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We study some asymptotic behaviour of phase interfaces with variable chemical
potential under the uniform energy bound. The problem is motivated by the
Cahn{Hilliard equation, where one has a control of the total energy and chemical
potential. We show that the limit interface is an integral varifold with generalized Lp

mean curvature. The convergence of interfaces as " ! 0 is in the Hausdor® distance
sense.

1. Introduction

In this paper, we study some asymptotic behaviour of phase interfaces in the
van der Waals{Cahn{Hilliard theory of phase transitions. The equation we con-
sider is

¡ "¢u +
W 0(u)

"
= f; (1.1)

where u : U » Rn ! R, n > 2, is the normalized density distribution of a two-phase
®uid and W is a double well potential with strict local minima at §1. The function
f is a variable chemical potential  eld in the two-phase ®uid model [22] and " º 0
is a parameter that gives the order of interface thickness.

The associated energy,

E"(u) =

Z

«

1
2 "jruj2 +

W (u)

"
; (1.2)

and the behaviour of minimizers of this energy with a volume constraint were
initially studied in [29,38] within the framework of ¡ -convergence [16] and subse-
quently generalized by many authors [6, 20, 25, 30, 32, 39]. In this case, the mini-
mizers satisfy equation (1.1) with some constant f ² c, and the functional E"(¢)
¡ -converges to the area functional. The limit interface as " ! 0 is area minimizing,
with a given volume constraint. It was also proved [26] that the constant mean
curvature of the limit interface is determined by the chemical potential and

¼ =

Z 1

¡1

q
1
2
W (s) ds:

In [23], we studied the behaviour of general critical points of the functional (1.2)
with a volume constraint and showed that the interface is close, in the Hausdor¬
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distance sense, to a locally constant mean curvature hypersurface when " º 0. This
corresponds to studying (1.1) again, with constant f ² c, with suitable bounds on
the energy and c. Note that due to the non-convexity of the functional, there can be
solutions that are only locally energy minimizing or even unstable. In [23], we also
proved that the interfaces of locally energy-minimizing solutions as " ! 0 converge
to a locally area-minimizing hypersurface.

One motivation to consider (1.1) with variable f , aside from being a natural
generalization, comes from the Cahn{Hilliard equation [12], which models various
phase separation phenomena in a melted alloy with two stable phases. It is

ut = ¢f on « £ (0; 1);

f = ¡ "¢u +
W 0(u)

"
;

@u

@n
=

@f

@n
= 0 on @« £ (0; 1);

u(x; 0) = u0(x) on « :

9
>>>>>>>=

>>>>>>>;

(1.3)

The Neumann boundary condition re®ects the insulation from the outside. It is a
fourth-order gradient ®ow of E"(¢) with volume conservation,

d

dt

Z

«

u = 0;
d

dt
E"(u) = ¡

Z

«

jrf j2 6 0:

The time-scale here is di¬erent from the usual setting, where t may be replaced
by t". For more physical background, derivation of the equation and the related
equation such as the Allen{Cahn equation, see, for example, [1,3,5,7,10{13,15,18,
19, 24] and the references therein. Even though it is far from a complete picture,
we mention the most relevant references to the present article. With the time-scale
under consideration, it is known that the limit problem is the so-called Mullins{
Sekerka problem [31]. This was formally derived by Pego [34], and was given a
rigorous justi cation using asymptotic expansions and spectral analysis by Alikakos
et al . [2]. In the case of radial symmetry and Dirichlet conditions, Stoth [40] proved
a global convergence to the limit problem in dimension three. For general domains
and solutions, Chen [14] showed that the solutions converge to a weak solution of
the limit problem using the notion of varifolds. Here, we take the similar approach
to that of Chen in this paper, using varifolds as our working device.

Given a sequence of solutions fuig1
i = 1 to

¡ "i¢ui +
W 0(ui)

"i
= f i;

"i ! 0, with uniform bounds supi E"i (ui) 6 E0 and supi kf ikW 1;n < 1, we show
that there exists a subsequence whose interfaces converge, in the Hausdor¬ distance
sense, to a hypersurface with the mean curvature determined by f 1 = lim f i, ¼ and
the interface multiplicities. The mean curvature belongs to Lp for any p < 1 with
respect to the (n ¡ 1)-dimensional hypersurface measure of the limit interface. We
prove a monotonicity-type formula for the properly scaled energy, which extends
the case discussed in [23]. Once this is established, the recti ability and integrality
of the limit varifold follow more or less from the argument in [23]. The proof is
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technically involved, and we need detailed estimates on the positive part of the
so-called discrepancy function 1

2 "jruj2 ¡ W=" using the Aleksandorov{Bakelman{
Pucci (ABP) estimates. The results are applied to the Cahn{Hilliard equation with
n = 2, showing that there exists a subsequence for a.e. time, with the convergence
properties discussed in theorem 2.1, when " ! 0.

We note that there is an interesting class of unstable solutions with multiple peaks
(see [8, 9,41, 42] and the references therein). They describe nucleation phenomena
that are experimentally observed. Their singular limit cannot be captured by our
method, since the chemical potential or energy has to blow-up in our scale.

The organization of the paper is as follows. In x 2, we state our assumptions,
terminologies and main results. In x 3, we derive our main monotonicity formula
for the scaled energy. In x 4, we prove that the limit interface measure is supported
on recti able sets and that the measure has a.e. integral densities. In the language
of varifolds, we show that the limit interface measure is an integral varifold (after
dividing by ¼ ), with the generalized mean curvature in Lp for any p < 1. In x 5,
we discuss some additional comments and some implications to the Cahn{Hilliard
equation.

2. Assumptions and main results

2.1. Hypotheses

We consider the problem with the following assumptions.

Assumption A. The function W : R ! [0; 1) is C3 and W (§1) = 0. For some
® 2 ( ¡ 1; 1), W 0 < 0 on ( ® ; 1) and W 0 > 0 on ( ¡ 1; ® ). For some ¬ 2 (0; 1) and
µ > 0, W 00(x) > µ for all jxj > ¬ .

Assumption B. U » Rn is a bounded open set with Lipschitz boundary @U .
Sequences of C3(U ) functions fuig 1

i = 1 and C1(U ) functions ff ig 1
i= 1 satisfy

"i¢ui = "¡1
i W 0(ui) ¡ f i (2.1)

on U . Here, limi ! 1 "i = 0 and we assume that there exist c0, ¶ 0 and E0 such that
supU juij 6 c0,

kf ikW 1;n(U) =

µZ

U

jf ijn + jrf ijn
¶1=n

6 ¶ 0

and Z

U

1
2
"ijruij2 +

W (ui)

"i
6 E0

for all i.

Assumption A requires that W has a standard W shape, with non-degenerate
minima at §1 and local maximum at ® . The assumptions on ui and f i are either
motivated by the applications to the Cahn{Hilliard equation (see x 5.2) or regarded
simply as a starting point to the problem. The regularity of u is then standard [21].
The requirement of a W 1;n-norm bound on f i comes mainly from the technical
limit of our approach using the ABP estimates. It is not clear that this can be
replaced by a weaker norm bound, such as W 1;p for some p > 1

2n, which we believe
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is ultimately the weakest bound for f i, to conclude similar convergence results
(see x 5.1 for further discussion).

