3 and S5, which provides insight into the two identified modes of
entrainment: flow of fluid into the plume (E) and incorporation of ambient fluid due to
expansion of the plume (L). As U increases (RiU decreases), L becomes increasingly
dominant. Physically, this implies that for sufficiently large U, the main contribution to the
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Under pressure: turbulent plumes in a uniform crossflow
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Figure 10. Budget of the integral continuity equation, normalised by Ur0. (a) Simulation S1.
(b) Simulation S3. (c) Simulation S5.

volume flux is not flow directly into or perpendicular to the plume, but rather incorporation
as the plume expands of new ambient fluid with non-zero velocity. On this basis we may
assume that the Leibniz term is the dominant contribution to the volume flux, implying
that dQ equals L ds. As the local plume angle is ϕ, the height increment of the plume is
dz = sin ϕ ds. Assuming that the plume width is 2arm, where a is an empirical constant,
the volume flux increment L ds = 2aUrm dz = 2Uarm sin ϕ ds, and thus

L = 2aUrm sin ϕ. (5.2)

Upon equating this expression for L with the entrainment ansatz (5.1), we obtain

γU = a
U
Us

sin ϕ = a
U
Us

dzc

ds
. (5.3)

Shown in figure 11(a) is the correlation between dQ/ds and L = 2aUrm sin ϕ. The
data bound the value of a between 0.5 and 1. We use the value a = 0.9 here, which
approximates simulations S3–S5 in particular. Parameterisation of γU will require dzc/ds
which is defined via (4.5). In this expression the only term that requires parameterisation
is θf , since the velocity components will be known as part of the integral plume model.
In general, we expect that F′

z will depend on the initial conditions RiU and the relative
vertical velocity R = wm/U.

The value of θf is shown as a function of RiU in figure 11(b). Here, the value of θf was
averaged over the entire range of s shown in figure 9. The circles denote the average value,
and the spread in θf over s is shown by the vertical lines. As can be seen, this variation is
relatively small, indicating that θf is approximately constant for the range of s considered
in this paper. The data can be approximated by the following empirical fit:

θf = θfb + (θfp − θfb)

(
1 − exp

[
−

(
RiU
RiU0

)])
, (5.4)

which for RiU → ∞ represents the pure plume case, for which θfp = 0.20, and RiU → 0
represents the bent-over limit for which θfb = 0.06. The parameter RiU0 is a constant which
determines the cross-over value for the two regimes, and has the value RiU0 = 1.2.

It should be noted that for the cases under consideration, θf is predominantly determined
by the initial condition RiU and not R. It would stand to reason that at some point
downstream of the source, the plume ‘forgets’ about its origins and θf scales with R,
but this is not observed in the limited downstream range simulated here. Further work
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Figure 11. Entrainment parameterisation. (a) Plot of dQ/ds against 2rmU sin ϕ. A linear relationship indicates
a constant γU coefficient. (b) Entrainment flux; θf as a function of RiU . (c) Slope dzc/ds. (d) Coefficeient γU .
Colour scheme consistent with figure 8. The DNS data and the parameterisation are shown in solid and dashed
lines, respectively.

is needed to provide a more complete model of θf . An estimate of the range of validity for
the current model is made in § 8.

Figure 11(c) shows the actual (solid line) and predicted (dashed line) plume-centreline
slope dzc/dx for all five simulations based on parameterisations (4.5) and (5.4). As can be
seen, the parameterisation predicts the slopes reasonably well, with the exception of the
slope for S1, which is slightly underpredicted. Finally, the prediction for γU is shown in
figure 11(d). The entrainment coefficient γU , based on parameterisations (4.5), (5.3) and
(5.4), is predicted well for simulations S3–S5 but is overpredicted for the weaker crossflow
simulations S1 and S2. This is due to the fact that the entrainment model was formulated
using the assumption that the Leibniz term L dominates over the radial entrainment term
E. This assumption is only valid for plumes in a strong crossflow with RiU � 1, so
the overprediction of γU at low crossflow speeds is to be expected. The reliance on the
assumption that E is small relative to L is also likely to be the reason that the slope for S1
is slightly underpredicted.

