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In this work we are considering both the one-dimensional and the radially symmetric
versions of the elliptic system ∆u = vp, ∆v = uq in Ω, where p, q > 0, under the
boundary condition u|∂Ω = +∞, v|∂Ω = +∞. It is shown that no positive solutions
exist when pq � 1, while we provide a detailed account of the set of (infinitely many)
positive solutions if pq > 1. The behaviour near the boundary of all solutions is also
elucidated, and symmetric solutions (u, v) are completely characterized in terms of
their minima (u(0), v(0)). Non-symmetric solutions are also deeply studied in the
one-dimensional problem.

1. Introduction

Let Ω ⊂ R
N be a smooth bounded domain. Boundary blow-up elliptic problems of

the form
∆u = f(u) in Ω,

u = +∞ on ∂Ω,

}
(1.1)

regarding the subjects of existence and uniqueness of positive solutions (sometimes
called ‘large’) together with estimates of their rate of divergence to infinity at ∂Ω,
have been the focus of a great number of works. We quote the pioneering papers [5],
[33], [32] and [29] concerning Riemannian geometry and Riemann surfaces and [23]
and [24], where (1.1) arises in a problem in electrohydrodynamics (see also [26],
where stochastic control problems lead to large solutions). A brief account of more
recent literature on the problem is provided by [25], [2], [36], [3], [10], [27], [28], [34],
[1], [31], [4], [37], [9] and [19].

In the specific case of f(u) = up, which is closer in some sense to the nonlin-
earities to be dealt with in this paper, problem (1.1) was considered in [29] for
p = (N + 2)/(N − 2), while later generalizations of the form ∆u = a(x)up, with a
Hölder continuous and positive (up to ∂Ω), were given in [25] (p � 3), [2], [3], [36]
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and [31]. The extension to equations involving the p-Laplacian was first considered
in [10]. In [19] the case where a vanishes on ∂Ω was studied, while a is even allowed
to be unbounded near ∂Ω in [37], [6], [7] and [14] (see an updated account in [15]
and the references included there on this issue). It is also worth remarking that [18]
gives a study case where problem (1.1) arises in population dynamics. Specifically,
−∆u = λ(x)u − a(x)up in Ω, u = +∞ on ∂Ω with p > 1, λ, a Hölder continuous
in Ω, a > 0 in Ω but a|∂Ω = 0 (see also [19]).

However, the corresponding problem for elliptic systems, namely

∆u = f(u, v), x ∈ Ω,

∆v = g(u, v), x ∈ Ω,

u = v = +∞, x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (1.2)

has been barely touched on in the literature, even for the more selective classes of
nonlinearities f , g. As one might expect, the main handicap in dealing with (1.2)
is the lack of results for comparison. Indeed, a natural way to construct solutions
in the scalar case (1.1) is to solve the finite datum Dirichlet problem and then let
the datum grow to infinity. Comparison principles are then instrumental in showing
convergence, say by obtaining suitable estimates. In fact, by means of the method
of subsolutions and supersolutions, comparison is a fundamental tool in the cases of
(1.2) recently studied in [17] and [15]. In [17], −f = λu−u2+buv, −g = µv−v2+cuv
with b, c > 0, so (1.2) falls in the cooperative regime. Regarding [15], f = urvp,
g = uqvs, p, q, r, s > 0 and now (1.2) is of competitive type, being the analysis
restricted to the parameter range (r − 1)(s − 1) − pq � 0 (see further comments
below). It should be remarked upon here that the research developed in the present
paper was the ‘starting point’ for those works.

On the other hand, problems related to (1.2) arise when studying Lotka–Volterra
systems of predator–prey and competitive type, under a zero Dirichlet condition
and variable coefficients, some of them vanishing on whole subdomains of Ω (see [8,
11,12,30]).

In this paper we concentrate our efforts on the (at first sight) simplest case, where
coupling and nonlinearity combine together in (1.2). Namely,

∆u = vp, x ∈ Ω,

∆v = uq, x ∈ Ω,

u = v = +∞, x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (1.3)

where p, q > 0. As will be seen later, it turns out that the analysis of this kind of
system is fairly complicated. Regarding [15], we are dealing here with the comple-
mentary case pq > 1 (termed there as ‘supercritical’), and so no kind of comparison
results can be employed. That is why we are restricting ourselves to the study of
the one-dimensional version:

u′′ = vp, − L < x < L,

v′′ = uq, − L < x < L,

u(±L) = v(±L) = +∞,

⎫⎪⎬
⎪⎭ (1.4)

where L > 0, the prime denotes differentiation with respect to x, and we are
searching for both symmetric and non-symmetric solutions. We are also analysing
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the radially symmetric version of (1.3) where Ω is the ball B(0, R) = {x : |x| < R}
and u(x) = u(r), v(x) = v(r), r = |x|. In this case (1.2) takes the form

d2u

dr2 +
N − 1

r

du

dr
= vp, 0 < r < R,

d2v

dr2 +
N − 1

r

dv

dr
= uq, 0 < r < R,

du

dr |r=0
= 0, u(R) = ∞,

dv

dr |r=0
= 0, v(R) = ∞.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(1.5)

The case of a general domain Ω of R
N will be the subject of future work.

It will be seen below that both problems (1.4), (1.5) admit positive solutions only
when pq > 1, a translation to our setting of the condition p > 1 which appears in a
single equation. But, as a first outstanding difference with respect to the situations
considered before, systems (1.4), (1.5) do not exhibit a unique positive solution.
More precisely, we can find infinitely many positive symmetric solutions to both
problems. We suspect that this non-uniqueness is caused by the fact that our system
is of ‘competitive type’. Moreover, (1.4) also exhibits non-symmetric solutions and
a detailed description of them is provided. It turns out that all solutions share the
same asymptotic behaviour at x = ±L.

We next state our first result concerning (1.4). The proof relies on the study of
the blow-up property for solutions of the Cauchy problem associated with (1.4),
exploiting the scaling invariance of the system.

Theorem 1.1. Problem (1.4) admits a positive symmetric solution if and only if

pq > 1. (1.6)

Moreover, the following properties hold.

(i) Uniqueness. There exists a unique solution (u, v) = (U1(x), V1(x)) to (1.4)
(respectively, (U2(x), V2(x))), positive in x �= 0, under the restriction

inf
(−L,L)

u = 0
(
respectively, inf

(−L,L)
v = 0

)
.

(ii) Multiplicity of solutions. The set of positive symmetric solutions (u, v) to
(1.4) defines a continuous arc joining (U1(x), V1(x)) to (U2(x), V2(x)). More
precisely, the set

Γ = {(inf u, inf v) = (u(0), v(0)) :

(u, v) positive, symmetric, solving (1.4) } ⊂ R̄
2
+

is parametrized by g = (g1, g2) : [0, 1] → R̄
2
+, g continuous, g1 non-decreasing,

g2 non-increasing and g(0) = (U1(0), V1(0)), g(1) = (U2(0), V2(0)) (see fig-
ure 2).

(iii) Asymptotic profile. Every positive symmetric solution (u, v) to (1.4) veri-
fies the following asymptotic estimates:

u(x) ∼ ad(x)−ξ as d(x) → 0+,

v(x) ∼ bd(x)−η as d(x) → 0+,

}
(1.7)
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where d(x) = min{L−x, L+x} and ξ = 2(p+1)/(pq−1), η = 2(q+1)/(pq−1),
while

a = [ξ(ξ + 1)ηp(η + 1)p]1/(pq−1), b = [η(η + 1)ξq(ξ + 1)q]1/(pq−1).

As for solutions to (1.5) our main result is the following.

Theorem 1.2. The problem

∆u = vp, x ∈ B(0, R),
∆v = uq, x ∈ B(0, R),

u = v = +∞, |x| = R,

⎫⎪⎬
⎪⎭ (1.8)

admits a radially symmetric positive solution (u(r), v(r)) if and only if

pq > 1.

The following properties are also satisfied.

(i) Change of scale. If (u, v) solves (1.8) in B(0, R), then for every λ > 0,
(uλ(r), vλ(r)) = (λu(λθr), λvq+1/p+1(λθr)), θ = (pq−1)/2(p+1) is a solution
of (1.8) in B(0, λ−θR).

(ii) Uniqueness. There exists a unique radially symmetric solution (u, v) =
(U1(r), V1(r)) (respectively, (U2(r), V2(r))) to (1.8), positive in B(0, R) \ {0}
under the restriction

inf
r∈[0,R)

u = 0
(
respectively, inf

r∈[0,R)
v = 0

)
.

(iii) Multiplicity. Problem (1.8) admits infinitely many solutions (u(r), v(r)).
Furthermore, the set

ΓR = {(u0, v0) : u0 = inf u, v0 = inf v, (u, v) a radial solution } ⊂ R̄
2
+

is contained in [0, U2(0)]× [0, V1(0)], while u0 varies non-decreasingly, v0 non-
increasingly when (u0, v0) varies with ΓR.

Our description of the set of positive solutions to (1.4) is completed with the
study of its strictly non-symmetric positive solutions. A first result in this direc-
tion asserts, among other things, that every symmetric solution generates two one-
parametric families of non-symmetric positive solutions to (1.4).

Theorem 1.3. A necessary and sufficient condition in order that problem (1.4)
possesses a positive solution (u, v), regardless of its symmetry, is again

pq > 1.

Moreover, such a solution exhibits exactly the same profile at the boundary as a
symmetric one. Namely,

u(x) ∼ ad(x)−ξ, v(x) ∼ bd(x)−η (1.9)
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as d → 0+, where d(x) = min{L − x, L + x}, ξ, η are the exponents, and a, b are
the coefficients in (1.7).

Furthermore, each symmetric positive solution (u, v) to (1.4) with

u0 = inf u, v0 = inf v

gives rise to two non-continuable families of positive solutions satisfying the follow-
ing properties.

(i) There exists σ∗
1 = σ∗

1(u0, v0), positive and continuous in (u0, v0), and a family
{(û(x, σ), v̂(x, σ))}|σ|�σ∗

1
of positive solutions to (1.4) such that (û, v̂)|σ=0 =

(u, v) and

(a) (û(x,−σ), v̂(x,−σ)) = (û(−x, σ), v̂(−x, σ)) for each |σ| � σ∗
1 , −L < x <

L;
(b) inf v̂(· , σ) = v0 for |σ| � σ∗

1 ;
(c) 0 < inf û(· , σ) < u0 if 0 < |σ| < σ∗

1 while inf û(· , σ) = 0 at σ = ±σ∗
1 .

Furthermore, (û(· , σ), v̂(· , σ)) is non-symmetric for σ �= 0.

(ii) Similarly, problem (1.4) exhibits a family {(ũ(x, σ), ṽ(x, σ))}|σ|�σ∗
2

of positive
solutions where σ∗

2 = σ∗
2(u0, v0) is a positive continuous function of (u0, v0),

such that (ũ, ṽ)|σ=0 = (u, v) while (ũ(· , σ), ṽ(· , σ)) is non-symmetric for σ �=
0. In addition,

(a) (ũ(x,−σ), ṽ(x,−σ)) = (ũ(−x, σ), ṽ(−x, σ)) for each |σ| � σ∗
2 , −L < x <

L;
(b) inf ũ(· , σ) = u0 for |σ| � σ∗

2 ;
(c) 0 < inf ṽ(· , σ) < v0 if 0 < |σ| < σ∗

2 while inf v̂(· , σ) = 0 at σ = ±σ∗
2 .

Remark 1.4. For a non-symmetric solution (u, v) in the family {(û, v̂)}|σ|�σ∗
1
, the

parameter σ has the status, after a convenient rescaling, of the derivative of û at a
certain reference point x ∈ (−L, L). σ has a similar meaning regarding (ũ, ṽ). See
remark 6.5 for precise details and a global bifurcation diagram for non-symmetric
positive solutions in the family (û, v̂).

A second, more ambitious statement ensures the existence of a bidimensional con-
tinuum of non-symmetric solutions generated from a symmetric one. An additional
result (theorem 1.6) characterizes the set of all possible positive solutions (u, v) to
problem (1.4) in terms of their infimums u0 = inf u, v0 = inf v by ascertaining
the set C ∈ R

2 where their derivatives (ux(0), vx(0)) must lie. This permits us to
find a broad class of non-symmetric solutions exhibiting the property of being a
continuous deformation of a symmetric positive one.

Theorem 1.5. Let (u, v) be a positive symmetric solution of (1.4) with u0 = inf u,
v0 = inf v, σ∗

i = σ∗
i (u0, v0), i = 1, 2, being the associated values introduced in

theorem 1.3. Then there exists a continuous bidimensional and non-continuable
family of positive solutions

{(ũ(x, σ̄), ṽ(x, σ̄)) : σ̄ = (σ1, σ2) ∈ C0}

such that the following hold.
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Figure 1. The connected piece, C0 containing (0, 0), of the
set of values σ̄ = (σ1, σ2) lying between h− and h+.

