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AVOIDING EFFECTIVE PACKING DIMENSION 1 BELOW ARRAY
NONCOMPUTABLE C.E. DEGREES

RODDOWNEYAND JONATHAN STEPHENSON

Abstract. Recent work of Conidis [3] shows that there is a Turing degree with nonzero effective packing
dimension, but which does not contain any set of effective packing dimension 1.
This article shows the existence of such a degree below every c.e. array noncomputable degree, and

hence that they occur below precisely those of the c.e. degrees which are array noncomputable.

§1. Introduction. Packing dimension was independently introduced by Tricot
[20] and Sullivan [19] as a counterpart to the previously established notion of
Hausdorff dimension. Both notions allow one to assign a (possibly noninteger)
dimension to subsets of any metric space. The Hausdorff dimension of a set A is
defined by considering how many open balls of small radius are required if they are
to cover A entirely. The packing dimension of A is a closely related notion, but asks
instead how many disjoint open balls of small radius can be placed so that each has
its center in A.
Effective versions of both notions have been developed by Lutz, Staiger, Athreya
et al. [1, 11, 17]. For our purposes, the characterizations of Mayordomo [13] and
Lutz [12] of, respectively, effective Hausdorff and packing dimension below can be
taken as definitions.

Definition 1.1. LetA be a real (i.e., member of Cantor Space), then the effective
Hausdorff dimension of A is

dim(A) = lim inf
n→∞

K(A � n)
n

,

and the effective packing dimension of A is

Dim(A) = lim sup
n→∞

K(A � n)
n

.

The reader should note that we are ascribing a notion of dimension to a single
real, in the same way that we can use computability theory to give meaning to
randomness of a single real.
These effective notions of dimension have strong links to complexity and algo-
rithmic randomness. Moreover, work of Simpson [15] and Day [4], for example,
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has shown that effective notions of dimension can be used to derive classical results
in mathematics. In discussions with co-workers, Simpson [15] proved that the clas-
sical dimension equals the entropy (generalizing a difficult result of Furstenburg
1967) using effective methods, which were much simpler. Recently Day used effec-
tive packing dimension to give a simple proof of the Kolmogorov-Sinai Theorem
on Ergodic theory.
In many ways, effective packing dimension is quite well behaved on degrees. For
example, we know that each Turing degree obeys a 0-1 Law for effective pack-
ing dimension. That is, complexity extraction procedures given independently by
Bienvenu et al., and Fortnow et al. ([2] and [9], respectively) show that for any real
X , sup{Dim(Y ) | Y ≤T X} is either 0 or 1. These extraction processes both yield
only that the supremum of the packing dimensions of the reals in the degree is 1,
and hence authors wondered if the supremum of 1 was always achieved. Work of
Conidis [3] shows that there are reals X for which the supremum is 1, but for which
that supremum is not attained.1

Conidis’ construction was a direct forcing argument and resulted in a
hyperimmune-free degree. The second author [18] showed that the construction
given by Conidis, which utilizes forcing with computable trees, can be modified to
work below ∅′. That version may be interpreted as a limit-computable construction
with permissions provided by ∅′. In light of this observation one might ask below
which c.e. sets A the construction can be carried out; the obvious restriction is that
A must provide appropriate permissions.
The array noncomputable degrees are a class introduced by Downey, Jockusch
and Stob in [7]. They are noted for their compatibility with constructions requiring
multiple permissions (which we will see arise naturally when one carries out an
approximation-based version of Conidis’ construction). They have also been shown
to form a natural cutoff in the Turing degrees for constructions involving reals with
nonzero effective packing dimension (see for instance [5,6,8]). In our case, a result
of Kummer [10] is most relevant:

Theorem 1.2 (Kummer). If A is an array computable c.e. set, any real X ≤T A
hasDim(X ) = 0.

Moreover, Downey and Greenberg [6] proved the 0-1 Law dichotomy held for
array noncomputable degrees. If a is an array noncomputable c.e. degree, then a has
effective packing dimension 1.
These results show that the only c.e. sets which can possibly provide the necessary
permissions for a construction à la Conidis are the array noncomputable ones. In
this article, we show that every array noncomputable c.e. degree computes a set X
with the desired properties:

Theorem 1.3. Given any array noncomputable c.e. set A, there is a real X ≤T A
such thatDim(X ) > 0 and such that for each Y ≤T X ,Dim(Y ) < 1.
In light ofKummer’s result, this gives a full characterisation of the situationwhich
follows the general pattern observed above:

1Any Martin-Löf random real X has dim(X ) = 1, and the computable reals all have Dim(X ) = 0,
so an unattained supremum is the only difficult case to achieve.
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Corollary 1.4. A c.e. set A is array noncomputable if and only if there is a set
X ≤T A such thatDim(X ) > 0 and for each Y ≤T X ,Dim(Y ) < 1.
We remark that the array noncomputable degrees again show up as quite a
ubiquitous class. Kummer’s other result was that a c.e. degree contains a c.e. set A
where the plain complexity C (A � n) =+ 2 log n for infinitely many n iff the degree
was array noncomputable. There are other characterizations of this class. It is not
yet understood how these combinatorial arguments all inter-relate.
We remark that the proof here is not a simple modification of the earlier
work of the second author, but requires a reasonably delicate argument of some
combinatorial complexity.
Before embarking on our construction, we should pause to note that effective
Hausdorff dimension and effective packing dimension behave in quite distinct ways.
There is no analogous computable extraction procedure which produces sets with
higher effective Hausdorff dimension than a given input. Indeed a result of Miller
confirms this fact directly:

Theorem 1.5 (Miller [14]). There is a set X with effective Hausdorff dimension 12
but which cannot compute any set of higher effective Hausdorff dimension.

The classification of reals with such fractional Hausdorff dimension is still open.

§2. Strategy. Throughout this article, we denote Turing functionals by upper-
caseGreek letters. Wewill let {Φe}e∈� be a computable list of all Turing functionals.
Other notation will be standard, and follows the conventions of Soare [16]. We fix
a single c.e. set A = lims As which is array noncomputable. The remainder of the
article is devoted to constructing a real X ≤T A which satisfies the requirements of
Theorem 1.3.
The simplest characterisation of effective packing dimension is in terms of Kol-
mogorov complexity. If � ∈ 2<�, then we will denote the prefix-free Kolmogorov
complexity of � by K(�). As is conventional we fix a computable decreasing
approximationKs with limit K .
By creating a real X with nonzero effective packing dimension, we will automati-
cally guarantee that for each ε > 0, there is someY ≤T X such thatDim(Y ) > 1−ε.
The difficulty which arises in our construction is thus that we must prevent each
Y ≤T X from having Dim(Y ) = 1.
This calls for us to maintain quite delicate control on complexity throughout
our construction. In order to achieve this, we will work with pruned clumpy trees.
Clumpy trees were introduced as a forcing notion by Downey and Greenberg [6],
and will soon be defined.

Definition 2.1. For each n, we write 2=n to mean the binary strings with length
equal to n, and 2≤n to mean those with length less than or equal to n, respectively. If
� ∈ 2<�, P ⊆ 2<� then �P is the strings formed by concatenating � with members
of P. If � ∈ 2<�, � ∈ 2<� ∪2� write � ≺ � to mean that � is a proper initial segment
of �. P ⊂ 2<� then the ≺-maximal elements of P are called leaves.
A pruned clump is a downward closed subset of a set of the form �2≤|�|, and
which contains at least two leaves of �2≤|�|. We will refer to � as the root of such a
pruned clump.
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If T is a tree we will say that a pruned clumpD is on T if �2≤|�|∩T = D. We say
that a tree T ⊆ 2<� is a pruned clumpy tree if every string � on T which is an initial
segment of a path through T has an extension � which is the root of some pruned
clump on T .
A general intuition which may be useful to the reader is to expect that if T is a
pruned clumpy tree which we consider in our construction, then it will have only
occasional pruned clumps, which are spaced far apart from each other, but that
these pruned clumps will be sites of rapid branching on T .
Our constructionwill be carried outwithin a prototypical treeT−1 which captures
this idea nicely.
Definition 2.2. Let T−1 be the tree formed by taking the union of the following
finite trees Ts−1: T

−1
−1 consists of the empty string together with the string consisting

of a single 0. Let Ts−1 be given by the downward closure of the strings⋃
�∈Ts−1−1

� a leaf of Ts−1−1

�2=|�|02|�|.