6. The role of pressure

In this section, we explore the behaviour of the momentum balances (2.6b) and (2.6c).
Figure 12 shows the momentum budget in the x direction (figure 12a–c) and the z direction
(figure 12d–f ) for simulations S1, S3 and S5. The entrainment and Leibniz terms have been
combined, since it has been established that L is the dominant term for bent-over plumes.
Figure 12(a–c) shows clearly that Mx is influenced by the integral pressure gradient Px,
and that the entrainment and Leibniz terms also contribute to Mx, albeit to a lesser extent,
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Under pressure: turbulent plumes in a uniform crossflow
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Figure 12. Budgets for the integral momentum equations in the x direction (a–c) and z direction (d–f ),
normalised by U2/r0. (a,d) Simulation S1. (b,e) Simulation S3. (c, f ) Simulation S5.

which represents additional streamwise momentum being incorporated from outside the
plume.

The budget of the integral vertical momentum flux is primarily influenced by
the buoyancy and integral pressure gradient terms. The buoyancy generates vertical
momentum, whereas the integral pressure gradient acts to suppress vertical momentum,
counteracting a large portion of the work done by the buoyancy. Integral models that do
not take into account this term (either directly or via an added-mass contribution) can
therefore be expected to overestimate the vertical velocity inside the plume. The Leibniz
terms for incorporation of vertical momentum are negligible.

In order to gain further understanding into what underlies the observed behaviour of Px
and Pz, we display the pressure in the ( y, η) plane s/r0 = 3 in figure 13, together with
the velocity vectors. Here, the crossflow contribution U sin ϕ has been subtracted from the
velocity vectors to emphasise the net circulation inside the plume (it would otherwise be
dominated by U sin ϕ). The adjusted velocity vectors display the anticipated double-roll
geometry of a turbulent plume in a crossflow. Note that the crossflow contribution has
been subtracted, and thus that the majority of the entrainment occurs at the top of the
plume rather than at the bottom of the plume as the figure may seem to suggest.

On the plume top, a high-pressure region is observed whilst there is a low-pressure
region on the bottom. Because the plume cross-section is in the ( y, η) plane, which is
at an angle ϕ with the horizontal, a difference in pressure values between the top and
bottom of the plume indicates a pressure gradient in both the vertical and streamwise
directions. This pressure arrangement causes the horizontal integral pressure gradient −Px
to be positive and thus acts to accelerate the plume, whilst it causes −Pz to be negative
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Figure 13. Pressure in a plane perpendicular to the plume at s/r0 = 3 for simulation S3. The pressure has been
normalised by its maximum value, and the solid line denotes the plume boundary. The velocity vectors are the
(uy, uη) components, where the crossflow component has been subtracted to emphasise the flow relative to the
background flow.

and thus acts to oppose the buoyancy forcing. Large negative pressures can be observed
in the core of the two vortices. The pressure field also demonstrates that the origin of
the double-roll structure of plumes in crossflows is the high-pressure area on the topside
of the plume. This is consistent with earlier explanations that the double-roll structure
is due to the interaction between the crossflow and the leading edge of the plume (Yuan
et al. 1999; Frolich, Denev & Bockhorn 2004), since the crossflow causes an increase of
pressure on the plume’s upstream side as the ambient flow needs to be deflected around
it. This high-pressure region then in turn creates a double-roll structure inside the plume.
A pressure-based explanation of the double-roll structure using a two-dimensional model
was also provided in Muppidi & Mahesh (2006). Indeed, the upflow in the centre of the
plume will be halted by the presence of an adverse pressure gradient near the top of the
plume, and will be deflected sideways, causing the double-roll structure.

