EarSketch: An integrated approach to
teaching introductory computer music

SCOTT MCCOID*, JASON FREEMAN*, BRIAN MAGERKO",
CHRISTOPHER MICHAUD® TOM JENKINS’, TOM MCKLINYand HERA KAN'

*Georgia Tech Center for Music Technology, 840 McMillan St, Atlanta GA 30332-0456, USA

"School of Literature, Media & Culture, Georgia Tech, 686 Cherry St. Atlanta, GA, 30332, USA

i_Marist School, 3790 Ashford Dunwoody Road, NE, Atlanta, GA 30319-1899, USA

SThe Findings Group, 1201 Clairmont Road, Suite 305, Decatur, GA 30030, USA

YEliot-Pearson School of Child Development, Tufts University, 105 College Avenue, Medford, MA 02155, USA

E-mails: smccoid3@gatech.edu; jason.freeman@gatech.edu; magerko@ gatech.edu; michaudc@marist.com; tom.jenkins@gatech.edu;

tom@thefindingsgroup.com; hera.kan@tufts.edu

EarSketch is an all-in-one approach to supporting a
holistic introductory course to computer music as an
artistic pursuit and a research practice. Targeted to the
high school and undergraduate levels, EarSketch enables
students to acquire a strong foundation in electroacoustic
composition, computer music research and computer science.
It integrates a Python programming environment with a
commercial digital audio workstation program (Cockos’
Reaper) to provide a unified environment within which
students can use programmatic techniques in tandem
with more traditional music production strategies to
compose music. In this paper we discuss the context

and goals of EarSketch, its design and implementation,
and its use in a pilot summer camp for high school
students.

1. INTRODUCTION

As the scope of computer music as both an artistic
practice and an interdisciplinary research field has
rapidly expanded in recent decades, the curriculum in
introductory-level survey courses in electronic and
computer music has necessarily evolved. Such survey
courses have either traditionally aimed to arm music
majors with basic literacy as users of commercial
sequencing, recording and notation software (Webster
and Williams 2006) as articulated by national standards
(NASM 2012), or sought to teach a non-specialised
group of students (often non-majors) the tools of
commercial recording studios and/or MIDI-based
production techniques and to challenge them to
create their own music in the studio.

In recent years, a growing number of universities
have taken a more holistic approach to these survey
courses, introducing students not only to the domi-
nant paradigms in commercial music software and
their connection to music education and composition,
but also to the broader field of computer music
research that includes new musical interfaces, inter-
activity, music information retrieval, algorithmic
composition and sonification, among others. These

Organised Sound 18(2): 146-160 © Cambridge University Press, 2013.

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

courses also include a basic grounding in electro-
acoustic music history, theory and analysis. Topics
typically include acoustics, psychoacoustics and
cognition; audio recording and editing; MIDI
sequencing; synthesis and digital signal processing;
algorithmic composition; music information retrie-
val; and spectral analysis and synthesis. Students
explore these topics both by composing their
own music using a variety of commercial music
production tools and by completing simple music-
programming assignments. This paradigm is repre-
sented by two recent textbooks (Collins 2010; Burk,
Polansky, Repetto, Roberts and Rockmore 2011) and
by courses at several major universities (Klingbeil
2009; Ballora and Craig 2010; Burtner 2012; Garton
and Diels 2012) including our own institution,
Georgia Tech.

1.1. Challenges and opportunities for holistic courses

The expanded scope of these courses, coupled with
changes in computing technology and the studio
paradigm since the early 2000s, have created signifi-
cant practical and pedagogical challenges that suggest
the need for new, integrated software tools. Within
these challenges, we also see the opportunity to more
directly connect the pedagogy of these courses to
introductory computer science education: using
computer music to motivate computer science learn-
ing (and vice versa) to better motivate students to
pursue further studies in either discipline.

In order to adequately address the course’s
curriculum, classes typically use many different soft-
ware programs over the course of a semester: at
Georgia Tech, for instance, our course requires students
to use Ableton Live, Propellerheads Reason and
Cycling ‘74’s Max/MSP (and often other programs) to
complete assignments. While requiring students to use
multiple pieces of software does give them a greater
sense of available tools, it places a large burden on them

doi:10.1017/S135577181300006X

https://doi.org/10.1017/S135577181300006X

to master a number of programs in a limited amount of
time. Equally important, this practice can instill a sense
of division between artistic and research curriculum,
between composition and programming, and between
commercial and academic work. In particular, we have
found that many students are unmotivated to complete
programming assignments and prefer to spend time
using commercial tools: their limited programming
skills make it hard for some of them to create satisfying
music and sounds within the course’s short timeframe,
while the commercial tools enable them to quickly
create results that provide more instant gratification.

Inter-application communication is, of course, a
natural strategy to address the integration problem,
but technologies such as inter-application MIDI,
ReWire and JackAudio (MIDI Manufacturers
Association 2012; Propellerhead Software 2012;
Davis 2011) are challenging to configure, making
them problematic to incorporate into introductory
courses. While Max for Live offers an alluring
approach for tight integration, it comes at a price:
both the actual cost of the software products them-
selves (see further discussion below) and the relative
disconnect between programming paradigms in Max
and those in general-purpose programming languages
(which works against the opportunity to integrate
computer science pedagogy into the course).

Beyond the complexities of learning and poten-
tially integrating multiple software programs during a
one-semester survey course, the use of multiple pro-
grams poses practical issues. While most university
students have computers, and many universities in
fact require students to own laptops (Schedel 2007),
students are rarely able to use their own computers
to complete coursework. At the introductory level,
the barrier is not processing power or outboard
hardware, as it once was, so much as the prohibitive
cost of software licences: single-user academic licen-
ces typically cost US$250 for each product. While
open-source alternatives to many programs do exist,
those products often have less documentation and a
higher learning curve, creating practical problems in
instruction and support. And recent trends towards
cloud-based virtual machines can solve software
licensing issues but are impractical for most music
applications due to degraded audio quality and high
latency.

Instead, universities usually provide classroom labs
and/or private studios in which students can complete
coursework on workstations with required software
preinstalled. While this shared workspace can provide
a sense of community for students, it can also incon-
venience them, limit the time they can spend working
on assignments, limit course enrolment based on studio
resources, and impose an ongoing financial burden on
the institution to maintain and upgrade facilities to
support these introductory courses.

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

EarSketch 147

1.2. The EarSketch approach

In this paper we describe EarSketch, our all-in-one
approach to supporting a holistic introductory course
in computer music as an artistic pursuit and a
research practice. Targeted to the high school and
undergraduate levels, EarSketch enables students to
acquire a strong foundation in electroacoustic com-
position, computer music research and computer
science. EarSketch integrates a Python programming
environment with a commercial digital audio work-
station (DAW) program (Cockos’ Reaper) to provide
a unified environment within which students can use
programmatic techniques in tandem with more tra-
ditional music production strategies to compose
music. Students learn how programmatic approaches
to composition help automate and speed up tedious
tasks, such as specifying effects automation break
points; how they facilitate a rapid iterative composi-
tional approach in which small changes to code can
be quickly auditioned; and how they enable the use of
novel algorithmic techniques, such as stochastic
processes, to create unique sounds, structures and
textures. Our curricular materials aim to reinforce
this integrated workflow by introducing music pro-
duction concepts, compositional techniques and
computer science principles together. EarSketch
enables students to use their own computers to
complete coursework by building around a single
commercial program (Reaper) that is economical
(USS$60 for noncommercial use), that runs on both
Mac and Windows, and that is well optimised for
systems with low memory and slower processors. To
make up for the loss of community around a shared
studio space, EarSketch integrates a social media
website which invites students to upload their music
and source code, view other students’ work and create
derivative musical remixes from other students’ code.

