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Cisneros, 3, 28040-Madrid, Spain

(Received 19 May 2006 and in revised form 22 November 2006)

We consider the harmonic and subharmonic modulated surface waves that appear
upon horizontal vibration along the surface of the liquid in a two-dimensional
large-aspect-ratio (length large compared to depth) container, whose depth is large
compared to the wavelength of the surface waves. The analysis requires us also
to consider an oscillatory bulk flow and a viscous mean flow. A weakly nonlinear
description of the harmonic waves is made which provides the threshold forcing
amplitude to trigger harmonic instabilities, which are of various qualitatively different
kinds. A linear analysis provides the threshold amplitude for the appearance of
subharmonic waves through a subharmonic instability. The results obtained are used
to make several specific qualitative and quantitative predictions.

1. Introduction
Surface waves in vibrated containers have received much attention in the literature,

largely focused on Faraday waves (Faraday 1831; Rayleigh 1883; Miles & Henderson
1990; Cross & Hohenberg 1993; Fauve 1995), which are excited upon vertical vibra-
tions. Horizontally excited waves have received less attention and workers have con-
centrated on the case of containers with a moderate width (Miles 1984; Funakoshi &
Inoue 1988; Nobili et al. 1988; Feng 1997; Billingham 2002; Hill 2003; Faltinsen,
Rognebakke & Timokha 2006), whose horizontal size is comparable to the surface
waves wavelength. In this case, only a few (depending on symmetries) sloshing modes
are excited; note that depth plays no role in this discussion, and only affects the
eigenmodes quantitatively. If mean flows are ignored, then the system is governed by
a set of ODEs. Mean flows are due to time-averaged quadratic nonlinearities that
produce both a global circulation and a deformation on the free-surface elevation. The
former in turn can be associated either to viscous effects (viscous mean flows) or to
mass conservation (inviscid mean flows) and has been largely ignored in the analysis
of surface waves in moderate containers. Surface waves have been analysed usually
from a Hamiltonian formulation, with viscous effects added a posteriori through a
linear viscous damping, ignoring some more subtle, but equally important, nonlinear
viscous effects. Viscous mean flows (also called streaming flows, Schlichting 1968; Riley
2001), in particular, are produced by time-averaged Reynolds stresses in the oscillatory
boundary layers, and have been mistakenly assumed to be only a byproduct of surface
waves; instead, viscous mean flows have been proved to couple dynamically with the
evolution of the primary surface waves (see Higuera, Vega & Knobloch 2002 and
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272 F. Varas and J. M. Vega

references therein). The mean free-surface deformation instead has been considered
in connection with the so-called vibroequilibria (Gavrilyuk, Lukovsky & Timokha
2004 and references therein) and also in connection with dynamic stabilization of, for
example, Rayleigh–Taylor instability (Wolf 1969; Lapuerta, Mancebo & Vega 2001
and references therein).

For wider containers (namely, containers whose width is large compared to
wavelength), we must consider a large number of surface modes and interaction
with nearby modes, which leads to spatial modulation. This can be analysed invoking
separation of scales using a description of the modulating amplitude in terms of
(Schrödinger-like equations with convective terms resulting from group velocity)
PDEs. Spatially modulated surface waves have received much less attention (two
exceptions, with mean flows ignored are Ockendon & Ockendon 1973; Faltinsen &
Timokha 2002) even though some related experiments (Wunenburger et al. 1999)
suggest that they exhibit rich dynamics. Let us remark that Wunenburger et al. deals
with a CO2-system near the critical point. It is somewhat surprising that the simpler
ordinary liquid problem has been analysed neither theoretically nor experimentally;
efforts have concentrated in both two-phase (Kozlov 1991, Ivanova, Kozlov & Evesque
1996) and granular flows (Jaeger & Nagel 1996; Ristow 2000; Aranson & Tsimring
2006). Spatially modulated surface waves are also interesting from the theorical point
of view because the flow field has a fairly rich structure. As is to be expected,
vibrations produce surface waves near the free surface, but also an oscillatory flow in
the bulk and a mean flow. The analysis of these is non-trivial for several reasons.

(i) Surface waves are spatially modulated, counterpropagating waves that are
described by two coupled Shrödinger-like amplitude equations. In addition to the
usual effects of dispersion and conservative nonlinearity, these equations exhibit new
terms accounting for (a) viscous dissipation, (b) forcing, (c) advection at the group
velocity, and (d) coupling to the mean flow. The advection term is always much larger
than the dispersive term, and (because both counterpropagating waves are present)
cannot be eliminated by using a moving frame, as is done when only one-sided waves
are considered, for example, in water wave theory (Newell 1985). If dispersion is
neglected, then the equations become hyperbolic, as in related dissipative systems
(first considered by Daniels 1978, see also Martel & Vega 1998), where small diffusive
terms lead to subtle effects (Martel & Vega 1996). Similarly, dispersion cannot be
ignored a priori in counterpropagating surface waves (Lapuerta, Martel & Vega 2002;
Martel, Vega & Knobloch 2003) because dispersive scales can be destabilized. There
are two kinds of surface waves, namely harmonic and subharmonic, whose frequency
is the forcing frequency and half of the forcing frequency, respectively.

(ii) The horizontally vibrating lateral walls act as wavemakers, and directly excite
a pair of harmonic surface waves (HSW), analysed in § 4, which travel along the free
surface from the lateral walls inwards and decay from surface dissipation. Forcing at
the lateral walls is not standard. This is because the walls extend down to the bottom
of the container (which makes a difference with standard wavemakers in water waves)
and thus they also excite an internal oscillatory flow in the bulk (OBF, analysed in
§ 3), which affects a region whose size is of the order of the container’s depth and
contributes to the excitation of the surface waves in a subtle manner. Namely, it
produces:

(a) A contribution (namely, that term proportional to ln d in (4.16) below) to
direct excitation of harmonic waves at the lateral walls that is logarithmically
large if the container depth is large compared to wavelength. This contribution
has not been considered before in this context.
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Figure 1. Sketch of the fluid domain, with the various asymptotic regions. The contact line
is pinned to the upper edge of the lateral walls.

(b) An oscillatory pressure gradient on the free surface that is able to excite
parametrically (Fauve 1995) new subharmonic surface waves (SSW), analysed in
§ 5.

(iii) Surface waves excite a secondary viscous mean flow (VMF), which affects the
weakly nonlinear dynamics of the primary waves, as repeatedly shown in related
vibrating fluid systems (Higuera et al. 2002; Lapuerta et al. 2002, and references
therein), and is at least as strong as the inviscid mean flow usually considered in
large-aspect-ratio surface waves (Davey & Stewartson 1974). The effect of the VMF
on the harmonic surface waves will be considered in § 4, where it will be seen that
this effect cannot be ignored when considering the stability of the primary waves.
Similarly, the VMF affects the weakly nonlinear dynamics of subharmonic surface
waves, but the analysis of this is beyond the scope of this paper.

Against this background, the object of this paper is to analyse the dynamics of
the spatially modulated nearly inviscid surface waves in a long container subject to
horizontal vibration. In order to avoid additional difficulties and to clarify the analysis,
we consider the restricted case of one-dimensional waves in a two-dimensional
container, which models waves in a three-dimensional rectangular container whose
width is small compared to length, but large compared to depth. Also, we assume
a fixed contact line to avoid additional effects due to contact line hysteresis; see
Henderson & Miles 1994; Bechhoefer et al. 1995 for the experimental realization of
this condition.

2. Formulation
We consider a two-dimensional horizontal container (figure 1) of depth d∗ and

length 2L∗, which is vibrating horizontally with an amplitude a∗ and a frequency
ω∗. We use for non-dimensionalization the characteristic time ω∗−1 and characteristic
length �∗, defined by the inviscid capillary gravity waves dispersion relation in deep
layer

ω∗2 = g/�∗ + σ/(ρ�∗3), (2.1)

in terms of the acceleration due to gravity g, surface tension σ , and density ρ, all
assumed constant. The resulting non-dimensional governing equations are

ψxx + ψyy = Ω, Ωt − ψyΩx + ψxΩy = ε(Ωxx + Ωyy), (2.2)

in −L < x < L, −d < y < f . The boundary conditions at the free surface are

ft − ψx − ψyfx = 0, (ψyy − ψxx)
(
1 − f 2

x

)
− 4fxψxy = 0, (2.3)
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(1 − S)fx − S

(
fx√

1 + f 2
x

)
xx

− ψyt + ψxtfx − (ψx + ψyfx)Ω + 1
2

(
ψ2

x + ψ2
y

)
x

+ 1
2

(
ψ2

x + ψ2
y

)
y
fx = −ε[3ψxxy + ψyyy − (ψxxx + ψxyy)fx]

+ 2ε

[
2ψxyf

2
x + (ψxx − ψyy)fx

1 + f 2
x

]
x

+ 2ε
(ψxxy − ψyyy)f

2
x − ψxyy(1 − f 2

x )fx

1 + f 2
x

(2.4)

at y = f , while those at the bottom and lateral walls are

ψ = 0, ψy = a cos t at y = −d, (2.5)

ψx = 0, ψy = a cos t, f = 0 at x = ±L − a sin t. (2.6)

Here, ψ is the streamfunction, defined such that the velocity

(u, v) = (−ψy, ψx); (2.7)

Ω = vy − ux is the vorticity, and f is the free-surface elevation, required to satisfy

volume conservation
∫ L

−L
f dx = 0. Equations (2.2)–(2.6) are obtained in a standard

way, replacing (2.8) and Ω into the usual continuity and Navier–Stokes equations,
and the usual boundary conditions (accounting for kinematic compatibility and
equilibrium of tangential and normal stresses at the free surface, and no slip at the
bottom).

The problem depends on the following non-dimensional parameters: the container’s
length 2L and depth d , the forcing amplitude a, the capillary–gravity balance
parameter S, and the non-dimensional viscosity ε, defined as

(L, d, a) =
(L∗, d∗, a∗)

�∗ , S =
σ

σ + ρg�∗2
, ε =

ν

ω∗�∗2
, (2.8)

where ν is the kinematic viscosity. Note that S = 1/(1+B), where B = ρg�∗2/σ is the
Bond number based on the wavelength of the surface waves, �∗, defined in (2.1). S is
such that 0 � S � 1, and the extreme values S = 0 and 1 correspond to the purely
gravitational (σ = 0) and the purely capillary (g = 0) limits, respectively.