We next discuss a few immediate consequences of the assumptions. Let

© (s) =

Z s

0

q
1
2 W (s) ds

and de ne new functions

wi = © ¯ ui

for each i.
Since jrwij =

q
1
2 W (ui)jruij, it follows by the Cauchy{Schwarz inequality that

Z

U

jrwij 6 1

2

Z

U

1
2 "ijruij2 +

W (ui)

"i
6 1

2E0:

We also have © ( ¡ c0) 6 wi 6 © (c0). By the compactness theorem for bounded
variation functions, there exists a subsequence, also denoted by fwig, and an a.e.
pointwise limit w 1 such that

lim
i ! 1

Z

U

jwi ¡ w 1 j = 0 and

Z

U

jDw 1 j 6 lim inf
i ! 1

Z

U

jrwij:

Here, jDw 1 j is the total variation of the vector-valued Radon measure Dw 1 .
Let © ¡1 be the inverse of © and de ne

u 1 = © ¡1(w 1 ):

Then ui ! u 1 a.e. and, by the Lebesgue dominated convergence theorem,

Z

U

jui ¡ u1 j ! 0:

Also, by Fatou’s lemma and the energy bound, we have

Z

U

W (u 1 ) =

Z

U

lim
i ! 1

W (ui) 6 lim inf
i ! 1

Z

U

W (ui) = 0:

This shows that u 1 = §1 a.e. on U , and the sets fu 1 = §1g have  nite perimeter
in U , since

k@fu 1 = 1gk(U ) =
1

2

Z

U

jDu 1 j =
1

¼

Z

U

jDw 1 j 6 E0

2 ¼
;

where we de ne

¼ =

Z 1

¡1

q
1
2
W (s) ds

and where k@Ak denotes the perimeter of A in the measure-theoretic sense (see [17]).
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2.2. The associated varifolds

In this section we associate to each solution of (2.1) a varifold in a natural way.
We refer to [4,37] for a comprehensive treatment of varifolds.

Let G(n; n ¡ 1) denote the Grassman manifold of unoriented (n ¡ 1)-dimensional
planes in Rn. We say that V is an (n ¡ 1)-dimensional varifold in U » Rn if V
is a Radon measure on Gn¡1(U ) = U £ G(n; n ¡ 1). Let Vn¡1(U ) denote the set
of all (n ¡ 1)-dimensional varifolds in U . Convergence in the varifold sense means
convergence in the usual sense of measures. For V 2 Vn¡1(U), we let the weight
kV k be the Radon measure in U de ned by

kV k(A) = V (f(x; S) j x 2 A; S 2 G(n; n ¡ 1)g)

for each Borel set A » U . If M is a (n ¡ 1)-recti able subset of U , we de ne
v(M ) 2 Vn¡1(U ) by

v(M)(E) = Hn¡1(fx 2 U j (x; Tann¡1(Hn¡1bM ; x)) 2 Eg)

for each Borel set E 2 Gn¡1(U ), where Tann¡1(Hn¡1bM ; x) is the approximate
tangent plane to M at x and so exists for Hn¡1 a.e. x 2 M .

We associate to each function wi a varifold V i de ned naturally as follows [14,
23,24]. By Sard’s theorem, fwi = tg » U is a C3 hypersurface for L1 almost all t.
De ne V i 2 Vn¡1(U ) by

V i(A) =

Z 1

¡1
v(fwi = tg)(A) dt

for each Borel set A » Gn¡1(U). By the co-area formula [17], we have

kV ik(A) =

Z 1

¡1
Hn¡1(fwi = tg \ A) dt =

Z

A

jrwij

for each Borel set A » U . One may interpret the varifold V i as a weighted averaging
of the level sets of ui, which is concentrated around the transition region. The  rst
variation of V i is given by [33, x 2.1]

¯ V i(g) =

Z

U

µ
div g ¡

nX

j;k = 1

wi
xj

jrwij
wi

xk

jrwijg
j
xk

¶
jrwij (2.2)

for each g 2 C1
c (U ; Rn).

2.3. Main results

With the above terminology and assumptions A and B, we show the following.

Theorem 2.1. Let V i be the varifold associated with ui (via wi), as in xx 2.1
and 2.2. On passing to a subsequence, we can assume that

f i ! f 1 weakly in W 1;n; ui ! u 1 a.e.; V i ! V in the varifold sense:

Moreover, we have the following.
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(1) For each ¿ 2 Cc(U ),

kV k( ¿ ) = lim
i ! 1

Z
1
2 ¿ "ijruij2

= lim
i ! 1

Z
¿

W (ui)

"i

= lim
i ! 1

Z
¿ jrwij:

(2) supp k@fu 1 = 1gk » supp kV k and fuig converges locally uniformly to §1
on U n supp kV k.

(3) For each ~U »» U , 0 < b < 1, fjuij 6 1 ¡ bg \ ~U converges to ~U \ supp kV k
in the Hausdor® distance sense.

(4) ¼ ¡1V is an integral varifold. Moreover, the density ³ (x) = ¼ N (x) of V satis-
¯es

N(x) =

(
odd; Hn¡1 a.e. x 2 M 1 ;

even; Hn¡1 a.e. x 2 supp kV k n M 1 ;

where M 1 is the reduced boundary of fu1 = 1g.

(5) The generalized mean curvature H of V is given by

H(x) =

8
><

>:

f 1 (x)

³ (x)
¸ 1 (x); Hn¡1 a.e. x 2 M 1 ;

0; Hn¡1 a.e. x 2 supp kV k n M 1 ;

where ¸ 1 is the inward normal for M 1 .

(6) The generalized mean curvature H belongs to Lp
loc for any p < 1 with respect

to kV k.

Comments that follow theorem 1 in [23] go with minor changes here as well.
Part (1) shows that, in the limit, the energy is equally divided between the two
terms of the energy functional (1.2), called the equipartition of energy. In fact, our
result shows the following: for any ~U »» U and for the full sequence (not only a
subsequence),

lim
i ! 1

Z

~U

¯̄
¯̄ 1

2 "ijruij2 ¡ W (ui)

"i

¯̄
¯̄ = 0:

This is even without 1
2"ijruij2 dx converging to some measure. Part (4) suggests

that folding of the interface as " ! 0 occurs locally as an integer multiple of
one-dimensional travelling wave solutions [28], almost everywhere in the measure-
theoretic sense.

Without loss of generality, we may assume that M 1 » supp k@fu 1 = 1gk. We
were not able to prove or disprove that Hn¡1(supp k@fu 1 = 1gk n M 1 ) = 0 in
general. This is due to the lack of a uniform lower-density estimate for the measure
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k@fu 1 = 1gk (as opposed to kV k) at Hn¡1 a.e. x in the closure of M 1 . On the
other hand, if N (x) is odd Hn¡1 a.e. for x 2 supp kV k, result (4) shows that

Hn¡1(supp kV k n M 1 ) = 0 and supp kV k = supp k@fu 1 = 1gk:

If N (x) = 1 a.e., then this corresponds to `no energy loss’ situation, since
Z

jDw 1 j¿ = ¼ k@fu 1 = 1gk( ¿ ) = kV k( ¿ ) = lim
i ! 1

Z
jrwij¿

for all ¿ 2 Cc(U). In case f i are all constants and with no energy loss, the relation
between the curvature of the limit interface and the chemical potential is established
by Luckhaus and Modica in [26], and we prove here the direct generalization.

It is well known that the support of a recti able varifold with Lp mean curvature,
p > n ¡ 1, is locally a C1;¬ graph on a relatively open dense subset O [4] for
¬ = 1 ¡ (n ¡ 1)=p. The density function on O is locally constant and integer valued.
If we additionally assume a better bound on f i, for example, Ck;¬ , 0 < ¬ < 1, k > 0,
standard elliptic estimates [21] show that the support there is Ck + 2;¬ . On the other
hand, we do not know if Hn¡1(supp kV k n O) = 0 in general. The density function
³ is de ned everywhere on the support of kV k and is upper-semicontinuous.

If N = 1, Hn¡1 a.e. on supp kV k, then the support is locally a C1;¬ hypersurface
of mean curvature given by f 1 =¼ , except for a closed set of Hn¡1 measure zero.

3. Monotonicity formula

In this section, in addition to assumption A, we assume that the functions u; f :
U ! R satisfy assumption B, with ui, f i and "i replaced by u, f and ", respectively.
We assume that ~U is open and ~U »» U .