Note that if T is a pruned clumpy tree, and we arrange that each pruned clump
on T has a large enough number of leaves, then some of those leaves will be forced
to have quite high complexity, simply because there are not many strings of low
complexity of any given length. In particular, in our construction we will be able to
ensure that every pruned clumpwe build has a leaf �withK(�) ≥ |�|/4. By arranging
for X ∈ 2� to have such leaves among its initial segments, we will guarantee that
Dim(X ) ≥ 1/4.
We will build a sequence {Te}e∈� of c.e. pruned clumpy trees such thatTe ⊆ Te−1
for each e. The real X which satisfies the hypotheses of Theorem 1.3 will be the
unique common path through all of the trees.
We will also make use of the fact that if X is a path through Te , and ΦXe is
total, then by choosing which leaves should be on each of the pruned clumps of Te
carefully, we can maintain some control on ΦXe ; in particular, we will see that we
are able to ensure that Dim(ΦXe ) is able to be bounded away from 1. The following
lemma gives the precise conditions required to achieve this. It is a minor variation
on a result given in [18] (the proof is essentially unchanged), and is inspired by a
similar computation given by Conidis in [3].

Lemma 2.3. Let e ∈ �, and let T ⊆ T−1 be a c.e. pruned clumpy tree given by a
computable enumeration T 1 ⊆ T 2 ⊆ · · · such that:
1. For each s and each � ∈ Ts , if � is the root of a pruned clump on Ts+1, it is
either the root of a pruned clump on Ts or a leaf of Ts , and that all branching in
Ts occurs as part of some pruned clump on Ts ,

2. If �0 ≺ � are roots of pruned clumps on T , then |�| ≥ 4 · 22e+4|�0|,
3. For each pruned clump P on T with root �, there is a string � ∈ 2<� with

|�| = 2−2e−4|�| and such that:
(a) for each leaf � of P, and each �̂ ∈ T such that � � �̂, if x < |�| andΦ�̂e(x)↓,
then Φ�̂e(x) = �(x) and

(b) for each leaf � of P, there is some �̂ ∈ T such that � � �̂ and for each
x < 2−2e−4|�|, Φ�̂e(x)↓.
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If X is a path through T and ΦXe is total, then Dim(Φ
X
e ) < αe for some fixed

αe < 1.

Although we do not prove the lemma in this article, we now briefly discuss
the intuition behind it. Suppose that Te is a pruned clumpy tree which meets the
conditions of the lemma, and that X is a path through Te . Then ΦXe must be total.
If P is a pruned clump on Te , and � is a leaf of P which is an initial segment of X ,
let � be the ≺-least extension of � which is the root of another pruned clump on
Te . Then � ≺ X , and (3) of the lemma ensures that all sufficiently long extensions
�̂ ∈ Te of � have Φ�̂e(x) ↓ for each x < 2−2e−4|�|; and furthermore that all of
these computations agree. Thus, from the leaf � alone, we are able to compute
an initial segment of ΦXe of considerable length. This ensures that initial segment
cannot have particularly high complexity, which in turn will suffice to guarantee
Dim(ΦXe ) < 1.

§3. Overview and terminology. We will be working on requirements for each
e ∈ �, as follows:

Re : either ΦXe is nontotal, or
Dim(ΦXe ) < 1, and for infinitely many 	 ≺ X , K(	) ≥ |	|/4.

Remark 3.1. If Φe is a total reduction, then to meetRe wemust meet the second
of the conditions. Because such reductions exist, satisfyingRe for every e will ensure
that Dim(X ) ≥ 1/4.
For each e, we will guarantee that X satisfies the requirement Re , either by
ensuring that ΦXe is not total, or, if that is not possible, by attempting to make
Te satisfy the condition of Lemma 2.3. Because we will build X as a limit of a
computable approximation, we will be unable to tell which of the two strategies
succeeds for each e.
In addition, the approximate nature of the constructionmeans that our attempt to
build a treeTe meeting the conditions of Lemma 2.3 is not immediately successful—
to satisfy the lemma we make a minor modification to Te after the construction.

At every stage s , we will let Ts−1 be as in Definition 2.2. At the start of stage s , we
will be given trees Ts−1e for each e < s and a string 	s−1 which is our current guess
at an initial segment of X . We will then construct a tree Tse for each e ≤ s , and
define 	s to be some string in Tss . The trees we build will be nested in the sense that
Tse−1 ⊆ Tse at every stage of the construction, but it will not always be the case that
Ts−1e ⊆ Tse .
Recall the definition of array noncomputability, as given in [7].

Definition 3.2. A very strong array is a family F = {Fk}k∈� of uniformly
computable pairwise disjoint finite sets such that |Fk| > |Fl | and maxFl < minFk
whenever k > l , and for which k → maxFk is a computable function.
A c.e. set A is array noncomputable if there is some very strong array {Fk}k∈�
such that for any c.e. setW , there is some k such thatW ∩ Fk = A ∩ Fk .
We note that it follows easily from the definition of array noncomputability
that if A is an array noncomputable c.e. set, then every very strong array meets
the condition of the definition, and furthermore that for each very strong array
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{Fk}k∈� , and each c.e. set W , there are infinitely many k for which such that
W ∩ Fk = A ∩ Fk .
We will use the definition directly to set up permissions provided by A through-
out our construction. To do so, we will first specify a particular very strong array
F = {Fk}k∈�. We will then build a c.e. set W which will be used to request
permission to make changes by challenging the array noncomputability of A.
At each stage of the construction we will take action at a single pruned clump.

Definition 3.3. If 0 ≤ e ≤ s and P ⊆ Ts−1e−1 is a pruned clump such that some
leaf of P is an initial segment of 	s−1, we will say thatRe is working on P at stage s .
If Re is working on a pruned clump P at stage s , we will say that one or more
numbers are assigned to the root � of P at stage s .

At stage s , if we wish to make a change to our set X at the root � of a pruned
clump, we will request permission to do so, by arranging thatW ∩ Fk �= As ∩ Fk
for each number k assigned to �.
Throughout the construction, we may sometimes wish to reassign a number k
to a different string. When we do so, if k is currently assigned to some �, the new
assignment will be to some �0 ≺ �. This will indicate that the permissions provided
by Fk will now be used to request changes toX on extensions of �0. This action will
cause us to devote many boxes Fk to the same string �.
To meet the requirements Re , it will be enough to show that there are infinitely
many different roots � ≺ X of pruned clumps for which any request for permission
is granted. This will be achieved in the following way: each time we are granted
permission to make a change to 	 at the level of �, any permissions which are
assigned to an extension of � will be reassigned to �. This is because we only know
thatW ∩ Fk = A ∩ Fk for infinitely many k, but do not know for which k this is
true. Therefore we must ensure that the permissions associated with any particular
Fk are not “wasted”. At the end of the construction, we will have assigned finitely
many numbers k to each string � ≺ X which is the root of a pruned clump on one
of our trees, and, if W ∩ Fk = A ∩ Fk , and k settles on � as its final assignment,
every request for permission to make changes at the level of � will eventually be
granted.
It is the process of reassignment of permissions which tells us what size the boxes
Fk should be. The size of the set Fk is the number of times which we are able to
use it to request permissions, so it will be important that we choose it to be large
enough to accommodate any permissions which we might request throughout the
construction. Each Fk must be large enough to provide enough permissions to
successfully make any changes at the level of the string � on which k initially is
working, but we must in addition include enough “spare” permissions to allow for
the possibility that k could later be reassigned to work on shorter strings. In general,
we can expect that many numbers k will be assigned to work on a particular string
�. Because we are using a Turing reduction Γ to construct X ≤T A, all of these
numbers will be responsible for permitting changes at �; we will set ΓA(k) to be the
leaf of the pruned clump on T−1 with root � which is an initial segment of 	s , so
that all of the numbers assigned to � provide the same information, and will choose
all of these computations to have the same use (see Figure 1).
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�

�̂

�̂ �

Figure 1. The two triangles represent pruned clumps in T−1, with
roots � and �̂; we have � ≺ �̂ ≺ 	s−1. Two of the leaves on the
clump with root � are � and �̂, the latter being an initial segment of
�̂. Suppose at stage s we are permitted tomake a change at the level
of �, and that � � 	s . Then at stage s , we reassign each k working
on �̂ to instead work on �. We also declare that ΓA(k)[s] = �, with
a large use.