The problem (2.2)–(2.6) is invariant under the action

x → −x, ψ → −ψ, Ω → −Ω, t → t + π, (2.9)

which results from reflection symmetry, and will play an important role below.
The assumptions in this paper are

ε � 1, 1 � d � L, a � 1, (2.10)

which means that (i) viscous effects are weak, (ii) the horizontal length is large
compared to depth, which in turn is large compared to the wavelength of the surface
waves. The assumptions that ε � 1, a � 1 and L � 1 are essential in the analysis
below, but the remaining assumptions are made only to simplify presentation, and
could be relaxed. In fact, the assumption that L � 1 is only required in § 4, where
it is made in order that the viscous mean flow be almost parallel. The analysis in
§ § 3–5 will be made in specific distinguished limits, which involve relations between
the small parameters and will be defined such that as many terms as possible in
the resulting asymptotic equations be of the same order. However, the analysis will
be valid for arbitrary values of the small parameters satisfying (2.10); the only
additional restrictions (validity limits of the analysis) will be that the coefficients of
the asymptotic equations be bounded, which will exclude some resonances, see below.
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Modulated surface waves in horizontally vibrated containers 275

In principle, we should consider several regions in the container (see figure 1).
(a) The bulk, which is that part of the container outside the several boundary layers
described next, (b) a nearly inviscid free surface boundary layer, with a O(1) thickness,
which is the region affected by the surface waves, (c) two nearly inviscid corner regions
near the contact point, with O(1) size, where the surface waves are directly forced and
reflected, (d) a viscous free-surface boundary layer, with an O(ε1/2) thickness, and (e) a
viscous boundary layer near the lateral walls and the bottom of the container, whose
thickness is also O(ε1/2). Because d and L are both large, region (e) has a negligible
effect in the analysis below. The assumption that d � L will only be required in
§ 4 and relaxed in the remainder of the paper. All calculations below will be nearly
inviscid. Viscous effects come into play only through the VMF mentioned above and
the damping ratio of the various wavetrains. In order to calculate the latter, we recall
the well-known result (Miles & Henderson 1990) that a resonant surface wave whose
free-surface elevation is given by f = Aei(ωt±kx) + c.c., where ω and k satisfy the
dispersion relation (cf. (2.1))

ω = ω(k) ≡
√

(1 − S)k + Sk3, (2.11)

exhibits a damping ratio

2k2ε. (2.12)

As explained in § 1, we must consider an oscillatory bulk flow (OBF), the harmonic
and subharmonic surface waves (HSW and SSW), and a viscous mean flow (VMF).
Thus

ψ = ψOBF + ψHSW + ψSSW + ψVMF, f = fOBF + fHSW + fSSW + fVMF, (2.13)

where (ψOBF, fOBF), (ψHSW, fHSW), and (ψSSW, fSSW) are given by (3.1), (3.6), (4.1)–(4.3)
and (5.1) below. To the approximation relevant in this paper, the VMF can be ignored
except in the analysis of the HSW.

Note that the problem exhibits four well-separated spatial scales, or orders O(ε1/2),
O(1), O(d) and O(L), and the associated time scales. Since, in addition, this is a
free-boundary problem, direct numerical simulation is difficult. The analysis below
instead filters out all spatial and temporal scales except for the largest ones.

The remainder of the paper is organized as follows. The OBF is calculated in § 3,
as we need to obtain its effect in promoting harmonic and subharmonic waves. The
HSW are analysed in § 4, where a system of weakly nonlinear amplitude equations
coupled to the VMF is derived which is used in § 4.1 to calculate the simplest reflection
symmetric modulated waves and in § 4.2 to analyse the linear stability of these. The
latter analysis provides the threshold amplitude for the appearance of harmonic
instabilities of the system. The SSW are considered in § 5, where a linear stability
analysis is made that provides the amplitude threshold for the parametric excitation
of these waves, through a subharmonic instability. This is made in three distinguished
regimes, depending on the relation between the container’s depth and length and the
viscous length; a more general, weakly nonlinear analysis of this flow is outside the
scope of this paper. Harmonic and subharmonic instabilities are compared in § 6, to
elucidate which instability dominates for each set of parameter values; some specific
predictions are made and some experiments are suggested. Finally, the results are
summarized and discussed in § 7.
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3. Oscillatory bulk flow
The oscillatory bulk flow is produced by the lateral walls oscillations, and has not

been considered before in this context. This flow affects both reflection at the lateral
walls (considered in Appendix A) and excitation of subharmonic waves (considered in
§ 5). To the approximation relevant in this paper, only the leading-order approximation
(strictly inviscid and linear) in region (a) is necessary; note that the solution in the
smaller regions (b)–(e) is slaved to the solution in region (a), which is always the case
in nearly inviscid oscillatory flows when only leading-order terms are considered. The
streamfunction in this region is given by

ψOBF = adϕ(ζ, η) cos t, (3.1)

where the rescaled spatial variables and the aspect ratio are defined as

(ζ, η) =
(x, y)

d
, Λ =

L

d
. (3.2)

Substituting these into (2.2a), (2.4), (2.5a), (2.6b, c), and setting Ω = ε = 0, we obtain

ϕζζ + ϕηη = 0 in − Λ < ζ < Λ, −1 < η < 0, (3.3)

ϕη = 0 at η = 0, ϕ = 0 at η = −1, ϕη = 1 at ζ = ±Λ, (3.4)

where the kinematic boundary condition (2.3a) has not been used. The boundary
condition at η = 0 results from (2.4) (anticipating that f ∼ a, see (3.6) below)
and imposes a value of zero on the horizontal velocity there. This is because no
term in (2.4) can balance ψyt (accounting for pressure perturbations associated with
free-surface deformation), which makes a difference between the oscillatory bulk flow
considered here (which exhibits an O(d) characteristic length) and surface waves,
where pressure perturbations are balanced by capillary–gravity effects. The boundary
conditions (2.3b) and (2.5b) cannot be imposed in this inviscid approximation, but
could be accounted for considering two oscillatory boundary layers.

The (unique) solution of (3.3)–(3.4) is such that ϕ is an even function of ζ . Equa-
tions (3.3)–(3.4) are readily solved upon separation of variables, as

ϕ =

∞∑
n=0

an

cosh(λnζ )

cosh(λnΛ)
sin[λn(η + 1)], (3.5)

where λn = (2n+1)π/2 and an = 2(−1)n/λ2
n are such that

∑
an sin[(λn(η +1)] = η +1

in −1 < η < 0. The free-surface elevation follows using (2.3a),

fOBF = aϕζ (ζ, 0) sin t, (3.6)

and exhibits a logarithmic singularity at ζ = ±Λ. This is seen noting that the vertical
velocity at the free surface (which in turn is proportional to the vertical pressure
gradient)

ϕζ (ζ, 0) ≡
∞∑

n=0

2

λn

sinh(λnζ )

cosh(λnΛ)
	 ∓

[
2

π
ln(Λ ∓ ζ ) − H (Λ)

]
as ζ → ±Λ, (3.7)

where the function H (plotted in figure 2) is given by

H (Λ) =
2

π
ln

4

π
− 2

∞∑
n=0

exp(−λnΛ)

λn cosh(λnΛ)
(3.8)
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0 1 2 3 4 5
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–1

0

Λ

H

Figure 2. The function H (Λ) defined in (3.8).

and is such that

H (Λ) → H (∞) =
2

π
ln

4

π
	 0.154 as Λ → ∞. (3.9)

Because of this singularity, the solution above breaks down as ζ → ±Λ, which leads
us to region (c), analysed in Appendix A.

Note that the analysis above does not require that the aspect ratio Λ be large. As
Λ → ∞, ϕ vanishes exponentially except in two lateral regions, where (| ± ζ − Λ| ∼ 1
and ϕ =

∑
an exp[(λn(±ζ − Λ)] sin[λn(η + 1)].

4. Harmonic surface waves at large aspect ratio: L � d

These are a pair of counterpropagating waves that are forced (and reflected) in
region (c) and propagate along region (b) (figure 1). The description below is weakly
nonlinear, and must include the effect of the viscous mean flow, whose analysis is
greatly simplified at large aspect ratio. Thus, the assumption that L � d will be used
below. We shall consider the limit (2.10), with d only logarithmically large, such that
e−2d � 1. In this case, d can be treated as O(1).

According to the non-dimensionalization defined in § 2, the non-dimensional forcing
frequency is 1. Then, the inviscid dispersion relation (2.11) shows that the non-
dimensional wavenumber is also (close to) 1. In fact, in order to include the effect of
the spatial detuning (δ, given by (4.16) below) resulting from the phase shift produced
by reflection at the lateral walls, we shall correct this value of k by an amount
δ/L � 1. Thus, the free-surface elevation and the streamfunction associated with the
harmonic surface waves in region (b) are written as

fHSW =
√

εeit
[
A+ei(1+δ/L)x + A−e−i(1+δ/L)x

]
+ c.c. + · · · , (4.1)

ψHSW =
√

εeitΨ0

[
A+ei(1+δ/L)x − A−e−i(1+δ/L)x

]
+ c.c. + · · · , (4.2)

where Ψ0 = ey . These waves are coupled to the viscous mean flow, whose associated
free-surface elevation and streamfunction are

fVMF = εf m, ψVMF = εψm. (4.3)

The complex amplitudes A± have been rescaled (with
√

ε) imposing that the viscous
damping term and the cubic nonlinearity be comparable in the amplitude equa-
tions (4.5) below; f m has been rescaled (with ε) anticipating that the mean flow is
quadratic in the complex amplitudes. Both A± and f m depend only on the following
slow space and time variables, defined such that the time derivative and that term
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accounting for advection at the group velocity be both comparable to the viscous
damping term in the amplitude equations (4.5) below,

ξ = εx, τ = εt, (4.4)

while ψm is also allowed to depend on y.
The complex amplitudes A±, and the mean flow variables, ψm and f m, evolve

according to the following system of coupled amplitude-mean flow equations

A±
τ ∓ vgA

±
ξ = iεα0A

±
ξξ + (ivgδ/L̂ − 2)A±

+ i(α1|A±|2 − α2|A∓|2)A± ± 2i

∫ 0

−d

e2yψm
y dy A±, (4.5)

ψm
yyτ = ψm

yyyy in − d < y < 0, (4.6)

with boundary conditions

ψm
ξ − f m

τ = 2(|A−|2 − |A+|2)ξ , ψm
yy = 8(|A+|2 − |A−|2) at y = 0, (4.7)