The main result here is the energy monotonicity formula for

E(r; x) =
1

rn¡1

Z

Br (x)

µ
1
2"jruj2 +

W (u)

"

¶
;

given in proposition 3.6. We  rst derive the identity (3.1), which gives the expression
of the radial derivative of E(r; x). The main di¯ culty in proving the positivity of
(d=dr)E(r; x) comes from the positive part of the discrepancy function

¹ " = 1
2"jruj2 ¡ W (u)

"
:

When f is a constant function, we proved in [23] that ¹ " 6 c, independent of ".
There we used a di¬erential inequality satis ed by ¹ " ¡ G(u), where G is a suitable
modi cation function, and a maximum-principle-type argument. In this paper, since
we only have control of rf in the Ln-norm, we use a ABP-type estimate instead.
Even though we could not prove the uniform supremum bound, we show ¹ " 6 c"¡2=5

for all su¯ ciently small " (proposition 3.2). This estimate gives us an energy lower
bound around the interface for the length-scale of order "2=5. We then use this
lower bound and a covering lemma to obtain the estimate on the integral of ¹ "

(proposition 3.5) satis ed for r larger than the length-scale of order "2=5. Combined
with this estimate, we obtain the monotonicity formula (3.10).

We denote W ¡ "uf by ~W .
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Lemma 3.1. For Br(x) »» U , we have

d

dr

½
1

rn¡1

Z

Br(x)

µ
1
2"jruj2 +

~W

"

¶¾

=
1

rn

Z

Br (x)

µ
~W

"
¡ 1

2"jruj2
¶

+
"

rn + 1

Z

@Br(x)

((y ¡ x) ¢ ru)2 ¡ 1

rn

Z

Br (x)

((y ¡ x) ¢ rf )u:

(3.1)

Proof. Multiply both sides of (1.1) by ru ¢ g, where g = (g1; : : : ; gn) 2 C1
c (U ; Rn).

Then, after two integrations by parts, we obtain

Z

U

µµ
1
2 "jruj2 +

~W (u)

"

¶
div g ¡ "

X

i;j

uyi uyj gj
yi

¡ (rf ¢ g)u

¶
= 0: (3.2)

We let x = 0 by a suitable translation and let gj(y) = yj » (jyj), where » (jyj)
is a smooth approximation to the characteristic function À Br . Writing r = jyj,
equation (3.2) becomes

Z

U

µµ
1
2
"jruj2 +

~W (u)

"

¶
(r» 0 + n» ) ¡ "

» 0

r
(y ¢ ru)2 ¡ "jruj2 » ¡ (rf ¢ y) » u

¶
= 0:

Letting » ! À Br and rearranging terms, we obtain

¡ (n ¡ 1)

Z

Br

µ
1
2 "jruj2 +

~W (u)

"

¶
+ r

Z

@Br

µ
1
2"jruj2 +

~W (u)

"

¶

=

Z

Br

µ
~W (u)

"
¡ 1

2"jruj2
¶

+
"

r

Z

@Br

(y ¢ ru)2 ¡
Z

Br

(y ¢ rf )u:

Dividing the above expression by rn, we obtain (3.1).

For the moment, we assume the following technical result, which we prove later.

Proposition 3.2. There exist constants c1 and "1, which depend only on c0, ¶ 0,
W , n and dist( ~U; @U ), such that, if " < "1,

sup
~U

µ
1
2"jruj2 ¡ W

"

¶
6 c1"¡2=5: (3.3)

Lemma 3.3. For Br(x) » ~U , there exists c2, which depends only on c0, ¶ 0, n, W
and dist( ~U; @U ), such that, for any s < r and " < "1,

E(r; x) ¡ E(s; x) > ¡ c2(r +r1=2 + r"¡2=5) +

Z r

s

d ½

½ n

Z

B½ (x)

µ
W

"
¡ 1

2 "jruj2
¶+

: (3.4)
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Proof. By (3.3) and the H�older and Sobolev inequalities, we obtain

1

rn

Z

Br (x)

µ
1
2 "jruj2 ¡

~W

"

¶+

6 1

rn

Z

Br (x)

½µ
1
2"jruj2 ¡ W

"

¶+

+ juf j
¾

6 !n(c1"¡2=5 + c0kfkL2n r¡1=2)

6 !n(c1"¡2=5 + c0c(n) ¶ 0r¡1=2):

After integrating over [s; r], this gives the bound on the negative part of the  rst
term in (3.1). Also, for the third term in (3.1),

¯̄
¯̄ 1

rn

Z

Br(x)

((y ¡ x) ¢ rf)u

¯̄
¯̄ 6 c0

1

rn¡1

Z

Br (x)

jrf j 6 c0c(n)krfkLn 6 c0c(n) ¶ 0:

The di¬erence resulting from W and ~W may be estimated by

1

rn¡1

Z

Br (x)

juf j 6 c0c(n)kfkW 1;nr1=2 6 c0c(n) ¶ 0r1=2:

With an appropriate choice of c2, we obtain (3.4).

Proposition 3.4. There exist constants 0 < c3, c4 < 1, which depend only on c0,
¶ 0, n, W and dist( ~U; @U ), such that, if B"2=5 (x) » ~U , ju(x)j 6 ¬ and " < "1, then

E(r; x) > c4 for " 6 r 6 c3"2=5: (3.5)

Proof. Translate x to the origin. By scaling ~x = x=" and ~u(~x) = u("~x), the energy
scales as

E("; 0) =
1

"n¡1

Z

B"

µ
1
2
"jruj2 +

W

"

¶
dx =

Z

B1

( 1
2
jr~uj2 + W ) d~x:

In this scale, there exists a constant c5, which depends only on c0, ¶ 0, n, W and
dist( ~U; @U ), such that jr~uj 6 c5, due to the standard elliptic Lp estimate [21].
Since j~u(0)j 6 ¬ , there exists some c6 = c(c5; W ) > 0 such that W (~u) > c6 on Bc6 .
Hence E("; 0) > !ncn + 1

6 . Using (3.4) and setting s = ", if we restrict r to be less
than c3"2=5 for su¯ ciently small c3 = c(c2; c6; n) and setting c4 = !ncn+ 1

6 =2, we
obtain the desired inequality (3.5).

In the following, we use the energy lower bound (3.5) around the interface. The
ball Br(x) we consider has a radius of order "2=5 at least, which is larger than "4=5,
where we have the energy lower bound. We cover the interface by a collection of
balls with radii "4=5.

Proposition 3.5. There exist constants c7, c8, "2 6 "1, which depend only on c0,
¶ 0, n, W and dist( ~U; @U), such that, if Br(x) » ~U , r > c3"2=5 and " < "2, then

1

rn

Z

Br(x)

µ
1
2"jruj2 ¡ W

"

¶+

6 c7E(r; x) + c8: (3.6)
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Proof. We translate x to the origin. We estimate the integral on

A = fx 2 Br n Br¡"4=5 g;

B = fx 2 Br¡"4=5 j dist(fjuj 6 ¬ g; x) < "4=5g;

C = fx 2 Br¡"4=5 j dist(fjuj 6 ¬ g; x) > "4=5g:

The set A is the "4=5-shell of the ball Br, B is the "4=5-neighbourhood of the interface
and C is the complement of the two.

Case 1 (estimate on A). By (3.3),

1

rn

Z

A

µ
1
2 "jruj2 ¡ W

"

¶+

6 n!n"4=5

r
c1"¡2=5 6 n!nc1

c3
; (3.7)

since r > c3"2=5.

Case 2 (estimate on B). We  rst estimate Hn(B). We apply the Vitali covering
lemma [37, theorem 3.3] to the family of balls fB"4=5 (x)gx 2 fjuj6 ¬ g\ B (which cov-
ers B), so that fB"4=5 (xi)gN

i = 1 is a pairwise disjoint subset of the family and so that
B »

SN
i = 1 B5"4=5 (xi). Then we have Hn(B) 6 !n(5"4=5)nN . On the other hand,

by (3.5) and since " < "4=5 < c3"2=5 for all su¯ ciently small ",

c4("4=5)n¡1 6
Z

B
"4=5 (xi)

µ
1
2 "jruj2 +

W

"

¶

holds for each i = 1; : : : ; N . Since they are pairwise disjoint, summing over i, we
have

Nc4("4=5)n¡1 6
Z

Br

µ
1
2"jruj2 +

W

"

¶
:

These two estimates show that

Hn(B) 6 !n5n"4=5

c4

Z

Br

µ
1
2"jruj2 +

W

"

¶
=

!n5n"4=5rn¡1E(r; 0)

c4
:

Finally, with (3.3),

1

rn

Z

B

µ
1
2"jruj2 ¡ W

"

¶+

6 c1"¡2=5Hn(B)

rn
6 !n5nc1E(r; 0)

c3c4
; (3.8)

since r > c3"2=5.