In the sections below, we describe relevant back-
ground to EarSketch in computer science and computer
music pedagogy, describe EarSketch and its imple-
mentation in detail, and describe and evaluate its use in
a pilot summer camp for high school students.

2. BACKGROUND
2.1. Computer music and music technology pedagogy

Little consensus exists as to the exact pedagogical
scope of the field of computer music, though some
(e.g. Pope 1994) have attempted to develop thorough
taxonomies of the field. In particular, there is a natural
divide between practical skills in music technology
literacy (e.g. MIDI and multi-track sequencing,
recording, mixing and music engraving), technical
research areas (e.g. synthesis and signal processing,
algorithmic composition and music information
retrieval), and electroacoustic composition, theory

https://doi.org/10.1017/S135577181300006X

148 Scott McCoid et al.

and analysis (which may draw skills from both of
these other areas). Ballora and Craig note that ‘one
need only compare Dodge and Jerse’s Computer
Music with Webster and Williams’ Experiencing
Music Technology to discover two entirely different
sets of goals and assumptions about computers,
audio technology, and music’ (2010).

Many introductory computer music courses have
evolved from focusing on just one of these areas to
covering all three. Older computer music texts con-
centrate mainly on offline synthesis and score-based
composition (Moore 1990; Dodge and Jerse 1997).
Roads (1996) serves as a more complete reference on
all areas of computer music, but, though it is often
used as a classroom textbook, its overwhelming size
has always made it difficult to use in its entirety
within a single introductory course. Collins (2010)
and Burk et al. (2011) offer updated, concise and
comprehensive introductions to all three areas of
computer music. For instance, Collins’s text covers
areas as diverse as recording and spatialisation,
MIDI, music information retrieval and mobile music.
All of these are presented without the assumption
that readers have access to a studio.

As computer music has developed as a technical
research discipline, it has driven an evolution in
curriculum and pedagogy; there is a necessity to move
beyond the standard studio paradigm. Cipriani and
Giri argue that there can be a disconnection between
theory and practice, and therefore propose a higher
level ‘interactive self-learning environment’ within
Max/MSP for teaching computer music in the con-
text of signal processing and sound design (2011).
Additionally, Wang et al. and Essl use a laptop
orchestra and mobile phone ensemble, respectively,
as a teaching resource, thus moving ‘away from
strictly studio-oriented computer music courses,
instead focusing on live performance’ (Wang, Trueman,
Smallwood and Cook 2008: 35; Essl 2010).

2.2. Computing pedagogy

Introductory computer science courses ‘are not cur-
rently successful at reaching a wide range of students’
(Guzdial 2003: 104), especially under-represented
populations in computing, such as women and ethnic
minorities (Eugene and Gilbert 2008). There is a long
history of research into building different types of
programming environments intended to make com-
puter science more accessible to a broader audience
(Kelleher and Pausch 2005). For instance, Rich,
Perry and Guzdial developed an introductory com-
puter science course and textbook, Introduction to
Media Computation, focused on attracting and
retaining women by contextualising assignments
around creating media. The course uses creativity
‘to counter the reputation of CS as boring’ and relevance

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

‘to illustrate that CS concepts are applicable to
non-majors’ (2004: 190). Because students in an
introductory course will probably not have existing
programming skills, these approaches are intended to
bridge the gap while maintaining the students’
attention. Students tend to respond well to immediate
tangible rewards such as creating (and perhaps
sharing) digital media (Malan and Leitner 2007)
and digital games (Preston and Morrison 2009).
Programming languages and environments have been
developed to support these pedagogical approaches,
such as Scratch (Monroy-Hernandez and Resnick
2008), Alice (Kelleher, Pausch and Kiesler 2007), and
JES (Guzdial 2003).

2.3. Combined pedagogy

Finding the right motivation can be key in encoura-
ging an interest in computing among a broad spec-
trum of students. Particularly with respect to music,
the hope is that a large and diverse audience will be
more interested in the creation of this type of content
(as opposed to programming for its own merits).
Hamer describes a particular project used to teach
software engineering design patterns, where ‘students
are encouraged to discover and express their innate
musical talents’, hoping that the project will ‘deepen
understanding in programming by exploiting an
analogy between program structure and musical
structure’ (2004: 156). He specifically relates musical
elements such as sequential composition, parallel
composition, musical repeats and variant endings to
programming concepts such as statement sequencing,
threaded code, loops and conditional statements,
respectively. Ruthmann, Heines, Greher, Laidler and
Saulters (2010) build upon these connections between
computer science and music by using the Scratch pro-
gramming environment, which is mainly designed to
create interactive media and games, to teach computa-
tional thinking through creating music. Students learn
important programming concepts such as looping, use
of variables and modularisation in a musical context.
Within combined pedagogy settings, many educa-
tors are reluctant to use dedicated computer music
programming languages and environments. Misra,
Blank and Kumar chose instead to use Python, with
myro.chuck, as a module in an introductory com-
puting course, because they ‘hesitated to confuse
novices by teaching in multiple languages’ (2009: 248).
Many computer music software languages and
environments may be ‘excellent tools for computer
musicians, but have not been designed for pedago-
gical purposes’ (Misra, Blank and Kumar 2009).
They argue that, within an introductory computer
science context, it is important to teach a general-
purpose programming language so that programming
skills are immediately transferable to other settings.

https://doi.org/10.1017/S135577181300006X

These approaches combining computer music
and computer science pedagogy address many of
the motivational issues in computing education by
making abstract computing concepts relevant to
students. But they do not necessarily enable students
to create music that is stylistically meaningful to
them. Heines’s and Hamer’s approaches rely on
event-based composition with MIDI, thus requiring
that students possess prerequisite music theory
knowledge and limiting the potential population of
students. JES provides low-level sample access to
audio, so students focus more on extremely basic
audio synthesis and manipulations than on creating
music. myro.chuck abstracts audio synthesis and
audio manipulation to a higher level, such that
students do not manipulate individual samples, but
students still compose at the note/event level repre-
sentation. Within an introductory course setting, we
believe there should not be any musical or technical
prerequisites to creating personally relevant and
satisfying music.

3. GOALS

We intend EarSketch to serve both practical and
pedagogical goals in the context of introductory
courses in computer music that have no musical
or technical prerequisites. On a practical level, we
want EarSketch to make it possible for students to
use their own computers to complete coursework,
purchasing a single commercial program that costs
less than most course textbooks. This should enable
institutions to offer such courses in larger formats
and with fewer dedicated resources. Given that
demand for these courses usually far exceeds avail-
ability, this is an important step towards expanding
access to computer music education and ultimately to
growing the discipline.