(1 − S)f m
ξ − ψm

yτ + ψm
yyy = 0 at y = 0, (4.8)

ψm = ψm
y = 0 at y = −d. (4.9)

These equations and boundary conditions are obtained substituting (3.1)–(3.2), (3.5)–
(3.6), (4.1)–(4.4) and (ψSSW, fSSW) = (0, 0) into (2.13), and the resulting expressions
into (2.2)–(2.4), and applying solvability conditions associated with those resonant
terms that either depend on the short time variable as eit±ix (harmonic surface waves)
or are independent of the short time variable (mean flow). This is involved and
requires us also to consider the solution in regions (a) and (d), as done for modulated
Faraday waves (which also involve parametric forcing) by Lapuerta et al. (2002); see
also Vega, Knobloch & Martel (2001) for a more detailed derivation of (4.5)–(4.9) in
a more general setting. It follows that the group velocity and the coefficients α0, α1

and α2 are

vg = ω′(1) ≡ (1 + 2S)/2, α0 ≡ −ω′′(1)

2
=

(1 + 2S)2

8
− 3S

2
, (4.10a, b)

α1 =
3S

1 − 3S
+

8 − 3S

4
, α2 =

2

1 + 3S
+

4 + 3S

2
. (4.10c, d)

These are plotted vs. S in figure 3. Note that α1 diverges at S = 1/3, where a second-
order internal resonance takes place, and the coefficient of f m

ξ vanishes at S = 1,
where capillarity can no longer be ignored. We avoid these resonances assuming that

S = 1
3
, S = 1. (4.11)

The boundary conditions at the lateral walls are

A± = A∓ + Φ1â at ξ = ±L̂, (4.12)

A
±
ξ + A

∓
ξ = ∓

(
iδ

L̂
− 2

vg

)
Φ1â − 2i

vg

∫ 0

−d

e2yΨ m
y dy (A+ + A−)

− i

vg

|A+|2(α1A
+ + α2A

−) +
i

vg

|A−|2(α2A
+ + α1A

−) at ξ = ±L̂, (4.13)

ψm = 2(|A−|2 − |A+|2) at y = 0, ξ = ±L̂,

∫ L̂

−L̂

f m(ξ, τ ) dξ = 0, (4.14a, b)
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Figure 3. The quantities vg (—), α0 (· · ·), α1(– · –), α2(– – –), defined in (4.10), and α1 − α2

(——) in terms of S.
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Figure 4. The quantities (a) G1 (——), G2 (– – –) and α (– · –) appearing in (4.16).

where the re-scaled forcing amplitude â and container length L̂ are defined as

â =
a

ε1/2
, L̂ = εL. (4.15)

The spatial detuning δ and the coefficient Φ1 are

δ = L − α(S) (mod2π), Φ1(S, d) = G1(S)

[
ln d

π
− H (∞)

2

]
+ G2(S), (4.16)

where the quantity H (∞) is given in (3.9) and the quantities α, G1 and G2 are given
in (A 11) in Appendix A and are plotted vs. S in figure 4.

The boundary condition (4.12) at ξ = L̂ (that at ξ = −L̂ follows by reflection
symmetry) results from matching conditions with the solution in region (c), calculated
in Appendix A. This boundary condition accounts for wave reflection (the term A±

on the right-hand side) and forcing at the lateral walls (the term Φ1â). The boundary
condition (4.13) must be imposed because since we are including dispersion, (4.5)
is second order in ξ . As explained by Martel et al. (2003) (see also Martel & Vega
1996), the appropriate additional boundary condition is the compatibility condition
for the hyperbolic equations obtained when dispersion is ignored, which in our case
is precisely (4.13). Equation (4.14a) at ξ = ±L̂ imposes no net mass flux across the
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lateral sidewalls. To explain this, we must take into account that mass is transported
by the mean flow with the so-called mass-transport (or Lagrangian) velocity, whose
horizontal component, umt , is obtained by adding the Stokes drift to the Eulerian
velocity considered above, −ψm

y . Using standard formulae (Batchelor 1967), we obtain

umt = −ψm
y − 4(|A+|2 − |A−|2)e2y. (4.17)

Equation (4.14a) is obtained by simply imposing
∫ 0

−d
umt dy = 0 at ξ = ±L̂ (and

neglecting e−d , which is small). Equation (4.14b) results from volume conservation.
The remainder of this section is devoted to the analysis of (4.5)–(4.9) and (4.12)–

(4.14). However, some remarks on these are now in order.
(i) We are including a higher-order term in (4.5), namely that term proportional

to Aξξ , which is due to dispersion and is responsible for short-wave instabilities, see
below.

(ii) There is an additional requirement for the validity of the expansion above,
namely that vg =

√
(1 − S)d (= the phase velocity of some slowly varying internal

waves associated with the mean flow, see Appendix C) or, using (4.10), that

S =
√

d2 + 6d − 1 − d

2
. (4.18)

(iii) Equations (4.5)–(4.9) and (4.12)–(4.14) are invariant under the following action,
which results from the reflection symmetry (2.9),

ξ → −ξ, A+ ↔ A−, ψm → −ψm. (4.19)

(iv) The counterpart of the amplitude equation (4.5) for the liquid bridge geometry
in the linear approximation |A±| ∼ â � 1 (the mean flow can be neglected in this
limit) was considered by Nicolás, Rivas & Vega (1998), with quite good comparison
with exact solutions.

4.1. Reflection-symmetric steady states

The reflection-symmetric (invariant under (4.19)) steady states of (4.5)–(4.9) and
(4.12)–(4.14) build the primary branch of solutions, and can be written as

A± = R±eiθ±
with R−(ξ ) = R+(−ξ ), θ−(ξ ) = θ+(−ξ ). (4.20a–c)

Non-symmetric steady states can be calculated in a similar manner, but they appear
only in bifurcations from the primary branch, see below.

Integration of (4.6)–(4.14) yields

ψm =
(2d2 + 1)y − 2d

d3
(y + d)2[(R+)2 − (R−)2], (4.21)

f m
ξ =

6(2d2 + 1)[(R−)2 − (R+)2]

d3(1 − S)
. (4.22)

Note that the surface waves produce a non-zero steady-surface deflection (which could
be obtained integrating (4.22) and imposing that f m = 0 at ξ = ±L̂). This is related
to the so-called vibroequilibria (Gavrilyuk et al. 2004),but in a more general setting
(the viscous mean flow is usually ignored in vibroequilibria analyses, but affects the
quantitative value of f m here). Substituting (4.20)–(4.22) into (4.5), and neglecting
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both O(ε)-terms and O(e−2d)-terms, we obtain

∓vgR
±
ξ = −2R±,

∓vgθ
±
ξ =

vgδ

L̂
+ α1(R

±)2 − α2(R
∓)2 ± β0[(R

+)2 − (R−)2],

R±eiθ±
= R∓eiθ∓

+ Φ1â at ξ = ±L̂,

where

β0 =
4d4 − 8d3 + 3

2d3
. (4.23)

Integration of these equations invoking (4.20b, c) yields

R± = R0 exp(±2(ξ ∓ L̂)/vg), (4.24)

θ± = θ0 ∓ δξ

L̂
− (α1 + β0)R

2
0 exp(±4(ξ ∓ L̂)/vg) + (α2 + β0)R

2
0 exp(∓4(ξ ± L̂)/vg)

4
,

(4.25)

where R0 and θ0 are given by the following equations, which are obtained upon
substitution of (4.22)–(4.25) into (4.12),

sin(θ0 − Θ+
0 − δ) − exp(−4L̂/vg) sin(θ0 − Θ−

0 + δ) = 0, (4.26)

cos(θ0 − Θ+
0 − δ) − exp(−4L̂/vg) cos(θ0 − Θ−

0 + δ) =
Φ1â

R0

, (4.27)

with

Θ
±
0 = R2

0e
−4L̂/vg

(α1 + β0) exp(±4L̂/vg) + (α2 + β0) exp(∓4L̂/vg)

4
. (4.28)

Multiplying (4.26) by itself and replacing (4.27), we eliminate θ0. It follows that(
Φ1â

R0

)2

= 1 − 2 exp(−4L̂/vg) cos(Θ+
0 − Θ−

0 + 2δ) + exp(−8L̂/vg), (4.29)

where Θ+
0 − Θ−

0 is readily obtained invoking (4.28),

Θ+
0 − Θ−

0 = R2
0

α1 − α2

4
(1 − exp(−8L̂/vg)). (4.30)

Substituting (4.30) into (4.29), we obtain the curves plotted in figure 5, which yield the
size of the steady state, measured by R0 = |A±(±L̂)| (see (4.20) and (4.24)) in terms
of the (rescaled) forcing amplitude. The shape of A± is given by (4.24) and depends
only on S (through vg) and L̂ (see figure 6). Note that:

(i) These curves are generally multiply S-shaped, showing infinitely many
multiplicity intervals for increasing â (in fact, â = a/

√
ε � 1/

√
ε is bounded and

only a finite number of these multiplicity intervals apply for a given value of ε � 1).
This is not surprising since multiplicity must be expected in horizontally vibrated
containers owing to the interplay between detuning and nonlinearity (see the simpler
ODE description by Miles 1984 of horizontal vibrations in a short container). Here,
in our large container, as â increases (R0 is also increased) the effective detuning
Θ+

0 − Θ−
0 varies repeatedly on the interval [0, 2π], owing to mismatch between the

container length and the wavelength of the effective surface waves (which depends
on R0, see (4.30)). Each such excursion gives a new multiplicity interval.
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Figure 5. Response curves of the reflection-symmetric steady states of (4.5)–(4.9) and
(4.12)–(4.14), R0 vs. â given by (4.29), for d = 3, L̂ = 0.5, δ = 0 and (a) S = 0, (b) 0.2,
(c) 0.5 and (d) 0.9. Stable and unstable steady states are plotted with thick and thin lines,
respectively.
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Figure 6. Amplitudes, |A±(ξ )|/|A+(L̂)| = exp(±2(ξ ± L̂)/vg), of the reflection symmetric

steady states of (4.5)–(4.9) for S = 0.5 (vg = 1) and L̂ = 0.1 (– · –), 1 (——) and 10 (– – –).

(ii) Cubic nonlinearity appears in (4.5) only if

α1 = α2, (4.31)

as we assume hereinafter; if α1 = α2, then higher (quintic-)order terms must be
considered.