(a) The σ̄-domain C0 ⊂ R
2 is an open bounded-connected set, symmetric with

respect to (0, 0) ∈ C0, (ũ(· , σ̄), ṽ(· , σ̄))|σ̄=(0,0) = (u, v), while

ũ(−x, σ̄) = ũ(x,−σ̄), ṽ(−x, σ̄) = ṽ(x,−σ̄), −L < x < L,

for all σ̄ ∈ C0. Moreover, (ũ(· , σ̄), ṽ(· , σ̄)) is non-symmetric if σ̄ �= (0, 0).

(b) There exist continuous decreasing functions h−, h+ : R → R satisfying

(i) h−(σ1) = −h+(−σ1) and

(ii) h+(∓∞) = ±∞, h+(0) = σ∗
2 , h+(σ∗

1) = 0 while b > σ∗
1 exists such that

h− = h+ at σ1 = ±b, being h− < h+ for |σ1| < b.

Moreover, the set C0 can be expressed in terms of such functions as (figure 1)

C0 = {σ̄ : |σ1| < b, h−(σ1) < σ2 < h+(σ1)}. (1.10)

(c) The non-continuable character of the family beyond the boundary ∂C0 of C0
is reflected by the fact that, modulo a suitable scaling, solutions (ũ, ṽ) satisfy
either inf ũ → 0 or inf ṽ → 0 as σ̄ → σ̄0 for every σ̄0 ∈ ∂C0.

As will be shown later in § 7, the functions h−, h+ exclusively depend on u0, v0.
For the purposes of our next statement we introduce the set

C = {σ̄ : h−(σ1) < σ2 < h+(σ1)}. (1.11)

Observe that C0 is none other than the connected piece of C to which (0, 0) belongs.
We are now studying conditions ensuring that some positive (in general, non-
symmetric) solutions can be regarded as a continuous perturbation of a symmetric
one.

Theorem 1.6. Let u0, v0 be positive. Then the open set C defined in (1.11) is
bounded. Furthermore, suppose that (u, v) is an arbitrary positive solution to (1.4)
in (−L, L) with u(0) = u0, v(0) = v0, u′

x(0) = u′
0, v′

x(0) = v′
0. Then the following

properties hold.
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(i) (u′
0, v

′
0) ∈ C.

(ii) If u′
0 and v′

0 have the same sign, i.e. u′
0v

′
0 � 0, then necessarily |u′

0| � σ∗
1 ,

|v′
0| � σ∗

2 . Moreover, (u, v) can be continuously deformed to a symmetric
positive solution.

(iii) If u′
0v

′
0 < 0 but (u′

0, v
′
0) ∈ C0, then (u, v) comes from a symmetric positive

solution by means of a continuous perturbation.

Remark 1.7. As a consequence of the analysis in § 7, it follows that (u′
0, v

′
0) in

(ii) belongs to C0. Theorems 1.5 and 1.6 do not exclude the possible existence of a
non-symmetric solution (u, v) that, in the previous terminology, satisfies u′

0v
′
0 < 0

but (u′
0, v

′
0) /∈ C0 (see remark 7.5 (a)). However, the possibility of deforming it to a

symmetric solution cannot be ensured in this case.

Finally, it should be pointed out that methods similar to the ones developed
here can be used to analyse (1.2) with the nonlinearities f = eu, g = ev. The
subsequent results and the analysis of broader classes of competitive nonlinearities
f(u, v), g(u, v) will be given elsewhere.

The paper is organized as follows: in § 2 we examine the initial-value problem asso-
ciated with the symmetric solutions to (1.4), providing some preliminary properties.
Section 3 is devoted to the statement of the important theorem 3.1, and the proof
of some of its consequences. Section 4 consists of the proof of theorem 3.1. Radial
solutions to (1.5) are studied in § 5 while a full description of the non-symmetric
solutions to (1.4) is contained in § 6.

2. An initial-value problem

In this section we are going to perform a detailed analysis of the positive solutions
to the initial-value problem

u′′ = vp,

v′′ = uq,

}
u(0) = u0, u′(0) = 0,

v(0) = v0, v′(0) = 0,

}
(2.1)

p > 0, q > 0, for u0, v0 � 0, where such equations are considered to be defined for
u � 0, v � 0. We are working with non-negative solutions so it will not be necessary
for the moment to extend uq, vp to the whole of R. The main features of (2.1) are
examined in the following results.

Lemma 2.1. Assume that u0, v0 � 0, (u0, v0) �= (0, 0). Then (2.1) admits a forward
solution (u, v), defined in a non-continuable interval [0, ω), 0 < ω � +∞, which is
(component-wise) positive, increasing, convex and satisfies

lim
x→ω−

u = lim
x→ω−

v = +∞.

Remark 2.2. (a) The assertions of lemma 2.1 are standard. Notice that full sym-
metric solutions in the interval (−ω, ω) can be obtained by reflection with respect
to x = 0.
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(b) It should be stressed that both components u, v blow up at the same points
x = ±ω regardless of whether ω is finite or not. That will remain true even if (u, v)
is non-symmetric.

Lemma 2.3 (comparison principle). Let (u, v), (ū, v̄) be solutions to

u′′ = vp,

v′′ = uq,

}
(2.2)

with non-negative initial data

(u, v, u′, v′)|x=0 = (u0, v0, u
′
0, v

′
0), (ū, v̄, ū′, v̄′)|x=0 = (ū0, v̄0, ū

′
0, v̄

′
0)

such that u0 � ū0, v0 � v̄0, u′
0 � ū′

0, v′
0 � v̄′

0 while (u0, v0, u
′
0, v

′
0) �= (ū0, v̄0, ū

′
0, v̄

′
0).

Then u < ū and v < v̄ in x > 0 wherever both solutions are defined.

Proof. Assume, for instance, that u0 < ū0, v0 � v̄0, with the remaining cases being
handled in the same way. Notice that this implies that u < ū in an interval of the
form [0, ε). If ε is such that u(ε) = ū(ε), then

v(x) = v(0) + v′(0)x +
∫ x

0

∫ s

0
u(t)q dt ds < v̄(0) + v̄′(0)x +

∫ x

0

∫ s

0
ū(t)q dt ds

= v̄(x)

when x ∈ (0, ε). But also

u(ε) = u(0) +
∫ ε

0

∫ s

0
v(t)p dt ds = ū(0) +

∫ ε

0

∫ s

0
v̄(t)q dt ds = ū(ε),

which implies that v ≡ v̄ in [0, ε], a contradiction. Thus, u(x) < ū(x), and similarly
v(x) < v̄(x). The lemma is proved.

Lemma 2.4. Problem (2.1) has a unique solution (u, v) for every u0, v0 � 0,
(u0, v0) �= (0, 0), which will be denoted by (u(· , u0, v0), v(· , u0, v0)). This solution is
increasing in u0 for fixed v0, and in v0 for fixed u0. In the case (u0, v0) = (0, 0),
u = 0, v = 0 is the unique non-negative solution if and only if pq � 1.

Proof. The uniqueness of solutions is a consequence of the standard theory of ordi-
nary differential equations (ODEs) when u0, v0 > 0, or when u0 = 0 and q � 1
or v0 = 0 and p � 1. Hence we only need to treat the cases u0 = 0, v0 > 0 and
u0 = v0 = 0 (the remaining case u0 > 0, v0 = 0 is similar).

Assume first that u0 = 0, v0 > 0 and let (u, v), (ū, v̄) be two solutions of (2.1). We
adapt an argument in [35]. It is easily shown that u(x), ū(x) > 0, v(x), v̄(x) > v0
for x > 0. For δ > 0 small, since (u(x + δ), v(x + δ)) solves (2.2) with positive
initial data (u(δ), v(δ), u′(δ), v′(δ)), we obtain by lemma 2.3 that ū(x) < u(x + δ),
v̄(x) < v(x + δ). Letting δ → 0+ we arrive at ū � u, v̄ � v, and a symmetric
argument proves the uniqueness.

Now consider the case u0 = v0 = 0, and assume that pq � 1. As before we only
prove uniqueness. For δ > 0 define |u|∞,δ = sup[0,δ] u(x), |v|∞,δ = sup[0,δ] v(x).
Then, since

u(x) =
∫ x

0

∫ s

0
v(t)p dt ds,
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we have |u|∞,δ � |v|p∞,δδ
2/2, and symmetrically |v|∞,δ � |u|q∞,δδ

2/2. Combining
these two, we arrive at |u|∞,δ � |u|pq

∞,δ(δ
2/2)p+1, from which |u|∞,δ = 0 for δ small

follows.
The increasing character of the solution with respect to u0 and v0 is a direct

consequence of lemma 2.3.
Finally, uniqueness of non-negative solutions corresponding to initial conditions

u0 = v0 = 0 fails in the complementary range 0 < pq < 1. Indeed, the pair

(ũ(x), ṽ(x)) = (ax|ξ|, bx|η|),

where (cf. theorem 1.1 (iii))

|ξ| = 2(p + 1)/(1 − pq), |η| = 2(q + 1)/(1 − pq),

a = {|ξ|(|ξ| − 1)|η|p(|η| − 1)p}1/(pq−1), b = {|η|(|η| − 1)|ξ|q(|ξ| − 1)q}1/(pq−1),

defines a positive solution to (2.1). The previous ideas also permit us to show
that (ũ, ṽ) is the unique positive solution to (2.1). All other possible non-negative
solutions are defined by (u(x), v(x)) = (0, 0) for 0 � x � τ , (u(x), v(x)) = (ũ(x−τ),
ṽ(x − τ)) if x � τ , τ > 0 arbitrary (cf. [16]). This concludes the proof.

Later in § 6 we perturb the initial conditions (u, v, u′, v′)|x=0 of a positive solution
(u, v) to (2.2). For our purposes there it is convenient to extend the right-hand
sides of (2.2) so that the resulting perturbed solutions can vanish or be negative
somewhere. The required uniqueness result for the extended equation to be used in
this work is stated in our next theorem. We remark that the proof is more involved
than that of lemma 2.4.

Theorem 2.5. Suppose that pq � 1. Then, for arbitrary initial data

(u0, v0, u
′
0, v

′
0) ∈ R

4,

the Cauchy problem

u′′ = |v|p,
v′′ = |u|q,

}
u(0) = u0, u′(0) = u′

0,

v(0) = v0, v′(0) = v′
0

}
(2.3)

possesses a unique solution (u, v).

Proof. We only need to consider the case u0 = 0 with 0 < q < 1 and showing
local uniqueness. The remaining options correspond either to cases where the stan-
dard theory provides local uniqueness or to the symmetric situation v0 = 0 with
0 < p < 1.

First consider the case u0 = 0, u′
0 �= 0, which can be treated according to an

idea in [35]. In fact, define (u, u1, v, v1) = (u, u′, v, v′) and perform the change of
variable x 	→ u near zero. This leads to the equivalent four-dimensional system

dx

du
= u−1

1 ,
du1

du
= |v|pu−1

1 ,
dv

du
= v1u

−1
1 ,

dv1

du
= |u|qu−1

1 ,

under initial conditions x(0) = 0, u1(0) = u′
0, v(0) = 0, v1(0) = v′

0, which falls in
the scope of the standard uniqueness theory.

https://doi.org/10.1017/S0308210500005047 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500005047
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Next, let us deal with the case u0 = u′
0 = 0. Since v0 = v′

0 = 0 implies that (u, v)
is trivial (lemma 2.4), we can assume (v0, v

′
0) �= (0, 0). So initially suppose v0 �= 0.

If (u, v), (ū, v̄) solve (2.3), set y(x) = ū(x) − u(x), z(x) = v̄(x) − v(x). Then, (y, z)
satisfies

y′′ = c(x)z and z′′ = d(x)y,

where

c(x) =
|v̄|p − |v|p

v̄ − v
, d(x) =

ūq − uq

ū − u
,

and where, under the present assumptions, p > 1. Observing that

u(x) = (1
2 |v0|p + o(1))x2, ū(x) = (1

2 |v0|p + o(1))x2,

the representation, for small |x| > 0,

d(x) = q

∫ 1

0

ds

(u(x) + s(ū(x) − u(x)))1−q
,

implies that
|x|2(1−q)|d(x)| � C1

for |x| � δ, δ > 0 small and certain positive C1. On the other hand,

y(x) = x2
∫ 1

0
(1 − s)c(sx)z(sx) ds.

Since c(x) = p|v0|p−2v0 + o(1),

sup
0<|x|<δ

|y(x)|
x2 � C2|z|∞,δ,

where C2 > 0, |z|∞,δ = sup|x|�δ |z(x)|. From the identity

z(x) =
∫ x

0

∫ t

0
s2d(s)

y(s)
s2 ds dt,

we achieve
|z|∞,δ � C2δ

2 sup
|x|�δ

x2|d(x)| |z|∞,δ,

which implies that z = 0 in |x| � δ if δ is small. Hence (u, v) = (ū, v̄) near zero.
The case u0 = u′

0 = v0 = 0 with v′
0 �= 0 is handled in a similar way. In fact,

|x|(p+2)(1−q)|d(x)| = O(1), c(x) = O(|x|p−1),

as x → 0. In the same way,

sup
0<|x|�δ

|y(x)|
|x|p+2 � C3|z′|∞,δ.