We expect the use of a single, integrated software
environment to have practical and pedagogical
benefits for students. EarSketch offers a unique
paradigm for algorithmic composition that combines
functionality for analysis, synthesis and multi-track
timeline editing within the context of a full-featured
DAW (Reaper) and programming language (Python).
With less time spent learning multiple software
packages and struggling to integrate them, users can
focus more on the core artistic and technical chal-
lenges of computer music. Equally important, we
believe that the tight integration of programmatic
and production-oriented work in a single environ-
ment will motivate the pursuit of both and offset
the potential motivational problems caused by the
differential complexity of musical results that begin-
ning students normally achieve with each approach.
Ultimately, we hope that the benefits of this environment
extend beyond pedagogy and that EarSketch’s unique

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

EarSketch 149

integration of components will facilitate new approaches
to musical expression for composers at all levels.

Finally, we believe that the integration of a pro-
gramming language popular both in the computer
science industry and in education (Shannon 2003;
Sloan and Troy 2008) provides a strong gateway
between computer science and computer music,
especially when the connections between computer
science principles, compositional techniques and
computer music concepts are emphasised in curri-
cular design. This approach can provide the initial
impetus for students interested in computer music
to transition into studies and careers in computer
science, and for avid computer programmers to find
their way into computer music.

4. DESIGN AND IMPLEMENTATION
4.1. Technical design

EarSketch is built on top of Reaper, an intuitive
DAW program comparable to those used in profes-
sional recording studios. Reaper supports many of
the techniques covered in an introductory course,
such as multi-track and MIDI sequencing, and it
includes 230 built-in effects such as reverb, com-
pression and multi-band equalisation. Its graphical
user interface (GUI) resembles common DAW soft-
ware, such as Logic, Pro Tools and Cubase (see
Figure 1). We chose Reaper because of its low cost,
cross-platform capability and ability to run on a wide
range of computer processor speeds. EarSketch
integrates three components into the Reaper soft-
ware: an application programming interface (API)
for controlling Reaper; a sound library of pre-
composed audio loops; and utility scripts to seamlessly
integrate with our social network website, sound library
browser and text editor.

Rather than using existing computer music software
environments, EarSketch uses the Python programming
language for practical (integration with Reaper) and
pedagogical reasons. Practically, the EarSketch API
leverages ReaScript, Reaper’s own Python API, which
provides low-level programmatic access to Reaper.
Pedagogically, Python is being increasingly used in
introductory computing courses (Shannon 2003) and is
the eighth most popular programming language
worldwide (Tiobe Software 2012). Additionally, Python
contains a rich standard library and supports multiple
programming paradigms (Nielson and Knutson 2004).

The ReaScript API offers access to much of
Reaper’s core functionality, including importing and
placing audio clips, adding and configuring effects,
creating envelopes to automate changes over time
and accessing sample data from audio tracks. While
the ReaScript API is powerful, it is also difficult
to use, with minimal documentation and cryptic

https://doi.org/10.1017/S135577181300006X

150 Scott McCoid et al.

[Rate:1,091] l'llp_l‘hp_&([Rate:1.091] Hip_Hop_SynthDrun

hIF 1 -n.‘

AR

«m-l«m-m«m«m«w

e M & .

bl . o s £l A . eecEielP

Figure 1. Reaper’s graphical user interface.

function calls. We have developed a cleaner, higher-
level Python API for pedagogical use that wraps the
ReaScript API. It abstracts operations that would
require numerous low-level function calls into single
function calls specifically focused on composition
tasks, such as placing audio files on the timeline,
applying effects and creating rhythmic phrases.
Students import our API as a Python module and write
their script using our functions. Figure 2 compares
importing an audio file on track 1, starting on the
second beat of the third bar, with the ReaScript API
directly and with the EarSketch API. The ReaScript
API requires more code, using low-level pointers,
manually inserting tracks, and moving the cursor
(playhead) manually, to accomplish the same task.
At its essence, the EarSketch API provides func-
tions for placing audio files and effect automation
breakpoints on the timeline within Reaper. The API

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

uses a floating-point number time representation,
where the integer part (left of the decimal place)
represents bar numbers and the fractional part (right
of the decimal place) represents the percentage into
that bar. For example, in 4/4 time, the number 2.5
represents the third beat of the second bar. The third
beat occurs at 50 per cent, or halfway into the second
bar. This approach works well for students unfami-
liar with metrical formats in Western notation, lends
itself easily to mathematical manipulation and logical
comparison, and is common in other computer
music programming environments, such as JMSL
(Didkovsky and Burk 2004).

Figure 3 presents a basic EarSketch script that
imports the EarSketch Python module, initialises
EarSketch, sets tempo and places an audio file on the
timeline. EarSketch can place any audio file onto
the timeline by referencing its absolute path on the

https://doi.org/10.1017/S135577181300006X

EarSketch 151

Insert an audio file at designated track and location using Cockos' ReaScript Python API

RPR_InsertTrackAtIndex(trackNumber, True)
RPR_Main_OnCommand(40769, @)

mediaTrackPointer = RPR_GetTrack(@, trackNumber)

RPR_SetTrackSelected(mediaTrackPointer, True)

measure = int(location)

remainder = location - int(location)
subMeas = 4.0 * remainder + 1.0

beat = int(subMeas)

subDiv = 4.0 * (subMeas - beat) + 1.0

sdTimeTuple = RPR_TimeMapZ_beatsToTime(@, 1, @)

absTimeTuple = RPR_TimeMapZ_beatsToTime(@, beat - 1, measure - 1)
absTime = absTimeTuple[@] + ((subDiv - 1) * (sdTimeTuple[@] / 4))

RPR_SetEditCurPos2(@, absTime, @, @)
RPR_InsertMedia(fileName, 8)

insert an audio file at designated track and location using the EarSketch API

insertMedia(fileName, trackNumber, location)

Figure 2. Comparison between importing an audio file using the ReaScript API and using the EarSketch API.

from earsketch import *

initialize Reaper
initQ
setTempo(120)

Add a music file to track 1
insertMedia(DRUM_N_BASS_DRUMSZ_1M, 1, 1.0)

finish()

Figure 3. Example of a basic EarSketch script.

file system. The software comes bundled with over
400 commercial audio loops in a variety of popular
music styles: hip hop, soul, R&B, techno, house,
drum ‘n’ bass and Latin/world. This content, which
we licensed from a commercial vendor, is encoded as
acidised WAV files (Grosse 2008) that automatically
scale to the project’s current tempo and can be
referenced within Python through pre-defined con-
stants, to avoid the need to use absolute file paths.
(If users place their own audio content into a desig-
nated folder, then constants are automatically created
to reference their audio files as well.) We focused
on popular musical genres with the bundled content
in order to match the musical tastes of a majority of
our students, but of course EarSketch can be used to
create music in any style.