(iii) The results depend quantitatively on the detuning δ, which changes by a O(1)-
amount under small relative variations of either L, d or S (see (2.1), (2.8) and (4.16)
above and recall that L � 1).
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(iv) As a general comment, multiplicity is enhanced by decreasing L̂ = εL. In fact:
(a) If L̂ is large, the response curve in figure 5 becomes the straight line R0 	 Φ1â,
and the solution is unique unless R0 ∼ exp(2L̂/vg) or larger. Also (see (4.24)),
each counterpropagating wave vanishes exponentially except in a boundary layer,
of O(1)-length, near the lateral wall where this wave is created (see figure 6).
(b) If L̂ is small, (4.30) yields Θ+

0 − Θ−
0 	 2(α1 − α2)L̂R2

0/vg . Replacing this into
(4.29), we obtain

Φ1â

R0

	 2

∣∣∣∣∣sin
[

(α1 − α2)L̂R2
0

vg

+ δ

]∣∣∣∣∣ , (4.32)

if (α1 − α2)L̂R2
0/vg + δ = 0, π (mod 2π), while if (α1 − α2)L̂R2

0/vg + δ 	 mπ for
some integer m, then we have

Φ1â

R0

=

√√√√16L̂2

v2
g

+ 4

[
(α1 − α2)L̂R2

0

vg

+ δ − mπ

]2

. (4.33)

These expressions show that the response curve exhibits infinitely many, fairly
wide, multiplicity intervals in this limit. The first multiplicity interval (m = 0)
is obtained as |(α2 − α1)L̂R2

0 + δ|/vg ∼ L̂ � 1, and gives â ∼ L̂. The steady
state in this limit is such that the amplitudes of the counterpropagating waves
vary only slightly with the horizontal coordinate (see figure 6). Thus |A+| 	 |A−|
everywhere and the harmonic wave is almost a standing wave.

(v) The response curves in figure 5 are independent of the parameter β0, which
bears the effect of the mean flow. This parameter does affect stability, which is
considered next.

4.2. Linear stability: harmonic instabilities

Let (A±, ψm, f m) = (A±
s , ψm

s , f m
s ) be a reflection symmetric steady state of (4.5)–(4.9)

and (4.12)–(4.14), given by (4.20)–(4.22), (4.24) and (4.25). We set

A± − A±
s = A±

s [(a± + b±)eλτ + (ā± − b̄±)eλ̄τ ],

ψm − ψm
s = Ψ eλτ + c.c., f m − f m

s = F eλτ + c.c.,

}
(4.34)

and linearize, to obtain the linear problem (C 1)–(C 7) in Appendix C, which is
invariant under the following actions, resulting from (4.19),

ξ → −ξ, a± ↔ a∓, b± ↔ b∓, Ψ → −Ψ, (4.35)

ξ → −ξ, a± ↔ −a∓, b± ↔ −b∓, F → −F. (4.36)

Eigenmodes invariant under (4.35) and (4.36) will be called reflection symmetric and
antisymmetric, respectively. Also, we must distinguish between long- and short-wave
instabilities, which exhibit wavelengths of orders O(1) and O(ε−1/2), respectively.
The difference between both is that dispersion (namely, the term iεα0Aξξ in (4.5))
can be neglected for long-wave instabilities, but plays an essential role in short-
wave instabilities. Distinction between symmetric and antisymmetric modes is not
essential for short-wave instabilities. Both instabilities are numerically analysed in
Appendix C.

In order to present the results in a simple way, and to attempt to classify the possible
situations, we first note that the linearized stability equations (C 1)–(C 7) depend on
the steady state through |A+

s (L̂)| = R+(L̂) = R0 (a good measure of the basic steady
state since for each R0 there is only one steady state as â is varied, see figure 5) and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

50
71

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007005071


284 F. Varas and J. M. Vega

0

20

40

60

80

100(a) (b)

(c) (d)

(e) ( f )

–π π

R0
2

0

1

2

3

4

5

0

5

10

15

–π π

–Θ+
0 + Θ–

0  –2δ –Θ+
0 + Θ–

0  –2δ

0

20

40

60

80

100

–π π

–π π

R0
2

R0
2

0

20

40

60

80

100

–π π

0

20

40

60

80

100

–π π

Figure 7. Marginal instability curves R0 vs. Θ+
0 −Θ−

0 +2δ for d = 3, L̂ = 0.5, δ = 0, and (a) S =
0, (b) 0.2, (c) 0.5, (d) 0.8, (e, f) 0.9. (cf. figure 5), associated with SW (· · ·), LWSS (– – –), LWAS
(– – –), LWSO (−·−), and LWAO(– · –). The diagram is 2π-periodic. The straight thick solid
line (——) corresponds to the basic reflection-symmetric steady state obtained for δ = 0, and
must be translated to the left by an amount 2δ if δ = 0.

A+
s (L̂)/A−

s (L̂) = θ+(L̂)−θ−(L̂) = Θ+
0 −Θ−

0 +2δ (given by (4.30)). Thus, for fixed values

of L̂, d and S, the marginal instability curves (real part of λ = 0) can be plotted in the
plane R0 vs. Θ+

0 −Θ−
0 +2δ, and are 2π-periodic in Θ+

0 −Θ−
0 +2δ. Some representative

examples are given in figure 7, where the straight thick line corresponds to the steady
state obtained for δ = 0 and must be translated to the left by an amount 2δ as the
detuning δ is varied. According to (4.29)–(4.30), the slope of this straight line depends
on α1 − α2 (plotted in figure 3), and is positive except in the interval 0.21 < S < 1/3.
The remaining lines in figure 7 correspond to the most dangerous instabilities of the
various kinds, as indicated in the caption. The long-wave symmetric stationary (LWSS)
instability (thick dashed line) corresponds to the turning points of the response curves
in figure 5, which yield the end-points of the multiplicity intervals. The remaining
instabilities are either short wave (SW), which are always oscillatory, or long wave,
which in turn can be either antisymmetric–stationary (LWAS), symmetric–oscillatory
(LWSO), or antisymmetric–oscillatory (LWAO). LWAS instability yields bifurcation
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Figure 8. Response curves R2
0 vs. â for L̂ = 0.5, d = 3, S = 0.5 and (a) δ = 0.25, (b) 0.4.

to non-reflection symmetric steady states, which, invoking (4.1), correspond to non-
symmetric pairs of periodic counterpropagating waves of the system. SW, LWSO
and LWAO instabilities instead lead to more complex patterns consisting of pairs of
counterpropagating quasi-periodic waves, which can be either reflection symmetric or
not. With all these in mind, figure 7 yields the marginal instability points indicated in
the response curves in figure 5.

(i) The stability diagram for S = 0.5 in figure 7 exhibits all the five instabilities
mentioned above. The thick straight line intersects first the SW instability line, which
is thus the relevant instability, as indicated in figure 5. As δ is increased, the straight
line moves to the left and the nature of the instability changes. For instance, if
0.20 < δ < 0.36, the first instability is LWAO, whereas it is LWSO in the interval
0.36 < δ < 1.11. In the interval 0.20 < δ < 0.475, there are three instability points,
which give two disjoint instability intervals, bounded by two LW and one SW
instability points; two examples are plotted in figure 8 that differ only in the nature of
the lowest instability point, which is either LWSO or LWAO, the remaining two being
LWAO and SW. At δ = 0.36, a competition between LWSO and LWAO instabilities
occurs that should give rich dynamics, as are to be expected near δ = 2.11, where a
competition between two SW instabilities (with different wavenumbers) occurs. Note
that there are two additional codimension-two points, at δ = 1.11 and 2.72, where
SW–LWSO and SW–LWAS interactions occur.

(ii) For the remaining four values of S in figure 7, the stability properties of the
steady states in figure 5 are obtained in a similar manner. Again, the nature of the in-
stability changes for varying δ. Let us just point out that for S = 0.2 and 0.8 the
response curve exhibits infinitely many disjoint stability intervals, which for S = 0.8
are interspersed with the multiplicity intervals (cf. figure 5).

From the results described above, we may outline the following conclusions.
1. As R0 increases, the first instability can be either short wave or long wave, and

in the latter case, it can be either steady or oscillatory, and can either preserve or
break reflection symmetry, depending on the values of the various parameters (L̂, d ,
S and δ).

2. The stability properties depend on the detuning δ (compare the two plots in
figure 8), which (as indicated in remark (iii) in § 4.1) is quite sensitive to L, d and S.

3. As explained in Appendix C.2, the appearance of SW instabilities depend on the
sign of α0α̂1. If α0α̂1 > 0 and is not numerically small (which occurs in the interval
1/3 < S < 3

√
3/2−2, see figure 18 with d = 3), the SW instability sets in for moderate

values of R2
0 ∼ 1 and thus competes with the long-wave instabilities. This is the case

for S = 0.5 in figure 7. If α0α̂1 > 0 is numerically small (which occurs in the intervals
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Figure 9. As in figure 7 for S = 0.5, δ = 0. (a) L̂ = 0.5, d = 10; (b) 0.01, 3.

0 � S < 1 −
√

3/2 and 0.82 < S < 1 if d = 3, see figure 18), then SW instabilities
do appear for large R2

0 . This occurs in figure 7 for S = 0 and 0.9. If α0α̂1 < 0 (in the

intervals 1 −
√

3/2 < S < 1/3 and 3
√

2/2 − 2 < S < 0.82 (see figure 18 with d = 3),
then SW instability curves are either above other long-wave instability curves or are
absent, as in the plots for S = 0.2 and 0.8 in figure 7.

4. Although we have assumed that d is only logarithmically large, the results above
remain valid also for larger values of d provided that d � L; if d ∼ L or larger, then
the amplitude equations (4.5) stand, but the viscous mean flow is no longer parallel
and ξ -derivatives must be added in (4.7)–(4.9). If 1 � d � L, then LWAS instability
appears as R2

0 ∼ d−1 (or invoking (4.29) as â ∼ d−1/2); this is because since |ψ | ∼ d ,
that term accounting for coupling to the mean flow becomes of the same order as
viscous damping in this limit. This is illustrated in figure 9(a). Short-wave instabilities
can appear too (depending on the sign of α0α̂1, see figure 18), but require much larger
values of the forcing amplitude.