The observations above make clear that a model is required for the pressure terms
Px and Pz. Here, the momentum equation in the η direction is a convenient starting
point, since this balance can be expected to be dominated by buoyancy and pressure. The
integral momentum flux in the η direction is given by Mη = Mz cos ϕ − (QU + Mx) sin ϕ.
Differentiating this expression with respect to s results in

dMη

ds
= dMz

ds
cos ϕ −

(
dQ
ds

U + dMx

ds

)
sin ϕ − Ms

dϕ

ds
, (6.1)

where Ms = Mz sin ϕ + (QU + Mx) cos ϕ is the streamwise momentum flux. Now,
substituting (2.6a)–(2.6d) and using that E � L (valid for strong crossflows) results in

dMη

ds
= −Pη + B cos ϕ − LU sin ϕ − Ms

dϕ

ds
, (6.2)

where Pη = Pz cos ϕ − Px sin ϕ is the integral pressure gradient in the η direction. In
the equation above, the entrainment contributions E and L in the momentum equations
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Under pressure: turbulent plumes in a uniform crossflow
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Figure 14. Pressure parameterisation. (a) The relation between Pη and B. The solid line is the relation Pη =
cB cos ϕ, with c = 0.8. (b) Comparison of simulations (solid lines) and model predictions (dash-dotted lines)
for Px (6.4a). (c) Comparison of simulations and model predictions for Pz (6.4b).

were neglected, consistent with the observations in figure 12 which showed that these are
small relative to the other terms in the balance. For the x-momentum equation, this is
justified by assuming that um � U. Consistent with conventional plume theory (Morton
et al. 1956), the integrals of the turbulent momentum fluxes were neglected, since they are
much smaller than the integrals of their respective mean momentum fluxes.

We expect that the main balance of forces in the η direction is between pressure and
buoyancy and will assume that all the other terms act in proportion to the buoyancy,
suggesting a model as follows:

Pη ∼ B cos ϕ. (6.3)

The relation between Pη and B cos ϕ is plotted in figure 14(a), and shows that these
variables are proportional as expected. The stronger crossflow simulations S3–S5 converge
onto a line. The weaker crossflow simulations have the same slope but are offset. The
parameterisation Pη = cB cos ϕ with c = 0.8 fits simulations S3–S5 reasonably well. For
the lower flow speeds (higher RiU), a more sophisticated model is needed. Upon assuming
that the integral streamwise pressure gradient Ps is negligible compared to Pη, Px and Pz
are given by

Px = −Pη sin ϕ = −cB cos ϕ sin ϕ, (6.4a)

Pz = Pη cos ϕ = cB cos2 ϕ. (6.4b)

These relations are plotted in figure 14(b,c) for all simulations (dash-dotted lines) and it
can be seen that they capture the pressure contributions well, particularly those for S3–S5,
where it is hard to distinguish between the simulation data and the model prediction.
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Figure 15. Comparison of DNS data for simulations S1 (a,d,g,j), S3 (b,e,h,k) and S5 (c, f,i,l) with the DRWT
plume model, the new model (NM), the new model without pressure terms (NM-E) and the new model without
the horizontal pressure term (NM-EPz). (a–c) Plume centreline zc. (d–f ) Plume radius rm. (g–i) Volume flux
Q. (j–l) Vertical momentum flux Mz.

For simulation S1, the horizontal pressure gradient is predicted remarkably well, but the
prediction for the vertical pressure gradient Pz is wrong, to the extent that even the sign is
incorrect. This implies that the pressure model presented here is incapable of representing
plumes in weak crossflows.

7. Integral plume model

In this section, existing integral models are compared with the model having the
parameterisations developed here. To be precise, the governing equations for the new
model are

dQ
ds

= L,
dMx

ds
= −Px,

dMz

ds
= −Pz + B,

dF
ds

= 0, (7.1a–d)
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Under pressure: turbulent plumes in a uniform crossflow

with entrainment closure ((5.1), (5.3)) and pressure closure (6.4). The coefficients used
are a = 0.9 and c = 0.8. The DRWT model in (2.17) uses parameters α = 0.1, β ′ = 0.5
and n = 1.5 and, as stated earlier, the added-mass coefficient k = 0. Figure 15 shows
the comparison for simulations S1, S3 and S5 between the DNS data (thick black
line), the DRWT model (green line), the model with new pressure and entrainment
parameterisations (NM; blue line), the new model without horizontal pressure (NM-EPz;
blue dashed line) and the new model without the pressure terms (NM-E; blue dash-dotted
line).