Our API also provides functionality for inserting
audio effects on specified tracks and setting auto-
mation breakpoints for them. Reaper includes a large
number of built-in audio effects. These effects range
from traditional delay-based effects to more esoteric
spectral transformations. We included predefined
constants for students to easily access each effect via

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

the API, including: 3-band equaliser, band-pass filter,
chorus, compressor, delay, distortion, flanger, low-
pass filter, noise gate, panning, parametric equaliser,
phaser, pitch-shift, reverser, ring modulator, scratchy
(auto-scratch effect), stereo delay, sweeping low-pass
filter, tremolo, variable length delay, volume, wah
and waveshaper. Using the setEffect() function, stu-
dents specify an audio effect and track number, along
with start point and end point locations. Figure 4
presents code using the setEffect() function, which
was used to generate the automation in Figure 1.

We have also used ReaScript to customise the
functionality of Reaper’s user interface, hiding
extraneous GUI items and adding menu commands
to run and edit Python scripts, upload projects to the
social media site, access EarSketch curricular mate-
rials, and browse and preview bundled audio content.
To run an EarSketch script, students select a menu
option in Reaper to run a script and then choose the
script from a file browser. The results are rendered
into a new Reaper project that students can imme-
diately see, hear and further edit in Reaper’s GUI.
Error messages, if any, are displayed in pop-up dialog
boxes or a console window within Reaper.

4.1.1. Sequencing

The EarSketch API does not directly support MIDI
sequencing (though Reaper’s GUI does), since, in
keeping with our goals, we wanted students with no
formal musical background to be at ease using the
environment. However, EarSketch does support a
form of step sequencing through programming,
encouraging students to create their own rhythmic
material by piecing together contents of different
audio files at a semiquaver resolution.

https://doi.org/10.1017/S135577181300006X

152 Scott McCoid et al.

from earsketch import *
initQ)
setTempo(120)

HIP_HOP_KEYBOARDMELODYZ_2ZM
HIP_HOP_SYNTHDRUMS1_2M

music
drums

def distortionRhythm(track, measure):

for count in range(4):
{ sub = measure + count/4.0

setEffect(1, DISTORTION, DISTO_GAIN, 25, sub, 25, sub + 0.125)
setEffect(1, DISTORTION, DISTO_GAIN, @, sub + ©.125, @, sub + 0.25)

def ;psnRhythm(track. measure):

setEffect(l, VOL_PAN, VOL_PAN_PAN, -100, measure, -10@, measure + 0.5)
setEffect(1, VOL_PAN, VOL_PAN_PAN, 100, measure + 0.5, 100, measure + 1)

fitMedia(drums, 1, start, middle)
fitMedia(music, 2, start, middle)

for measure in range(start, middle):
distortionRhythm(1, measure)
panRhythm(1, measure)

finish()

Figure 4. Example of creating effects automation envelopes using the EarSketch API.

from earsketch import *

init()
setTempo(152)

beatElements = [DRUM_N_BASS_DRUMS1_4M, DRUM_N_BASS_DRUMSZ_1M, DRUM_N_BASS_DRUMS3_1M]

beatStringl = "@---0+8+00+--0--"
beatString2 = "@+--1+++0+--1---"

makeBeat(beatElements, 1, 1.0, beatStringl)
makeBeat(beatElements, 1, 2.0, beatString2)

finish()

Figure 5. A code example of step sequencing and its output in Reaper.

Inspired by Thor Magnusson’s ixi lang (Magnusson
2011), our API uses a similar string representation to
specify note locations and durations. Like ixi lang,
numbers represent a sound — in our case, a sound file or
segment of a sound file at a semiquaver duration.
Unlike ixi lang, which uses space characters, appending
a ‘+’ sign extends the duration of the preceding sound
by a semiquaver and inserting a ‘-’ sign at any point
signifies a rest. Figure 5 demonstrates this syntax and its
output in Reaper.

Because EarSketch represents these beats as
strings, students can manipulate them using standard
Python string operations; this teaches string opera-
tions in computing in tandem with serial, stochastic

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

and other approaches to the manipulation of musical
events. We provide our own functions for common
manipulations — reverseString(), shuffleString(), and
replaceString() — so that students can begin this
experimentation before they learn string manipula-
tion techniques in Python in depth.

4.1.2. Analysis

Not only does EarSketch provide functionality for
placing audio content on the timeline, it also provides
functions to analyse audio content. We provide the
ability to calculate common features — spectral cen-
troid, RMS amplitude, spectral rolloff, spectral flux,

https://doi.org/10.1017/S135577181300006X

from earsketch import *

initialize Reaper

initQ)

setTempo(120)

set up my parameters for this run

tracklloop = ELEKTRO_HOUSE_DRUMS1_2ZM
analysisMethod = RMS_AMPLITUDE

EarSketch 153

hop = ©.0625 # analyze in 1/16th note chunks

start = 1
end = 3

build a list of tuples with analysis values with corresponding index

location = start
index = @
analysis = []

wnhile location < end:

val = analyzeForTime(tracklloop, analysisMethod, location, location + hop)

analysis.append((val, index))
location += hop
index += 1

sort the analysis list
analysis.sort()

put it back together shuffled
for index, chunk in enumerate(analysis):
location = start + chunk[1] * hop

insertMediaSection(tracklloop, 1, start + index * hop, location, location + hop)

we're done
finish()

Figure 6. Example script using an analysis function to sort segments of an audio file from lowest to highest RMS value.

spectral decrease, spectral flatness, spectral irregularity,
spectral kurtosis, spectral skewness, spectral slope, spec-
tral spread and zero cross rate, which are typically used
in the Music Information Retrieval (MIR) community —
and to use that information in a compositional context.
This approach follows from projects such as MEAP-
Soft (MEAPSoft 2008), but with a focus on students
making decisions through programming about exactly
what to analyse and how to use the results of analysis in
their work, rather than choosing from a limited set of
algorithms through a graphical interface.
Pedagogically, analysis is used to introduce con-
cepts such as conditional logic in computer science
and data mapping in computer music. More broadly,
it introduces the notion that, in both compositional
and interactive contexts, computers can extract
information from audio and can use that information
to drive musical decisions (a foundational concept in
both computer music research and machine learning).
Assignments supporting this pedagogy might ask
students to gate tracks to turn their volume up only if
an analysis feature goes above (or below) a threshold
value, to place on the timeline the audio clip from
a list with the maximal (or minimal) feature value, or
to map (with scaling) a feature value to an effect

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

automation parameter. (This component of our curri-
culum will be piloted in summer 2013.)

So that students can quickly explore different features
for analysis, we scale all the feature values between
0 and 1, and limit the results to a single scalar value.
We believe this will allow students to experiment with
different features within their composition and even-
tually gain more of an intuition as to how these features
correspond with the audio content. Students do not
lose any precision by using scaled values, and therefore
they can apply additional scaling to these values to
use in conjunction with effects or other operations.
Unfortunately, not every useful feature calculates a
scalar value by definition. In particular, spectral flux
calculates a scalar value that represents the sum of the
spectral difference between two different audio spectra.
So, to implement this, we chose to compare successive
pairs of Short-time Fourier Transform (STFT) frames.
As this calculation results in a vector (array), we opted
to calculate the wvariance, which returns a value
corresponding to how far the data is spread out.