It will be enough if we arrange that |Fk| ≥
4k∑
i=0

(i + 1)(2i+1 + 1) for each k. This

corresponds to the number of permissions needed to move through the leaves on a
pruned clump with root � of length 4k to try to find one which forces divergence
of Φe , for each e ≤ 4k , and, if one of those searches fails, to look for a leaf of
high complexity; as mentioned earlier, we also include enough permissions that the
process can be repeated again on any number of initial segment of �, in case k is
reassigned.
We will now introduce some definitions which we will use throughout our
construction.

Definition 3.4. If Q and P are pruned clumps, we write P ≺ Q if the root of P
is a proper initial segment of the root of Q, and P ∼ Q if P and Q have the same
root. We will write P � Q if P ≺ Q or P ∼ Q.
Notice that if i < j then there will be pruned clumps P ⊂ Ts−1i , Q ⊂ Ts−1j such

that P ∼ Q. It will sometimes be convenient to ignore the distinction between such
clumps, which we will do by referring to the root of a pruned clump rather than to
the clump itself.
In the construction, we will build each tree Te by attending to each pruned clump
within the tree Te−1 individually. Our basic strategy for succeeding on a pruned
clump P on Te−1 has two steps.
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We first seek a leaf � of P which forces divergence, i.e., to arrange that if Y is a
path through Te for which � ≺ Y , then ΦYe is nontotal. We then ask for permission
to make that leaf an initial segment of X ; we may need to change our choice of �
several times as we discover additional halting computations.
If we later discover that every leaf � of P can be extended to some �̂ ∈ Te−1 for
which Φ�̂e halts on a large number of inputs, we switch our strategy to try to make
Dim(ΦXe ) < 1.We ask for permission to “thin” the pruned clump P to get a pruned
clump Q ⊆ P which we can place on Te , which meets condition (3) of Lemma 2.3,
and to choose some leaf � ofQ withK(�) ≥ |�|/4 to be an initial segment ofX . Once
again, our choice of � may need to change as we look for a leaf with high enough
complexity, and we must seek permission to change X to match. We will later refer
to condition (3) as the e-majority vote criterion.
Whether we achieve the goals outlined above will depend on whether we are
granted a sufficient number of permissions by A.

Definition 3.5. If k is assigned to work on a string � at stage s − 1, and As �
maxFk �= As−1 � maxFk then we will say that A permits changes at � at stage s .
We will be building a reduction ΓA throughout the construction, as follows: at
each stage s , if k is assigned to the root � of a pruned clump P on Ts−1, we will set
ΓAs (k) to be the leaf � ofP forwhich � � 	s . The use 
s (k) for this computationwill
be maxFn for the largest n assigned to work on �. In this way, any time A permits
changes at �, As will have changed on the use of that computation. This allows us
to redefine ΓA(k) for every k assigned to �, any time any k meets the permitting
condition defined above.
At each stage s of our construction, we make predictions about which strings will
remain on the tree T te at all stages t > s . For the root � of each pruned clump P on
Tse , we will have a corresponding notion, called e-�-verification. Informally, we will
say that a string � � � is e-�-verified if the only reason we will ever remove � from
T te at some later stage t is if we take action to meet a requirement Ri for i < e in a
way which prevents P from being on T te .
These predictions will tell us how to meet the conditions of Lemma 2.3 for e + 1
as we build Te+1 inside Te .
We will define e-�-verification by recursion on e. We will first define the base case
of (−1)-�-verification, and defer e ≥ 0 until after outlining other concepts used in
the construction.

Definition 3.6. At any stage s of the construction and for any root � of any
pruned clump on Ts−1−1 , every string � � � on Ts−1−1 is −1-�-verified.
In what follows, many of the definitions given depend on a stage s . Typically that
stage will be clear throughout the construction and its verification, but we include
it here to avoid ambiguity.
The next definitions formalize the e-majority vote criterion as well as some
related notions which are key in satisfying Lemma 2.3. This is the point at which
e-�-verification is first discussed. The notions of e-majority vote criterion and
e-�-verification are defined in terms of each other, and we present the former
first.
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Definition 3.7. Suppose that P is a clump on Ts−1e−1 with root �, and � ∈ 2<� .
Let � be a leaf of P.
We will say that � is e-�-extendible at stage s if there is an (e − 1)-�-verified
extension �̂ ∈ Ts−1e−1 of � with the property that Φ

�̂
e [s] � |�| = �, and such that �̂ is

the root of a pruned clump on Ts−1e−1 and |�̂| ≥ 4 · 22e+4|�|. In this case we will say
that �̂ is an e-�-extension of � at stage s .
We will say that � is e-�-extended at stage s if there is an (e − 1)-�-verified e-�-
extension �̂ of � on Ts−1e , and furthermore that for any � ∈ Ts−1e such that � ≺ �,
either �̂ ≺ � or � � �̂.
We will say that � is e-extendible at stage s if � is e-�-extendible for some � ∈ 2<�
of length |�|2−2e−4 at stage s .
We will use e-�-extendibility as the main tool to ensure Dim(ΦXe ) < 1: if enough
of the leaves of a clump P onTse−1 are e-�-extendible for some fixed � of appropriate
length, we can use them to build a pruned clump Q ∼ P on Te which meets the
third condition of Lemma 2.3.
When searching for e-�-extendible strings, we restrict our attention to (e − 1)-
�-verified strings, because these are the strings which we can safely assume
actually will remain on Te−1, unless we are interrupted by a higher priority
requirement.

Definition 3.8. Suppose P is a pruned clump on Ts−1e−1 with root �.
We will say that P meets the e-majority vote criterion at stage s if Ts−1e ∩ P is a
pruned clump, and there is some string � ∈ 2<� of length 2−2e−4|�| such that each
leaf of Ts−1e ∩ P is e-�-extended at stage s .
We now introduce the conditions which tell us when a requirement Re requires
attention at a pruned clump in the tree Tse−1.

Definition 3.9. Suppose P is a clump on Ts−1e−1 with root �, where |�| ≥ e, and
P ∩ Ts−1e is a pruned clump on which Re is working.
Say that requirement Re requires attention due to halting at P at stage s if the leaf
� of P which is an initial segment of 	s−1 is e-extendible at stage s , but P does not
meet the e-majority vote criterion.
If P is a pruned clump in Ts−1e−1 whose root � has |�| ≥ e, sayRe requires attention
due to complexity at P at stage s if P meets the e-majority vote criterion but the leaf
� of P which is an initial segment of 	s−1 has Ks(�) < |�|/4.
If P does not require attention due to halting and does not meet the e-majority
vote criterion, say that the active leaf on P appears to force e-divergence at stage s .
Say that P is the first witness to e-divergence at stage s if P is the ≺-least clump
on Ts−1e−1 with root of length at least e with an active leaf which appears to force
e-divergence at stage s .