The first thing to note is that zc is much better predicted with NM than with the DRWT
model for the high-crossflow cases. This is directly associated with the parameterisation of
the vertical pressure term Pz. Indeed, neglecting the horizontal pressure term (NM-EPz)
can be seen to have virtually the same behaviour as NM. However, upon neglecting
both pressure terms (NM-E), the model behaves very similarly to the DRWT model.
The fact that Px is dynamically insignificant can be understood from the fact that it appears
in the Mx equation, which represents the momentum surplus. In the integral equations
Mx appears only in terms of its contribution to Ms, the integral streamwise momentum
flux. Thus, it always appears in a term of the form (QU + Mx)

1/2, but QU � Mx, so the
contribution from this term is dominated by QU. It is therefore unsurprising that Mx may
be dynamically neglected. It should be noted that the DRWT model makes this assumption
by default.

The DRWT model performs very well in terms of the evolution of rm. The NM model
can be seen to overpredict rm for the weak-crossflow case S1, but to accurately predict
rm for the higher-crossflow cases S1 and S3. Here, it should be noted that the DRWT
entrainment model uses β ′ as its bent-over-limit entrainment coefficient, so appropriate
scaling of rm should be expected. For the volume flux Q, the DRWT model provides
accurate predictions. Surprisingly, the NM-E model – despite being able to predict the
actual entrainment much more accurately than the DRWT model – severely overpredicts
Q for all simulations. Once more, this highlights the importance of the pressure terms,
as the inclusion of pressure (NM-EPz and NM) results in accurate predictions for S3
and S5. In the weak-crossflow case S1, the volume flux is overpredicted, demonstrating
that the model needs to be augmented with a weak-crossflow parameterisation in future
work.

The equation for Mz provides the key to understanding the disparities in the plume
trajectories. It can be seen that Mz is dramatically overestimated by the DRWT model,
as well as the NM-E model for cases S3 and S5. Since wm = Mz/Q, this leads to an
overestimation of the plume angle ϕu. A model for the integral vertical pressure difference
over the plume (6.4), or an added-mass coefficient k, is essential in order to capture
the damping effect that pressure has on the increase of vertical momentum. With the
inclusion of Pz, we can see a dramatic improvement over the DRWT model for S3 and
S5. Consistent with earlier observations, NM fails to predict the behaviour of the integral
quantities at low flow speeds. At low U, the pressure term becomes much less significant
in reducing the upwards momentum of the plume. The plume is accurately modelled by
the DRWT model in the case of lower crossflow speed, so a further improvement of the
model could be the amalgamation of the two models, but this is beyond the scope of this
paper.

8. Range-of-validity estimate

In this section, we investigate the far-field behaviour of the new model theoretically. We
will see that the far-field behaviour is not consistent with the two-thirds law in the very far
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field, which allows us to provide an estimate for the rage of validity of the current model. In
order to do so, we reformulate the pressure effects as an added-mass coefficient k′. Using
that Pz is the dynamically dominant pressure effect, and substituting Pz = k′dMz/ds into
the vertical momentum equation results in

(1 + k′)
dMz

ds
= B, k′ = c cos2 ϕ

1 − c cos2 ϕ
, (8.1a,b)

where we have made use of (6.4b). In the bent-over case, ϕ � 1, implying that k′ = c/(1 −
c) which evaluates to k′ = 4 upon using c = 0.8. This value is much higher than that
reported in table 1 and may be related to the fact that the plume angle, ϕ, does not align
with the streamlines.