Within our API, students can choose to analyse
segments of audio files (or entire files) or segments of
tracks (or entire tracks). Figure 6 shows a brief
example: RMS amplitude is calculated for every

https://doi.org/10.1017/S135577181300006X

154 Scott McCoid et al.

semiquaver of an audio file and the segments are then
sorted from lowest to highest RMS value.

To implement these analysis routines, we initially
considered leveraging the Echo Nest Remix Python
API, which calculates low-level features as well as
information such as tempo, key and ‘dance-ability’
(The Echo Nest 2012). However, this approach had
several drawbacks. Since computation is done in
Echo Nest’s cloud, it introduces a significant delay
while uploading audio content to the remote server,
the service limits the total number of requests per user
per hour, and the service is unavailable entirely to
those without Internet access (or with regulated
Internet access, as at most secondary schools). So,
instead, we took advantage of ReaScript’s ability to
return audio sample data as Python lists and imple-
mented the analysis routines locally using NumPy
and SciPy (SciPy 2012, NumPy 2012).

4.1.3. Synthesis and effects creation

Holistic introductory computer music courses also
typically teach the basics of digital signal processing
and sound synthesis. While existing software synthesisers
and effects units are a great aid to pedagogy in this
regard, it is also important for students to design
their own synthesisers and signal processors. This is
typically accomplished using a unit-generator archi-
tecture such as Max/MSP, SuperCollider or Chuck,
since the unit-generator approach has been the
dominant one in computer music since MUSIC 111
and is itself inspired by the paradigm established by
modular analogue synthesis (Wang 2007).

To this end, we are in the process of developing an
architecture where students can create synthesis instru-
ments and signal processing effects that can be inserted
onto tracks within Reaper, by writing similar Python
code within their EarSketch script. This capability thus
brings composition, signal processing, feature extraction
and sound design into the same environment and gives
students the chance to immediately use the plugins they
program inside of commercial DAW software.

Our architecture will enable students to create and
connect unit-generators and specify control para-
meters that can be accessed through current API
functions (i.e. through setEffect()). When students
run EarSketch scripts that use the unit-generator
architecture to define new effects, EarSketch auto-
matically translates the effects units into JesusSonic
(JS) code, an interpreted language native to Reaper
for defining new effects. We have already developed
a proof-of-concept implementation in which we
successfully created and connected unit-generator
oscillators with EarSketch and then created effects
automations for them with the setEffect() function.
We are now developing a more fully featured, robust
implementation.

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

4.2. Social media website

Our social media web site (see Figure 7) facilitates
informal sharing and borrowing of code among
students. Following the paradigm established by online
music remixing communities such as ccMixter (ccMix-
ter 2012) and computing education communities such
as Scratch (Scratch 2012), the site enables students to
browse projects created by their peers, listen to the
audio and view the code inside the browser, download
the project, add comments and tags, and see how code
has been reused and transformed by others. To facil-
itate seamless integration, we created a menu command
within Reaper that automatically uploads a user’s
relevant source code and audio files for a project to his
or her social media site account.

5. SUMMER WORKSHOP PILOT

In July 2012, we conducted the first EarSketch
workshop to pilot the project. In accordance with the
primary interest of EarSketch’s funding agency, the
workshop focused on computer science education as
motivated by a connection to computer music. It also
introduced basic computer music concepts such as
multi-track digital audio sequencing, effects and
automations, and step sequencing, and compositional
concepts such as ABA and verse—chorus—bridge form
and stochastic techniques.

The workshop consisted of 5 days of instruction,
approximately 5 hours per day, with each day being
divided into 60-minute segments. These segments
were designed to provide a comfortable amount of
time for instruction and demonstration with longer
periods of time for individual student practice and
application, followed by sharing and reflection. Students
had specific assigned exercises, more open-ended work
time, and round-robin and pair-programming activities.
Besides the instructor lessons, they also had access to an
EarSketch curriculum manual and reference doc-
umentation. Ultimately, the students worked to create a
final project to present and share with family members
during an ‘open house’, which took place on the final
afternoon of the workshop.

5.1. Curriculum design

Given the pedagogical focus of the summer workshop
on computer science, the curriculum took a combined
pedagogy approach (see section 2.3). It incorporated
basic computing concepts (common to most all
introductory computing courses) grounded in ‘thick
authenticity’, which focuses on making learning
experiences personally meaningful and relevant to
the larger world (Shaffer and Resnick 1999). In this
case, of course, computer music composition is the
context that is personally meaningful for students,

https://doi.org/10.1017/S135577181300006X

EarSketch

Popular

Picks

mprojects users blog

concepts

EarSketch 155

api m amy

o

& 151lkes 20 listened

K 12 downloaded

Recent Projects Active Users Sample Projects
Jason Funky &3 B2 <3 Looping Exercis 42 w9 <5
Nebo EffectsDa 45 114 5 . . . Using Variables a5 H13<L1
Bass Groove H6 M8 «1 Amy Black Jonathan Chris
Lees Anderson
more more more
‘About EarSketch

EarSketch is a digital audio workstation environment, with an accompanying curriculum, thatwill allow high school and summer workshop
students to create their own computational remixes through learning computing principles. It can also be used as a tool within introductory

college-level computer science courses. Visit EarSketch project site for more information.

Figure 7. Homepage of the social media website.

as they apply computing concepts towards creating
their own music.

5.1.1. Overall design

The EarSketch curriculum presumes no prerequisites:
it does not expect students to play a musical instru-
ment or read music notation. It also assumes that
students have no prior experience in using music
software or in programming. Its design emphasises
hands-on, collaborative experiences.

The curriculum also emphasises some of the unique
benefits of approaching music from a computational
perspective. In particular, it demonstrates to students
how to rapidly experiment with many possible var-
iations on a musical idea by iteratively modifying
algorithmic parameters, executing each version of
code and using their musical ears to decide which
option(s) are best (Ericson, Guzdial and Biggers
2007). For example, they may explore how many
times a loop should be repeated before a new one is
introduced, or try several analysis features before
determining which to use within an algorithm. The
curriculum also focuses on the classic idea of a
composer as a ‘pilot’” who uses computation to

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

negotiate low-level details so as to focus more on
higher-level musical structures and on the ways in
which a computational interface transforms musical
thinking (Xenakis 1992).

5.1.2. Digital Audio Workstation

The first topic covered in the curriculum is the
Reaper DAW. Before coding, students first learn how
to create music using Reaper’s standard graphical
interface. This familiarises them with music industry
software paradigms, helps them to build a mental
model of the DAW as a foundation for further pro-
gramming abstractions, provides clear connections
between API functions and standard DAW func-
tionality (e.g. insertMedia() corresponds to importing
an audio clip onto the timeline), and demonstrates the
unique advantages and time savings programming can
offer in executing complex tasks, such as inserting
effects automations at each semiquaver location on a
particular track.