5. As L̂ � 1, the marginal instability curves in figure 7 are such that R2
0 ∼ 1, which

means that â ∼ 1 (see (4.32)), except near some minima, at Θ+
0 −Θ−

0 +2δ 	 0, π (mod

2π), where â ∼ L̂ (see (4.33)). Thus, the instability curves (figure 9b) shows quite steep
tongues near certain resonance values of the detuning δ, where resonant sloshing
modes are excited. In fact, near these resonant values of detuning, the amplitude
equations above reduce to a cubic complex ODE, which is similar to that derived by
Miles (1984) for horizontally vibrated containers.

5. Subharmonic instability: subharmonic surface waves
As in § 3, the analysis below does not require the assumption that L � d . The OBF

considered in § 3 produces an oscillatory normal pressure gradient (see (3.7)) at the
free surface, which is appropriate (through nonlinear interaction with the free-surface
elevation) to parametrically excite subharmonic waves near the free surface. This
parametric excitation is standard; the only difference with the Faraday system (Miles
& Henderson 1990; Fauve 1995) is that now the oscillatory pressure gradient at the
free surface is not uniform and thus produces a non-uniform forcing term in the ampli-
tude equation (namely, the last term in (5.3)). In this section, we obtain the threshold
value of the forcing amplitude a for the excitation of these waves, which affect region
(b) (figure 1), producing an oscillatory flow such that (cf. (4.1)–(4.2))

fSSW = eit/2
[
B+ei(k̃+δ̃/L)x + B−e−i(k̃+δ̃/L)x

]
+ c.c. + · · · ,

ψSSW = Ψ̃0e
it/2

[
B+ei(k̃+δ̃/L)x − B−e−i(k̃+δ̃/L)x

]
+ c.c. + · · · ,

(5.1)
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Figure 10. The wavenumber for subharmonic waves k̃ in terms of the
capillary–gravity balance parameter S.

where the spatial detuning δ̃ is defined below, in (5.6), and the wavenumber k̃ and the
eigenfunction Ψ̃0 are given by (Vega et al. 2001 and references therein)

(1 − S)k̃ + Sk̃3 = 1
4
, Ψ̃0 =

ek̃y

2k̃
. (5.2)

A plot of k̃ vs. S is given in figure 10. For simplicity, we ignore at the moment both
the harmonic surface waves and the mean flow, whose effect is not essential and will
be discussed in § 5.3.

To the linear approximation relevant here, the complex amplitudes B± are given
by the following amplitude equations and boundary conditions, obtained in Appen-
dices A.2 and B (cf. (4.5), (4.12)),

B
±
T ∓ B

±
ζ = (−d̃ + iδ̃/Λ)B± + ãg(ζ )B̄∓ in − Λ < ζ < Λ, (5.3)

B± = B∓ at ζ = ±Λ, (5.4)

in terms of the scaled time variable T = t/(ṽgd), the scaled space coordinate ζ , and

the aspect ratio Λ defined in (3.2). The scaled damping rate d̃ , group velocity ṽg ,

forcing amplitude ã, and spatial detuning δ̃, and the function g are

ṽg = ω′(k̃) ≡ 1 − S + 3Sk̃2, d̃ = 2k̃2εd/ṽg, ã = ak̃d/ṽg, (5.5)

δ̃ = k̃L − α(2Sk̃3)(mod2π), g(ζ ) =
4

π

∞∑
n=0

sinh[(2n + 1)πζ/2]

(2n + 1) cosh[(2n + 1)πΛ/2]
, (5.6)

where d̃ has been calculated using (2.12), the quantity α is again as plotted vs. S in
figure 3, and the function g is as plotted in figure 11. Equation (5.3) is a balance
between inertia, propagation at the group velocity, viscous dissipation, spatial detuning
and parametric forcing. As always happens with parametrically excited waves (Fauve
1995), these waves appear upon destabilization of the trivial solution of (5.3)–(5.4),
B+ = B− = 0. The instability threshold is obtained seeking non-trivial marginal
modes of the form

B± = B
±
0 eiω̃T + B̄

±
1 e−iω̃T , (5.7)

where B
±
0 and B

±
1 are given by

iω̃B
±
0 ∓ B

±
0ζ = (−d̃ + iδ̃/Λ)B±

0 + ãg(ζ )B∓
1 in − Λ < ζ < Λ, (5.8)

iω̃B
±
1 ∓ B

±
1ζ = −(d̃ + iδ̃/Λ)B±

1 + ãg(ζ )B∓
0 in − Λ < ζ < Λ, (5.9)

B
±
0 = B

∓
0 , B

±
1 = B

∓
1 at ζ = ±Λ. (5.10)
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Figure 11. The real function g defined in (5.6) for Λ = 0.5 (− − −), 1 (– · –), and 5 (· · ·), and
its asymptotic form G (——) as Λ → ∞, in the lateral region near ζ = Λ, given by (5.11).
Note that at Λ = 5, g is almost indistinguishable from its asymptotic value.

0

1

2

3

4

5
(a) (b)

δ̃

–π/2 π/2

ã

0

1

2

3

4

5

δ̃

–π/2 π/2

Figure 12. Rescaled instability threshold ã = ak̃d/ṽg vs. δ̃ for d̃ = 2k̃2εd/ṽg = 0.1, 0.5, 1, 2, 5

(as d̃ increases, the instability curve moves upwards). The curves are (π/2)-periodic in δ̃.
(a) Λ = 0.5, (b) 2.

Since the function g is odd (see (5.6)), this problem is invariant under the actions
(ζ, B

±
0 , B

±
1 ) → (−ζ, B

∓
0 , −B

∓
1 ), (ζ, B

±
0 , B

±
1 ) → (−ζ, −B

∓
0 , B

∓
1 ), and (ω̃, B

±
0 , B

±
1 ) →

(−ω̃, B̄
±
1 , B̄

±
0 ). The solutions must be also invariant under these actions, which

invoking (5.1) and (5.7) means that the associated patterns are reflection symmetric
(namely, fSSW (ζ, t) = fSSW (−ζ, −t)). The problem (5.8)–(5.10) is solved numerically, to
obtain the marginal instability curves ã vs. δ̃, plotted in figure 12 and the shapes of |B±

0 |
and |B±

1 | plotted in figure 13, for various values of d̃ and Λ. Note that the instability
curve is reflection symmetric around both δ̃ = 0 and δ̃ = π/4, which results from the
symmetries (δ̃, B±

0 , B
±
1 ) → (−δ̃, B

±
1 , B

±
0 ) and (δ̃, B±

0 , B
±
1 ) → (π/2 − δ̃, ±B

±
1 e±iπζ/(2Λ),

∓B
±
0 e∓iπζ/(2Λ)) and also implies that it is (π/2)-periodic. In fact, the curve is a sequence

of tongues as usual in (Floquet problems appearing in) parametrically excited systems
(Fauve 1995), whose minima for varying δ̃ is attained at δ̃ = π/4 (mod π/2). As
expected, either decreasing the damping ratio d̃ or increasing the aspect ratio Λ

has a destabilizing effect. In fact, the analysis above can be simplified in the limit
Λ → ∞, but this requires us to consider two distinguished regimes, d̃ ∼ 1 and
d̃ ∼ Λ−1 � 1, which is done in the next two subsections; note that if d̃ ∼ 1, then
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Figure 13. The amplitudes |B±
0 (ζ )| and |B±

1 (ζ )| vs. ζ/Λ for the harmonic waves given by

(5.8)–(5.10) for δ̃ = 0 and (d̃, Λ) = (1, 1) (——), (1, 10) (– – –) and (0.1, 10) (– · –). Because of
the symmetries of the problem, (i) only the region ζ > 0 need be plotted, (ii) (B+

0 , B+
1 ) and

(B−
0 , B−

1 ) are interchangeable, and (iii) because δ̃ = 0 and ω̃ = 0, B
±
0 and B

±
1 are all real.

activity is concentrated near the lateral walls, whereas the waves penetrate into the
bulk if Λ ∼ d̃−1 � 1.

5.1. The limit Λ → ∞, d̃ ∼ 1

In this limit, the effect of the detuning δ̃ vanishes at leading order and (5.8) and (5.9)
coincide, which implies that B

±
1 	 B

±
0 . Also, these vanish exponentially except in

two O(1)-lateral regions near ζ = ±Λ, which become decoupled and show a similar
structure. In these regions, the function g appearing in (5.9)–(5.10) behaves as

g(ζ ) = ±G(ζ̃ ) with ζ̃ = ±ζ − Λ, G =
4

π

∞∑
n=0

exp[(2n + 1)πζ̃ /2]

2n + 1
, (5.11)

(the function G is plotted in figure 11), and B
±
1 	 B

±
0 are given by

iω̃B
±
0 ∓ B

±
0ζ̃

= −d̃B
±
0 + ãG(ζ )B∓

0 in − ∞ < ζ̃ < 0, (5.12)

B
±
0 = 0 as ζ̃ → −∞, B+

0 = B−
0 at ζ̃ = 0. (5.13)

The following asymptotic behaviour results noting that G(ζ̃ ) 	 (4/π)eπζ̃ /2 as ζ̃ → −∞

B+
0 	 Ce(iω̃+d̃)ζ̃ , B−

0 	 4ãCe(−iω̃+d̃+π/2)ζ̃

π(2d̃ + π/2)
as ζ̃ → −∞, (5.14)

where C is an arbitrary constant. Using this, we can integrate numerically (5.12)–
(5.13), to obtain that this problem possesses non-trivial solutions along the marginal
instability curve (associated with a steady instability, ω̃ = 0), ã vs. d̃ , plotted with a
solid line in figure 14. In order to check the approximation in this section, we also
plot the exact marginal instability curves, as calculated from (5.8)–(5.10), rescaled in
terms of ã = ak̃d/ṽg . Note that the approximation is quite good even for Λ = 2, and

that ã → π/4 as d̃ → 0. However, the limit d̃ → 0 is singular because (see (5.14)) if
d̃ = 0, then B+

0 does not vanish at the edge of the lateral regions. This leads us to the
following limit.

5.2. The limit Λ → ∞, d̃Λ = O(1)

Now, the solution at the edge of the lateral regions no longer vanishes, and thus the
solution outside these regions, in a region called the bulk region is generally non-zero.
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Figure 14. Rescaled instability threshold amplitude for subharmonic waves ã = ak̃d/ṽg vs.

the rescaled damping ratio d̃ = 2k̃2εd/ṽg in the limit Λ → ∞, d̃ ∼ 1. As calculated from (5.12),

(5.13) and (5.14) (—–); and as calculated from (5.8)–(5.10) (with λ = iω) for Λ = 2 and δ̃ = 0
(− − −), π/8 (−·−) and π/4 (· · ·).