For a bent-over plume, ϕu � 1 and so (4.5) becomes

dzc

dx
= wm

U
+ θf (8.2)

or alternatively ϕ = ϕu + θf . Assuming that θf � wm/U, we may introduce the
perturbation series

zc = f0 + θf f1 + θ2
f f2 + · · · . (8.3)

An analogous relationship between zc and x to that in (2.16) can be derived following the
analysis in §2.2, i.e. from the vertical momentum flux equation (2.11c) in the bent-over
limit on making use of (8.2) and the analogous equation to (2.15) (which follows from the
volume flux equation (2.11a) in the bent-over limit with (5.1) and (5.3)). Thus it can be
shown that for zc � r0/a

f0 =
(

3
2

)1/3 (
a �b

1 + k′

)1/3

(x − xv)
2/3 (8.4)

and

f1 = 1
2

(
3
2

)2/3 (
a �b

1 + k′

)1/3

(x − xv)
2/3 + 3

7
(x − xv). (8.5)

Comparing the leading-order term f0 with the linear term in f1, linear behaviour will tend
to dominate beyond the point where

3
7
θf x ∼

(
3
2

)1/3 (
a �b

1 + k′

)1/3

x2/3, (8.6)

implying that the linear term will start dominating for downstream distances greater than
the order

x/�b ∼ θ−3
f . (8.7)

From the data in figure 11(c), it may be estimated that this distance ranges from > 1000�b
for S5 to perhaps > 100�b for S1. Thus the simulations here are all in the range where the
two-thirds law dominates (see figure 7b). Since linear behaviour is not expected in the far
field, (8.7) may provide one estimate of the applicable range of this near-source model.
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On neglecting the linear term in (8.5) and comparing (2.16) with the first two terms of
(8.3), given by (8.4) and (8.5), respectively, we find that

1
β2 =

[
1 + θf

2

(
3
2

)1/3
]3

a
1 + k′ , (8.8)

with θf = 0.06 (see figure 11c), a = 0.9 and k′ = 4. This implies that the slope of rm versus
z is β ′ = β/

√
(1 + k′) = 1.00, which is within 20 % of the values reported in table 1 for

S3–S5.

9. Conclusion

In this paper we performed a set of DNS of turbulent plumes in a crossflow for a range
of RiU between 0.3 and 8.0, spanning strong to weak crossflows. A striking finding was
that the data revealed a discrepancy between the plume trajectory, based on either the
central streamline zU or the centre of mass zc, and the streamlines of the mean velocity
averaged across the plume width. Instead, it was the field lines of the total (mean +
turbulent) buoyancy flux that aligned with zc and zU . The plume slopes dzc/dx and dzU/dx
were substantially larger than the velocity ratio wm/(U + um) which is typically used in
integral models, implying that a correction was needed to accurately predict the plume
evolution. The plume slope dzc/dx correlated strongly with the ratio of the total vertical
to horizontal integral buoyancy flux (Fz + F′

z)/(Fx + F′
x), and further analysis showed

that the difference between wm/(U + um) and (Fz + F′
z)/(Fx + F′

x) was determined by
the vertical turbulent buoyancy flux.

Detailed analysis of the entrainment into the plume showed that the Leibniz terms
dominate for strong crossflow plumes. Furthermore, it was shown that standard
entrainment closures do not accurately represent the entrainment flux for the cases studied
here and a new closure was presented. Interestingly, the DRWT plume model was able
to capture the evolution of the volume flux Q better than a plume model with the new
entrainment closure (NM-E), despite the development of the latter model being based
on the DNS data. This firstly demonstrated that the pressure modification (added-mass
term) plays an important indirect role in the entrainment, and secondly that the DRWT
coefficients are tuned to account for other unrepresented terms in the integral equations
(e.g. pressure).

Pressure differences across the plume play an important role in its integral behaviour.
Indeed, there is a high-pressure region at the upstream side of the plume which cannot be
ignored when computing momentum budgets. This high-pressure region has the effect
of damping the vertical momentum flux by exerting a downward force on the plume,
whilst simultaneously exerting a force in the streamwise horizontal direction. Through an
analysis of the integral momentum fluxes, we showed that the downward pressure leads to a
reduced vertical plume velocity and that the horizontal pressure leads to a horizontal plume
velocity greater than the free-stream velocity. The horizontal pressure gradient was shown
not to have a strong influence on the dynamics of the plume, consistent with classical
plume theory assumptions. The model including the new entrainment parameterisation
and the pressure model was able to reproduce the plume trajectories much better than
existing models for sufficiently strong crossflows (essentially all values of RiU studied
here with exception of RiU = 8 (simulation S1)).