Case 3 (estimate on C ). De ne a Lipschitz function ¿ as follows:

¿ (x) = minf1; "¡4=5 dist(fjxj > rg [ fjuj 6 ¬ g; x)g:

¿ is 0 on the set fjuj 6 ¬ g [ fjxj > rg, 1 on C and jr¿ j 6 "¡4=5. Using this ¿ , we
estimate 1

2
"jruj2 (which is larger than ( 1

2
"jruj2 ¡ W=") + ) on C . Di¬erentiate (1.1)

with respect to the kth variable, multiply it by uyk ¿ 2 and sum over k. Then

Z nX

k = 1

"uyk ¢uyk ¿ 2 =

Z
W 00

"
jruj2 ¿ 2 ¡ rf ¢ ru¿ 2:
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We integrate by parts, and since W 00 > µ on fjuj > ¬ g,

Z
µjruj2 ¿ 2

"
+ "jr2uj2 ¿ 2 6

Z
jrf jjruj ¿ 2 + 2"

nX

k;l = 1

j¿ uyk
¿ yl

uykyl
j:

By the Cauchy{Schwarz inequality, we then obtain

(left-hand side) 6
Z

"

2µ
jrf j2 ¿ 2 +

µ

2"
jruj2 ¿ 2 + 1

2"¿ 2jr2uj2 + 2"jr ¿ j2jruj2:

Relegating two terms to the left-hand side, we have

µ

2"

Z
jruj2 ¿ 2 6

Z
"

2µ
jrf j2 ¿ 2 + 2"jr ¿ j2jruj2:

Since jr ¿ j 6 "¡4=5,
Z

C
"jruj2 6

Z

Br

"3jrf j2
µ2

+
4"7=5jruj2

µ
:

By H�older’s inequality,

1

rn

Z

C

1
2 "jruj2 6

"3(!nrn)(n¡2)=nkrfk2
L2

2µ2rn
+

2"2=5E(r; 0)

µr

6 ¶ 2
0!

(n¡2)=n
n "11=5

2µ2c2
3

+
2E(r; 0)

µc3
(3.9)

by r > c3"2=5. With appropriate choices of the constants, we obtain (3.6) by (3.7){
(3.9).

Proposition 3.6. There exist constants c9 and r0, depending only on c0, ¶ 0, n,
W and dist( ~U; @U ), with the following property: for any Br(x) » ~U , " < "2 and
c3"2=5 6 s < r 6 r0,

ec7rE(r; x) ¡ ec7sE(s; x) >
Z r

s

ec7 ½

½ n

Z

B½

µ
W

"
¡ 1

2
"jruj2

¶+

d ½ ¡ c9r1=2: (3.10)

Proof. By (3.1) and (3.6), we obtain

d

dr
E(r; x) +

d

dr

µ
1

rn

Z

Br (x)

uf

¶

> 1

rn

Z

Br(x)

µ
W

"
¡ 1

2 "jruj2
¶+

¡ c7E(r; x) ¡ c8 ¡ 1

rn

Z

Br(x)

(juf j + rjrf jjuj):

The last term is bounded from below by ¡ c10(n; c0; ¶ 0)r¡1=2. By multiplying both
sides by ec7r and integrating over [s; r], we obtain

ec7rE(r; x) ¡ ec7sE(s; x)

>
Z r

s

ec7 ½ d

d ½

µ
1

½ n¡1

Z

B½ (x)

uf

¶
d ½ +

Z r

s

ec7 ½

½ n

Z

B½

µ
W

"
¡ 1

2
"jruj2

¶+

d ½

¡ 2c10r1=2ec7r ¡ c8c¡1
7 (ec7r ¡ ec7s):
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The  rst term in the right-hand side is estimated from below by ¡ c(r1=2 + r3=2).
Thus, with a suitable restriction on r, we obtain (3.10).

For the rest of the section, we prove proposition 3.2. First, we need the following
lemma, showing that juj stays within 1 + "² for ² < 1. In case f is bounded in the
L 1 -norm, we can use the pointwise maximum principle as in [23, proposition 3.2].
Here we need to use integral estimates.

Proposition 3.7. There exists a constant "3, which depends only on ¶ 0, c0, n,
0 < ² < 1, dist( ~U; @U ) and W , such that

sup
~U

juj 6 1 + " ² (3.11)

whenever " 6 "3.

Proof. Suppose B1 » ~U . For any p > 1, multiply both sides of (1.1) by [(u ¡ 1)+ ]p ¿ 2,
where ¿ 2 C 1

c (B1), ¿ > 0, and integrate by parts. Then we obtain

¡ "

Z
p[(u ¡ 1)+ ]p¡1jruj2 ¿ 2 + [(u ¡ 1)+ ]p2 ¿ r ¿ ¢ ru

=

Z
W 0

"
[(u ¡ 1)+ ]p ¿ 2 ¡

Z
f [(u ¡ 1)+ ]p ¿ 2:

For u > 1, W 0(u) > µ(u ¡ 1) by assumption B. Hence

µ

"

Z
[(u ¡ 1)+ ]p+ 1 ¿ 2 +

Z
"p[(u ¡ 1)+ ]p¡1jruj2 ¿ 2

6 2"

Z
[(u ¡ 1) + ]p ¿ jr ¿ jjruj +

Z
jf j[(u ¡ 1)+ ]p ¿ 2

6 1
2 p"

Z
[(u ¡ 1)+ ]p¡1jruj2 ¿ 2 +

2"

p

Z
[(u ¡ 1)+ ]p+ 1jr¿ j2

+
µ

2"

Z
[(u ¡ 1)+ ]p+ 1 ¿ 2 +

"pc(p)

µp

Z
jf jp+ 1 ¿ 2;

which shows that

µ

2"

Z
[(u ¡ 1) + ]p+ 1 ¿ 2 6 2"

p

Z
[(u ¡ 1)+ ]p+ 1jr¿ j2 +

"pc(p)

µp

Z
jf jp+ 1 ¿ 2:

Since kfkLp+1 6 c(n; p)kfkW 1;n 6 c(n; p) ¶ 0 by the Sobolev inequality for any
p < 1, and since juj is bounded by c0, we obtain

Z

B1 ¡ s

[(u ¡ 1)+ ]p+ 1 6 c12(s; p; c0; ¶ 0; µ)"p+ 1

by iterating the above estimate. To derive a contradiction, assume that u(x0) ¡ 1 >
" ² for some x0 2 B1¡s. By the gradient estimate, jruj 6 c5"¡1 (as in the proof
of (3.5)). Thus, for y 2 B"1+ ² =2c5

(x0),

u(y) ¡ 1 > u(x0) ¡ 1 ¡ sup jruj ¢ "1+ ²

2c5
> 1

2 "² :
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Then

c12"p + 1 >
Z

B"1+ ² =2c5
(x0)

[(u ¡ 1)+ ]p+ 1 > !n"² (p+ 1)

2p+ 1

µ
"1+ ²

2c5

¶n

:

The right-hand side is of order "p² + ² (n+ 1)+ n. Since ² < 1, for su¯ ciently large p
(p > ( ² (n + 1)+ n ¡ 1)=(1 ¡ ² )) and small ", the inequality cannot hold. This would
be a contradiction. Hence we obtain (3.11). u > ¡ 1 ¡ " ² is proved similarly.

It is convenient to work in the "-scale, namely, we consider B3d » ~U and consider
the rescaled problem

¡ ¢u + W 0(u) = "f on B3d=":

Without loss of generality, we choose a suitable unit so that d = 1. Also, we denote
the rescaled discrepancy function by

¹ = 1
2
jruj2 ¡ W (u):

With this scale, we need to prove

sup
B" ¡ 1

¹ 6 c1"3=5: (3.12)

In the following, we use

¹ G(x) = 1
2
jruj2 ¡ W (u) ¡ G(u);

where G : R > R will be  xed shortly. We  rst obtain a di¬erential inequality for
¹ G (cf. [14,23,28]). For the reader’s convenience, we supply the proof.