5.1.3. Programming

Programming concepts in the EarSketch curriculum
are introduced hand in hand with DAW capabilities

https://doi.org/10.1017/S135577181300006X

156 Scott McCoid et al.

and musical constructs. The current workshop cur-
riculum covers basic Python syntax (e.g. comments,
imports); the use and declaration of variables, func-
tions and parameters; iteration with for loops, index
variables and skip counting; strings; simple maths
and random functions; conditionals; and list data
structures. The curriculum always motivates use of
these computing concepts by linking them to new
methods of musical composition in the DAW. For
example, students declare functions to generate A
and B sections of music and then use the flexibility
that such abstractions enable to quickly modify,
move and repeat these musical passages. They use
loops with skip-counting indices to create musical
variation at structurally significant time intervals in
the music. They create strings to define their own
step-sequenced rhythmic patterns within the music.
They use random functions to select among different
audio files or rhythmic patterns stored in a list to
create unexpected musical results that change each
time a program is executed.

The curriculum also emphasises the ways in which
programming can simplify the execution of complex
tasks that would be tedious to do in Reaper’s
graphical interface, thus permitting rapid, iterative
musical experimentation. For example, students first
learn how to apply effects by using Reaper’s GUI to
draw automation envelopes. They then use the
setEffect() function to more easily create and control
effects and parameter changes programmatically.

Collaboration and sharing are incorporated
into the curriculum at all levels. After each lesson,
students have time to work on their own projects,
frequently collaboratively. We use ‘round robin’ and
‘pair’ style coding, where students work for five
minutes on a project, then continually shift one seat
over in the classroom to a new project or alternate
back and forth with a single collaborator on the same
project. All of this work is placed onto the social
media website, allowing students to view and down-
load other students’ projects. By appropriating
musical ideas and programming techniques from
uploaded work, collaborative practices emerge even
without direct pairing or contact.

5.2. Evaluation

The seventeen high school students that participated in
the EarSketch workshop were from a variety of Metro
Atlanta schools. The ethnic demographic of the group
was relatively diverse, with 18 per cent of the students
being Asian-American, 24 per cent being African-
American, 53 per cent European-American, and 6 per
cent of two or more ethnicities. The class comprised
75 per cent male and 25 per cent female students.
Programme participants were measured at three
time points over their 5-day EarSketch experience: a

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

ten-item pre-content knowledge assessment on day 1,
an engagement survey at the end of day 4, and the
same content knowledge assessment on day 5 that the
students saw on day 1. The evaluation instruments
focused more on computing than on computer music,
again because of the specific interests of the project’s
funding agency.

The content knowledge assessment is designed to
measure basic knowledge related to programming
within a DAW environment. Figure 8 shows an
example of a question.

On day 4, participants were asked to complete a
survey measuring seven engagement constructs (Wiebe,
Williams, Yang and Miller 2003). The engagement
instrument comprises five scales from Williams, Wiebe,
Yang, Ferzli and Miller (2002):

e computing confidence (e.g. ‘I am sure I can do
advanced work in computing’);

e computing enjoyment (e.g. ‘I feel comfortable
working with a computer’);

e perceived usefulness of computing (e.g. ‘I will be
able to get a good job if I learn how to use a
computer’);

® motivation to succeed in computing (e.g. ‘I like
solving computing problems’); and

e computing identify and belongingness (e.g. ‘I feel
like I ““belong™ in computer science’).

The instrument also draws on a scale designed to
measure the extent to which participants see com-
puting as a creative outlet (e.g. ‘I am able to be very
expressive and creative while doing computing’)
(Knezek and Christensen 1996). Finally, the instru-
ment measures students’ intention to persist in com-
puting as a field of university study and a career (e.g.
‘Someday, I would like to have a career in computing’).
The student engagement survey was administered
retrospectively, such that students’ answered how they
felt before the week-long EarSketch camp and at the
end. The analysis consisted of a paired samples t-test
whereby statistically significant changes from before to
after were assessed.

Overall, the results suggest that students’ attitudes
positively and statistically significantly increased
across three constructs at p<<.0l: computing con-
fidence, motivation to succeed in computing, and
creativity. This suggests that the workshop is effective
at enhancing students’ perceptions that they can
tackle advanced computing work and get good grades
in computing (computing confidence). Likewise, the
workshop increases students’ motivations to persevere
with complex computing problems (motivation to suc-
ceed in computing). Originality and expressivity are also
enhanced as a result (creativity). Students indicate that
they are statistically significantly more likely to see
themselves in a computing field in the future as a result
of the workshop.

https://doi.org/10.1017/S135577181300006X

EarSketch 157
Which code example puts the beat “0+++0+++0+0+0+++" on measures 5, 6, 7, 87
A.
music = HIP_HOP_DRUMS4_2M
for measure in range(5, 9):
makeBeat (music, 1, measure, “0+++0+++0+0+0+++")
B.
music = HIP_HOP_DRUMS4_2M
for measure in range(l, 5):
measure = measure * 2
makeBeat (music, 1, measure, "Q+++0+++0+0+0+++")
c.
music = HIP_HOP_DRUMS4_2M
for measure in range(5, 8):
makeBeat (music, 1, measure, “Q+++0+++0+0+0+++")
D.
music = HIP_HOP_DRUMS4_2M
for measure in range(4):
makeBeat (music, 1, measure, “0+++0+++0+0+0+++")
E. Ildon't know
Figure 8. Example of a moderate content knowledge assessment question.
Table 1. Change from before to after along the seven engagement constructs
Constructs
Paired samples
Constructs n Mean t-test SD D N A SA
Computing Confidence Before 16 3.20 0.008** 14% 18% 24% 22% 21%
Now 17 4.11 3% 3% 18% 33% 43%
Computing Enjoyment Before 17 431 0.838 2% 5% 11% 25% 57%
Now 17 4.34 1% 5% 10% 27% 57%
Perceived Usefulness of Computing Before 17 439 0.945 2% 1% 9% 32% 56%
Now 17 4.38 3% 6% 8% 17% 66%
Motivation to Succeed in Computing Before 17 3.57 0.000%** 3% 19% 21% 34% 24%
Now 17 4.03 1% 7% 17% 39% 36%
Computing Identity and Belongingness Before 17 3.59 0.277 2% 20% 27% 20% 31%
Now 17 3.76 4% 14% 22% 24% 37%
Intention to Persist Before 17 3.58 0.245 5% 12% 33% 22% 28%
Now 17 3.70 5% 10% 28% 26% 32%
Creativity Before 17 3.46 0.006** 9% 5% 38% 28% 21%
Now 16 4.20 0% 0% 19% 42% 39%

**p <.01; *p <.0l; negatively worded items were reverse coded prior to mean computation of the constructs. Only students
with matched before and now scores were assessed for statistical significance. Note: We employed a 5pt. scale with the
following response categories: Strongly Disagree (SD), Disagree (D), Neutral (N), Agree (A), and Strongly Agree (SA).