The restriction that |�| ≥ e given above ensures that there is a finite computable
bound on the number of times we seek permission to make a change at the level
of �.
We are now ready to complete our definition of e-�-verification.
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Definition 3.10. Let e ≥ 0, and � ∈ Ts−1e . Suppose � ≺ � is the root of a
pruned clump Q on Ts−1e−1 .
We say that � is e-�-verified if � is (e − 1)-�-verified and either
1. the active leaf on Q appears to force e-divergence at stage s or
2. For each �0 ≺ � which is the root of a pruned clump P on Ts−1e−1 such
that P ∩ Ts−1e is a pruned clump, P meets the e-majority vote criterion at
stage s .

There are several intuitions behind this definition: the first is that before we
believe that � will stay on Te , we should first believe that it will stay on Te−1. Thus
e-�-verification implies (e − 1)-�-verification.
The intuition behind the condition (1) of the definition is that if we believe that
the active leaf onQ forces e-divergence, then we assumewe have successfully metRe
by forcing divergence of ΦXe . Then we will not make any future attempts to restrict
which strings are on Te , and therefore verify all of them.
Condition (2) reflects the fact that each timewemeet the e-majority vote criterion,
we will attempt to protect the strings used to do so, and to keep them on Te ; thus
they should also be e-�-verified.
We will only remove e-�-verified strings from Tse at a later stage if required to do
so in order to attend to a requirement acting on an initial segment of �.
We are now ready to specify how we choose where to act at each stage of the
construction. We will focus on a single pruned clump on which some requirement
Re is working, and which requires attention at stage s . If we identify such a pruned
clump, we refer to it as our target for action at stage s . We will choose this target
from a list of potential candidates for action.
We will say that a pair 〈e, P〉 consisting of a number e < s and clump P ⊆ Ts−1e−1 is
a candidate for action at stage s ifRe is working on P at stage s ,P requires attention
at stage s , and furthermore A permits changes at the root of P at stage s .
A candidate for action 〈e, P〉 is the target for action at stage s if it meets each of
the following conditions:

1. there is no pruned clump Q ≺ P such that for some i , 〈i, Q〉 is a candidate for
action at stage s ,

2. there is no requirement i < e which requires attention on a pruned clump
Q ∼ P,

3. there is no pruned clump Q � P and number i < e such that Q is the first
witness to i-divergence at stage s .

Note that the third condition may result in a situation where there is no target for
action even though there are candidates for action.
In the next section, we will outline the construction proper.
We will build the trees Tse by attempting to find strings which force divergence of
Φe , and, if that is not possible, will attempt to meet the e-majority vote criterion
on the pruned clumps in Tse−1. If we meet the e-majority vote criterion on a pruned
clump Q ⊆ Tse−1, we will want to preserve this at all future stages. However, it may
be the case that at a later stage t > s we have a target for action of form 〈i, P〉, where
P � Q. At such a stage, if Ri requires attention at P due to halting, then we will be
forced to abandon our progress on Q. However, if Ri requires attention at P due to
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complexity, we will ensure thatQ remains a pruned clump on T te . This will assist us
in meeting the enumerability criterion required by Lemma 2.3.

§4. The Construction.
Initialization.
At stage 0, we set 	0 to be the string consisting of a single 0.
We will now describe how to use the situation at the end of stage s − 1 of the
construction to carry out stage s .
We will define our reduction Γ alongside the construction. The idea will be to
ensure that if at stage s , a number k is working on some �, we have ΓA(k)[s] = �,
where � is a leaf of a pruned clump with root �, and � is an initial segment of 	s .
After the construction we will give a clean-up process which assigns unused
numbers k to work and makes initial commitments for ΓA(k)’s use. This will be the
same regardless of what kind of action we take at stage s .
Defining the trees Tse and approximation 	

s .
How we proceed at stage s depends on whether there is a target 〈e, P〉 for action,
and, if so, the reason that Re requires attention at P.
In the case that there is a target 〈e, P〉 for action, let � be the root of P. Then we
will ensure � is an initial segment of 	s , but the leaf of P which is an initial segment
of 	s may change. For this reason, we will want to redefine Γ to reflect that fact,
and to reassign permissions.
If there is no target for action, then for each �̂, and eachm assigned to work on �
at stage s , assign m to work on � at stage s + 1, and set ΓA(m)[s] = ΓA(m)[s − 1],
with the use 
s (m) = 
s−1(m).
We are now ready to see the various ways the construction should proceed,
depending on the particular form of action required at stage s

Case 1. No target for action.

If there is no target for action, then for each i < s , define Tsi as follows. If P is the
≺-least pruned clump on Ts−1i−1 on which Ri is working, but which does not meet
the i-majority vote criterion at stage s , then let � be the leaf of P which is an initial
segment of 	s−1, and let

Tsi = T
s−1
i ∪ {� ∈ Tsi−1 | � ≺ �}.

If every pruned clump P on Tsi−1 on which Ri is working meets the u-majority vote
criterion at stage s , let

Tsi = T
s−1
i ∪ {� ∈ Tsi−1 | 	s−1 ≺ �}.

Define 	s to be some leaf � of Tss−1 such that 	
s−1 � �.

Case 2a. Target for action due to halting, and an apparently divergent
computation is found.

Let 〈e, P〉 be the target for action. Suppose that Re requires attention due to
halting at P, and that the root of P is �. Suppose that there is a leaf � of P which is
not e-extendible at stage s .
Then we choose 	s = � (if there are several possible choices, choose the leftmost).
For i < e, let Tsi = T

s−1
i . For e ≤ i < s , let

Tsi = {� ∈ Ts−1i | ¬(� ≺ �)} ∪ {� ∈ 2<� | (∃� ∈ P)[� � �]}.
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For each m which is assigned to work on a string �̂ � � at stage s , assign m to
work on � at stage s + 1. Let n be the largest such number. For each m assigned to
work on � at stage s + 1, set ΓA(m)[s] = � with use 
s (m) = maxFn.

Case 2b. Target for action due to halting, but every leaf is e-extendible.

Let 〈e, P〉 be the target for action. Suppose that Re requires attention due to
halting atP, and that the root ofP is �. Suppose that each leaf � ofP is e-extendible
at stage s .
For each � ∈ 2<� of length |�| · 2−2e−4, define E(�) to be the set of leaves � of P
which are e-�-extendible at stage s . From amongst these strings, choose � for which
|E(�)| is maximal. Let D(�) be a subset of E(�) with exactly 2|�|(1−

∑e
j=0 2

−2j−4)

leaves.2

Choose a set D̂(�) of strings on Ts−1e−1 consisting of one e-�-extension of each
� ∈ D(�). Define 	s to be the leftmost member of D̂(�).
Define Tsi = T

s−1
i for i < e.

There is some ≺-least pruned clump Q � P on Ts−1e−1 on which Re is working,
and such thatQ does not meet the e-majority vote criterion at stage s . Let �0 be the
root of Q, and define

Tse = {� ∈ Ts−1e−1 | ¬(�0 ≺ �)} ∪ {� ∈ 2<� | ∃�̂ ∈ D̂(�)[� � �̂]}.
For e < i < s , define

Tsi = {� ∈ Ts−1i | ¬(�0 ≺ �)} ∪ {� ∈ 2<� | � � 	s}.
For each m which is assigned to work on a string �̂ � � at stage s , assign m to
work on � at stage s + 1. Let n be the largest such number. Let � � 	s be a leaf
of P. For each m assigned to work on � at stage s + 1, set ΓA(m)[s] = � with use

s (m) = maxFn.

Case 3. Target for action due to complexity.