Lemma 3.8. On jruj > 0,

¢ ¹ G ¡ 2(W 0 + G0)ru

jruj2
¢ r¹ G + 2G00 ¹ G

> (G0)2 + G0W 0 ¡ 2G00(W + G) + "f (W 0 + G0) ¡ "rf ¢ ru: (3.13)

Proof. Compute

¢ ¹ G = jr2uj2 +
X

uxi (¢u)xi
¡ W 00jruj2 ¡ W 0¢u ¡ G00jruj2 ¡ G0¢u

= jr2uj2 ¡ (W 0 + G0)¢u ¡ G00jruj2 ¡ "ru ¢ rf (by ¢u = W 0 ¡ "f )

= jr2uj2 ¡ (W 0 + G0)(W 0 ¡ "f ) ¡ 2G00(G + W + ¹ G) ¡ "ru ¢ rf;

where the last line is derived by substituting jruj2 = 2(G + W + ¹ G). On the other
hand,

jruj2jr2uj2 >
X

j

µX

i

uxi uxixj

¶2

=
X

j

(( ¹ G)xj + (W 0 + G0)uxj )2

> 2(W 0 + G0)ru ¢ r ¹ G + (W 0 + G0)2jruj2:

We may then conclude (3.13).
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Lemma 3.9. Suppose 0 < ² ,  < 1, 0 6 ´ 6 1 satisfy 2 + ´ > 2 ² , 0 < s < 1,
0 < c11 < 1. Then there exist 0 < "4 < "3, 0 < c12, c13 < 1, depending only on ² ,
 , ´ , s, c0 ¶ 0, c11, dist( ~U; @U ), n and W , with the following properties.

Suppose

(A) u 2 C3(B" ¡  ), f 2 C1(B" ¡  ) and " 6 "4 satisfy

¡ ¢u + W 0(u) = "f

on B" ¡  ; and

(B) supB" ¡ 
juj 6 1 + " ² , supB" ¡ 

¹ 6 c11"´ .

Then

sup
B(1 ¡ s)" ¡ 

¹ 6 c12f"1¡ (krfkLn(B" ¡  ) + kfkLn(B" ¡  \ fjf j>c13"² ¡ 1g)) + " ² g: (3.14)

Proof. We choose ~¿ 2 C 1 (B1) such that

~¿ (x) =

(
1 on B1 n B1¡s=2;

0 on B1¡s;

0 6 ~¿ 6 1, jr~¿ j; jr2 ~¿ j; jr~¿ j=
q

~¿ 6 cs, where we denote generic positive constants
depending only on s and n as cs. For simplicity, we use the same notation cs for
such constants. Then de ne

¿ (x) = c11"´ ~¿ (" x)

for x 2 B"¡  . With this de nition and by the properties of ~¿ , we have

jr ¿ j 6 c11cs" + ´ ; jr2 ¿ j 6 c11cs"2 + ´ ; jr¿ j=
p

¿ 6 c
1=2
11 cs" + ´ =2: (3.15)

Let G(u) = c14"² (1 ¡ 1
8(u ¡ ® )2), where c14 > 1 will be determined later, and de ne

~¹ = ¹ ¡ G ¡ ¿ (= ¹ G ¡ ¿ ):

By restricting " to depend only on ® and by assumption (B), we have G > 0.
We later use G0W 0 > 0 on u 2 [¡ 1; 1] as well as G00 < 0 for any u. On
B" ¡  n B(1¡s=2)" ¡  , ¿ = c11" ´ , hence by assumption (B), ~¹ 6 0 there. Also,
~¹ = ¹ ¡ G on B(1¡s)" ¡  , since ¿ = 0 there. In particular, if ~¹ 6 0 on B" ¡  , then
¹ 6 G 6 c14"² on B(1¡s)" ¡  . In the following, we denote

M = sup
B" ¡ 

~¹ +

and assume that M > 0 (or else we are done). We next apply the ABP maximum
principle to ~¹ + on B" ¡  . Note that ~¹ + = 0 on @B" ¡  . Let ¡ + be the upper contact
set of the graph of ~¹ + . Then, with the diameter of the domain being 2"¡ , we
have [21, lemma 9.3]

M

2"¡
6 1

n!
1=n
n

µZ

¡ +

( ¡ ¢~¹ )n

¶1=n

:
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Note that ~¹ + = ~¹ and ¢~¹ 6 0 on ¡ + , and the slope of the support hyperplane is
equal to the gradient of ~¹ . Since such hyperplanes have slope less than M" =s, we
have

jr~¹ j 6 M"

s
on ¡ + : (3.16)

Also, since ~¹ + = 0 on B"¡  n B(1¡s=2)" ¡  , the height of the contact points of the
graph of ~¹ + and the supporting hyperplanes have a lower bound,

~¹ = ~¹ + > 1
2
sM on ¡ + : (3.17)

In the following, we carefully estimate ¡ ¢~¹ from above. In doing so, we need to
consider three cases, and de ne three subsets of ¡ + \ B" ¡  by

A = fx j ju(x)j > 1g;

B = fx j 1
2( ® + 1) < ju(x)j 6 1g;

C = fx j ju(x)j 6 1
2 ( ® + 1)g:

Note that they are mutually disjoint sets by the de nition. By (3.13), we have

¡ ¢~¹ = ¡ ¢ ¹ G + ¢ ¿

6
½

¡ 2(W 0 + G0)ru

jruj2
¢ r ¹ G

¾

+ f2G00 ¹ G ¡ (G0)2g + f¡ G0W 0 + 2G00(W + G)g
+ f¡ "f(W 0 + G0) + ¢ ¿ g + f"ru ¢ rfg

² fIg + fIIg + fIIIg + fIVg + fVg:

(I) Since ¹ G = ~¹ + ¿ , using

jruj =
p

2

q
~¹ + W + G + ¿ >

q
~¹ +

p
¿ ;

we have

I 6 2

jruj(
jW 0j + c14"² )jr~¹ + r¿ j

6 2(jW 0j + c14" ² )

µ
jr~¹ jq

~¹

+
jr ¿ jp

¿

¶

6 2(jW 0j + c14" ² )

µr
2M

s3
" + c

1=2
11 cs" + ´ =2

¶

6 (jW 0j + c14"² )csc
1=2
11 " + ´ =2:

The last two lines are by (3.15){(3.17), as well as M 6 c11" ´ . By separating into
three cases, we  nd

I 6 csc
1=2
11 " + ´ =2 £

8
><

>:

(sup jW 00j"² + c14" ² ) on A;

(jW 0j + c14"² ) on B;

(sup jW 0j + c14" ² ) on C :

https://doi.org/10.1017/S0308210500001980 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500001980


1008 Y. Tonegawa

(II) Since ¹ G = ~¹ + ¿ > 0 on ¡ + and G00 < 0, we have

II 6 0:

(III) By the choice of G, both terms are non-positive on B and C . Moreover, since
G00 = ¡ 1

4
c14" ² and G > 1

2
c14" ² for juj 6 1 + "² for suitably small ", we have

III 6 ¡ 1
8 (c14"² )2

8
><

>:

+c14"2 ² sup jW 00j on A;

¡ 1
8c14" ² (1 ¡ ® )jW 0j on B;

¡ 1
4
c14" ² minjuj6( ® + 1)=2 W (u) on C :

The  rst term comes from G00G. Note that minjuj6( ® + 1)=2 W (u) > 0 is a strictly
positive constant.

(IV) By (3.11) and (3.15),

IV 6 jf j"(jW 0j + c14"² ) + c11cs"2 + ´

6 c11cs"2 + ´ +

8
><

>:

("1+ ² sup jW 00j + "1+ ² c14)jf j on A;

("jW 0j + c14"1+ ² )jf j on B;

(" sup jW 0j + c14"1+ ² )jf j on C :

Next we sum the four terms on each set and evaluate them from above. Note
that the terms in III are `good terms’, giving the necessary negative contributions.