Thus

z′(x) =
∫ x

0
sp+2d(s)

y(s)
sp+2 ds
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leads to
|z′|∞,δ � C3δ sup

|x|�δ

|x|p+2|d(x)| |z′|∞,δ,

and we have z′ = 0 in |x| � δ. This again implies that (u, v) = (ū, v̄) near zero.

Below we are mainly interested in determining when a positive solution to (2.1)
blows up, i.e. ω < +∞. Before stating a first partial result in that direction let us
introduce some notation. For a positive solution (u, v) to (2.1) defined in a non-
continuable interval [0, ω) we fix the notation

ω = T (u0, v0).

At the moment, T (u0, v0) could possibly be +∞ in some circumstances.
In the next statement we have in mind that (as will be shown in §§ 3 and 4)

blow-up is only possible in the regime pq > 1.

Lemma 2.6. Assume that pq > 1 and suppose that a certain solution to (2.1) corre-
sponding to positive initial data (u∗

0, v
∗
0) blows up in finite time, i.e. T (u∗

0, v
∗
0) < ∞.

Then, for every positive initial data (u0, v0) the solution (u, v) to (2.1) also blows
up in finite time. In other words,

T (u0, v0) < ∞

for every u0, v0 > 0. Moreover, the following scaling property holds:

T (λu0, λ
(q+1)/(p+1)v0) = λ−(pq−1)/2(p+1)T (u0, v0), λ > 0. (2.4)

Proof. To begin with, it is easily seen that, regardless of the values of p and q,

(uλ, vλ) = (λu(kx), λ(q+1)/(p+1)v(kx)), k = λ(pq−1)/2(p+1) (2.5)

solves (2.1) with data (λu0, λ
(q+1)/(p+1)v0), λ > 0 arbitrary, provided that (u, v)

solves (2.1). In this way, (u(· , u∗
0, v

∗
0), v(· , u∗

0, v
∗
0)) gives rise to a family of solutions

blowing up at times
x = λ−(pq−1)/2(p+1)T (u∗

0, v
∗
0).

Thus, given any positive solution (u, v) to (2.1) with data (u0, v0) it is possible to
find λ so small as to have

λu∗
0 < u0, λ(q+1)/(p+1)v∗

0 < v0,

and lemma 2.3 implies that (u, v) blows up at x = T (u0, v0), satisfying

0 < T (u0, v0) � λ−(pq−1)/2(p+1)T (u∗
0, v

∗
0).

This proves the lemma.

Remarks 2.7. (a) As a consequence of the analysis in §§ 3 and 4 it follows that
pq > 1 is a necessary and sufficient condition for the blow-up of all positive solutions
to (2.1) including those corresponding to semitrivial data of the form (u∗

0, 0) or
(0, v∗

0). In fact, in either of the latter cases those solutions remain positive for
x > 0, a regime where such analysis remains valid.
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(b) An important consequence of the proof of lemma 2.3 is the fact that T (ū0, v̄0) �
T (u∗

0, v
∗
0) provided u∗

0 � ū0, v∗
0 � v̄0. We are now further proving that T (ū0, v̄0) <

T (u∗
0, v

∗
0) if u∗

0 < ū0, v∗
0 < v̄0. Indeed, if in that case T (ū0, v̄0) = T (u∗

0, v
∗
0) := L,

then T (u0, v0) = L in the rectangle [u∗
0, ū0] × [v∗

0 , v̄0]. However, the curve

v0

v∗
0

=
(

u0

u∗
0

)(q+1)/(p+1)

goes into the rectangle while (2.4) says that T strictly decreases along it, which is
not possible. Thus, the assertion follows.

(c) It is well known from the theory of ODEs that the upper and lower limits of
the maximal interval of existence of a solution are only semicontinuous functions
of their initial data (see [21]). In our specific case,

lim inf
(u′

0,v′
0)→(u0,v0)

T (u′
0, v

′
0) � T (u0, v0).

However, it is already known that T (u′
0, v

′
0) � T (u0, v0) when u0 � u′

0, v0 � v′
0.

Therefore,

lim inf
(u′

0,v′
0)→(u0,v0)

T (u′
0, v

′
0) = T (u0, v0)

for every (u0, v0). Nevertheless, it is pointed out here that the continuity of T (u0, v0)
will follow from the analysis in § 3 (corollary 3.5).

3. Blow-up for solutions to (2.1): proof of theorem 1.1

Our main purpose in this section is to state a basic result (theorem 3.1 below) that
is crucial for elucidating the blow-up property for the non-negative (non-trivial)
solutions to (2.1). We are also drawing some important conclusions from it.

Let (u(x), v(x)), 0 � x < ω, be any non-continuable solution to (2.1) correspond-
ing to non-negative initial conditions (u0, v0) �= (0, 0) (for the moment ω = +∞ is
still possible). Writing u1 = u′(x), v1 = v′(x), where the prime denotes differentia-
tion with respect to x, (u, u1, v, v1) solves the equivalent problem:

u′ = u1, u(0) = u0,

u′
1 = vp, u1(0) = 0,

v′ = v1, v(0) = v0,

v′
1 = uq, v1(0) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

According to lemma 2.1, u, u1, v, v1 and their derivatives up to the second order are
all positive. Since (u0, v0) is non-trivial and roles played by u and v are symmetric,
there is no loss of generality if v0 �= 0 is assumed below. In particular, we can
express x = x(u1) (the inverse of x 	→ u1), where 0 � x < ω as 0 < u1 < +∞.
Then u(u1) = u(x(u1)), v(u1) = v(x(u1)), v1(u1) = v1(x(u1)) define the solution
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to the problem
du

du1
=

u1

vp
, u(0) = u0,

dv

du1
=

v1

vp
, v(0) = v0,

dv1

du1
=

uq

vp
, v1(0) = 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.2)

It also follows from lemma 2.1 that u(u1), v(u1), v1(u1) all diverge to +∞ as
u1 → +∞. Next we state our main result in this section. For the sake of clarity, its
proof will be postponed until § 4.

Theorem 3.1. For u0 � 0, v0 > 0 let (u, v, v1) be the solution to (3.2). Then
u(u1), v(u1), v1(u1) satisfy the following asymptotic estimates:

lim
u1→+∞

u

Auα
1

= 1, lim
u1→+∞

v

Buβ
1

= 1, lim
u1→+∞

v1

Cuγ
1

= 1, (3.3)

where the exponents α, β, γ are given by

α =
2(p + 1)

pq + 2p + 1
, β =

2(q + 1)
pq + 2p + 1

, γ =
pq + 2q + 1
pq + 2p + 1

(3.4)

and (A, B, C) is the unique positive solution to

αABp = 1,

βBp+1 = C,

γBpC = Aq.

⎫⎪⎬
⎪⎭ (3.5)

Remark 3.2. We point out that A = (βγ/α(2p+1)/p)p/(pq+2p+1), while an explicit
expression for B and C will not be strictly required in what follows.

As a consequence of theorem 3.1, we can completely answer the blow-up question
for positive solutions to (2.1). This permits us in turn to determine the nature of the
set of positive symmetric solutions to (1.4), providing in addition exact asymptotic
estimates for their profile near the boundary.

Corollary 3.3. Let (u, v) �= (0, 0) be any non-negative solution to (2.1) defined
in a non-continuable interval 0 � x < ω. Then ω < +∞, and so blow-up occurs, if
and only if pq > 1.

Proof. The solution (u(x), v(x)) gives rise to its orbital version

(u(u1), v(u1), v1(u1)),

which solves (3.2). Since u(u1) is increasing with u → +∞ as u1 → +∞, its inverse
function u1 = U1(u), U1(u0) = 0, has the same behaviour. Observe in addition that

du

dx
= U1(u),

thus

ω =
∫ +∞

u0

ds

U1(s)
. (3.6)
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H(   )  

u0

Γ

v0

ε

ε

UL

VL

u1

v1
VL

v1 =    ( q + 1) / ( p + 1)u1

v1 = g(u1)

ULVL

Γ

−( q + 1) / ( p + 1)

Figure 2. The set Γ in the original variables and after
the change u1 = u

−(q+1)/(p+1)
0 v0, v1 = v0.

Therefore, ω < +∞ amounts to the convergence of the integral. Since, in view of
theorem 3.1,

U1(u) ∼
(

u

A

)1/α

, u → +∞, (3.7)

such convergence is equivalent to α < 1, which can be rewritten as pq > 1.

Remark 3.4. The general solution (U(u1, u0, v0), V (u1, u0, v0), V1(u1, u0, v0)) to
(3.2) is as smooth as the equation when observed as a mapping of (u1, u0, v0). The
same holds true with the inverse U1(u, u0, v0) of the function u1 	→ u. Thus

T (u0, v0) =
∫ +∞

u0

ds

U1(s, u0, v0)
=

∫ +∞

0

ds

U1(s − u0, u0, v0)
,

and on this basis the continuity of T with respect to (u0, v0) will be proved. We are
now stating this fact, and postponing its proof until § 4.

Corollary 3.5. The function T (u, v) defined in § 2 is continuous.

An important consequence of the continuity of T and the scale invariance of the
equation is that we can completely determine the set of initial data (u0, v0) for
symmetric solutions to (1.4) in the interval −L < x < L.

Corollary 3.6. Assume that pq > 1 and choose L > 0 arbitrary. Then the set Γ
consisting of all non-negative (u0, v0) such that

T (u0, v0) = L (3.8)

defines a continuous arc {(u0(σ), v0(σ)) ∈ R
2
+ : 0 � σ � 1} joining a certain point

(u0, v0)|σ=0 = (0, VL), VL > 0, to (u0, v0)|σ=1 = (UL, 0), UL > 0, so that u0(σ) is
non-decreasing while v0(σ) is non-increasing. In particular, Γ ⊂ [0, UL] × [0, VL]
(figure 2).

Proof. By theorem 3.1 and since pq > 1, an arbitrary solution to (2.1) with initial
conditions (u0, 0) blows up. The same holds true with the solution corresponding
to (λu0, 0), λ > 0. Then the scaling property (2.4) provides a unique λ1 > 0 such
that

T (λ1u0, 0) = L.
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We set UL = λ1u0. By the same reasoning, for fixed v0 > 0 a positive λ2 can be
found so that, putting VL = λ

(q+1)/(p+1)
2 v0, the equality

T (0, VL) = L

holds. Thus, it follows from lemma 2.3 and remark 2.7 (b) that T (u0, v0) < L
whenever u0 > UL or v0 > VL, and so 0 � u0 � UL, 0 � v0 � VL for every
(u0, v0) satisfying (3.8). Therefore, Γ is bounded and meets the u0- and v0-axes,
respectively, at (UL, 0), (0, VL).

We now claim that for every 0 < u0 < UL there is at least a (u0, v0) such that
T (u0, v0) = L. Indeed, T (u0, 0) > L if u0 < UL, T (u0, VL) � L, while in addition
T (u0, ·) is continuous in 0 � v0 � VL. Hence the claim follows. Unfortunately, it is
not possible to ensure the uniqueness of such a solution for each u0.

To study the form of Γ in the set Q := [0, UL]×[0, VL] it is convenient to introduce
the coordinates

u1 = u
−(q+1)/(p+1)
0 v0, v1 = v0, u0 > 0,

and define H as the mapping (u0, v0) 	→ (u1, v1). Then the image of Q1 = Q\{u0 =
0} is

H(Q1) = {(u1, v1) : u1 > 0, 0 � v1 � min{U
(q+1)/(p+1)
L u1, VL}}

(see figure 2). On the other hand, it is implicit in (2.4) that every curve u1 = c,
c > 0, contains exactly a unique point (u0, v0) with T (u0, v0) = L. Thus, to every
u1 > 0 corresponds a unique solution (u1, v1) ∈ H(Q1) of the transformed equation

T1(u1, v1) = L,

where T1(u1, v1) = T ((u−1
1 v1)(p+1)/(q+1), v1). The continuity of T and a compact-

ness argument then show that the image H(Γ ) of Γ is the graph of a continu-
ous function v1 = g(u1), u1 > 0. Remark 2.7 (b) further implies that g is non-
decreasing. Finally, as (UL, 0) and (0, VL) are the unique solutions of (3.8) in the
u0- and v0-axes, it follows from the continuity of T that limu1→0+ g(u1) = 0 while
limu1→+∞ g(u1) = VL. Thus,

Γ = H−1{(u1, g(u1)) : u1 > 0} ∪ {(UL, 0), (0, VL)}.

This proves the lemma.

A final consequence of theorem 3.1 is the rate of blow-up of solutions to (1.4).

Corollary 3.7. Assume that pq > 1 and let (u, v) be a positive solution to (1.4).
Then

u(x) ∼ (ξ(ξ + 1)ηp(η + 1)p)1/(pq−1)d(x)−ξ as x → ±L,

v(x) ∼ (η(η + 1)ξq(ξ + 1)q)1/(pq−1)d(x)−η as x → ±L,

}
(3.9)

where d(x) = min{L − x, L + x}, and ξ = 2(p + 1)/(pq − 1), η = 2(q + 1)/(pq − 1).