Finally, suppose that 〈e, P〉 is the target for action, thatRe requires attention due
to complexity at P, and that the root of P is �.
For 0 ≤ i < s , let Tsi = Ts−1i .
In this case,Pmeets the e-majority vote criterion.For e ≤ i < s letPi = Ts−1i−1 ∩P.
LetD consist of the numbers i for which Pi is a pruned clump on Ts−1i−1 which meets

the i-majority vote criterion. For each i ∈ D let �i = Φ	
s−1
i [s] � 2−2i−4|�|. Let i0 be

the largest member ofD. Let � be an effectively chosen leaf of Pi0 with the property
thatKs (�) is maximal amongst all such leaves.
Choose strings 	se � 	se+1 � · · · � 	ss−1 � � such that for each i , 	si is a leaf of
Ts−1i . Let 	s = 	ss−1.
For each m which is assigned to work on a string �̂ � � at stage s , assign m to
work on � at stage s + 1. Let n be the largest such number. For each m assigned to
work on � at stage s + 1, set ΓA(m)[s] = � with use 
s (m) = maxFn.
In all of the Cases 1–3, let Tss consist of 	

s together with all of its initial segments.
If at stage s , m is assigned to work on a string �0, and we did not yet specify
how it should be assigned at stage s + 1, assign it to work on �0 again, and set
ΓA(m)[s] = ΓA(m)[s − 1], with use 
s (m) = 
s−1(m).
2We will later see that E(�) has at least this many leaves.
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Requesting permissions.
In each of the above cases, suppose that n is assigned to work on a string �̂ at
stage s + 1, some requirement Re requires attention on a pruned clump with root
�̂ at stage s + 1, but there was no such requirement at stage s . Then enumerate
a single element of Fn into W , in order to ensure that Ws+1 ∩ Fn �= As ∩ Fn; if
Ws ∩ Fn �= As ∩ Fn already, then make no such enumeration.
Assigning new permissions.
Let �1 ≺ �2 ≺ · · · ≺ �k be the roots of the clumps on Ts−1 of which 	s has a
leaf as an initial segment, and on which we assigned no number to work at stage
s . Let n1 < n2 < · · · < nk be the least k numbers that were not assigned to work
on any string at stage s . For 1 ≤ i ≤ k, assign ni to work on �i at stage s + 1. For
1 ≤ i ≤ k, do as follows: if some requirement Re requires attention on a pruned
clump Q with root �i on Tse−1 at stage s + 1, enumerate a single element of Fni into
W , in order to ensure thatWs+1 ∩ Fni �= As ∩ Fni ; ifWs ∩ Fni �= As ∩ Fni already,
then make no such enumeration.
This concludes the construction.

§5. Verification of construction. For each e, let Te = {� ∈ 2<� | � ∈
Tse at cofinitely many stages s}, and X = lims 	s .
We will begin our analysis of the construction by establishing that some of its
basic features function as intended. We will check that the strings 	s come to a limit
X , and that the permission process behaves as intended.

Remark 5.1. Let 0 ≤ i ≤ s . Then Tsi ⊆ Tsi−1, and for each pruned clump P on
Tsi , there is a pruned clump Q on T

s
i−1 such that Q ∼ P.

In addition, 	s ∈ Tsi for each s and i ≤ s , so X is a path through Ti .
Each of these facts is easily verified by checking that they are preserved from one
stage of the construction to the next.

Lemma 5.2. For each s and each i ≤ s , if P is a pruned clump on Tsi with root �,
then P has at least 2|�|(1−

∑i
j=0 2

−2j−4) leaves.

Proof. If i = −1, then P has exactly 2|�| leaves, since in that case P = �2≤|�|.
Now, work by induction on i . Suppose that the result is true of every pruned
clump Q on Tsi−1 for every s . Fix some s , and let P be some pruned clump on T

s
i .

Consider the largest t ≤ s such that P is on T ti but not on T t−1i .
If the construction proceeds via Case 1 at stage t, then there is some string
� ∈ T t−1i−1 such that T ti = T t−1i ∪ {� ∈ T t−1i−1 | � ≺ �}. Let P ∼ Q, where Q is
a pruned clump on T t−1i−1 . The string � must be an initial segment of the common
root of P and Q, and therefore that every leaf of Q is also a leaf of P. But that
implies that P has at least 2|�|(1−

∑i−1
j=0 2

−2j−4) leaves, by induction. This is more than
the minimum required.
If the construction proceeds via Case 2a or 3 at stage t, then there are no pruned
clumps on T ti that were not already on T

t−1
i , and there is nothing to prove.

If the construction proceeds via Case 2b at stage t, then it must be the case that
〈i, Q〉 is the candidate for action at stage t, where Q is the pruned clump on T t−1i−1
with P ∼ Q. In this case, there are at least 2|�|(1−

∑i−1
j=0 2

−2j−4) leaves on Q. But each
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such leaf � is e-�-extendible at stage t for some � ∈ 2<� with |�| = 2−2i−4|�|, where
the � is the root of P. Since there are 22

−2i−4|�| many such �, it follows that there

is some particular � such that at least
2|�|(1−

∑i−1
j=0 2

−2j−4)

22−2i−4|�|
= 2|�|(1−

∑i
j=0 2

−2j−4) of the

leaves of Q are e-�-extendible. So the construction builds a pruned clump with
exactly this many leaves. Hence P has at least 2|�|(1−

∑i
j=0 2

−2j−4) leaves, as desired. �
Corollary 5.3. For each s and each i ≤ s , if P is a pruned clump on Tsi , then
some leaf � of P has K(�) ≥ |�|/4.

Proof. Any prefix-free set of binary strings of length at most |�|/4 can have at
most 2|�|/4 members. However,⎛

⎝1− i∑
j=0

2−2j−4

⎞
⎠ =(

1− 1
12
(1− 4−i−1)

)

≥ 11
12

so that 2|�|(1−
∑i
j=0 2

−2j−4) ≥ 211|�|/12 > 2|�|/2 = 2|�|/4, and therefore P has too many
leaves for them to all have such short descriptions. �
Lemma 5.4. For each e and string �, there are only finitely many stages t at which
there is a target for action of the form 〈e, P〉, where � is the root of a pruned clump P
on Tse−1.
In addition, the strings 	s approach a limiting real X . That is, for each k, there is
some s such that |	s | ≥ k and for each t ≥ s , 	s � k = 	t � k.
Proof. We will prove the first result by induction on the length of � and (within
that) by induction on e.
Fix a number e and string � which is the root of a pruned clump onT−1. Applying
the inductive hypothesis, choose t0 such that for s ≥ t0, 〈i, P〉 is not the target for
action at stage s for any P with root �0 ≺ �, nor for any i < e and clump P with
root �.
Suppose that for some s0 ≥ t0, 	s0 has an initial segment � which is a leaf of some

pruned clump P on Ts0e−1 with root �.
Then P is also on Tse−1 for each s ≥ s0 because after that stage there will never
be a target for action which can cause P to be removed.
Now we check that amongst stages t ≥ s0, 〈e, P〉 can be the target for action at
most finitely many times.
For each leaf � of P there can be at most one stage t at which 〈e, P〉 is the target
for action and at which Re requires attention due to halting at P, since at such a
stage, if � is the leaf of P for which � ≺ 	t−1, we know that � is e-extendible. But
then we either are in Case 2a and define 	t in a way which guarantees that it extends
a leaf �1 of P which is not e-extendible at stage t, or are in Case 2b and have verified
that every leaf of P is e-extendible. In the latter case P will meet the majority vote
criterion at the next stage, and Re will never again require attention due to halting
at P.
Likewise, 〈e, P〉 can be the target for action at a stage t whereRe requires attention
due to complexity at P only finitely many times. At such a stage t we will note that
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the leaf � of P such that � � 	t−1 has Kt(�) < |�|/4. We will then will define 	t to
be an extension of a leaf �̃ of a pruned clump Q ∼ P which is on a tree T t−1i for
some i < s , and such that Kt(�̃) is maximal amongst such leaves. It follows that
Kt(�̃) ≥ |�̃|/4, by Corollary 5.3. Once again, 〈e, P〉 can only be the target at a stage
where Re requires attention due to complexity once for each leaf of P.
Only finitely many requirements ever require attention on the pruned clump P
(namely those Re for which e ≤ |�|). As has been seen, each 〈e, P〉 is a target
for action at finitely many stages. So it follows that eventually 	t � |�| will remain
constant.
We will now check that lims 	s exists as a member of 2�. Note that if 	s has the
root of P as an initial segment and 〈e, P〉 is never a target for action after stage
s , then 	t will still have that root as an initial segment at any stage t ≥ s . Thus it
suffices to show that for any given k, 	s eventually remains at least k in length.
Our proof will be by contradiction. Assume there is some longest string � which
is the root of a pruned clump on T−1 and which is an initial segment of 	s at all
stages s ≥ t of the construction. In addition, choose t large enough that for s ≥ t,
the target 〈e, P〉 for action will never have the property that P has a root �0 � �.
Thus if s ≥ t, a target 〈e, P〉 for action must have the property that the root �1 of P
satisfies � ≺ �1 � 	s .
If such a target exists at a later stage t0, then �1 is an initial segment of 	t0 .
Suppose �1 is ≺-minimal amongst strings which are roots of pruned clumps P for
which there is some stage t0 ≥ t at which 〈e, P〉 is the target for action. Then �1 will
be an initial segment of 	t0 for all sufficiently large t0. This contradicts that � is the
longest such string.
Thus we may assume that there are no stages s ≥ t at which there is a target for
action. So at each stage s > t, and for each e < s ,