5.2.1. The lateral regions: ±ζ − Λ ∼ 1

In these regions ζ̃ = ±ζ − Λ ∼ 1 and (5.8)–(5.10) lead to (cf. (5.12)–(5.13))

∓B
±
0ζ̃

= −ãG(ζ̃ )B̄∓
0 , ∓B

±
1ζ̃

= −ãG(ζ̃ )B̄∓
1 in −∞ < ζ̃ < 0, (5.15)

B
±
0 = B

∓
0 , B

±
1 = B

∓
1 at ζ̃ = 0, |B±

0 |, |B±
1 | bounded as ζ̃ → −∞, (5.16)

where we have taken into account that d̃ ∼ ω̃ ∼ 1/Λ � 1. This problem is readily
solved in closed form in terms of two arbitrary constants, C0 and C1, as

B
±
0 = C0 cos

(
ã

∫ 0

ζ̃

G(z) dz

)
± C1 sin

(
ã

∫ 0

ζ̃

G(z) dz

)
, (5.17)

B
±
1 = C1 cos

(
ã

∫ 0

ζ̃

G(z) dz

)
± C0 sin

(
ã

∫ 0

ζ̃

G(z) dz

)
. (5.18)

Since
∫ 0

−∞ G(z) dz = (8/π2)
∑∞

n=0(2n + 1)−2 = 1, we have B
±
0 = C0 cos ã ± C1 sin ã and

B
±
1 = C1 cos ã ± C0 sin ã as ζ̃ → −∞ or, eliminating the constants C0 and C1,

B
±
0 = B

∓
0 ± tan ã(B±

1 + B
∓
1 ), B

±
1 = B

∓
1 ± tan ã(B±

0 + B
∓
0 )as ζ̃ → −∞, (5.19)

which gives the boundary condition at ζ = ±Λ in (5.21) below.

5.2.2. The bulk region: ζ ∼ Λ

Here, the function g vanishes exponentially, and (5.8) and (5.10) become

iωB
±
0 ∓ B

±
0ζ = (−d̃ + iδ̃/Λ)B±

0 , iωB
±
1 ∓ B

±
1ζ = −(d̃ + iδ̃/Λ)B±

1 , (5.20)

in −Λ < ζ < Λ, with boundary conditions

B
±
0 = B

∓
0 ± tan ã(B±

1 + B
∓
1 ), B

±
1 = B

∓
1 ± tan ã(B±

0 + B
∓
0 ) at ζ = ±Λ, (5.21)

which result from matching conditions with the solutions in the lateral regions,
calculated above. Integration of (5.20) yields B

±
0 = D0 exp[±(iω+d̃−iδ̃/Λ)ζ ] and B

±
1 =

D1 exp[±(iω + d̃ + iδ̃/Λ)ζ ]. Substituting these into (5.21), we obtain the following
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Figure 15. Rescaled instability threshold amplitude for subharmonic waves ã = ak̃d/ṽg vs.

the spatial detuning δ̃ for 2d̃Λ = 0.1, 0.5, 1 and 2 (the curves move upwards as 2d̃Λ increases)
in the limit Λ → ∞, d̃Λ ∼ 1. As calculated from (5.24) (—–); as calculated from (5.8)–(5.10)
for Λ = 4 (− − −) and Λ = 10 (−·−). Because of the symmetries indicated in connection with
figure 12, we plot only that part of the curve for 0 � δ̃ � π/4.

homogeneous system of linear equations for the integration constants D0 and D1

sinh(d̃Λ + iωΛ − iδ̃)D0 − tan ã sinh(d̃Λ + iωΛ + iδ̃)D1 = 0,

tan ã cosh(d̃Λ + iωΛ − iδ̃)D0 − cosh(d̃Λ + iωΛ + iδ̃)D1 = 0.
(5.22)

This exhibits a non-zero solution provided that the following pair of real equations
hold

(1 − tan2 ã) cos 2ω̃Λ sinh 2d̃Λ = 0,

(1 − tan2 ã) sin 2ω̃Λ cosh 2d̃Λ = (1 + tan2 ã) sin 2δ̃,
(5.23)

which yields the following instability threshold

cos 2ã =
sin 2δ̃

cosh 2d̃Λ
at ω̃ =

2mπ + 1

2Λ
(m = 0, ±1, ±2, . . .). (5.24)

This provides, for varying m, infinitely many tongues (completely similar to those
obtained in the Faraday system at quite small viscosity, Miles & Henderson 1990),
which exhibit the symmetries indicated in the caption of figure 15, where the instability
threshold is plotted with a solid line. In order to check the approximation in this
section, we also plot the exact marginal instability curves (calculated from (5.8)–
(5.10), with λ = iω) for Λ = 4 and 10. Note that the approximation is quite good for
2d̃Λ = 0.1 (even for Λ = 4) and worsens as 2d̃Λ increases.

For quite small damping, as d̃Λ → 0, (5.24) exhibits the asymptotic form 2ã 	
π/2 − 2δ̃ if |δ̃ − π/4| ∼ 1 or ã 	

√
(d̃Λ)2 + (δ̃ − π/4)2 if |δ̃ − π/4| � 1. This latter

expression gives, in particular, the following asymptotic expression for the minimum
of the curve in figure 15 (attained at δ̃ = π/4)

ã 	 d̃Λ. (5.25)

5.3. Effects of the harmonic surface waves and the mean flow

Harmonic surface waves and the mean flow considered in § 4 have been ignored in
the analysis of subharmonic surface waves. They add new terms to the amplitude
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C2

εL

εd

H
S

C1

NA

Figure 16. Regimes for competition of harmonic and subharmonic instabilities in the plane
εL vs. εd: C1 (εd � εL � 1), H (either εd � εL ∼ 1 or εL � 1 and

√
εd exp(2εL/vg) � 1)),

C2 (εL � 1 and
√

εd exp(2εL/vg) ∼ 1)), and S (εL � 1 and
√

εd exp(2εL/vg) � 1)). In region
NA (either εd ∼ εL or εd � εL) the analysis of harmonic instabilities above is not applicable.

equations (5.3) which must be rewritten as (cf. (4.5))

B
±
T ∓ B

±
ζ = (−d̃ + iδ̃/Λ)B± + ãg(ζ )B̄∓

+ i(α3|A±|2 + α4|A∓|2)B± ± i
2k̃2

ṽg

∫ 0

−d

e2k̃yψm
y dyB±, (5.26)

where (A+, A−, ψm) is a reflection symmetric steady state of (4.5)–(4.9), (4.12)–(4.14),
calculated in § 4.1, and the coefficients α3 ∼ 1 and α4 ∼ 1 are both real. Now, as
happens in Faraday waves (Higuera et al. 2002), the last term is eliminated replacing

B± → B± exp

[
−i

2k̃2

ṽg

∫ ζ

0

∫ 0

−d

e2k̃yψm
y dy dζ

]
,

which leaves the boundary conditions (5.4) invariant. A similar variable change of
the form B± → B± exp[±ih±(ζ )], with dh±(ζ )/dζ = −(α3|A±|2 + α4|A∓|2), eliminates
the effect of the harmonic surface waves from (5.26), but does affect the boundary
conditions. We note that because A+(ζ ) = A−(−ζ ) we have h+(ζ ) = h−(−ζ ), and
replacing B± → B± exp[±ih±(ζ ) ∓ iδ̂ζ/Λ], with δ̂ = −[h+(Λ) + h−(Λ)]/2) leaves the
boundary conditions (5.4) invariant, but corrects the spatial detuning as δ̃ → δ̃ − δ̂.
This correction depends on the coefficients α3 and α4, whose calculation is outside the
scope of this paper, and only produces a horizontal shift in the marginal instability
curves obtained in § § 5 and 5.2 and plotted in figures 12 and 15; those in § 5.1 instead
are independent of detuning.

6. Competition between harmonic and subharmonic instabilities
Let us now compare the harmonic and subharmonic instabilities considered above,

in § § 4.2 and 5, to elucidate which one is to appear first for each set of values of
the parameters ε, d and L (satisfying (2.10), which leads to four different regimes,
depending only on the parameters εL and εd , as schematically plotted in figure 16.
These are illustrated with four possible experiments (figure 17) in an Earth laboratory
(g =103 cm s−2) using either a silicone oil such as that used by Kudrolli & Gollub
(1997), with ν = 0.1 cm2 s−1, σ = 27 dyn cm−1 and ρ =0.85 g cm−3, or water, with
ν =0.01 cm2 s−1, σ =72.4 dyn cm−1 and ρ = 1 g cm−3. The plots in figure 17 give only
the most dangerous instability (namely, the basic reflection-symmetric harmonic pair
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Figure 17. Marginal instability curves a∗ (in cm) vs. ω∗ (in rad s−1) for water in a
container with (a) depth d∗ =1.78 cm and horizontal length 2L∗ =10.7 cm, and (b) d∗ = 7 cm
and 2L∗ = 2.3 × 104 cm; and silicone oil with (c) d∗ = 0.534 cm and 2L∗ =5.34 cm, and
(d) d∗ = 1.78 cm and 2L∗ = 10.7 cm. Thick solid lines correspond to the subharmonic instability
and the remaining lines to the various harmonic instabilities, as indicated in the caption of
figure 7. These experimental conditions are such that all assumptions in the paper are fulfilled.
In particular, the slenderness of the system 2L∗/d∗ is always larger than 6, and the number of
surface wave wavelengths, 2L∗/(2π�∗) is at least 6. The plotted curves are associated with those
instabilities with the smallest forcing amplitude; when the response curve exhibits multiplicity,
associated with the LWSS instability (cusped curve with thick dashed line), the remaining
plotted curves correspond to instabilities along the lowest branch on the response curve.

of surface waves is unstable above the curve in figure 17) and are obtained using
the non-dimensionalization defined at the beginning of § 2 and the stability results
§ § 4.2 and 5. Because of the effect of harmonic surface waves on the subharmonic
instability mentioned in § 5.3, a horizontal shift of the curve plotted with a solid line
is possible that has not been calculated above and must be taken into account when
trying quantitative comparison with experiments.