Proof. From the proof of corollary 3.3 (replacing ω by L) it follows that∫ ∞

u(x)

ds

U1(s)
= L − x.
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Estimate (3.7) then yields

u(x) ∼
(

αA1/α

1 − α

)α/(1−α)

(L − x)−(α/(1−α))

as x → L, and similarly as x → −L. A little algebra and the use of the expression
of A provided in remark 3.2 leads to the first expression in (3.9). The second one
is shown in a similar way. This proves the corollary.

Proof of theorem 1.1. Corollaries 3.3 and 3.6 both imply that pq > 1 is a necessary
and sufficient condition for the solvability of (1.4) in any domain, together with
point (ii) in theorem 1.1. The argument at the beginning of the proof of corollary 3.6
implies the uniqueness assertion in (i). In this case observe that (U1(x), V1(x)),
(U2(x), V2(x)) are the solutions to (2.1) corresponding to initial data (UL, 0), (0, VL),
respectively. Finally, the asymptotic profile of the symmetric positive solutions near
x = ±L has been obtained in corollary 3.7.

4. Proof of theorem 3.1

Proof of theorem 3.1. Let (u(x), v(x)) be the solution to (2.1) corresponding to
initial conditions u0 � 0, v0 > 0, while (u(u1), v(u1), v1(u1)), u1 � 0, stands for
the associated (orbital) solution to (3.2). As pointed out earlier, u(u1) → +∞,
v(u1) → +∞, v1(u1) → +∞ as u1 → +∞.

Let us now introduce the normalization

u = X(u1)uα
1 , v = Y (u1)u

β
1 , v1 = Z(u1)u

γ
1 , u1 > 0, (4.1)

where α, β, γ are the exponents introduced in (3.4). Then the coefficients X, Y , Z
satisfy the equation

u1
dX

du1
=

1
Y p

− αX, u1
dY

du1
=

Z

Y p
− βY, u1

dZ

du1
=

Xq

Y p
− γZ, u1 > 0,

which, after the change u1 = et, can be written as the autonomous equation

dX

dt
=

1
Y p

− αX,

dY

dt
=

Z

Y p
− βY,

dZ1

dt
=

Xq

Y p
− γZ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

t ∈ R. (4.2)

It should be observed that positive solutions (u, v, v1) to (3.1) give rise to positive
solutions (X, Y, Z) to (4.2), and vice versa. On the other hand, the octant R

3
+ =

{X > 0, Y > 0, Z > 0} is invariant for (4.2). Thus, positive solutions to (4.2)
are characterized as those (X, Y, Z) having positive initial data. Finally, notice that
P = (A, B, C) (A, B, C given by (3.5)) is the unique positive equilibrium of (4.2).

In order to prove the estimates (3.3), it must then be shown that every positive
solution (X, Y, Z) to (4.2) is attracted by the equilibrium P , i.e.

(X(t), Y (t), Z(t)) → (A, B, C), t → +∞. (4.3)
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Thus, a first step in this direction is checking the local stability of P . The lineariza-
tion of equation (4.2) at P = (A, B, C) has the coefficients matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

−α −p
βγ

α
A−(q+1) 0

0 −β(p + 1) αA

αqAq −p
βγ

α
A−1 −γ

⎞
⎟⎟⎟⎟⎟⎠ . (4.4)

Its characteristic polynomial is p(λ) = λ3 + a1λ
2 + a2λ + a3, with coefficients given

by
a1 = α + β(p + 1) + γ,

a2 = αβ(p + 1) + αγ + βγ(2p + 1),
a3 = αβγ(pq + 2p + 1).

⎫⎪⎬
⎪⎭ (4.5)

Since a1, a3 are positive, the remaining Routh–Hurwitz condition for asymptotic
stability a1a2 − a3 > 0 reads as

{α + β(p + 1) + γ}{αβ(p + 1) + αγ + βγ(2p + 1)} > αβγ(pq + 2p + 1),

which is equivalent to

{2(p + 1) + 2(p + 1)(q + 1) + pq + 2q + 1}
× {4(p + 1)2(q + 1) + 2(p + 1)(pq + 2q + 1) + 2(2p + 1)(q + 1)(pq + 2q + 1)}

> 4(p + 1)(q + 1)(pq + 2p + 1)(pq + 2q + 1), p, q > 0.

A bit of computation shows that the last inequality holds since it amounts to the
positivity of the sixth-degree symmetric polynomial in p, q, 4p3q3 + 17p2q3 + · · · +
34p2 + 45p + 18 (the omitted remaining eleven terms are positive!) when p, q > 0.
Anyway, the asymptotic stability of P will also be a byproduct of the analysis of
the dynamics of (4.2) to be given in a moment.

However, we are proving a stronger property for P : it is a global attractor for all
the positive solutions to (4.2). This will be shown in a series of steps. The first one
consists of showing that

Z = h(X, Y ), X > 0, Y > 0,

with

h(X, Y ) =
Xq+1

q + 1
+

Y p+1

p + 1
,

defines a global and exponentially attracting invariant manifold M to (4.2). In fact,
equations in (4.2) can be written as[

Xq+1

q + 1

]′
+ αXq+1 =

Xq

Y p
,

[
Y p+1

p + 1

]′
+ βY p+1 = Z, Z ′ + γZ =

Xq

Y p
.

Observing that γ + 1 = α(q + 1) = β(p + 1), it follows that[
e(γ+1)t

(
Z − Xq+1

q + 1
+

Y p+1

p + 1

)]′
= 0,
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which implies that
Z(t) = h(X(t), Y (t)) − C0e−(γ+1)t,

where C0 = h(X(0), Y (0)) − Z(0). This shows the stated property. Notice that P
must lie in M, which is also a direct consequence of the equalities

Aq+1

q + 1
+

Bp+1

p + 1
=

{
γ

α(q + 1)
+

1
β(p + 1)

}
C,

γ

α(q + 1)
+

1
β(p + 1)

= 1.

Due to the attracting character of M, a second step towards getting an insight
of the global behaviour of the dynamics of (4.2) is given by studying its restriction
to M, which is governed by the equations

X ′ =
1

Y p
− αX,

Y ′ =
1

q + 1
Xq+1

Y p
− γ

p + 1
Y.

⎫⎪⎪⎬
⎪⎪⎭ (4.6)

It can be checked that the following assertions hold:

(a) the first quadrant R
2
+ = {X > 0, Y > 0} is invariant for (4.6),

(b) PM = (A, B) is its unique positive equilibrium point, and

(c) the divergence

∂

∂X

(
1

Y p
− αX

)
+

∂

∂Y

(
1

q + 1
Xq+1

Y p
− γ

p + 1
Y

)

is negative in X > 0, Y > 0.

This last property ensures that (4.6) cannot exhibit closed orbits in R
2
+.

On the other hand, PM = (A, B) is asymptotically stable for (4.6). Indeed, the
coefficients matrix of the linearized equation around PM is

AM =

⎛
⎜⎜⎝

−α −pα
A

B

γ

(
q + 1
p + 1

)
B

A
−γ

⎞
⎟⎟⎠ ,

with characteristic polynomial pM(λ) = λ2+(α+γ)λ+2γ. Therefore, its eigenvalues
λ1, λ2 both have negative real parts.

It should now be remarked that, due to the invariant character of M, λ1, λ2 are
also eigenvalues of A, given by (4.4). Thus, the third eigenvalue λ3 is negative and
given by (see (4.5))

λ3 =
det A
λ1λ2

= −αβ(pq + 2p + 1)
2

.

In particular, this again shows the asymptotic stability of P = (A, B, C).
Finally, due to the asymptotic stability of PM and the fact that (4.6) does not

admit closed orbits, a standard application of Poincaré–Bendixon theorem [21]
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implies that PM attracts all positive solutions to (4.6), i.e. every positive solution
(X, Y ) satisfies

(X(t), Y (t)) → (A, B) as t → +∞.

To conclude the proof of the global attractiveness of P = (A, B, C) we are com-
bining in what follows both the attractiveness of M and the global attractiveness
of PM with respect to the positive solutions to the reduced equation (4.6).

We begin with some preliminary technical remarks. For P0 = (X0, Y0, Z0) set
φ(t, P0) = (X(t), Y (t), Z(t)) the solution to (4.2) with (X, Y, Z)|t=0 = P0. Then,
performing a local rectification near P of the field associated with (4.2) it is possible
to find a small neighbourhood Ω of P , with smooth boundary ∂Ω, such that if
φ(t0, P0) ∈ ∂Ω for a certain t0, then φ(t, P0) ∈ Ω for t > t0. In addition φ(t, P0) → P
as t → +∞. In particular, the field (X ′, Y ′, Z ′) = (Y −p−αX, ZY −p−βY, XqY −p−
γZ) points inward Ω at every (X, Y, Z) ∈ ∂Ω.

Put ΩM = Ω ∩ M and for any compact K ⊂ R
2
+ set KM = {(X, Y, h(X, Y )) :

(X, Y ) ∈ K}. Since φ(t, P0) reaches ΩM for every P0 ∈ KM, an application
(see [22]) of the implicit function theorem leads to the existence of a neighbourhood

N = {(X, Y, Z) ∈ R
3
+ : dist((X, Y ), K) � ε, |Z − h(X, Y )| � δ}, ε, δ > 0,

of KM and of a certain finite time tK such that φ(t, P0) ∈ Ω for every P0 ∈ N and
t > tK .

A first consequence is the fact that any positive semiorbit {φ(t, P0) : t � 0} to
(4.2) with {(X(t), Y (t)) : t � 0} ⊂ K ⊂ R

2
+, for a certain compact K, satisfies

φ(t, P0) → P as t → +∞. Indeed, since M is attracting, then φ(t, P0) ∈ N for
large t.

As a second conclusion, if a positive semiorbit {φ(t, P0) : t � 0} has

(X(tn), Y (tn)) ∈ K

for a certain compact K ⊂ R
2
+ and a sequence tn → +∞, then again φ(t, P0) → P

as t → +∞.
Now, let us choose any positive solution (X, Y, Z) to (4.2) coming, via (4.1), from

a solution to the initial-value problem (3.1). We claim that

Z(t) < h(X(t), Y (t)) (4.7)

for t < 0 and |t| large (a proof is delayed to remarks 4.1 below). As M is invariant
this means that (4.7) holds for any t and so

Z(t) = h(X(t), Y (t)) − C0e−(γ+1)t, t ∈ R,

with C0 > 0. Therefore, the component (X(t), Y (t)) of any positive solution to
(4.2) satisfies the following non-autonomous equation:

X ′ =
1

Y p
− αX,

Y ′ =
1

Y p

(
Xq+1

q + 1
− C0e−(γ+1)t − γ

p + 1
Y p+1

)
.

⎫⎪⎪⎬
⎪⎪⎭ (4.8)
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Y Y

B B

X

S4, t

X' = 0

A At1
At0

C

S3, t S2,t

S1, t

Ct1

Ct0

Ct

X

S4, t

X' = 0

A At1
At0

C

S3, t S2,t

S1, t

Ct1

Ct0

Ct

(a) (b)

Figure 3. Options (a) (left) and (b) (right).

For immediate use we are setting the t-variable sectors

S1,t = {X ′ > 0, Y ′ > 0}, S2,t = {X ′ < 0, Y ′ > 0},

S3,t = {X ′ < 0, Y ′ < 0}, S4,t = {X ′ > 0, Y ′ < 0},

denoting by Ct the mobile null cline Y ′ = 0, namely,

Y =
(

p + 1
γ

)1/p+1(
Xq+1

q + 1
− C0e−(γ+1)t

)1/p+1

+
, X > 0,

while (At, Bt) will denote the unique positive point where X ′ = 0, Y ′ = 0 at time t.
Observe that (At, Bt) → (A, B) while the curve Ct → C as t → +∞, where C is
the positive null cline Y ′ = 0 corresponding to (4.6), i.e.

Xq+1

q + 1
−

(
γ

p
+ 1

)
Y p+1 = 0.

Our immediate and final objective will be to show that (X(t), Y (t)) → (A, B) as
t → +∞, whatever the positive solution (X, Y, Z) to (4.2) is. In what follows, several
different possibilities will be considered, all of them leading to this conclusion. Our
first remark is that

(X(t), Y (t)) ∈ S3,t or (X(t), Y (t)) ∈ S4,t (4.9)

for t < 0 and |t| large, provided, respectively, that the initial conditions (u0, v0)
satisfy u0 > 0 or u0 = 0 (v0 > 0 in both cases; see remarks 4.1 below). We are
assuming the former option in what follows since, in any case, the reasoning is
unaffected by this initial assumption.

Next observe that if a solution (X, Y ) to (4.8) satisfies (X(t), Y (t)) ∈ Si,t for t
greater than a certain t0 and some 1 � i � 4, then (X, Y ) becomes bounded and by
monotonicity (X(t), Y (t)) → (A, B) as t → +∞. Since Z = h(X, Y ), (X, Y, Z) → P
as t → +∞.