Tse ⊇ Ts−1e ∪ {� ∈ Ts−1 | 	s−1 ≺ �},
and 	s is always chosen to be a leaf of Tss−1 which extends 	

s−1. But then 	s an
initial segment �1 � � which is the root of a pruned clump on T−1, and �1 is an
initial segment of 	s at cofinitely many stages s . This gives the desired contradiction.
So lims 	s does exist as a member of 2� . �
Lemma 5.5. If m is assigned to work on �1 and n to work on �2 at some stage s ,
andm < n, then �1 � �2.
Proof. If s is the first stage at which we assign n to work on some string �2, then
for eachm < n,m is assigned to work on a proper initial segment of �2 at that stage.
If n is assigned to work on �3 at stage s − 1 and on �2 at stage s , there is some
i < n such that for i ≤ m < n, we also assign m to work on �2 at stage s , and for
m ≤ i , we assignm to work on the same string �1 ≺ �2 at stages s − 1 and s . So the
condition of the lemma is preserved from one stage to the next. �

Lemma 5.6. Let f(n) = |Fn| =
4n∑
i=0

(i + 1)(2i+1 + 1). For each n, there are at

most f(n) stages s at which we enumerate an element of Fn intoW .

Proof. Observe that if we assign n to work on a string � at some stage s , then at
stage s + 1, we must assign n to work on a string �0 � �.
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Note that if s is the first stage at which we assign n to work on the root of some
pruned clump, that root has length at most 4n, since it is assigned to work on the
shortest root of a pruned clump on Ts−1 which has no number already assigned to
work on it.
Next, note that if we enumerate an element of Fn intoW at stage s , then at that
stage, n is assigned to work on the root of a pruned clump P onwhich a requirement
Re requires attention at stage s , and that furthermore either no requirement Ri
required attention on a pruned clump Q ∼ P at stage s − 1, or n was not assigned
to work on � at stage s − 1.

Definition 5.7. Suppose that at some stage s , we assign n towork on some string
�. We will say that the interval [t0, t1) is dedicated to e on � if for t0 ≤ t < t1,
i) we assign n to work on � at stage t and
ii) for i < e, if Qi is a pruned clump on T ti−1 with root �, then 〈i, Qi〉 is not the
target for action at stage t.

Note that if � is the root of a pruned clump Q on T t0e and [t0, t1) is dedicated to
e on � then Q is on T te for t0 ≤ t ≤ t1.
Fix some number k, and suppose |�| = k, and that [t0, t1) is dedicated to k on �.
Recall that Ri can only require attention on a pruned clump with root � if i ≤ k.
Then if t0 ≤ t < t1 and we enumerate an element of Fn into W at stage t + 1,
it must be the case that Rk requires attention on a pruned clump Q with root � at
stage t + 1. In that case, Q is on T tk−1 at each stage in [t0, t1). We now count the
number of stages t ∈ [t0, t1) at which 〈k,Q〉 can be the target for action. For each
leaf � of Q, there is at most one such stage at which 	t � � and the construction
proceeds via Case 2a, and atmost one such stage at which the construction proceeds
via Case 3—as discussed in Lemma 5.4. The target for action may also be 〈k,Q〉 at
one stage at which the construction proceeds via Case 2b. Thus we enumerate an
element of Fn intoW at most 2k+1 + 1 stages t such that t0 ≤ t < t1 (since this is
one more than double the maximum possible number of leaves on Q).
We now show that for each e, if [t0, t1) is dedicated to e on �, there are at most
(k− e+1)(2k+1 +1) stages t ∈ [t0, t1) at which we enumerate an element of Fn into
W , by backward induction. The base case (e = k) is given above.
Fix e ≤ k − 1, and assume that whenever [t0, t1) is dedicated to e + 1 on �, there
are at most (k − e)(2k+1 + 1) many stages t ∈ [t0 < t < t1) at which we enumerate
an element of Fn intoW .
Suppose that [t0, t1) is dedicated to e on �. Let t2 be the largest number in [t0, t1]
such that [t0, t2) is dedicated to e + 1 on �. There are at most (k − e)(2k+1 + 1)
many stages t such that t0 < t < t2 and at which we enumerate an element of Fn
intoW .
If t2 < t1, then at stage t2, the target for action is of form 〈e,Q〉, where Q
has root �. Thus for t2 ≤ t < t1, only 〈e,Q〉 can be the target for action at
stage t. Applying the reasoning given above in the case e = k, we see that there
are at most 2k+1 + 1 stages t ∈ [t2, t1) at which we enumerate an element of
Fn into W . So the total number of stages t ∈ [t0, t1) at which we do so is at
most (k − e)(2k+1 + 1) + 2k+1 + 1 = (k − e + 1)(2k+1 + 1), completing the
induction.
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Now we take account of the fact that n may be assigned to different strings
throughout the construction. Of the stages at which we assign n to work on the
root of P, there are at most (k + 1)(2k+1 + 1) many at which we enumerate an
element of Fn into W . Because we first assign n to work on a string � for which
|�| ≤ 4n, and at later stages assign n to work on initial segments of �, there are at

most
4n∑
i=0

(i + 1)(2i+1 + 1) stages at which we enumerate an element of Fn intoW ;

this is of course the bound f that we specified. �
Note that our assignment of each number n eventually settles on some string �;
we now name that string.

Definition 5.8. If we assign n to work on � at all stages t ≥ s , we will say that n
settles on � by stage s . If n settles on � by some stage, then we will simply say that
n settles on �.

We will now check that for each e the requirement Re is met. To do so we must
check that X is a path through each Te , and that either Dim(ΦXe ) < 1 and there is
some string 	 ≺ X with |	| ≥ e andK(	) ≥ |	|/4, or that ΦXe is a nontotal function.
In the former case, the required inequality on the effective packing dimension of
ΦXe will be verified indirectly using Lemma 2.3.

Lemma 5.9. Suppose that n0 is a number such that W ∩ Fn0 = A ∩ Fn0 , that
n0 settles on some string � by stage s with |�| ≥ e and that � is the root of a
pruned clump P which is on Tse−1 at every stage t > s . Suppose also that for each
i < e and pruned clump Q � P, Q is not the first witness to i-divergence at any
stage t > s .
Then one of the following conditions holds:

(a) There is a leaf � of P and stage t1 such that for t > t1, 	t has � as an initial
segment, and � is not e-extendible at stage t.

(b) There is a leaf � of P and stage t1 such that for t > t1, 	t has � as an initial
segment, P meets the e-majority vote criterion at stage t+1, andK(�) ≥ |�|/4.