We must distinguish three cases.
(i) If εd � εL � 1 (region C1 in figure 16), then both harmonic and subharmonic

instabilities do appear for quite small values of a, along some resonance tongues
whose minima correspond to different forcing frequencies. As explained at the end
of § 4, harmonic instabilities generally occur as â ∼ 1, except near the minima of the
LWSS tongues, where â ∼ L̂ � 1, and as explained in § 5, subharmonic instabilities
generally require that ã ∼ ad ∼ 1, except near the minima, where ã ∼ ad ∼ L̂ = εL.
Thus, either harmonic or subharmonic instabilities can appear first, depending on
the forcing frequency. An example of a marginal instability curve (a∗ vs. ω∗) in
this region is ploted in figure 17(a), which does give a point in region C1 because
(εd, εL) ∼ (0.011, 0.034); this is obtained (for ω∗ ∼ 80 rad s−1) using (2.1) and (2.8),
which gives �∗ ∼ 0.27 cm, S ∼ 0.5, ε ∼ 0.0017, d = d∗/�∗ ∼ 6.6, L = L∗/�∗ ∼ 19.8.
Note that the most dangerous instability is a harmonic long-wave symmetric steady
instability (which corresponds to the first instability limit, see § 4.2), except in the
interval 81.5 < ω∗ < 84.8, where it is a harmonic short-wave instability, and in two
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intervals (which are 75.2 < ω∗ < 78.5 and 86.4 < ω∗ < 88.8 but can be shifted
horizontally, recall our comment above) where it is subharmonic.

(ii) If εd � εL ∼ 1 (region H in figure 16) then harmonic instabilities appear as
â = ε−1/2a ∼ d−1/2 (see (4.33) and figures 7 and 9a), and subharmonic instabilities
are triggered as ã ∼ ad ∼ 1 (see (5.6) and figures 12, 14 and 15). Thus, harmonic
instabilities appear first in this region. The marginal instability curves a∗ vs. ω∗ for a
case in this region is ploted in figure 17(b) (now ω∗ ∼ 20.8 rad s−1, and using (2.1) and
(2.8), �∗ ∼ 2.3 cm, S ∼ 0.014, ε ∼ 9.1 × 10−5, d = d∗/�∗ ∼ 3.04, L = L∗/�∗ ∼ 5 × 103;
thus (εd, εL) = (2.8 × 10−4, 0.45) and we are in fact in region H). Note that the
length of the system is unrealistically large (2L∗ = 2.3 × 104 cm) in this experiment,
which has been included here only to illustrate that points in region H do exist. This
is because in order to obtain points in region H, an extremely small value of ε is
necessary, which according to (2.8)–(2.10) means that the length of the system must
be extremely large (or viscosity extremely small). For not so small values of ε, regions
C1 and C2 overlap and region H disappears. In order to illustrate this, we consider
the response curve in figure 17(c), in which ω∗ ∼ 95 rad s−1. Using (2.1) and (2.8),
we obtain �∗ ∼ 0.18 cm, S ∼ 0.5, ε ∼ 0.03, and d = d∗/�∗ ∼ 3, L = L∗/�∗ ∼ 15.
Thus (εd, εL) = (0.09, 0.45), which formally corresponds to region H. In this response
curve instead harmonic and subharmonic instabilities compete, which corresponds to
region C2 and formally requires that εL be large (see below). Note that the response
of the system in this experiment is qualitatively similar to that in figure 17(a), the
main difference being that the resonance tongues are not so steep.

(iii) If εL � 1, then harmonic instabilities require that â ∼ d−1/2 exp(2εL/vg).
Subharmonic instabilities instead do appear as soon as ã ∼ ad ∼ 1, as explained in
§ 5.1. Thus, we must distinguish three cases.

(i) If
√

εd exp(2εL/vg) � 1, then harmonic instabilities dominate, which corres-
ponds to region H. As above, we have been unable to obtain experimental
conditions in this limit, except for unrealistically large lengths of the container.
(ii) If

√
εd exp(2εL/vg) ∼ 1 (region C2) then both harmonic and subharmonic

instabilities compete. For the sake of brevity, we do not give an experimental
point in this region, where response curves are similar to that in figure 17(c).
(iii) If

√
εd exp(2εL/vg) � 1 (region S) then subharmonic instabilities do appear

first. See figure 17(d) for a marginal instability curve in this region, in which since
ω∗ ∼ 100 rad s−1, we obtain that �∗ ∼ 0.18 cm, S ∼ 0.5, ε ∼ 0.03, d = d∗/�∗ ∼ 10,
L = L∗/�∗ ∼ 29.7. Thus (εd, εL) = (0.3, 0.9) and εL is not large. In fact, the
experimental conditions in figure 17(d) have been chosen to illustrate that εL

need not be too large in order to be in this region, provided that εd is not too
small. This is again because, as indicated above, regions C1 and C2 overlap (and
region H disappears) unless ε is extremely small.

Summarizing the results:
1. The regimes indicated in figure 16 were obtained from asymptotic considerations

that apply as ε → 0 and must be reconsidered for small but fixed ε. In fact, in
realistic experimental conditions, region H disappears and we have only two regions.
Namely, for fixed d/L � 1, if εL is smaller that a critical value, then a competition
between harmonic and subharmonic instabilities occurs, while for larger values of εL

subharmonic instabilities dominate for all frequencies.
2. The experimental conditions in figure 17(a, c, d) (figure 17b has only an academic

value) have been chosen such that the only difference between figures 17(a) and 17(d)
is the liquid (same container, similar vibrating frequencies) and the only difference
between figure 17(c) and 17(d) (same liquid, similar vibrating frequencies) is the size
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of the container, and show that increasing either viscosity or the size of the container
favours subharmonic instabilities in their competition with harmonic instabilities; of
course, increasing viscosity requires larger vibrating amplitudes (compare figures 17(a)
and 17(c)), but increasing the size of the container has only a slight effect on the
vibrating amplitude threshold.

3. Increasing the vibrating frequency increases both εd = d∗/(ω∗�∗3) and εL =
L∗/(ω∗�∗3), which means that the point moves in the diagram in figure 16 towards
region S. Thus, increasing ω favours subharmonic instabilities. This can be seen in
figures 17(c) and 17(d), but is not further illustrated with a much larger increase of
the forcing frequency because the capillary–gravity balance parameter S (see (2.8))
approaches 1 quite quickly as ω∗ is increased, and S must not be too close to 1 for
the analysis above of harmonic waves to be valid (surface tension effects have been
neglected in the description of the mean flow). The forcing frequency must not, also,
be too small, to avoid �∗ being too large, which would violate the assumption that
both L = L∗/�∗ � 1 and d = d∗/�∗ � 1.

7. Concluding remarks
We have analysed the modulated harmonic and subharmonic surface waves that

appear in a large nearly inviscid two-dimensional container subject to horizontal
vibration. This has required us to consider an oscillatory bulk flow (OBF, never
considered before to our knowledge) and a viscous mean flow (VMF, already
considered for Faraday waves).

As expected, the system always exhibits a pair of reflection-symmetric
counterpropagating harmonic surface waves that are produced by the vibrating lateral
walls. The outgoing wave produced at each wall propagates (and decreases by viscous
dissipation as it travels) towards the other wall, where it is reflected. Harmonic waves
were analysed in § 4, where a system of CAMF equations were derived that includes
the effects of both the VMF produced by the waves and (implicitly) that of the
OBF. The former exhibits its own dynamics, which are coupled to the dynamics of
the surface waves; the latter is decoupled and produces that term proportional to
G1 in (4.16), which is in fact dominant when d is large. The CAMF equations are
not simple, but we claim that they provide the correct weakly nonlinear evolution of
harmonic waves, which are steady states of these equations. The primary branch of
reflection-symmetric steady states (such as those plotted in figure 6) shows multiplicity
(figures 5 and 8) as soon as nonlinear effects come into play. In fact, many (infinitely
many, asymptotically) overlapping multiplicity intervals are possible, but only the first
few are relevant because these steady states generally become unstable as the forcing
amplitude is increased. Linear stability against harmonic perturbations has been
analysed in § 4.2, where we encountered both long-wave and short-wave instabilities
(figures 7 and 9), depending on whether the associated length scale is of the order
of the viscous length or the dispersive length. Short-wave instabilities are always
oscillatory and reflection symmetric, but long-wave instabilities can be either steady
or oscillatory, and either reflection symmetric or antisymmetric.

Subharmonic waves are the relevant ones in vertically vibrated containers, but
are not so obviously expected at low amplitude under horizontal vibrations (both
subharmonic and superharmonic modes are to be expected in the fully nonlinear
regime, for large vibrating amplitude, but this is a different story). We have uncovered
the mechanism for the generation of these waves at high frequency, which should
also explain the appearance in related systems. Let us remark that subharmonic
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waves have been experimentally observed in vibrated sessile drops (Vukasinovic,
Smith & Glezer 2007) at high vibrating frequency (as compared to the first natural
eigenfrequency of the system), where they have been seen to be dominant except for
quite small vibrating amplitudes, in accordance with our results. The key ingredient
in the generation of subharmonic waves is the OBF, which produces an oscillatory
normal pressure gradient on the free surface, which is much higher than that produced
by the harmonic surface waves. Once the mechanism to excite these waves was clear,
we took into account that they are excited by a parametric instability, if the forcing
amplitude exceeds a threshold value. This has been calculated in § 5 in the various
different regimes that must be considered, depending on the comparative values of
the container length and depth, and the viscous length (see figures 12, 14 and 15). This
required only a linear analysis; the associated weakly nonlinear description would be
the counterpart of that in § 4, but is well beyond the scope of the paper. In order to
clarify the essential part of the analysis, we ignored the effects of both the harmonic
waves and the mean flow in the calculation of the subharmonic instability threshold.
As explained in § 5.3, the former produces only a shift in detuning and the latter has
no effect.

The results in § § 4 and 5 have been used in § 6 to elucidate whether harmonic
or subharmonic instabilities appear first, depending on the comparative values of
the length and width of the container. The four theoretically possible different
regimes for sufficiently small viscosity (figure 16) have been reduced to two in
realistic experimental conditions: if both a tremendously high horizontal length of
the container and an unrealistically small viscosity (for ordinary liquids, not for
example, 4He or liquid-vapour CO2, see González-Viñas & Salam 1994) are to be
avoided. We have seen that either harmonic and subharmonic instabilities compete
or subharmonic instabilities dominate, the latter being always the case (somewhat
surprisingly) as either the container size or the vibrating frequency are increased.