Thus, the remaining option is that (X(t), Y (t)) leaves every Si,t after a finite
time t and even in this case we are showing that (X, Y ) → (A, B) as t → +∞.
Since (X, Y ) starts at S3,t and we are supposing that it leaves S3,t at a finite time,
then only the following options are possible:

(a) (X, Y ) exits S3,t after reaching X ′ = 0 at the component 0 < X � A;
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Y Y

B B

X

S4, t

X' = 0

A At1
At0

C

S3, t S2,t

S1, t

Ct1

Ct0

Ct

X

S4, t

X' = 0

A At0

C
S3, t

S1, t

Cta Ct0

Ct

(a) (b)

Y(t1)

Y3

Ctb

Figure 4. A transition S3,t to S2,t (a) and a possible behaviour in case (i) after
transitions S3,t to S2,t and S2,t to S3,t at, respectively, t = ta, t = tb (b).

(b) (X, Y ) leaves S3,t at some time t after crossing X ′ = 0 at A < X � At

(figure 3);

(c) (X, Y ) leaves S3,t after meeting Ct into the region X ′ � 0.

In case (a), (X, Y ) strictly enters S4,t and then exits this region at finite time
after reaching the mobile null cline Ct at a first time t = t1. It should be remarked
that (X(t1), Y (t1)) �= (At1 , Bt1). Indeed, if on the contrary equality holds, then
X ′(t1) = Y ′(t1) = X ′′(t1) = 0 (where the prime denotes differentiation with respect
to t), while

Y ′′(t1) = B−p
t1 C0(γ + 1)e−(γ+1)t1 > 0, X ′′′(t1) = −pB−p−1

t1 Y ′′(t1) < 0.

Since X(t) = X ′′′(t1)(t − t1)3/6 + o((t − t1)3) this means that X ′ < 0 for t �= t1
where Y ′ < 0 for t < t1 and Y ′ > 0 for t > t1 (0 < |t − t1| small). Thus the only
way of reaching (At, Bt) at t = t1 is having X ′ < 0, Y ′ < 0 (i.e. (X(t), Y (t)) ∈ S3,t)
for t < t1, |t− t1| small, and this is not the situation in the present case. Therefore,
(X, Y ) enters S1,t after t = t1 and finally reaches S2,t at finite time. Exactly in the
same way, the solution (X, Y ) also reaches S2,t in case (b) after crossing {X ′ =
0, A � X � At0}, S4,t and S1,t, respectively.

In case (c) define t1 = sup{t : (X(τ), Y (τ)) ∈ S̄3,t for each τ � t} and assume
that t1 < +∞ since the opposite implies that (X, Y ) → (A, B) as t → +∞. Then
there exists t2 > t1 such that (X, Y )|t=t2 ∈ S2,t2 . Once (X, Y ) reaches S2,t at t = t2,
the only possible options are the following.

(i) (X(t), Y (t)) ∈ S2,t ∪ S3,t = {X ′ � 0} for t � t2 but not discarding infinitely
many transitions between S2,t and S3,t as t → +∞ (due to analyticity, only
a finite number of transitions is possible for bounded t!).

(ii) (X(t), Y (t)) ∈ S3,t at some t = t3, t3 > t2 and (X, Y ) satisfies option (a) in
t � t3.

(iii) (X(t), Y (t)) ∈ S3,t for some t = t′3, t′3 > t2 and (X, Y ) satisfies option (b) in
t � t′3.

In case (i) we claim that (X, Y ) remains bounded for t � t2. In fact, we have
on one hand that Y � (αX)−1/p (the only possible contact of (X, Y ) with the

https://doi.org/10.1017/S0308210500005047 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500005047
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null cline X ′ = 0 is the point (At, Bt)). On the other hand, A < X(t) < X(t2)
for t > t2 since X(t) = A at a finite time t implies Y (t) > B (Y (t) = B leads
to option (a)) and this, in turn, forces (X, Y ) to enter S3 and reach X ′ = 0 at
a finite later time (option (a)) which is not the present case. In addition, either
γY p+1/p + 1 � Xq+1/q + 1 for t � t2, in which case (X, Y ) remains bounded, or
γY p+1(t3)/p + 1 > Xq+1(t3)/q + 1 at a later time t3 > t2 (figure 4). Since Y ′(t3) <
0 (and so Y (t) < Y3 := Y (t3) for t > t3, t close to t3), Y will never again reach
the value Y3 because Y (t) should be decreasing when approaching Y3 from below.
Thus Y (t) � Y3 for t � t3 and then (X, Y ) also remains bounded. As pointed out
above, this entails (X, Y ) → (A, B) as t → +∞.

In both options (ii) and (iii), (X, Y ) returns to S2,t in finite time. Thus, (X, Y )
may either perform a finite number of returns to S2,t following (ii) or (iii) until it
chooses option (i) (and then (X, Y ) asymptotically converges to (A, B)) or (X, Y )
returns infinitely many times to S2,t by means of either (ii) or (iii). However, in
this last assumption, (X, Y ) meets the compact segment K1 = {(X, Y ) : 0 � X �
A, Y = B} (see remarks 4.1 below) every time it crosses X ′ = 0 in (ii), while
(X, Y ) meets the compact arc K2 = {(X, Y ) : A � X � At0 , Y p = αX} every time
it crosses X ′ = 0 in option (iii). In both cases, (X, Y ) passes through the compact
K1 ∪K2 infinitely many times as t → +∞ and, as also remarked before, this entails
that (X, Y ) → (A, B) as t → +∞. This completes the proof of theorem 3.1.

Proof of corollary 3.5. Suppose with no loss of generality that v0 > 0 and assume
that (u0n, v0n) → (u0, v0). To prove the continuity of T write (corollary 3.3)

T (u0n, v0n) =
{∫ δ

0
+

∫ ū

δ

+
∫ +∞

ū

}
ds

U1(s − u0n, u0n, v0n)
, (4.10)

with 0 < δ < ū to be chosen now. Regarding the first integral, the continuous
dependence of the solution (u, v, v1) = (U(u1, u0, v0), V (u1, u0, v0), V1(u1, u0, v0))
to (3.2) on (u0, v0), the fact that v0 > 0 and so the v0n are bounded away from
zero, and

1
2U2

1 =
∫ u

u0n

V (U1(s, u0n, v0n), u0n, v0n)p ds

imply that positive constants δ, k1 and k2, not depending on n, can be found so
that

2k1(u − u0n) � U2
1 (u, u0n, v0n) � 2k2(u − u0n)

for all |u − u0n| � δ and n ∈ N. Lebesgue’s dominated convergence theorem then
implies the convergence of the first integral in (4.10) to the corresponding one
with u0, v0 replacing u0n, v0n in the integrand. The convergence of the second
integral follows from the uniform convergence of U1(u, u0n, v0n) to U1(u, u0, v0) in
any bounded interval J ⊂ R+. As for the third integral we deal with U(u1, u0n, v0n)
instead of the inverse U1 and write

U(u1, u0n, v0n) = X(t, u0n, v0n)uα
1 , t = log u1.

We now have that

(X(· , u0n, v0n), Y (· , u0n, v0n), Z(· , u0n, v0n))
→ (X(· , u0, v0), Y (· , u0, v0), Z(· , u0, v0))
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in bounded intervals, in particular, for any fixed t = t1. Since the last solution lies
in the neighbourhood Ω quoted in the proof of theorem 3.1 for t � t̄ > t1, the same
holds with the solutions for n large and t � t̄ (by reducing t̄ a little bit if necessary).
We will have, in particular, that X(t, u0n, v0n) � A + η, η > 0 small, for t � t̄ and
so

0 < U(u1, u0n, v0n) � (A + η)uα
1 , u1 � et̄,

and, after an appropriate choice of ū, we will have

1
U1(u, u0n, v0n)

�
(

A + η

u

)1/α

, u � ū,

for n large. This enables us to introduce the limit in the last integral and the
continuity of T follows.

Remarks 4.1. (a) The power Xq+1 in equation (4.6) could be replaced by |X|q+1

and all semiorbits to this equation starting at the positive semiaxis X = 0, Y > 0
are still attracted by the point (A, B). This fact allows us to include the extreme
(X, Y ) = (0, B) in the construction of the compact K1 for the purposes of the proof
of theorem 3.1.

(b) We now prove claims (4.7) and (4.9). First assume that u0 and v0 are both
positive. By using the u1 variable instead of t we observe that X � u0u

−α
1 , Y �

v0u
−β
1 and Z � uq

0v
−p
0 u1−γ

1 as u1 → 0+ (t → −∞). Then observe that

u1X
′ � v−p

0 upβ
1 − αu0u

−α
1 → −∞, u1Y

′ � {v−2p
0 uq

0u
2
1 − βv0}u−β

1 → −∞,

as u1 → 0+. This gives the first of (4.9). As for (4.7) observe that

{Xq+1/(q + 1) + Y p+1/(p + 1)} � {uq+1
0 /(q + 1) + vp+1

0 /(p + 1)}u
−(γ+1)
1 ,

which is greater than Z since Z = O(u−(γ−1)
1 ) as u1 → 0+. Thus (4.7) holds.

Next assume that u0 = 0, v0 > 0. Now u � (v−p
0 /2)u2

1 while

v1 � (v−p(q+1)
0 /{2q(2q + 1)})u2q+1

1 as u1 → 0 + .

Hence

u1X
′ � 1

2v−p
0 (2 − α)u2−α

1 > 0, u1Y
′ �

[
v

−p(q+2)
0

2q(2q + 1)
u2q+2

1 − βv0

]
u−β

1 → −∞,

as u1 → 0+ (observe that 0 < α < 2), which gives the second of (4.9). Finally,
observe that

Z � v
−p(q+1)
0

2q(2q + 1)
u2q+1−γ

1 ,

while still {Xq+1/(q + 1) + Y p+1/(p + 1)} = O(u−(γ+1)
1 ) as u1 → 0+ and (4.7)

holds again.
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5. Radial solutions

For the study of radial solutions to problem (1.8) we require some preliminary
properties concerning the initial-value problem:

urr +
N − 1

r
ur = vp,

vrr +
N − 1

r
vr = uq,

u(0) = u0, u′(0) = 0, v(0) = v0, v′(0) = 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.1)

p, q > 0, u0, v0 non-negative. The first fact to be quoted is that such a problem
admits a non-continuable solution (u(r), v(r)) defined in an interval [0, ω), 0 < ω �
+∞ provided (u0, v0) �= (0, 0). In addition, both u and v are positive and increasing
while limr→ω u = limr→ω v = +∞. To show this we only need to solve (5.1) in
a small interval [0, δ]. Then the so-constructed local solution can be continued
according to standard ODE theory and the remaining assertions easily follow. Thus,
to find a local solution observe that (5.1) can be equivalently written as

u(r) = u0 +
∫ r

0

∫ ρ

0

(
s

ρ

)N−1

v(s)p ds dρ := T1(u, v),

v(r) = v0 +
∫ r

0

∫ ρ

0

(
s

ρ

)N−1

u(s)q ds dρ := T2(u, v).

By choosing δ > 0 small so that T = (T1, T2) maps

{(u, v) ∈ (C[0, δ])2 : |u − u0|∞,δ, |v − v0|∞,δ � δ}

continuously into itself, Schauder’s fixed-point theorem provides a solution in [0, δ].
In the regular cases where both u0 and v0 are positive or either p � 1 if v0 = 0
(u0 > 0) or q � 1 if u0 = 0 (v0 > 0), Banach’s fixed point can be used instead to
get a unique solution in [0, δ].

On the other hand, it follows from the fixed-point equation

(u, v) = (T1(u, v), T2(u, v))

that solutions (u(r), v(r)), (ũ(r), ṽ(r)) corresponding to initial data (ũ0, ṽ0) �=
(u0, v0) satisfy u(r) < ũ(r), v(r) < ṽ(r), provided that u0 � ũ0, v0 � ṽ0.

As another remark, for each u0, v0 � 0, (5.1) admits a unique solution (u, v)
provided pq > 1. We only need to check this in the cases (u0, v0) = (0, 0) or when
u0 = 0, v0 > 0 and 0 < q < 1 (the complementary case v0 = 0, u0 > 0 with
0 < p < 1 being identically handled). The proof of the former case is exactly that
for the same case in lemma 2.4. As for the latter case assume that (u, v), (ũ, ṽ)
solve (5.1) and set (uδ(r), vδ(r)) = (u(r + δ), v(r + δ)), δ > 0 small. Then both
ũ(r) < uδ(r) and ṽ(r) < vδ(r) for 0 � r � c and a certain c > 0. However, in the
radial case one finds that {rN−1(uδ − ũ)′}′ � 0 and {rN−1(uδ − ũ)′}′ � 0 in [0, c].
Since u′

δ(0), v′
δ(0) > 0, we conclude that ũ(c) < uδ(c), ṽ(c) < vδ(c) and by the same

token, those strict inequalities propagate to the common domains of definition of
(ũ, ṽ) and (uδ, vδ). We get ũ � u, ṽ � v by letting δ → 0+. The reverse inequality
follows in the same way and the proof of uniqueness is concluded.
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For immediate use, Tρ(u0, v0) will designate the right extreme ω of the maximal
domain of existence of the solution to (5.1).