Proof. We proceed by induction on n0. Fix n0 such thatW ∩Fn0 = A∩Fn0 , and
assume the result for n < n0.
Suppose n0 settles on some string � by stage s . Note that at stages t ≥ s , if Q has
a root which is a proper initial segment of �, then 〈i, Q〉 cannot be the target for
action, since that would cause us to assign n0 to a different string.
Fix some number e, and let P ⊂ Tse−1 be a pruned clump with root �. Suppose
that for t ≥ s and i < e,Ri does not require attention on any clumpQ ∼ P at stage
t. Then P is a pruned clump onT te−1 at each stage t ≥ s , since we have just ruled out
all of the possible targets for action which could prevent that. If t0 ≥ s is a stage at
whichRe requires attention atP, then at a later stage t ≥ t0,Wt−1∩Fn0 = At ∩Fn0 .
At the first such stage, At ∩ Fn0 �= At−1 ∩ Fn0 , and either Re no longer requires
attention on P, or 〈e, P〉 is a target for action.
Suppose that for some t1 > s , 	t1 has an initial segment which is a leaf � of P
which is not e-extendible at any stage t ≥ t1. If so, we may choose t1 so that if P
is the first witness to e-divergence at any stage t > t1, then P is the first witness to
e-divergence at stage t1.
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If so, P is the first witness to e-divergence at every stage t ≥ t1. In that case, if
t ≥ t1 and Q has a root �0 � �, 〈i, Q〉 cannot be the target for action at stage t.
Thus 	t � � for all t ≥ t1.
If P is not the first witness to e-divergence at stage t1, then no leaf of P is
e-extendible at any stage t > t1, and there is some leaf �0 of P and t2 > t1 such that
for t > t2, 	t � �0.
Thus in this case the first of the two conditions is satisfied.
Otherwise there is some stage t0 at which every leaf � ofP is e-extendible. Because
limt 	t exists there is some t1 > t0 such that for t ≥ t1, 	t has some fixed leaf � of P
as an initial segment. ButW ∩ Fn0 = A ∩ Fn0 , so if t1 is large enough, Re does not
require attention at P at any stage t ≥ t1. This implies that at each stage t ≥ t1, P
meets the e-majority vote criterion and thatKt(�) ≥ |�|/4. �
Definition 5.10. If P is a pruned clump on Te−1 such that there is a leaf � of
P and stage t1 such that for t > t1, 	t has � as an initial segment, and � is not
e-extendible at stage t, then we will say that � forces e-divergence of X .

Note that in the preceding definition and lemma, P forcing e-divergence merely
guarantees that we never find any (e − 1)-�-verified extensions of � which threaten
to make ΦXe total. We will later see that our terminology is appropriate: if � forces
e-divergence, then ΦXe really is nontotal.

Lemma 5.11. For each n ∈ � let �n be the string on which n settles. For each e,
there are finitely many numbers n such thatW ∩ Fn = A ∩ Fn and �n is not the root
of a pruned clump on Te .
The finitely many exceptions to this assertion are numbers amongst those for which
either |�n | < e or when there is some i ≤ e such that �n is an initial segment of the
root of a pruned clump on Ts−1i−1 which is the first witness to i-divergence at stage s for
all sufficiently large s .

Proof. First, fix some number e. There are finitely many numbers n for which
|�n | < e. Likewise, for each i ≤ e, there is at most one string � which is the root
of a pruned clump on Ts−1i−1 that is the first witness to i-divergence at stage s for all
sufficiently large s , and hence only finitely many n for which � � �n. So the list of
purported potential problems is indeed finite.
Now, fix some n such thatW ∩ Fn = A ∩ Fn. Fix some e and assume the result
of the lemma for each i < e. We will show that it holds of e, too.
Assume that �n does not satisfy either exceptional condition. Note that if either
of the exceptional conditions discussed above holds of �n and e, the same condition
also applies to �n and i , for each i < e.
There are two possible scenarios.
The first is as follows: n settles on �n by some stage t, and �n has a proper initial
segment which is the root of a pruned clump P on Ts−1e−1 such that for s ≥ t, P is
the first witness to e-divergence at stage s . Assume t is large enough that for s ≥ t,
there is no target for action of the form 〈j,Q〉, where the root of Q is an initial
segment of �n. At stages s > t at which there is no target for action, if � is the leaf
of P which is an initial segment of 	s−1, we have Tse = T

s−1
e ∪ {� ∈ Tse−1 | � ≺ �}.

By our inductive hypothesis, �n is the root of a pruned clump on Tse−1 for all
sufficiently large s . Because � ≺ �n, it follows that �n is also the root of a pruned
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clump on Tse . But then �n is the root of a pruned clump on T
s1
e at all stages

s1 ≥ s .
The second scenario is that �n is the root of a pruned clump P on Te−1 with the
property that there is a stage s at which Re requires attention at P due to halting,
and at which the target for action is 〈e, P〉. This stage may be assumed to be the last
stage at which the target for action is of the form 〈j,Q〉, where j ≤ e and � � �n.
In this case we add a pruned clump Q ∼ P to Tse , and never remove it again. �
Lemma 5.12. Fix e and t1. Let � ∈ T t1−1e be a root of a pruned clump P on T t1−1e−1
such that:

1. For each i < e such that a leaf of some pruned clump Pi on Ti−1 forces i-
divergence, � is an extension of the root of the ≺-least such Pi ,

2. Some number n settles on � by stage t1, and furthermore for each i < e, there is
no stage t > t1 at which there is a target for action of the form 〈i, Q〉, whereQ is
a pruned clump on T t−1i−1 such that Q ∼ P, except in case Ri requires attention
due to complexity at Q,

3. P meets the e-majority vote condition at stage t1.

Then P is on T te−1 and meets the e-majority vote criterion at each stage t > t1.

Proof. The only targets for action which might cause P to not be on T te−1 for
some first stage t > t1 are those of the form 〈i, Q〉 where Q ≺ P or 〈i, Q〉 where
i ≤ e and Q ∼ P. In the case where Ri requires attention due to complexity no
pruned clump will be removed. But our assumption rules out any other target for
action. �
We now introduce a new kind of verification, which is called e-permanence.

Definition 5.13. Let e ≥ 0. Say that � ∈ Ts−1e is e-permanent at stage s if for
0 ≤ i < e, � is i-permanent at stage s and either:
1. There is a pruned clump Q with root � and a leaf � such that for each t ≥ s ,
Q is on T te−1, � � 	t , and the active leaf onQ appears to force e-divergence at
stage t, and furthermore that either � � � or � � � or

2. Each pruned clump P on Tse−1 with root � ≺ � for which P∩Ts−1e is a pruned
clump meets the e-majority vote criterion at stage s .

Lemma 5.14. For each e, there is some stage t1 such that for each t > t1, any
� ∈ T te which is e-permanent at stage t is also in T t+1e and is e-permanent at stage
t + 1.

Proof. Fix some e, and assume the result for all i < e.
Let � ≺ X be the root of some pruned clump on Te−1 such that for each i ≤ e
for which a leaf of some pruned clump P forces i-divergence, one such P has a root
which is a proper initial segment of �.
Let t1 be large enough that

1. t1 meets the condition given by the lemma for each i < e and
2. some number n settles on � by stage t1.

Now suppose that � is an e-permanent string on T te at some stage t ≥ t1.
At stages s > t, if i < e and Q is a pruned clump on Ts−1i−1 with a root which is a
proper initial segment of �, 〈i, Q〉 can only be the target if Ri requires attention at
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Q due to complexity (otherwiseQ could not have met the i-majority vote criterion,
and hence � was not i-permanent at stage s − 1).
If a leaf � of some pruned clump P on Te−1 forces e-divergence, then for s ≥ t1,
	s has � as an initial segment and � appears to force e-divergence at stage t. So the
strings which are e-permanent at a stage s ≥ t1 are precisely the (e − 1)-permanent
strings � on Tse such that � � � or � � �. No such string can be removed from Tse
at a stage s at which there is no target for action, nor at a stage at which there is a
target for action because some requirementRi requires attention due to complexity.
Thus � remains e-permanent at all stages s ≥ t.
Otherwise, there is no leaf of any pruned clump on Te which forces e-divergence.
Then every pruned clump P on T t−1e−1 for which P ∩ T t−1e is a pruned clump with
root � meets the e-majority vote criterion at stage t. At a stage s at which there is
no target for action or at which there is a target for action chosen because some
requirement requires attention due to complexity, a pruned clump on Tse−1 cannot
cease to meet the e-majority vote criterion. Once again, � will remain e-permanent
at all stages s ≥ t. �
Lemma 5.15. Suppose that a leaf of some pruned clump P on Te−1 forces e-
divergence of X . Then ΦXe is nontotal.