(I + ¢ ¢ ¢ + IV on A)

I + ¢ ¢ ¢ + IV 6 c2
14"2²

µ
csc

1=2
11

c2
14

sup jW 00j" + ´ =2¡ ² +
csc

1=2
11

c14
" + ´ =2¡ ²

¡ 1

8
+

sup jW 00j
c14

+
c11cs

c2
14

"2 + ´ ¡2 ²

¶

+ ("1+ ² sup jW 00j + "1+ ² c14)jf j:

Since 2 ² 6 2 + ´ , we may restrict c14 large, depending only on c11, cs, W , so that

I + ¢ ¢ ¢ + IV 6 ¡ 1
16 c2

14"2² + ("1+ ² sup jW 00j + "1+ ² c14)jf j
6 c15"1+ ² jf j ¢ À fjf j>c16"² ¡ 1g (3.18)

for suitable choices of c15, c16 = c(c11; cs; W ) > 0. Here, À A denotes the character-
istic function of A.

(I + ¢ ¢ ¢ + IV on B)

I + ¢ ¢ ¢ + IV 6 jW 0jc14"²

µ
csc

1=2
11

c14
" + ´ =2¡ ² ¡ 1

8
(1 ¡ ® )

¶

+ (c14"² )2

µ
csc

1=2
11

c14
" + ´ =2¡ ² ¡ 1

8
+

c11cs

c2
14

"2 + ´ ¡2²

¶

+ ("jW 0j + c4"1+ ² )jf j:
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Again with 2 ² 6 2 + ´ and restricting c14 large, we have

I + ¢ ¢ ¢ + IV 6 ¡ 1
16

(1 ¡ ® )c14" ² jW 0j ¡ 1
16

c2
14"2² + ("jW 0j + c14"1+ ² )jf j

6 c15"jf j ¢ À fjf j>c16 "² ¡ 1g; (3.19)

where c15, c16 are chosen appropriately again.

(I + ¢ ¢ ¢ + IV on C )

I + ¢ ¢ ¢ + IV 6 c14" ²

µ
csc

1=2
11 sup jW 0j

c14
" + ´ =2¡ ² + csc

1=2
11 " + ´ =2

¡ 1

4
min

juj6( ® + 1)=2
W (u) +

c11cs

c14
"2 + ´ ¡ ²

¶

+ (" sup jW 0j + c14"1+ ² )jf j:

Using 0 < ² 6  + 1
2 ´ and restricting " small and c14 large, depending only on ² ,

W , c11 and cs, we have

I + ¢ ¢ ¢ + IV 6 ¡ 1
8
c14"² min

juj6( ® + 1)=2
W (u) + (" sup jW 0j + c14"1+ ² )jf j

6 c15"jf j ¢ À fjf j>c16" ² ¡ 1g (3.20)

for suitable choices of c15; c16.

(I + ¢ ¢ ¢ + V) Combining (3.18){(3.20) and jruj 6 c5, we have

I + ¢ ¢ ¢ + V 6 c5"jrf j + c15"jf j ¢ À fjfj>c16" ² ¡ 1g

on ¡ + . Thus we have
µZ

¡ +

( ¡ ¢~¹ )n

¶1=n

6 c5"krfkLn( ¡ +) + c15"kfkLn( ¡ + \ fjf j>c16 "² ¡ 1g):

Since

sup
B" ¡  (1 ¡ s)

~¹ 6 M 6 2"¡

n!
1=n
n

µZ

¡ +

( ¡ ¢~¹ )n

¶1=n

;

~¹ = ¹ ¡ G and G 6 c14"² , we have the desired estimate by suitably choosing c12

and c13.

Here we give a proof for (3.12). By the Sobolev inequality (applied to the original
scale), for any p < 1, we have

µ
"n

Z

B(1 ¡ s)" ¡ 1

jf jp
¶1=p

6 c(p; n; s) ¶ 0:

In particular, for any t > 1,

µZ

B(1 ¡ s)" ¡ 1 \ fjfj>tg
jf jn

¶1=n

6 t1¡p=n

µZ

B(1 ¡ s)" ¡ 1

jf jp
¶1=n

6 t1¡p=n"¡1=pc(p; n; s) ¶ 0:
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Thus, if t = "² ¡1, with 0 < ² , with an appropriately large p, the left-hand side
of (3.14) is bounded in terms of ¶ 0 uniformly for all small ". Now we use (3.14)
with ² =  = 1

2 and ´ = 0 to any ball B" ¡ 1=2 (x) » B" ¡ 1 . Condition (B) is satis ed
for a suitable constant c11, and 2 + ´ > 2 ² is satis ed. Thus we have

sup
B(1 ¡ s)" ¡ 1

¹ 6 c12("1=2 + "1=2krfkLn + "1=2kfkLn(B" ¡ 1 \ fjfj>c13" ¡ 1=2g)):

Next we apply lemma 3.9 again, with ² = 3
5
,  = 2

5
, ´ = 1

2
and the new c11. With

this choice, 2 ² 6 2 + ´ is satis ed. Since 1 ¡  = ² = 3
5 , we obtain (3.12).

Remark 3.10. The exponent 3
5 in (3.12) is simply a convenient choice for us, but

the argument works just as well, as long as the exponent is strictly larger than 1
2
.

If we assume that f 2 W 1;p for p su¯ ciently larger than n (for example, p > 2n),
then we can prove a better estimate with the exponent equal to 1. As far as we can
see, however, we could not obtain such estimate for the case p = n.

4. Recti¯ability and integrality of the limit varifold

Proposition 4.1. There exist constants 0 < D1 6 D2 < 1 and r0 > 0, which
depend only on ¶ 0, c0, E0, dist( ~U; @U ) and W , such that

D1rn¡1 6 · (Br(x)) 6 D2rn¡1

for all 0 < r < r0, x 2 supp · \ ~U and Br(x) » ~U .

Proof. The existence of D2 is immediate from (3.10).
To establish the lower bound, let x 2 supp · \ ~U .

Claim. On passing to a subsequence, there exist xi 2 ~U such that ui(xi) 2 [ ¡ ¬ ; ¬ ]
and xi ! x as i ! 1.

Proof of the claim. Suppose the converse. Then there exists some s > 0 such that
Bs(x) » ~U and Bs(x) \ fjuij 6 ¬ g = ; for all su¯ ciently large i. For each such i,
either ui > ¬ on Bs(x) or ui < ¡ ¬ on Bs(x). If ui > ¬ , by using the argument in
proposition 3.7, one shows that

ui 2 [1 ¡ "
3=4
i ; 1 + "

3=4
i ] on Bs=2(x)

for all su¯ ciently large i. Similarly, if ui < ¡ ¬ , then ui 2 [¡ 1 ¡ "
3=4
i ; ¡ 1 + "

3=4
i ] on

Bs=2(x). This implies that W (ui) = O("
3=2
i ) and thus W (ui)="i ! 0 uniformly on

Bs=2(x) as i ! 1.
For 1

2"ijruij2, by using the argument in proposition 3.5 (estimate on C ), one
shows that Z

Bs=2(x)

"ijruij2 6 O("2
i ) ! 0

as i ! 1. Hence we may conclude that · (Bs=2(x)) = 0, which is a contradiction
to x 2 supp · . This ends the proof of the claim.
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For any x 2 ~U \ supp · , Br(x) » ~U and r 6 r0, propositions 3.4 and 3.6 show
that

1

rn¡1
· (Br(x)) > lim

i ! 1

1

rn¡1

Z

Br=2(xi)

1
2 "ijruij2 +

W (ui)

"i

> lim inf 21¡nec7r=2f¡ c9r1=2 + e¡c7c3"
2=5
i E(c3"

2=5
i ; xi)g

> 21¡ne¡c7r=2f¡ c9r1=2 + e¡c7c3 c4g:

Thus, by suitably restricting r, we prove the existence of D1.

Proposition 4.2. Either ui ! +1 or ui ! ¡ 1 uniformly on each compact subset
of U nsupp kV k. In particular, supp k@fu 1 = 1gk » supp kV k. The terms 1

2 "ijruij2
and "¡1

i W (ui) converge uniformly to zero on compact subsets of U n supp kV k.

Proof. This follows immediately from the argument for the previous proposition.