Proof of theorem 1.2. First we will prove that pq > 1 is a necessary and sufficient
condition in order that every non-trivial non-negative solution to (5.1) blows up at
a finite r, i.e. Tρ(u0, v0) < +∞ for every u0, v0 � 0, (u0, v0) �= (0, 0).

For the necessity assume that (u(r), v(r)) is positive and solves (5.1) with pq � 1.
Since both u and v are increasing,

urr � urr +
N − 1

r
ur = vp,

and similarly vrr � uq, which implies that u(r) � ū(r), v(r) � v̄(r), (ū, v̄) being the
solution of the one-dimensional problem (2.1) with the same initial conditions as
(u, v). The comparison gives T (u0, v0) � Tρ(u0, v0) while T (u0, v0) = +∞ if pq � 1.
Hence (u, v) does not blow up at a finite r.

As for the sufficiency suppose on the contrary that Tρ(u0, v0) = +∞ for the
solution (u, v) to (5.1). Observe that the radial equations are again invariant under
the scale change (2.5):

uλ(r) = λu(kr), vλ(r) = λ(q+1)/(p+1)v(kr), k = λ(pq−1)/(2(p+1)),

with λ > 0, and so Tρ satisfies the scaling relation (2.4). This means that we can
assume that both u0 and v0 are as large as desired.

On the other hand, observe that (5.1) can be written as (where the prime denotes
differentiation with respect to r)

rN−1(rN−1u′)′ = r2(N−1)vp, u(0) = u0, u′(0) = 0,

rN−1(rN−1v′)′ = r2(N−1)uq, v(0) = v0, v′(0) = 0,

}
(5.2)

which, after the change [13]

ρ =

⎧⎪⎨
⎪⎩

1
N − 2

{
1 − 1

rN−2

}
N � 3,

log r N = 2,

takes the form (where the superposed dot denotes differentiation with respect to ρ)

ü = g(ρ)vp, u(−∞) = u0, u̇(−∞) = 0,

v̈ = g(ρ)uq, v(−∞) = v0, v̇(−∞) = 0,

}
(5.3)

where g(ρ) = r2(N−1). Assume that N � 3 below (the case N = 2 is slightly sim-
pler). Observe that −∞ < ρ < cN := 1/(N − 2) in that case and the solution
(u(ρ), v(ρ)) is defined in (−∞, cN ).

Fix ρ0 ∈ (−∞, cN ). By using the scaling ideas in § 2 it is possible to choose
u0, v0 > 0 large enough so that the solution (ũ(ρ), ṽ(ρ)) to the auxiliary problem

ü = g(ρ0)vp, ρ � ρ0,

v̈ = g(ρ0)uq, ρ � ρ0,

u(ρ0) = u0, u̇(ρ0) = 0, v(ρ0) = v0, v̇(ρ0) = 0,

⎫⎪⎬
⎪⎭ (5.4)
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blows up at a time ρω such that ρ0 < ρω < cN . Since g(ρ) is increasing, u(ρ0) > u0,
v(ρ0) > v0 and u̇(ρ0), v̇(ρ0) are positive, we conclude that u(ρ) > ũ(ρ) and v(ρ) >
ṽ(ρ) for ρ � ρ0. Thus (u, v) must blow up before ρω, that is, at a finite r. This is
just the opposite of what was assumed, the sufficiency being thus proved.

To conclude the proof of theorem 1.2 observe that the scaling relation (2.4)
implies the uniqueness assertion in (i). Giving to UR, VR > 0 the same status as
that given to the values UL, VL introduced in corollary 3.8, solutions (U1(r), V1(r))
and (U2(r), V2(r)) then correspond, respectively, to initial data (u0, v0) = (UR, 0),
(0, VR) in (5.1). The proof of (ii) follows from the fact that Tρ decreases if both
u0 and v0 increase. However, it should be observed that since the continuity of
Tρ is not available, the corresponding continuity of ΓR cannot be ensured for the
moment.

6. Non-symmetric solutions: the one-dimensional case

Let us begin with some preliminary remarks. Regarding symmetry, suppose that
(u(x), v(x)) is non-trivial, non-negative (i.e. both u and v non-negative) and solves
(1.4). It follows that u, v are strictly convex and so two unique xmin, ymin ∈ (−L, L)
exist such that u(xmin) = inf u and v(ymin) = inf v. It can then be checked that
(u, v) is symmetric if and only if xmin = ymin. In such a case, xmin = ymin = 0.
Thus xmin �= ymin provides a test for non-symmetry.

A second remark concerns the extended problem (2.3). In the range pq > 1,
denote by (u(x), u1(x), v(x), v1(x)) the non-continuable solution to the initial-value
problem (see theorem 2.5)

u′ = u1, u(0) = u0,

u′
1 = |v|p, u1(0) = u′

0,

v′ = v1, v(0) = v0,

v′
1 = |u|q, v1(0) = v′

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.1)

(where a prime denotes differentiation with respect to x) defined in (ω1, ω2) with
(u0, u

′
0, v0, v

′
0) arbitrary (especially regarding sign). Suppose that u, v become posi-

tive with u′, v′ positive (respectively, negative) at some x = x1. It then follows from
the proof of theorem 3.1 that ω2 (ω1) is finite and hence such a solution blows up
there. On the contrary, no solution to (6.1) can exhibit this behaviour when pq � 1.

A further feature also has to do with characterizing the finiteness of ωi, i = 1, 2.
Notice that the group u1v1 −h(u, v), h(u, v) = |u|qu/(q+1)+ |v|pv/(p+1), remains
constant on solutions of (6.1).

Lemma 6.1. Suppose that pq > 1 and let (u, v) be a non-continuable solution to
(2.3) defined on (ω1, ω2). If

u′v′ − h(u, v) �= 0 (6.2)

at some x, then both ω1 and ω2 are finite. Moreover, this property is equivalent to
(6.2) if (u, v) is non-negative and non-trivial.

Proof. It is sufficient to simply study the behaviour at ω2 (otherwise, perform the
change x 	→ −x). Two alternative options will be considered in turn: (a) u′, v′

negative in (ω1, ω2), and (b) there exists x0 where either u′ � 0 or v′ � 0.
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Case (a) is not compatible with (6.2) since fixing x1 we get by convexity u′(x1) <
u′(x) < 0, v′(x1) < v′(x) < 0 together with u(x1) + u′(x1)(x − x1) < u(x) < u(x1),
v(x1)+v′(x1)(x−x1) < v(x) < v(x1) for x1 < x < ω2. Thus ω2 = ∞. The existence
of limu′, lim v′ as x → ∞ and the identities

u′(x) = u′(x1) +
∫ x

x1

|v|p, v′(x) = v′(x1) +
∫ x

x1

|u|q

imply the convergence of ∫ ∞

x1

|v|p,
∫ ∞

x1

|u|q

and hence u → 0, v → 0 as x → ∞. Therefore, limu′ = lim v′ = 0 as x → ∞,
u′v′ − h(u, v) → 0 as x → ∞ and (6.2) cannot hold, as we wanted to prove.

As for (b), suppose, for instance, that u′(x0) � 0. Then u′ > 0 for x0 < x < ω2
since due to (6.2) (u, v) is non-trivial. If in addition v′ � 0 at some x2 � x0, then
u′, v′ are positive in x > x2 and by convexity one finds that both u and v must
become non-negative at some x > x2. In view of the preliminary remark, ω2 < ∞.
The opposite option, v′ < 0 for x0 � x < ω2, cannot occur. In fact, one has that
v remains bounded for x bounded and, by means of (6.1), the same happens to
u, u′, u′′. In conclusion, ω2 = ∞ and as before

∫ ∞
x0

|u|q < ∞ implying u → 0 as
x → ∞. However, strict convexity of u is not compatible with that behaviour.

We finally show that (6.2) is necessary to have both ω1 and ω2 finite in case
of non-negative solutions. In fact, if (u, v) �= (0, 0) violates (6.2) somewhere, then
u′v′ = h(u, v) for all x and u′v′ is positive. It can be assumed without loss of
generality that both u′ and v′ are negative in (ω1, ω2) and hence, as shown in (a),
ω2 = ∞ (observe that ω1 must be finite in this case).

Remarks 6.2. (a) The necessity of (6.2) for the finiteness of ω1, ω2 fails since
symmetric two-signed solutions to (2.3) can be constructed so that u′v′ = h(u, v)
for all x while ω1 and ω2 are finite.

(b) The functions

u(x) =
a

xξ
, v(x) =

b

xη
, x > 0,

with ξ, η the exponents and a, b the constants in (1.7), provide an explicit example
of a solution behaving as in the last part of the proof of the lemma. By the way, they
define the ‘prototype’ positive solution to problem (1.4) in an unbounded interval,
say (0,∞).

The proof of theorem 1.3 is a consequence of the next perturbation result.

Theorem 6.3. Suppose that pq > 1 and u0 > 0, v0 � 0. Consider the problem

u′′ = |v|p,
u(0) = u0,

u′(0) = σ,

⎫⎪⎬
⎪⎭

v′′ = |u|q,
v(0) = v0,

v′(0) = 0,

⎫⎪⎬
⎪⎭ (6.3)

which can be regarded as a perturbation of problem (2.3) controlled by the parameter
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σ. There then exist σ∗
1 > 0 and continuous functions ω+, ω− : [−σ∗

1 , σ∗
1 ] → R+, ω+

non-increasing, ω− non-decreasing such that

(i) the non-continuable solution (u(x, σ), v(x, σ)) to (6.3) is positive for x �= 0
if and only if |σ| < σ∗

1 and its definition domain in that range for σ is
(−ω−(σ), ω+(σ));

(ii) (u(x,−σ), v(x,−σ)) = (u(−x, σ), v(−x, σ)) for all σ ∈ R;

(iii) if xmin(σ) is defined as u(xmin(σ), σ) = inf u(· , σ) := h(σ), then xmin and h
are continuous in |σ| � σ∗

1 , C1 in σ �= 0, xmin(−σ) = −xmin(σ), h(−σ) =
h(σ), h(±σ∗

1) = 0, while both xmin and h decrease in 0 � σ � σ∗
1 ; moreover,

inf v(· , σ) = v0 for all σ;

(iv) (u(· , σ), v(· , σ)) blows up at x = −ω−, ω+ for every |σ| � σ∗
1 ; moreover,

u(x, σ) ∼ a

d(x)ξ
, v(x, σ) ∼ b

d(x)η
,

as d(x) = min{ω+ −x, x+ω−} → 0+, where a, b, ξ and η are the coefficients
and exponents involved in theorems 1.1 and 1.3;

(v) as a function of (u0, v0) in u0, v0 � 0, σ∗
1 is continuous and separately increas-

ing in u0 and v0; moreover, σ∗
1 vanishes at u0 = 0.

Proof. Since (ii) follows from uniqueness (theorem 2.5) and replacing x by −x in
(6.3), only the case σ � 0 needs to be studied. In addition, as condition (6.2)
in lemma 6.1 holds (check at x = 0), the non-continuable solution (u, v) to (6.3)
has both ω1 and ω2 finite, regardless of whether σ ∈ R. This fact and continuous
dependence on σ assure the positivity of the number

σ∗
1 = sup{σ � 0 : inf u(· , σ) > 0}, (6.4)

where we remark that, whenever possible, the dependence of (u, v) on σ will not
be written below. By convexity one finds xmin < 0 for σ > 0, while the implicit
function theorem implies that xmin(σ) is C1 in σ > 0.

On the other hand, it follows by comparison (lemma 2.3) that both u(x, σ) and
v(x, σ) decrease (respectively, increase) when σ increases in each x < 0 (x > 0)
provided inf u � 0. We next use this fact to show that σ∗

1 < ∞. Otherwise, for a
fixed x0 < 0 we have u > 0 in x0 � x � 0 for all σ > 0. The estimate v0 < v(x, σ) <
v(x, 0) in (x0, 0] together with

ux(x0, σ) = σ −
∫ 0

x0

|v|p

imply that (ux)|x=x0 ∼ σ as σ → ∞. That is not possible since u0 > −ux(x0, σ)x0.
Thus, σ∗

1 < ∞. Remark that lemma 6.1 implies that xmin > −∞ at σ = σ∗
1 .

Furthermore, σ∗
1 is the unique σ > 0 such that inf u = 0. In fact, for σ = σ∗

1 ,

−xmin =
1
σ

{
u0 +

∫ 0

xmin

∫ 0

t

vp

}
.
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If inf u = 0 for σ > σ∗
1 , then xmin(σ) = xmin(σ∗

1), while both u(· , σ) and u(· , σ∗
1)

are positive in (xmin(σ∗
1), 0]. That contradicts the fact that the above expression for

xmin decreases with σ.
It is clear that h(σ) = inf u(· , σ) decreases in 0 � σ � σ∗

1 , while for 0 � σ1 <
σ2 � σ∗

1 the option xmin(σ2) � xmin(σ1) cannot happen since

σ2 =
∫ 0

xmin(σ2)
v(· , σ2) �

∫ 0

xmin(σ1)
v(· , σ2) <

∫ 0

xmin(σ1)
v(· , σ1) = σ1,

contrary to the initial assumption. Thus xmin decreases in [0, σ∗
1 ].