Proof. Let P have a leaf which forces e-divergence ofX . Assume thatP has root
� such that |�| ≥ e, and that for each i < e such that there is some ≺-least pruned
clump Q on Ti−1 with a leaf which forces i-divergence of X , Q ≺ P (choose P to
be a clump with a longer root, if necessary). Suppose that ΦXe is total. Choose some
stage t0 such that for t > t0, P is on T te−1, such that some n0 settles on � by stage t0,
and such that there is a leaf � of P such that 	t � � for all t > t0.
Let � � � be an initial segment of X such that � ∈ T te−1 for all t > t0. Choose
t1 > t0 such that if �0 � � is the root of any pruned clump P0, the target for action
cannot be 〈i, P0〉 at any stage t > t1. For each i < e such that there is some t2 such
that for each t ≥ t2, � is i-verified at stage t, assume that t1 ≥ t2.
If � is not (e−1)-�-verified at every stage t > t1, then there is some least i < e such
that � is not i-�-verified at every stage t > t1. We will show that this is impossible,
by showing that � is i-�-verified at all sufficiently large stages t. Thus it follows that
� is eventually (e − 1)-�-verified, and since � was an arbitrary extension of �, P
cannot have a leaf which forces e-divergence of X .
By our assumption on P, no leaf of the pruned clump Q ∼ P on Ti−1 appears to
force i-divergence at any stage t ≥ t1.
Find the ≺-least initial segment �1 of X such that some number n settles on �1
by a stage t2 > t1, and that t2 is the largest stage at which there is a target for action
of form 〈i, P1〉, where �1 is the root of a pruned clump P1 on T t2−1i−1 , Ri requires
attention due to halting at P1, and the construction proceeds via Case 2b.
Note that for j < i and P2 ∼ P1 there is never a target for action of the form

〈j, P2〉 at any stage t > t2 except if Rj requires attention due to complexity (or t2
would not be the last stage at which there is a target of form 〈i, P1〉 as specified
above).
At stage t2, consider the ≺-least pruned clump Q � P1 on T t2−1i−1 on which 	

t2−1

is working, and such that Q does not meet the i-majority vote criterion at stage t2.
If Q = P1 then � is i-�-verified at stage t2, by definition.
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Otherwise Q ≺ P1 and �0 ≺ �. But in that case the definition of T t2i ensures that
every pruned clump Q such that P � Q � P1 meets the i-majority vote criterion at
stage t2 + 1, and so � is i-�-verified at stage t2 + 1.
By our choice of t2 and Lemma 5.12, there is no stage t > t2 at which any target
for action could cause � to cease being i-�-verified.
This contradicts the minimality of i , as promised. �
Remark 5.16. For each e and s , the e-permanent strings on Tse are downward
closed, and therefore form a tree.

Lemma 5.17. Suppose that e is a number such that ΦXe is total. For each s , let T̂ se
consist of the strings on Tse which are e-permanent at stage s , and t1 be a number
satisfying the condition of Lemma 5.14.
Then

⋃
s≥t1 T̂e

s
satisfies the conditions of Lemma 2.3.

Proof. Every pruned clump P onTse−1 such thatP∩Tse is a pruned clump on T̂ se
meets the e-majority vote criterion at stage s+1, because its leaves are e-permanent.
This shows that T̂ se meets conditions (2) and (3) of Lemma 2.3.

By Lemma 5.14, we have T̂ se ⊆ ̂Ts+1e for each s ≥ t1. Determining which of the
leaves of Tse is e-permanent is a computable procedure, and so

⋃
s≥t1 T̂

s
e is a c.e.

tree.
Finally, suppose � is the root of a pruned clump on ̂Ts+1e for some s ≥ t1.
Then each string in that pruned clump must be (e − 1)-verified at stage s , because
otherwise there is no way that � can be the root of a pruned clump on Ts+1e which
meets the e-majority vote criterion. Suppose that � ∈ T̂ se . If there is some � � � in
T̂ se , then wemay deduce that � is the root of a pruned clump P on T

s
e−1 which meets

the e-majority vote criterion. Hence P ∩ Tse is a pruned clump, and furthermore
every string in P ∩Tse is e-permanent. Thus � is the root of a pruned clump on T̂ se .
If no such � exists, then � is a leaf of T̂ se .
Thus

⋃
s≥t1 T̂

s
e satisfies the conditions of Lemma 2.3, as desired. �

Lemma 5.18. Dim(X ) ≥ 1
4 .

Proof. If Φe is total, then for infinitely many pruned clumps P on Te with root
� ≺ X , condition (b) of Lemma 5.9 must be met. Thus there is a leaf � of P such
that � ≺ X and K(�) ≥ |�|/4. Therefore Dim(X ) ≥ 1/4. �
Lemma 5.19. X ≤T A.
Proof. We will first check that Γ really is a Turing functional.
To do this, it suffices to check that there are no strings � ≺ � such that for some
n, Γ�(n)↓ �= Γ�(n)↓.
To this end, suppose that at some stage s , we set ΓAs (m) = � for some string �.
Then the use of that computation is 
s (n) = maxFn, where n is the largest number
assigned to work on the root � of the pruned clump P on T−1 of which � is a leaf.
We must check that we will not later define ΓAt (m) to be a different string, unless
At � 
s(m) �= As � 
s(m).
The next stage t at which we define ΓAt (m) may be one at which we have a
target for action of the form 〈e,Q〉, where Q � P. If so, then at that stage t,
let k be the largest number assigned to the root of Q. Then we must have At �
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maxFk �= At−1 � maxFk , since we are permitted to act. Since Q � P, we have
k ≤ m and hence At � 
s (m) �= At−1 � 
s (m). Because A is c.e. it follows that
At � 
s (m) �= As � 
s (m), as required.
Otherwise the next stage t at which we define ΓAt (m) is one at whichAt � 
s (m) �=
At−1 � 
s (m), and at which we define ΓAt (m) = �, with use 
t(m) = 
s(m).
We now note that Γ does not explicitly compute X from A. Nonetheless, we can
readily modify Γ to do so. It is enough to show that if α ≺ A and Γα(m) ↓= �,
then � ≺ X , and that given k, there is some n and sufficiently long α ≺ A for which
Γα(m) ↓= � for a string � of length greater than k.
At each stage s of the construction, ΓAs (m) (if defined) is an initial segment
of 	s .
Suppose that n settles on a string � by stage t, and that t is the last stage at
which the target for action is of the form 〈e, P〉, where P has root �. Then at
that stage we set ΓAt (m) to be the leaf � of P which 	t has as an initial seg-
ment, with use 
t(m) = maxFn, where n is the largest number assigned to �.
At any future stage t0 > t at which At0 � 
t(m) �= At0−1 � 
t(m), we still set
ΓAt0 (m) = �, with use 
t0 (m) = 
t0−1(m) = 
t(m) and at that stage we still
have � � 	t0 . Thus we have ΓA(m) = �, and � is indeed an initial segment
of X .
Now, to compute a desired initial segment of X , simply search through all
computations of the form ΓA(n)—any string output by this process is an initial
segment of X , and sufficiently large n will output an initial segment greater than
any desired length. �
Combining the results of Lemmas 5.17, 5.18, and 5.19, we see that our real X
satisfies the requirements of the main result given by Theorem 1.3, and thus suffices
to prove both that result and Corollary 1.4, our characterization.
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