It was shown using a perturbation expansion that the far-field behaviour of the model
developed here is asymptotically not as expected (§ 8), limiting the validity of the model
to ranges of 100�b–1000�b based on the data considered here. This incorrect far-field
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behaviour is most likely caused by the entrainment parameterisation (5.2); it depends on
RiU only, but far away from the source, the entrainment can be expected to forget about
the source conditions (and therefore RiU) and should depend on wm/U only.

The new integral model was constructed without any a priori assumptions, and all
parameterisations are based on simulation data. Its value is that it reveals the physics of the
problem, in particular how entrainment, turbulence and pressure influence the evolution
of the plume centreline. Further work covering larger downstream domains and forced
releases (Q0 > 0) is needed to extend the validity of the model and its predictive capability.

Funding. We would like to acknowledge support from the Centre for Doctoral Training in Fluid Dynamics
across Scales (grant number EP/L016230/1). The computational resources required to perform the simulations
were provided through the UK Turbulence Consortium (grant number EP/R029326/1).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Owen H. Jordan https://orcid.org/0000-0002-4443-6469;
Gabriel G. Rooney https://orcid.org/0000-0002-3787-1198;
Benjamin J. Devenish https://orcid.org/0000-0002-4071-0811;
Maarten van Reeuwijk https://orcid.org/0000-0003-4840-5050.

Appendix A. Derivation of the integral identity

The equations are all of the form
∇ · F = G, (A1)

where F = uφ, and φ(x), G(x) are scalar functions. The position vector in the plume
coordinate system (s, y, η) is given by x = X (s) + eyy + eη(s)η, where X (s) is the plume
centreline and the unit vectors are given by

es =
⎛
⎝ cos ϕ

0
sin ϕ

⎞
⎠ , ey =

⎛
⎝ 0

1
0

⎞
⎠ , eη =

⎛
⎝ − sin ϕ

0
cos ϕ

⎞
⎠ . (A2a–c)

In the (s, y, η) system, the divergence becomes

∇ · F = 1

1 − η
dϕ

ds

(
∂Fs

∂s
+ ∂Fη

∂η

)
+ ∂Fy

∂y
, (A3)

where the streamwise and normal fluxes are defined, respectively, as

Fs = Fx cos ϕ + Fz sin ϕ, (A4a)

Fη = (−Fx sin ϕ + Fz cos ϕ)

(
1 − η

dϕ

ds

)
. (A4b)

Since curvature effects will only be important very close to the source, it is assumed that
η dϕ/ds � 1. This assumption can be justified by invoking theory for bent-over plumes.
Indeed, assuming that the edge of the plume is at η∼r, and using ((2.15), (2.16)), we
have η ∝ x2/3. For bent-over plumes, the small-angle assumption tan ϕ ≈ ϕ holds, which
implies that ϕ ≈ dzc/dx. Since zc ∝ x2/3, it follows that ϕ ∝ x−1/3. Once more invoking
the small-angle assumption to note that dϕ/ds ≈ dϕ/dx, we find that dϕ/ds ∝ x−4/3 and
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thus that η dϕ/ds∼x−2/3. This implies that this term can be ignored a few radii downstream
of the source. With this simplification, the Jacobian 1 − η dϕ/ds ≈ 1.

Integration of (A1) over the plume area, whose domain is denoted Ω , expressed in the
(s, y, η) coordinate system results in (using identity (2.5) for a steady state (v = 0) from
van Reeuwijk et al. (2021))

d
ds

∫∫
Ω

usφ dA =
∮

∂Ω

usφ
Ns

|N⊥| d� +
∮

∂Ω

u⊥φ · n d� +
∫∫

Ω

G dA, (A5)

where the first and second terms on the right-hand side of the equation are the Leibniz
and radial contributions to entrainment, respectively. Here, N = (Ns, Ny, Nη)

T denotes
the three-dimensional inward-pointing normal along the plume boundary ∂Ω , N⊥ =
(Ny, Nη)

T and u⊥ = (uy, uη)
T are the vector components in the ( y, η) plane and n =

N⊥/|N⊥| is the two-dimensional normal in the ( y, η) plane.
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