The remaining assertions in (i)–(iv) can be proved by setting ω− = −ω1, ω+ = ω2

and observing that, from the proof of theorem 3.1, blow-up rates in (iv) are common
for all positive solutions (u, v) existing only up to some finite value x = ω. As in
corollary 3.5, these estimates yield the continuity of ω±.

Regarding the continuity of σ∗
1(u0, v0) it first follows from lemma 2.3 that σ∗

1
increases separately in u0, v0. Thus, if Pn = (u0n, v0n) → P0 = (u0, v0), then σ∗

1n :=
σ∗

1(Pn) remains bounded. We are showing that any limit point of σ∗
1n must be σ∗

1 ,
hence σ∗

1(Pn) → σ∗
1 as desired. Assume that for a certain subsequence σ∗

1n′ → σ∞.
Redefining n′ as n set (un(x), vn(x)) the solution to (6.3) corresponding to initial
data u0n, v0n with σ = σ∗

1n, (u(x), v(x)) the solution corresponding to σ = σ∞ with
non-continuable interval (ω1, ω2). Supposing that u0 > 0, both ω1 and ω2 are finite
(lemma 6.1) and so u′ < 0 at some b < 0. Since (un, vn) → (u, v) in C2[b, 0] [21],
x∗

n := xmin(σ∗
1n) � b for large n and has a limit point x∗ ∈ [b, 0]. One finds that

u � 0 together with u|x=x∗ = 0. Therefore, inf u(· , σ∞) = 0, which necessarily
implies that σ∞ = σ∗

1 . The proof is easily adapted to achieve the case u0 = 0.

Remark 6.4. Theorem 6.3 admits the corresponding version in which v′(0) varies
instead of u′(0), which is kept at zero. More precisely, consider the full σ1, σ2 per-
turbation problem,

u′′ = |v|p,
u(0) = u0,

u′(0) = σ1,

⎫⎪⎬
⎪⎭

v′′ = |u|q,
v(0) = v0,

v′(0) = σ2,

⎫⎪⎬
⎪⎭ (6.5)

whose unique (theorem 2.5) non-continuable solution (u(x, σ̄), v(x, σ̄)), σ̄ = (σ1, σ2),
is defined in (ω1, ω2) = (−ω−(σ̄), ω+(σ̄)). By setting σ1 = 0 and assuming u0 � 0,
v0 > 0, one shows the existence of σ∗

2 > 0 such that (u(x, (0, σ2)), v(x, (0, σ2))) is
non-negative if and only if |σ| � σ∗

2 with inf v(· , (0,±σ∗
2)) = 0, ω±(0, σ2) behaving

as ω±(σ) and the non-negative solutions blowing-up at x = ±ω±(0, σ2) according
to the same rates as those of theorem 6.3 (iv).

We will treat the σ1, σ2 perturbation problem (6.5) in more detail in a moment.
We proceed first to the proof of theorem 1.3.

Proof of theorem 1.3. We have already shown the preliminary facts of the the-
orem. Thus we only need to deal with case (i). In order to construct the family
(û, v̂), consider (u(· , σ), v(· , σ)) as in theorem 6.3 and define (check the alternative
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Figure 5. Bifurcation surface for non-symmetric solutions to (1.4) in the family (û, v̂).
Symmetric solutions correspond to points (u0, v0, 0) at curve Γ . The surface is symmetric
with respect to the u0, v0 plane.

notation of remark 6.4)

m = 1
2 (ω+(σ, 0) − ω−(σ, 0)),

l = 1
2 (ω+(σ, 0) + ω−(σ, 0)),

λ = (l/L)1/θ,

⎫⎪⎬
⎪⎭ (6.6)

where θ = (pq−1)/2(p+1). The family of positive solutions to (1.4) we are searching
for can be constructed by using the scaling properties in lemma 2.6. Namely,

(û(x, σ), v̂(x, σ)) = (λu(λθx + m, (σ, 0)), λ(q+1)/(p+1)v(λθx + m, (σ, 0))). (6.7)

with |σ| � σ∗
1 . Observe that (û, v̂) is non-symmetric for σ �= 0 since xmin �= ymin in

that case.
According to remark 6.4 the proof of (ii) is identical.

Remark 6.5. A bifurcation surface for the family (û, v̂) of non-symmetric solu-
tions with respect to the generating symmetric solutions is shown in figure 5 (a
corresponding diagram for (ũ, ṽ) is entirely similar). The parameters involved are
u0, v0 corresponding to the minima in symmetric solutions and σ. Observe that for
|σ| � σ∗

1 parameter σ has the value σ = λ−θ−1û′
|x=−mλ−θ in the case of the family

(û, v̂) (for (ũ, ṽ) the corresponding parameter is σ = λ−θ−(q+1)/p+1ṽ′
|x=−mλ−θ with

|σ| � σ∗
2).

7. Proofs of theorems 1.5 and 1.6

We begin with a basic result. Its proof is a consequence of lemmas 2.3 and 6.1 and
will therefore be omitted.

Lemma 7.1. Let (u(· , σ̄), v(· , σ̄)), σ̄ = (σ1, σ2), be the solution of the problem (6.5)
with domain of existence (ω1, ω2). Assume that both u0 and v0 are positive while

inf u(· , σ̄)|σ̄=σ̄0 � 0, inf v(· , σ̄)|σ̄=σ̄0 � 0, (7.1)
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for a certain σ̄0 = (σ0,1, σ0,2) ∈ {σ1 � 0, σ2 � 0}, σ̄0 �= 0. Then, inf u(· , σ̄) > 0,
inf v(· , σ̄) > 0 and both ω1 and ω2 are finite for every 0 � σ̄ � σ̄0, i.e. 0 � σ1 � σ01,
0 � σ2 � σ02, and σ̄ �= σ̄0. In particular, if (u(· , σ̄), v(· , σ̄)) is positive with σi � 0,
i = 1, 2, then necessarily σi < σ∗

i for i = 1, 2.

Remark 7.2. Observe that the extreme case inf u = inf v = 0 at σ̄ = σ̄0 is allowed
in (7.1), being in that case ω1 = −∞.

The proof of theorem 1.6 (ii) can now be given since an arbitrary positive solution
(u, v) to (1.4) with u′(0)v′(0) � 0 satisfies the conditions of lemma 7.1 with σ̄0 =
(u′(0), v′(0)), after changing x by −x, if necessary. In fact, notice that lemma 7.1
ensures that the solution (u(· , σ̄), v(· , σ̄)) to (6.5) is positive and has ω1 = −ω−(σ̄),
ω2 = ω+(σ̄) finite for 0 � σ̄ � σ̄0. The finiteness of both ω− and ω+ together
with estimates (1.9) permit showing the continuity of the functions ω± in 0 �
σ̄ � σ̄0 as in the proof of corollary 3.5. By replacing (u(· , (σ, 0)), v(· , (σ, 0))) with
(u(· , σ̄), v(· , σ̄)) in (6.7), also substituting ω±(σ, 0) with ω±(σ̄) in (6.6), 0 � σ̄ � σ̄0,
we obtain a continuous bidimensional family of positive solutions connecting (u, v)
with the symmetric solution attained when σ̄ = 0, as desired.

The proofs of theorem 1.5 and the remaining part of theorem 1.6 require a study
of the following function,

g(σ1) = sup{σ2 : inf v(· , (σ1, σ
′
2)) > 0 for 0 � σ′

2 � σ2}, (7.2)

and of its dual version,

f(σ2) = sup{σ1 : inf u(· , (σ′
1, σ2)) > 0 for 0 � σ′

1 � σ1}, (7.3)

where (u(· , σ̄), v(· , σ̄)) stands for the solution of (6.5).
Both the ‘supremum’ and the restriction 0 � σ′

2 � σ2 can be replaced in the
definition of g by ‘infimum’ and the range σ2 � σ′

2 � 0, respectively (this is nothing
else but the effect of the change x 	→ −x in problem (1.4)). Then what we find
is just the symmetric function g−(σ1) := −g(−σ1) of g. The symmetric function
f−(σ2) := −f(−σ2) has exactly the same meaning.

The main features exhibited by g are collected in the next lemma.

Lemma 7.3. The function g is well defined and positive in R. In addition,

(a) g is decreasing and continuous in σ1 � 0 with g(0) = σ∗
2 . Moreover,

inf v(· , σ̄) < 0,

for σ1 � 0 and σ2 > g(σ1) and hence (6.5) does not admit positive solutions
for σ1 � 0 and σ2 � g(σ1);

(b) limσ1→−∞ g(σ1) = +∞ and, more precisely,

g(σ1) ∼ 1
q + 1

[(q + 2)v0](q+1)/(q+2)(−σ1)q/(q+2) (7.4)

as σ1 → −∞;
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(c) g ∈ L∞
loc[0,∞) while g is continuous and decreasing in a neighbourhood of any

value σ1 � 0 such that inf u(· , σ̄) > 0 at σ̄ = (σ1, g(σ1)). In particular, g is
continuous and decreasing in (−∞, δ] for some positive 0 < δ < σ∗

1 .

Proof. By theorem 6.3, we have g(0) = σ∗
2 (see remark 6.4). Let us show the finite-

ness of g for σ1 �= 0. If σ1 > 0 and there exists σ̄n = (σ1, σ2,n) with σ2,n → ∞
and inf v(· , σ̄n) > 0, then lemma 7.1 implies inf u(· , σ̄n) < 0 for large n. In par-
ticular, u(· , σ̄n) will be defined in [−u0/σ1, 0] since, by convexity, xmin < −u0/σ1
for large n, xmin being the point where u(· , σ̄n) attains the infimum. In addition,
u(x, σ̄n) � u0 in that interval. If we now take x̂ ∈ [−u0/σ1, 0], then

0 < inf v(· , σ̄n) � v(x̂, σ̄n) � v0 + σ2,nx̂ + 1
2 x̂2uq

0,

and so
(−x̂)σ2,n � v0 + 1

2 x̂2uq
0,

which is not compatible with the divergence of σ2,n. We have shown, in particular,
that for fixed σ1 > 0, the set of those σ2 > 0 such that inf v(· , σ̄) > 0 is bounded
above with a bound that can be chosen independent of σ1 for σ1 varying in small
intervals in [0,∞). Hence g ∈ L∞

loc(0,∞) (it will even be shown below that g is
continuous in an interval containing σ1 = 0).

As for σ1 < 0, u(x, σ̄) � u0 wherever it is defined in x � 0. Lemma 2.3 implies
that u(x, σ̄) < u(x, (σ1, 0)) for each −ω−(σ1, 0) < x < 0 and for every σ2 > 0 such
that inf v(· , σ̄) > 0. Fixing now x̃ ∈ (−ω−(σ1, 0), 0), such numbers σ2 satisfy

(−x̃)σ2 � v0 +
∫ x̃

0

∫ t

0
u(s, (σ1, 0)) ds dt,

and so they are bounded above. Thus g(σ1) must be finite. Notice also that in this
case, lemma 2.3 provides that g decreases with σ1 while necessarily inf v(· , σ̄) < 0
for σ2 > g(σ1).

To complete the proof of (a) let us show the continuity of g in σ1 � 0. First,
observe that for σ1 � 0 both limits g(σ1−) � g(σ1+) � σ∗

2 are finite. Since (6.2)
holds at σ̄ = (σ1, g(σ1±)), lemma 6.1 assures that both extremes ±ω±(σ̄) of the
existence interval of the solution (u(· , σ̄), v(· , σ̄)) to (6.5) corresponding to σ̄ =
(σ1, g(σ1±)) are finite. This is crucial to enable us to conclude that, after a careful
application of the continuous dependence results in [21], inf v(· , σ̄) = 0 at σ̄ =
(σ1, g(σ1±)). Since σ1 � 0, g(σ1) is just the unique value of σ2 such that inf v = 0.
Hence g(σ1±) = g(σ1) as desired.

Let us prove the continuity assertion in (c) and so assume that inf u(· , σ̄) > 0 at
σ̄ = (σ1, g(σ1)). As shown in the proof of lemma 6.1, the positivity of inf u implies
also the finiteness of the extremes ±ω±(σ̄) of the interval of existence for the solution
(u, v) to (6.5) corresponding to σ̄ = (σ1, g(σ1)). Continuous dependence provides
the existence of a small η > 0 such that inf u(· , σ̄′) > 0 for every σ̄′ satisfying
|σ′

i − σi| � η, i = 1, 2. Given ε > 0, 0 < ε1 < max{ε, η} and 0 < δ < η can be
found, with the help of lemma 2.3, such that inf v(· , σ̄′) > 0 in σ′

2 = g(σ1) − ε1,
inf v(· , σ̄′) < 0 in σ′

2 = g(σ1) + ε1 for each σ′
1 such that |σ′

1 − σ1| � δ. Therefore,
g(σ1) − ε < g(σ′

1) < g(σ1) + ε in the last interval. Moreover, lemma 7.1 directly
implies that g decreases there. This concludes the proof of (c).
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We finally show the asymptotic estimate (7.4) for g. To this proposal we are
equivalently analysing the behaviour as σ1 → ∞ of the symmetric function g− of g
(see the remarks after (7.3)):

g−(σ1) = inf{σ2 < 0 : inf v(· , σ̄) > 0}.