To further investigate how the EarSketch programme
impacted students’ intent to persist in computing, a

computing education may have a powerful, positive
effect on student confidence and motivation.

correlation analysis was conducted whereby the change
in responses (A) from ‘before’ to ‘now’ across the seven
survey constructs listed in Table 1 were entered into a
Pearson’s correlation. The results, presented in Table 2,
indicate that to the extent that students gained in con-
fidence, belongingness and creativity, their intent to
persist in computing increased. Interestingly, growth in
creativity was statistically significantly correlated with
growth in confidence, motivation and belongingness.
This suggests that the computer music context for

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

Figure 9 summarises students’ gains in content
knowledge across all content knowledge assessment
items, specifically examining content knowledge gains
by item difficulty. The results clearly suggest that the
workshop was statistically significantly effective in
enhancing students’ knowledge of programming
concepts. On average, students made a four-item gain
from before (pre) to after (post); that is, the average
student answered six questions correctly after the
sessions and only two questions before.

https://doi.org/10.1017/S135577181300006X

158 Scott McCoid et al.

)
=
-
=
<
)
£
O
<
2

*

°3a=a i

—

= 2

s B ©

L =

==l

- |

a/

=

=]

2

<

=

£ *

] * %

=] = =
S —

< RS

wn

wn

Q

=

-

Y @

]

s =

£3

2z *

E o <+ &
|l = 32 O n o
S|l <aa B - BH
=
=
©
$—

5 -
° g
el £
4 =)
= =X * *
5| 3 & 6
—
~ ~ = S5 o
. <) 5 e =
(o]
o
=
| ¢
=| 2
=
= * * %
=) * % % % %
o | © ® <+ "
I = — o~
< n g) ey

o

=

-

S 7 * ¥

N o * * *

= 2 I RSN —_ o O

s 0 N O o S o
< A < N R AL

g% Al N A

s © [~ 00 O <+ o <

O3 = Ao - =]

= =

< o I | I

&
5]
a
. | 2
w
B 6 Z
> =]
= 50 Il
O £ <
5 =y .
-~z ~ s |38
— »n 3 [5) .
=
es::o o cm vV
-
e 2E2 ok m|&
osoowmu%.‘: .
SCZEEgsEE|lL
<« €28 sB8EE|=
OQ.OQ_"—HQN
Moo wgE8 8 eV
Aa4aaa4aa,aad4al x

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

100% A CKA Items OPre
¥ H Post
*%

75% 4 wx
g
5 50%
< M
£

25% - —I

0%

EASY MODERATE HARD AVERAGE
**p<.01; *p<.05, +p<.10 (approaching significance)

Figure 9. Pre/post content knowledge assessment items by
difficulty.

When asked what aspects of the workshop students
enjoyed the most, the vast majority indicated that
they appreciated learning about programming and
working on complex and interesting projects in
computing and music. For example, one student
noted that ‘the best thing about this camp was the
fact that we were introduced to programming, while
also integrating it into musical concepts’. Another
student expressed her enthusiasm for the workshop
projects by saying, ‘Learning how to create music
using only code with minimal help from a DAW was
very exciting and interesting. The code allows for a
much easier and faster way to mix and remix music.’
This response — that coding can actually make it
easier to create music than more traditional music
production techniques — exactly matches one of our
intents in creating EarSketch. Through an integrated
software environment, the students were able to
easily see the unique benefits of programmatic and
algorithmic techniques.

6. FUTURE WORK

We continue to iteratively review, refine and evaluate
EarSketch as we prepare for a public release
and broader deployment of the project. Near-term
plans include a six-week pilot at an ethnically and
socioeconomically diverse public high school in
metro Atlanta in early 2013, to assess the success of
our workshop curriculum in the context of a high
school introductory computer science course; and a
two-week summer workshop in 2013 at Georgia
Tech’s Institute for Computing Education, to pilot
additional curriculum modules focusing on more
advanced computing, composition and computer
music concepts.

We are also adding new functionality to the
EarSketch software toolset and social media website.
Some of our development is focused on improving
usability and the seamless integration of multiple
software components through changes such as new
EarSketch menu items within Reaper and a cleaner

https://doi.org/10.1017/S135577181300006X

project metadata entry page on the social media
website. Other changes focus on new API functionality
for the software toolset, in particular on completing the
implementation of the unit-generator-based synthesis
and signal processing components of the AP

We are currently replacing the existing library of
audio content bundled with EarSketch, which was
licensed to us only for use in pilot studies, with
a more openly licensed library of audio content.
Specifically, we commissioned two sound designers —
Young Guru and Richard Devine — to create new
audio library content for EarSketch in a variety of
musical genres.

Lastly, we are planning to use EarSketch in a
massively open online course (MOOC) in Music
Technology through Coursera (Coursera 2012).
Because of the interests of our funding agency, our
pilot studies to date have emphasised computer sci-
ence over electroacoustic music composition in their
curricula. With the MOOC platform, we are now able
to offer a course that weights computing and com-
position more equally, and we can offer it for free to a
student population in the tens of thousands. This will
fulfil one of the core motivating visions of the project:
to bring together a holistic introductory computer
music curriculum, an integrated, affordable software
environment useable on any laptop, and an online
community through which to share music and code
and create derivative works, in an effort to expand
access to, and interest in, the artistic pursuit and
research practice of computer music.

Acknowledgements

Our thanks to everyone that has contributed to and
collaborated on this project: Barbara Ericson, Ziwen
Fan, Charles Hancock, Tom Jordan, Elise Livingston,
Donovan McMurray, Justin Permar, Mike Reilly,
Erica Richards, Jonathan Streater, Neeraj Vaidya and
Shannon Yao. Additional thanks to Cockos, Inc., to
Georgia Tech’s Institute for Computing Education,
to Nebo Elementary School, to the Marist School and
to Lanier High School for their guidance, collaboration
and support. This work is funded by the National
Science Foundation under CNS grant #1138469. In
spring 2013, EarSketch will be available as a free
download at http://earsketch.gatech.edu.

REFERENCES

Ballora, M. and Craig, C. 2010. Studio Report: Music
Technology At Penn State University. Proceedings of the
2010 International Computer Music Conference. New
York: ICMA, 286-9.

Burk, P., Polansky, L., Repetto, D., Roberts, M. and
Rockmore, D. 2011. Music and Computers: A Theore-
tical and Historical Approach. http://music.columbia.
edu/cmc/MusicAndComputers.

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

EarSketch 159

Burtner, M. 2012. Technosonics: Digital Music and Sound
Art Composition. http://people.virginia.edu/~cmbd4f/
235/235.html#syllabus.

ccMixter. 2012. http://ccmixter.org.

Cipriani, A. and Giri, M. 2011. Innovation, Interaction,
Experience and Imagination in Computer Music
Education. Proceedings of the 2011 International Computer
Music Conference. University of Huddersfield: ICMA,
383-6.

Collins, N. 2010. Introduction to Computer Music. West
Sussex: John Wiley & Sons.

Coursera. 2012. https://www.coursera.org.

Davis, P. 2011. http://jackaudio.org.

Didkovsky, N. and Burk, P. 2004. Java Music Specification
Language. http://algomusic.com/jmsl.