Let

¹ i = 1
2"ijruij2 ¡ W (ui)

"i

and de ne (passing to a subsequence if necessary) the measure j¹ j on U by

j ¹ j( ¿ ) = lim
i ! 1

Z
j ¹ ij ¿

for non-negative ¿ 2 Cc(U ). Thus j ¹ j is the measure theoretic limit of the absolute
values of the discrepancy functions.

Proposition 4.3. j¹ j is the zero measure and so ¹ i ! 0 in L1
loc(U ). Moreover,

both 1
2 "ijruij2 ¡ jrwij and (1="i)W (ui) ¡ jrwij also converge to zero in L1

loc(U ).

Proof. First we claim that

lim inf
r ! 0

1

rn¡1
j ¹ j(Br(x)) = 0 (4.1)

for all x 2 supp j ¹ j \ ~U . Otherwise, there would exist x 2 supp j ¹ j \ ~U , R > 0 and
b > 0 such that R 6 r0 and j¹ j(Br(x)) > brn¡1 for all 0 < r 6 R. De ne

r1 = min fb(8D2c7 + c8)¡1; Rg;

r2 = r1 min fexp[¡ 4b¡1(c9r
1=2
1 + 4D2 exp[c7r1])]; 1

2
g:

By proposition 4.1 and the de nition of j¹ j, we may choose a large enough i such

that c3"
2=5
i 6 r2 and

1

½ n¡1

Z

B½ (x)

1
2 "ijruij2 +

W (ui)

"i
6 2D2;

1

½ n¡1

Z

B½ (x)

j ¹ ij > 1
2b
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for all r2 6 ½ 6 r1. By proposition 3.5 and the de nition of r1,

1

½ n¡1

Z

B½ (x)

µ
W (ui)

"i
¡ 1

2
"ijruij2

¶+

> 1

½ n¡1

Z

B½ (x)

j ¹ ij ¡ (c7E(ui; ½ ; x) + c8) ½

> 1
2
b ¡ (c72D2 + c8)r1

> 1
4 b

for all r2 6 ½ 6 r1. By proposition 3.6,

2D2 > 1

rn¡1
1

Z

Br1 (x)

1
2
"ijruij2 +

W (ui)

"i

> e¡c7r1

µ
1
4
b

Z r1

r2

d ½

½
¡ c9r

1=2
1

¶

= e¡c7r1

µ
1
4
b ln

µ
r1

r2

¶
¡ c9r

1=2
1

¶

> 4D2;

which is a contradiction, so we have proved (4.1).
Combined with proposition 4.1 and supp j¹ j » supp · , we have

lim inf
r ! 0

j¹ j(Br(x))

· (Br(x))
= 0

for all x 2 supp j ¹ j. A standard result in measure theory then shows that j ¹ j = 0.
It follows that ¹ i > 0 in L1

loc(U ).
By completing the square and using 2jrwij =

p
2W (ui)jruij, we see that

¯̄
¯̄ 1

2 "ijruij2 +
W (ui)

"i
¡ 2jrwij

¯̄
¯̄ =

µq
1
2 "ijruij ¡

s
W (ui)

"i

¶2

6
¯̄
¯̄ 1

2"ijruij2 ¡ W (ui)

"i

¯̄
¯̄

= j ¹ ij:

This implies the remaining claims in the proposition.

Proposition 4.4. The limit varifold V satis¯es kV k = 1
2
· and is recti¯able. The

¯rst variation of V is given by

¯ V (g) =
1

2

Z

U

u1 div(f 1 g) = ¡
Z

M 1
f 1 g ¢ ¸ 1 dHn¡1

for any g 2 C1
c (U ; Rn), where M 1 » supp kV k is the reduced boundary of fu 1 = 1g

and f 1 on M 1 is the trace of f 1 2 W 1;n(U ). The generalized mean curvature
vector H is given by

H(x) =

8
<

:

f 1 (x)

³ (x)
¸ 1 (x); Hn¡1 a.e. x 2 M 1 ;

0; Hn¡1 a.e. x 2 supp kV k n M 1 ;
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where ³ is the density function for kV k. Moreover,

f 1 b M 1 2 Lp
loc(U; Hn¡1) for any 1 6 p < 1:

Proof. Since kV k = lim kV ik and kV ik = jrwij d L n, it follows from proposition 4.3
and the de nition of · that 1

2 · = kV k. Next, we rearrange terms in (3.2) and, using
the fact that

ui
xj

jruij =
wi

xj

jrwij ;

we have

Z µ
div g ¡

X

j;k

wi
xj

jrwij
wi

xk

jrwijg
j
xk

¶
"ijruij2

=

Z ½µ
1
2 "ijruij2 ¡ W (ui)

"i
+ uif i

¶
div g + uig ¢ rf i

¾

for any g 2 C1
c (U ). Since "ijruij2 ¡ 2jrwij and ¹ i converge to 0, ui converges to

u 1 strongly in Lp for any 1 < p < 1 and f i converges weakly in W 1;n to f 1 , we
have

¯ V (g) =
1

2

Z
u 1 (f 1 div g + g ¢ rf 1 ):

Here we used (2.2), and note that V i converges to V in the sense of varifold, hence
¯ V i(g) ! ¯ V (g). To justify the integration by parts for f 1 g, we use the following
theorem due to Meyers and Ziemer [27] and the idea to use it for the similar purpose
is due to Sch�atzle [35, theorem 1.3].

Theorem 4.5 (cf. theorem 5.12.4 of [43]). Let · be a positive Radon measure on
Rn satisfying

K( · ) ² sup
x 2 Rn ;

r>0

1

rn¡1
· (Br(x)) < 1:

Then ¯̄
¯̄
Z

Rn

¿ d ·

¯̄
¯̄ 6 c(n)K( · )

Z

Rn

jr¿ j d L n

for all ¿ 2 C1
c (Rn).

Since
Hn¡1 b M 1 6 !n¡1

2D1
kV k and kV k(Br(x)) 6 1

2D2rn¡1;

we have
K(Hn¡1 b M 1 \ ~U ) 6 1

4
D2D¡1

1 !n¡1:

Thus ¯̄
¯̄
Z

M 1
¿ dHn¡1

¯̄
¯̄ 6 c(n)D2D¡1

1

Z

U

jr ¿ j

for all ¿ 2 C1
c ( ~U ). Using this and smoothly approximating f 1 , we obtain

¡
Z

M 1
f 1 g ¢ ¸ dHn¡1 =

1

2

Z

U

div(f 1 g)u1
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for all g 2 C1
c ( ~U ; Rn). Moreover, for any 1 6 p < 1,
Z

M 1 \ ~U

jf 1 jp dHn¡1 6 c(n)D2D¡1
1

Z

U

pjf 1 jp¡1jrf 1 j

6 c(n; p)D2D¡1
1 kf 1 kp

W 1;n(U) < 1;

by the Sobolev inequality. Since

j ¯ V (g)j 6 sup jgj
Z

M 1 \ ~U

jf 1 j dHn¡1

for all g 2 C1
c ( ~U ; Rn), k ¯ V (g)k de nes a Radon measure on U . By the lower-density

estimate bound of kV k and Allard’s recti ability theorem [4, theorem 5.5.(1)], we
can conclude that V is recti able. It also follows that k ¯ V k is absolutely continuous
with respect to Hn¡1 b M 1 , and hence with respect to kV k as well. Thus

¯ V (g) = ¡
Z

g ¢ H dkV k = ¡
Z

s u p p kV k
g ¢ H³ dHn¡1:

The expression for H follows from the second expression for ¯ V (g) in the statement
of the proposition.

Note that this proves that H 2 Lp
loc(U ; Rn) with respect to kV k as well for any

1 6 p < 1. By the standard theory for a varifold with its mean curvature in
Lp, p > n ¡ 1, the density function ³ is well de ned everywhere on supp kV k and
upper-semicontinuous on U . This fact also follows directly from proposition 3.6.

Next, we prove that ³ (x) = N ¼ for some positive integer Hn¡1 a.e. on supp kV k.
With modi cations, the line of proof is very similar to that of [23, x 5], so we point
out the di¬erence so that the reader may follow the proof. There are two points that
must be dealt with: the  rst is that we only have f 2 W 1;n, so that f is `almost
bounded’ but not quite, and the second is that the discrepancy function has an
estimate that is not as good as the case in [23], where we had ¹ 6 c". These points
can be resolved by replacing the pointwise estimates in [23] by suitable integral
estimates.