For σ̄ = (σ1, g−(σ1)) define ymin as the point where v(x, σ̄) attains its minimum.
Notice that g−(σ1) < 0 implies that ymin > 0. We first prove that

lim
σ1→∞

g−(σ1) = −∞.

If, on the contrary, infσ1�0 g− = −l > −∞, we find by convexity that v(x, σ̄), σ̄ =
(σ1, g−(σ1)), is defined in [0, v0/l] wherein v � v0. By using that u(x, σ̄) � u0 +σ1x
and fixing x̃ ∈ [0, v0/l] we arrive at

v0 � v(x̃, σ̄) � v0 − lx̃ +
∫ x̃

0

∫ t

0
(u0 + σ1s)q ds dt → ∞,

as σ1 → ∞. Since this is not possible, it follows that l = ∞.
On the other hand, v, vx vanish at x = ymin. Thus, the following identities hold:

v0 =
∫ ymin

0
suq ds, −g−(σ1) =

∫ ymin

0
suq ds, (7.5)

where we have used the positivity of u = u(x, σ̄) in x � 0. Indeed, u(x, σ̄) � u0+σ1x
in x � 0. By using the first equality in (7.5) we achieve

v0 � σq
1

q + 2
yq+2
min .

This means that ymin → 0+ as σ1 → ∞. We recall that 0 � v(x, σ̄) � v0 in [0, ymin]
and conclude, by employing the second equality in (7.5),∫ ymin

0
(u0 + σ1s)q ds � −g−(σ1) �

∫ ymin

0
(u0 + σ1s + 1

2vp
0s2)q ds. (7.6)

Hence,

−g−(σ1) � ymin

∫ 1

0
(u0 + σ1ymint + 1

2vp
0y2

mint2)q dt.

We immediately achieve that σ1ymin → ∞ as σ1 → ∞ since σ1ymin = O(1) on a
possible sequence σ1,n → ∞ together with the previous estimate imply −g−(σ1) =
O(1) on that sequence, which is not possible.

The first equality in (7.5) leads to∫ ymin

0
s(u0 + σ1s)q ds � v0 �

∫ ymin

0
s(u0 + σ1s + 1

2vp
0s2)q ds,

and so
(σ1ymin)q

q + 2
� v0y

−2
min �

∫ 1

0
t(u0 + σ1ymint + 1

2vp
0ymint2)q dt.
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Since ∫ 1

0
t(u0 + σ1ymint + 1

2vp
0ymint2)q dt ∼ (σ1ymin)q

q + 2
, σ1 → ∞,

then
1

ymin
∼

{
σq

1

(q + 2)v0

}1/(q+2)

, σ1 → ∞. (7.7)

Now, after multiplying (7.6) by σ1, we get

σ1ymin

∫ 1

0
(u0 + σ1ymint)q dt � −σ1g−(σ1)

� σ1ymin

∫ 1

0
(u0 + σ1ymint + 1

2vp
0y2

mint2)q dt.

Hence,

σ1g−(σ1) ∼ − (σ1ymin)q+1

q + 1
, σ1 → ∞,

which, together with (7.7), leads to the desired estimate (7.4). This finishes the
proof of the lemma.

Remark 7.4. The dual function f of g defined in (7.3) satisfies, when conveniently
transposed, the properties of g in lemma 7.3. In particular, f(σ2) is continuous and
decreasing in the interval −∞ < σ2 � δ1 for certain positive δ1 < σ∗

2 , f(0) = σ∗
1

while f(σ2) → ∞ as σ2 → −∞ with the asymptotic behaviour,

f(σ2) ∼ Cp(−σ2)p/(p+2), σ2 → −∞, (7.8)

where Cp = [(p + 2)u0](p+1)/(p+2)/(p + 1). More importantly, for σ2 � 0, problem
(6.5) does not admit positive solutions for σ1 � f(σ2). Finally, f will be decreasing
and continuous in a certain neighbourhood of any σ2 where inf v(· , (f(σ2), σ2)) > 0.

Let us now complete the proof of theorem 1.6 and show theorem 1.5. Define the
function,

h+(σ1) =

⎧⎪⎨
⎪⎩

g(σ1), σ1 � 0,

g ∧ g1(σ1), 0 < σ1 < σ∗
1 ,

f−1(σ1), σ1 � σ∗
1 ,

where g∧g1(σ1) = min{g(σ1), g1(σ1)} and the function g1 is defined in 0 < σ1 < σ∗
1

as
g1(σ1) = sup{σ2 : inf u(· , (σ1, σ

′
2)) > 0 for 0 � σ′

2 � σ2}.

Note that g1 may be infinite at some σ1.
We claim that h+ is continuous and decreasing. In fact, lemma 7.1 directly implies

that g∧g1 decreases in the interval (0, σ∗
1). On the other hand, g∧g1(σ1) = g(σ1) for

0 < σ1 < δ (see lemma 7.3), while g ∧ g1(σ1) = f−1(σ1) for σ∗
1 − δ2 < σ1 < σ∗

1 and
a certain δ2 > 0 small enough (see remark 7.4). Moreover, lemma 7.3 (c) ensures
that g ∧ g1 = g in a neighbourhood of any σ1 where g(σ1) < g1(σ1). Thus g ∧ g1
is continuous in that neighbourhood. The corresponding assertion holds true for
those σ1 where g1(σ1) < g(σ1) being g ∧ g1 = f−1 in a certain neighbourhood
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of σ1 (remark 7.4). To complete the proof of the claim we show the continuity
of g ∧ g1. Indeed, assume on the contrary that g ∧ g1(σ1−) > g ∧ g1(σ1+) and
define σ′

2 = g ∧ g1(σ1−), σ′′
2 = g ∧ g1(σ1+), with σ̄′ = (σ1, σ

′
2), σ̄′′ = (σ1, σ

′′
2 ). A

careful use of continuous dependence of the solutions to (6.5) with respect to σ̄
permits us to ensure that inf u(· , σ̄′) � 0, inf v(· , σ̄′) � 0. Lemma 7.1 then implies
that inf u(· , σ̄′′) > 0, inf v(· , σ̄′′) > 0. However, that is not possible, again due to
continuous dependence.

Observe that the function h+ satisfies all the properties stated in theorem 1.5 (b),
with the exception of the existence of the value σ1 = b (see further details below).
Moreover, by its own definition no positive solutions to (6.5) are possible for 0 <
σ1 < σ∗

1 provided σ2 � g ∧ g1(σ1). Hence, that problem cannot exhibit positive
solutions for σ2 � h+(σ1) and by introducing the symmetric function h−(σ1) :=
−h+(−σ1), exactly the same assertion holds true for σ2 � h−(σ1). In other words,
the set (see (1.11)),

C = {σ̄ : h−(σ1) < σ2 < h+(σ1)},

characterizes the existence of positive solutions to (6.5) regarding the values of σ̄.
This provides the proof of theorem 1.6 (i).

We further show the boundedness of C. Since C ∩ {σ1 � 0, σ2 � 0} ⊂ [0, σ∗
1 ] ×

[0, σ∗
2 ], due to the symmetry of C it is sufficient to show that C ∩ {σ1 � 0, σ2 � 0}

is bounded. In fact, observe that h+ = f−1 for σ1 � σ∗
1 and so (see remark 7.4)

h+(σ1) ∼ −C−(p+2)/p
p σ

(p+2)/p
1 , σ1 → ∞.

Since h−(σ1) = g−(σ1) for σ1 � 0 and g−(σ1) ∼ −Cqσ
q/(q+2)
1 as σ1 → ∞ (Cq is

the coefficient in (7.4)), we conclude that h+(σ1) < h−(σ1) for large σ1. Thus C
is bounded. On the other hand, observe that h− < −σ∗

2 in (0, σ∗
1 ] while h+ > 0

in (0, σ∗
1) (figure 1). This means that a first value b > σ∗

1 must exist such that
h−(b) = h+(b).

Next consider the set C0 = {σ̄ : h−(σ1) < σ2 < h+(σ1), |σ1| < b} (see (1.10)).
By construction, both extremes ±ω±(σ̄) of the maximal interval of existence of the
solution (u, v) to (6.5) (a solution which is, in addition, positive) are finite and, by
the reasons already explained in the proof of theorem 1.6(ii), they vary continuously
as σ̄ ∈ C0. Therefore, the scale change (6.7),

(ũ(x, σ̄), ṽ(x, σ̄)) = (λu(λθx + m, σ̄), λ(q+1)/(p+1)v(λθx + m, σ̄)), (7.9)

with ω±(σ̄) replacing the values of ω±(σ, 0) in (6.6), defines a continuous bidimen-
sional family of positive solutions to (1.4) which produces a symmetric solution
exclusively at σ̄ = 0. This concludes the proofs of theorem 1.5 and theorem 1.6 (iii).

Remarks 7.5. (a) The open set C could possibly exhibit a connected piece C1
different from C0 in {σ1 < 0, σ2 < 0} if h− and h+ coincide in values σ1 greater
than b. In this case and regarding assertion (iii) of theorem 1.6, it is unclear if
a positive solution (u, v) to (1.4) with derivatives (u′

x(0), v′
x(0)) ∈ C1 could be

deformed, keeping its sign, to produce a symmetric solution.

(b) When σ̄ → ∂C0, different types of non-negative solutions (u, v) to (1.4) are
obtained in the limit, one of whose components (or even both of them) vanishes at
a unique point of (−L, L). In the case of ∂C0 ∩ {σ1 � 0, σ2 � 0}, solutions to (6.5)
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u0
v0

ω− x
−ω +

vu
u0 v0

ω− x
−ω +

vu
u0

v0

ω− x
−ω +

v
u

Figure 6. Solutions (u(· , σ̄), v(· , σ̄)) of (6.5) for σ̄ ∈ ∂C0 ∩ {σ1 � 0} corresponding to
σ1σ2 < 0. The second configuration corresponds to the values σ1 = b, σ2 = h+(b).

u0

v0

ω− x
−ω +

v

u

u0

v0

ω− x
−ω +

v

u u0

v0

ω− x
−ω +

v

u

(a) (b) (c)

Figure 7. Non-negative solutions associated with values σ̄ ∈ ∂C0 ∩ {σ1 � 0} in the case
where σ1σ2 > 0. Occurrence of solutions as in the middle configuration require some
additional information.

lead, by means of the scaling (7.9), to solutions (u, v) to (1.4) such that inf u > 0
and inf v = 0 for σ2 = g−(σ1), 0 � σ1 < b, inf u = inf v = 0 at σ2 = g−(b) = f−1(b),
while inf u = 0 and inf v > 0 for σ2 = f−1(σ1), σ∗

1 � σ1 < b (figure 6). The situation
in the case ∂C0 ∩ {σ1 � 0, σ2 � 0} is slightly different. In the arc σ2 = h+(σ1),
0 � σ1 � σ∗

1 , solutions (u(· , σ̄), v(· , σ̄)) of (6.5) exhibit two kind of features. In
the first one, inf u > 0 and inf v = 0 (as is the case for σ1 ∼ 0) or inf u = 0
and inf v > 0 (which happens at least near σ∗

1). Both behaviours are observed in
the solutions to (1.4) obtained after the change (7.9). See the first and third parts
of figure 7. A second one, due to the existence of at least some σ1 such that the
solution (u(· , σ̄), v(· , σ̄)) to (6.5), satisfies inf u = inf v = 0. However, a solution to
(1.4) with the same behaviour is now generated via (7.9) only when −ω−(σ̄) > −∞
with σ̄ = (σ1, h+(σ1)) (the case in figure 7b). According to lemma 6.1, this case
is characterized by the fact that σ1σ2 < h(u0, v0) at σ2 = h+(σ1). Indeed, we can
obtain conditions on u0, v0 and parameters p, q ensuring that σ1h+(σ1) < h(u0, v0)
for all σ1 ∈ [0, σ∗

1 ] and so all possible solutions (u, v) to (6.5) in the second kind
generate solutions to (1.4) (details are omitted for the sake of brevity). If, on the
contrary, σ1h+(σ1) = h(u0, v0), then ω−(σ̄0) = ∞ at σ̄0 = (σ1, h+(σ1)) and the
change (7.9) plainly has no sense. Moreover, it is unclear which is the limit profile
in x ∈ (−L, L) of the solutions (ũ(x, σ̄), ṽ(x, σ̄)) to (1.4) obtained in (7.9) when
σ̄ ∈ C0 and σ̄ → σ̄0.
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