Dodge, C. and Jerse, T.A. 1997. Computer Music, 2nd edn.
New York: Schirmer Books.

Echo Nest, The. 2012. http://echonest.github.io/remix.

Ericson, B., Guzdial, M. and Biggers, M. 2007. Improving
Secondary CS Education: Progress and Problems. ACM
SIGCSE Bulletin, 298-301.

Essl, G. 2010. The Mobile Phone Ensemble As Classroom.
Proceedings of the 2010 International Computer Music
Conference. New York: ICMA, 506-9.

Eugene, W. and Gilbert, J.E. 2008. C-PAL: Culture-based
Programming For Adult Learners. Proceedings of the
46th Annual ACM Southeast Regional Conference,
ACM, 450-3.

Garton, B. and Diels, N. 2012. MIDI Music Production

Techniques. http://music.columbia.edu/cmc/courses/
v2205/fall2012/syl.html.
Grosse, D. 2008. Loop File Formats. http://www.

recordingmag.com/resources/resourceDetail/323.html.

Guzdial, M. 2003. A Media Computation Course For
Non-Majors. Proceedings of the 8th Annual Conference
on Innovation and Technology in Computer Science
Education. New York: ACM, 104-8.

Hamer, J. 2004. An Approach to Teaching Design
Patterns Using Musical Composition. Proceedings of the
9th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education. Leeds: ACM,
156-60.

Kelleher, C. and Pausch, R. 2005. Lowering the Barrier to
Programming: A Taxonomy of Programming Environ-
ments and Languages For Novice Programmers. ACM
Computer Survey 37(2): 83-37.

Kelleher, C., Pausch, R. and Kiesler, S. 2007. Storytelling
Alice Motivates Middle School Girls to Learn Computer
Programming. Proceedings of the SIGCHI conference on
Human Factors in Computing Systems. San Jose, CA:
ACM, 1455-64.

Klingbeil, M. 2009. Music 325a: Fundamentals of Music,
Multimedia Art, and Technology. http://musi325_fall09.
commons.yale.edu.

Knezek, G. and Christensen, R. 1996. Validating the
Computer Attitude Questionnaire (CAQ). Paper
Presented at the Annual Meeting of the Southwest
Educational Research Association. New Orleans, LA.

Magnusson, T. 2011. The IXI Lang: A SuperCollider
Parasite for Live Coding. Proceedings of the 2011
International Computer Music Conference. University of
Huddersfield: ICMA, 503-6.

https://doi.org/10.1017/S135577181300006X

160 Scott McCoid et al.

Malan, D. and Leitner, H. 2007. Scratch For Budding
Computer Scientists. Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education.
Covington, KY: ACM, 223-7.

MEAPsoft. 2008. http://www.meapsoft.org.

MIDI Manufacturers Association. 2012. http://www.midi.
org.

Misra, A., Blank, D. and Kumar, D. 2009. A Music Con-
text For Teaching Introductory Computing. Proceedings
of the 14th Annual ACM SIGCSE Conference on
Innovation and Technology in Computer Science.
Chattanooga, TN: ACM, 248-52.

Monroy-Hernandez, A. and Resnick, M. 2008. Empowering
Kids to Create and Share Programmable Media.
Interactions 15(2): 50-3.

Moore, F.R. 1990. Elements of Computer Music. Englewood
Cliffs, NJ: Prentice Hall.

NASM (National Association of Schools of Music). 2012.
National Association of Schools of Music Handbook
2011-12. http://nasm.arts-accredit.org/site/docs/Handbook/
NASM_HANDBOOK_2011-12.pdf.

Nielson, S.J. and Knutson, C.D. 2004. OO+ +: Exploring
the Muliparadigm Shift. Proceedings of the Workshop
on Multiparadigm Programming with Object-Oriented
Languages. Oslo.

NumPy. 2012. http://www.numpy.org.

Pope, S.T. 1994. Editor’s Notes: A Taxonomy of Computer
Music. Computer Music Journal 18(1): 5-7.

Preston, J. and Morrison, B. 2009. Entertaining Education-
Using Games-Based and Service-Oriented Learning to
Improve STEM Education. Transactions on Edutainment
IIT:70-81.

Propellerhead Software AB. 2012. http://www.propellerheads.
se/developer/index.cfm?fuseaction=get_article&article=
rewiretechinfo.

Rich, L., Perry, H. and Guzdial, M. 2004. A CS1 Course
Designed to Address Interests of Women. Proceedings of
the 35th SIGCSE Technical Symposium on Computer
Science Education. Norfolk, VA: ACM, 190-4.

Roads, C. 1996. The Computer Music Tutorial. Cambridge,
MA: The MIT Press.

https://doi.org/10.1017/5135577181300006X Published online by Cambridge University Press

Ruthmann, A., Heines, J.M., Greher, G.R., Laidler, P. and
Saulters, C. 2010. Teaching Computational Thinking
Through Musical Live Coding in Scratch. Proceedings
of the 41st ACM Technical Symposium on Computer
Science Education. Raleigh, NC: ACM, 351-5.

Schedel, M. 2007. Electronic Music and the Studio. In
N. Collins and J. d’Escrivan (eds.) The Cambridge
Companion to Electronic Music. New York: Cambridge
University Press.

SciPy. 2012. http://www.scipy.org.

Scratch. 2012. http://scratch.mit.edu.

Shaffer, D. and Resnick, M. 1999. ‘Thick’ Authenticity:
New Media and Authentic Learning. Journal of Interactive
Learning Research 10(2): 195-215.

Shannon, C. 2003. Another Breadth-First Approach to CS
1 Using Python. Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Education.
Reno, NV: ACM, 248-51.

Sloan, R.H. and Troy, P. 2008. CS 0.5: A Better Approach
to Introductory Computer Science For Majors. Proceedings
of the 39th SIGCSE Technical Symposium on Computer
Science Education. Portland, OR: ACM, 271-5.

TIOBE Software. 2012. http://www.tiobe.com/index.php/
content/paperinfo/tpci/index.html.

Wang, G. 2007. A History of Programming and Music. In
N. Collins and J. d’Escrivan (eds.) The Cambridge
Companion to Electronic Music. New York: Cambridge
University Press.

Wang, G., Trueman, D., Smallwood, S. and Cook, P.R.
2008. The Laptop Orchestra as Classroom. Computer
Music Journal 32(1): 26-37.

Webster, P. and Williams, D. 2006. Experiencing Music
Technology, 3rd edn. Belmont, CA: Thomson, Schirmer.

Wiebe, E., Williams, L., Yang, K. and Miller, C. 2003.
Computer Science Attitude Survey. Computer 14(25): 1-86.

Williams, L., Wiebe, E., Yang, K., Ferzli, M. and Miller, C.
2002. In Support of Pair Programming in the Intro-
ductory Computer Science Course. Computer Science
Education 12(3): 197-212.

Xenakis, 1. 1992. Formalized Music. Thought and Mathematics
In Composition. Hillsdale, NY: Pendragon Press.

https://doi.org/10.1017/S135577181300006X