The  rst proposition shows that there is only small energy uniformly in " in the
region fu º §1g.

Proposition 4.6 (cf. proposition 5.1 of [23]). Assume that assumption B is true,
with u, ", f and B3, and suppose s > 0. Then there exist positive constants b and
"5, depending only on ¶ 0, c0, E0, W and s, such that

Z

B1 \ fjuj>1¡bg

W (u)

"
6 s

whenever " 6 "5.

Proof. We use two lemmas [23, lemmas 5.2, 5.3]. For the  rst lemma, one only need
to use the ABP estimate instead of the pointwise estimate. Since it is a straight-
forward modi cation, we omit the proof. The rest of the proof goes through with
minor modi cations of constants.
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The second proposition deals with `cutting’ the varifold horizontally into stacked
single-layered interfaces. De ne T : Rn > Rn¡1 by T (x) = (x1; : : : ; xn¡1). Also
de ne ¸ = ( ¸ 1; : : : ; ¸ n) = ru=jruj whenever jruj 6= 0 and ¸ = 0 when jruj = 0.
We additionally de ne

e" = 1
2
"jruj2 +

W (u)

"
; ¹ " = 1

2
"jruj2 ¡ W (u)

"
:

In [23, proposition 5.5], one needs to change hypothesis (2).

Proposition 4.7. Corresponding to each R, E0, s and N such that 0 < R < 1,
0 < E0 < 1, 0 < s < 1 and N is a positive integer, there exists ² > 0 with the
following property.

Assume the following.

(1) Y » Rn has no more than N + 1 elements, T (y) = 0 for all y 2 Y , a > 0,
jy ¡ zj > 3a for all y; z 2 Y and diam Y 6 ² R.

(2) On fx 2 Rn j dist(x; Y ) < Rg, u satis¯es (1.2) with kfkW 1;n 6 ² , juj 6 2
and Z R

a

dr

rn

Z

Br(x)

µ
1
2
"jru2j ¡ W (u)

"

¶+

6 ² R for each x 2 Y:

(3) For each y 2 Y and a 6 r 6 R,
Z

Br (y)

j ¹ "j + (1 ¡ ( ¸ n)2)"jruj2 dy 6 ² rn¡1;

Z

Br (y)

"jruj2 6 E0rn¡1:

Then we have
X

y 2 Y

1

an¡1

Z

Ba(y)

e" 6 s +
1 + s

Rn¡1

Z

fxj d is t(Y;x)<Rg
e":

For the proof, one also modi es hypothesis (4) in [23, lemma 5.4], just like above
hypothesis (2). With this, the proof of lemma 5.4 goes through with minor changes,
and hence the above proposition follows.

The third proposition deals with the " scale. Here, one needs a pointwise estimate
on ¹ ", but ¹ " 6 c1"¡2=5 is su¯ cient.

Proposition 4.8. Given 0 < s < 1 and 0 < b < 1, there exist 0 < ² < 1 and
1 < L < 1, depending on W , with the following property. Assume 0 < " < 1 and
u satis¯es (1.2) and ¹ " 6 ² "¡1 on B4"L(0), with kfkW 1;n 6 ² , ju(0)j 6 1 ¡ b and

Z

B4"L(0)

(j ¹ "j + (1 ¡ ( ¸ n)2)"jruj2) 6 ² (4"L)n¡1:

Then we have T ¡1(0) \ fx 2 B3L"(0) j u(x) = u(0)g = f0g and
¯̄
¯̄ 1

!n¡1(L")n¡1

Z

BL"(0)

e" ¡ 2 ¼

¯̄
¯̄ 6 s:
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We only point out that the place ¹ " 6 ² was used in the proof of [23, propos-
tion 5.6] is where we wanted to conclude that juj 6 1 ¡ ~b on B4L(0) by suitably
restricting ² . But, in fact, this can be done by having only ¹ " 6 ² "¡1. Also, instead
of a C2 estimate for u (or z), we only need a C1; estimate for some  > 0, which
is available even if f 2 W 1;n.

To end the proof of theorem 2.1, we point out that the main di¬erence from that
of [23] is condition (2) of proposition 4.7. For this, note that the constants c1, c7

and c8 in propositions 3.2 and 3.5 of this paper scale like r, hence they are small
constants in the blowup argument. It is not hard, then, to verify proposition 4.7 (2)
above using propositions 3.2 and 3.5 for a rescaled sequence of solutions. The argu-
ment in [23] then shows that the density of the limit varifold kV k is N ¼ , where N
is an integer, Hn¡1 a.e. on the support of kV k.

5. Concluding remarks and applications

5.1. On the Sobolev norm of chemical potential

In this paper we consider the situation where we control the W 1;n-norm of chemical
potential f as " > 0. We encounter a serious di¯ culty in relaxing the control when
we estimate the supremum bound on 1

2
"jruj2 ¡ W=". As noted in the beginning, it

is conjectured that a control of W 1;p for some p > 1
2
n should be su¯ cient to obtain

our result, with the limit mean curvature belonging to Lq space for a smaller q.
This follows from the following heuristic argument. If the interface M is a C1

hypersurface and if H belongs to W 1;p(U) for some p > 1
2
n, the trace of H on M

belongs to Lq(M ) for q > n ¡ 1. If the mean curvature of M is given by H , the well-
known result on the regularity of integral varifold [4] shows that the monotonicity
formula for the scaled energy ((n ¡ 1)-dimensional area) holds for M . Since f
roughly corresponds to the mean curvature  eld of the interface, one expects that
f being in W 1;p(U) for some p > 1

2
n may be su¯ cient to obtain a monotonicity-type

formula, which may also prove all the subsequent recti ability and integrality of the
limit varifold. Quite relevant to this point are recent articles by Sch�atzle [35,36],
where he studied the convergence of integral varifolds with their mean curvature
given by Sobolev functions in W 1;p(U ), p > 1

2
n. His results also strongly suggest

that the multiplicity of the limit varifold in this paper is Hn¡1 a.e. ¼ , namely, no
folding, on M 1 \ ff 1 6= 0g. Geometrically, if there is an odd number folding on
M 1 \ ff 1 6= 0g, it implies that at least one of the interfaces has to bend in a
wrong direction as they converge, which seems unlikely. We would like to resolve
these points in the future.

5.2. Implications to the Cahn{Hilliard equation

Consider a sequence of smooth initial data ui
0, i = 1; : : : , and "i, with

lim sup E"i (u
i
0) < 1; "i ! 0:

Suppose also that there exists a constant m0 2 ( ¡ jU j; jU j) such that
Z

U

ui
0 = m0 for all i:
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Let ui be the solution to the Cahn{Hilliard equation (1.3) with the initial data. As
noted, f i corresponding to ui satis es

E"i (u
i
0) = E"i (u

i(¢; t)) +

Z t

0

Z

U

jrf ij2

for all t > 0. Moreover, Chen [14, lemma 3.4] proved that

kf i(¢; t)kL2(U) 6 C(E"i (ui) + krf i(¢; t)kL2(U))

holds for all t and i for all "i small. Thus
Z t

0

kf i(¢; t)k2
H1(U) 6 C

for all large i. For L1 a.e. t, we have lim inf kf i(¢; t)kH1(U) < 1 by Fatou’s lemma.
We now restrict our attention to n = 2 and such t. With a suitable growth condition
on W (such as W > jujk, k > 2, for all large u) and the Neumann boundary
condition, one may show that there exists a constant c = c(U; kf ikH1(U)) such that
sup juij 6 c. Thus, for n = 2, assumptions A and B are satis ed for a subsequence
on this time slice. Unfortunately, even though we may conclude that there exists a
subsequence for a.e. time slice for which we may apply our result, the choice of the
subsequence may di¬er for each t. Note that the bound on kf i(¢; t)kH1(U) implies
that the time derivative of the total energy stays  nite, not allowing a violent jump
of mass there.
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