The results in this paper help to understand the basic issues concerning the initial
development of harmonic and subharmonic waves excited by horizontal vibrations
in large containers, but leave open several points. In particular, the weakly nonlinear
response of subharmonic waves would give more insights into the dynamics of these
waves beyond threshold. The various resonances that have been avoided (see (4.11),
(4.18) and (4.31)) assuming generic conditions could give interesting results too. We
hope that the analysis in this paper will stimulate experimental work on this system,
which is lacking today, in spite of the fact that it constitutes a basic fluid configuration
that exhibits quite rich dynamics.

This research was partially supported by the National Aeronautics and Space
Administration (Grant NNC04GA47G) and the Spanish Ministry of Education
(Grants MTM2004-03808 and MTM2004-05796-C02).

Appendix A. Wave reflection and forcing in region (c)
We consider harmonic and subharmonic waves separately.

A.1. Reflection and forcing of harmonic waves

In region (c) (see figure 1) we use the variables

x̂ = Λ − x, ŷ = −y, ψ = ψ̂eit + c.c., f = f̂ eit + c.c., (A 1)
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to rewrite (2.2a), (2.3a,c) and (2.5b) as

ψ̂x̂x̂ + ψ̂ŷŷ in 0 < x̂ < ∞, 0 < ŷ < ∞, (A 2)

if̂ + ψ̂x̂ = (1 − S)f̂x̂ − Sf̂x̂x̂x̂ − iψ̂ŷ = 0 at ŷ = 0, (A 3)

ψ̂ŷ = −a/2, f̂ = 0 at x̂ = 0, (A 4)

f̂ diverges at most logarithmically as x̂ → ∞, (A 5)

where the last condition results from matching conditions with the solution in region
(b). As in Nicolás et al. (1998), this problem is solved via sine- and cosine-Fourier
transforms as

ψ̂ = c + C1x̂ + C2 sin x̂e−ŷ − a

2
ŷ +

C1 + C2

H1(S)

∫ ∞

0

e−k̂ŷ sin(k̂x̂) dk̂

1 − (1 − S)k̂ − Sk̂3

−a

π

∫ ∞

0

e−k̂ŷ[sin(k̂x̂) − k̂x̂] dk̂

k̂2[1 − (1 − S)k̂ − Sk̂3]
(A 6)

f̂ = C1 + C2 cos x̂ +
C1 + C2

H1(S)

∫ ∞

0

k̂ cos(k̂x̂) dk̂

1 − (1 − S)k̂ − Sk̂3

−a

π

∫ ∞

0

[cos(k̂x̂) − 1] dk̂

k̂[1 − (1 − S)k̂ − Sk̂3]
, (A 7)

where C1 and C2 are arbitrary constants and

H1(S) = −
∫ ∞

0

k̂ dk̂

1 − (1 − S)k̂ − Sk̂3

=
(2 + S) cot−1[S/

√
4S − S2]

(1 + 2S)
√

4S − S2
− ln S

2(1 + 2S)
> 0. (A 8)

Here, we have taken into account that 0 � S � 1. As x̂ → ∞, (A 7) becomes

f̂ = C1 + C2 cos x̂ +
C1 + C2

H1(S)

π sin x̂

1 + 2S
+

a

π

[
ln x̂ − π sin x̂

1 + 2S
+ γ + H2(S)

]
, (A 9)

where γ 	 0.577 is the Euler constant and

H2(S) =

∫ ∞

0

(
1

k̂[1 − (1 − S)k̂ − Sk̂3]
− 1

k̂(1 + k̂)

)
dk̂

=
−S ln S

1 + 2S
+

2(1 − S)
√

S cot−1
√

S/(4 − S)

(1 + 2S)
√

4 − S
> 0. (A 10)

We need only apply matching conditions with the outer solution, given by (2.13)
(setting fSSW = fVMF = 0), (3.6), (3.7) and (4.1) to obtain (4.12), with

α(S) = tan−1

[
4S

(1 + 2S)H1(S)

]
, (A 11a)

G1(S) =
2S

(1 + S)
√

16S2 + (1 + 2S)2H1(S)2
, (A 11b)

G2(S) =
(1 + 2S)H1(S)π + 2S(γ − H2(S))

π(1 + S)
√

16S2 + (1 + 2S)2H1(S)2
, (A 11c)
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where we have taken into account that H1(S) > 0. These three functions are plotted
in figure 4. Water wave reflection at a lateral wall was considered by Hocking (1987).

A.2. Reflection of subharmonic waves

The only differences with the analysis above are that now a = 0 and eit must be
replaced by eit/2 in (A 1), which requires replacing i by i/2 in (A 3) and a by 0 in
(A 4). Alternatively, we can use the new variables and parameters

x̃ = k̃x̂, ỹ = k̃ŷ, ψ̃ = 2k̃ψ̂, S̃ = 2k̂3S, (A 12)

to obtain (A 2)–(A 5) up to notation. Then, the counterpart of (A 9) with a = 0 yields
the boundary condition (5.4), with the detuning δ̃ as defined in (5.6).

Appendix B. Derivation of the amplitude equation (5.3)
The derivation of those terms (proportional to B

±
ζ and B±) accounting for transport

at the group velocity and viscous damping is standard, as explained in connection
with (4.5). Thus, we concentrate in the derivation of the last term on the right-hand
side (in particular, of the function g) that accounts for parametric forcing. To this
end, we use the fast and slow time variables t and T = td , replace x = dζ , replace
(cf. (5.1) and note that the spatial detuning δ̃ can be set to zero)

fSSW = (B+ + aF̃1B̄
− + · · ·)ei(t/2+k̃x) + (B− + aF̃1B̄

+ + · · ·)ei(t/2−k̃x) + c.c.,

ψSSW = (Ψ̃0B
+ + aΨ̃1B̄

− + · · ·)ei(t/2+k̃x) − (Ψ̃0B
− + aΨ̃1B̄

+ + · · ·)ei(t/2−k̃x)] + c.c.,

into (2.2a) (with Ω = 0), (2.3a) and (2.4), and equate to zero the coefficients of
aB̄∓ei(t/2±k̃x). The following equations and boundary conditions result

Ψ̃1yy − k̃2Ψ1 = 0 in − ∞ < y < 0, (B 1)

1

2
iF̃1 − ik̃Ψ̃1 = −k̃g(ζ ) − 1

4
k̃ϕζ (ζ, 0), (B 2)

ik̃(1 − S + Sk̃2)F̃1 − 1

2
iΨ̃1y =

1

2
k̃g +

7

8
k̃ϕζ (ζ, 0), (B 3)

Ψ̃1 = 0 at y = −∞. (B 4)

Here, we have taken into account that Ψ̃0(0) = 1/(2k̃) (see (5.2)) and the boundary
condition (2.4), which to the approximation relevant here can also be written as

(1 − S)fx − Sfxxx − ψyt + ψxxtf + ψxtfx − ψxψxx + ψyψxy = 0, (B 5)

as obtained by substituting (2.2)–(2.3) into (2.4) and neglecting cubic terms. Note that
this boundary condition must be imposed at the boundary, while (B 3) applies at the
edge of the viscous boundary layer (region (d) in figure 1), but that the left-hand side
of (B 5) is continuous across region (d), and thus can be calculated using the solution
in region (b). Also, since we are ignoring both viscous damping and the effect of the
group velocity, we have set ∂B±/∂ζ = 0 and ε = 0. The boundary condition (B 4)
results from matching with the solution in region (a).

Now, the function g is obtained imposing that this problem is solvable. Integrating

(B 1) and imposing (B 4), we obtain Ψ̃1 = ek̃y up to a constant factor. Replacing this
and the dispersion relation (5.2a) into (B 3), we obtain

g(ζ ) = ϕζ (ζ, 0), (B 6)

and we need only invoke (3.5), to obtain the expression for g quoted in (5.6).
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Appendix C. Linear stability of the reflection symmetric steady states
Perturbing around a reflection-symmetric steady state of (4.5)–(4.9) and (4.12)–(4.14)

as indicated in (4.34), and linearizing, we obtain the following linear problem

λa± ∓ vga
±
ξ = iεα0b

±
ξξ , (C 1)

λb± ∓ vgb
±
ξ = iεα0a

±
ξξ + 2i

(
α1|A±

s |2a± − α2|A∓
s |2a∓)

± 2i

∫ 0

−d

e2yΨy dy, (C 2)

λΨyy = Ψyyyy in − d < y < 0, (C 3)

Ψyy = 16
(
|A+

s |2a+ − |A−
s |2a−)

, Ψξ − λF = 4
(
|A−

s |2a− − |A+
s |2a+

)
ξ
,

Ψyyy − λΨy + (1 − S)Fξ = 0 at y = 0, (C 4)

Ψ = Ψy = 0 at y = −d, (C 5)

A±
s (a± + b±) − A∓

s (a∓ + b∓) = Ā±
s (a± − b±) − Ā∓

s (a∓ − b∓) = 0,

[A±
s (a± + b±)]ξ + [A∓

s (a∓ + b∓)]ξ = K1a
+ + K2b

+ + K3a
− + K4b

− + K5

∫ ∞

−d

e2yΨy dy,

[Ā±
s (a± − b±)]ξ + Ā∓

s (a∓ − b∓)]ξ = K̄1a
+ − K̄2b

+ + K̄3a
− − K̄4b

− + K̄5

∫ ∞

−d

e2yΨy dy

Ψ (y = 0) = 4(|A−
s |2a− − |A+

s |2a+)at ξ = ±L̂, (C 6)∫ L̂

−L̂

F (ξ ) dξ = 0, (C 7)

where the complex functions Kj = Kj (ξ ) need not be calculated.

C.1. Long-wave instabilities

We set ε = 0 in (C 1)–(C 2) and ignore the last two boundary conditions in (C 6).
Steady instabilities (λ = 0) allow us to solve (C 1)–(C 7) in closed form, to obtain the
following marginal instability curves

R2
0 =

4[cos(Θ+
0 − Θ−

0 + 2δ) − cosh 4L̂/vg]

(α1 − α2)[1 − exp(−8L̂/vg)] sin(Θ+
0 − Θ−

0 + 2δ)
, (C 8)

R2
0 =

4[cos(Θ+
0 − Θ−

0 + 2δ) + cosh 4L̂/vg]

(α1 + α2 + 4d − 8 + 3/d3)[1 − exp(−8L̂/vg)] sin(Θ+
0 − Θ−

0 + 2δ)
, (C 9)

for reflection symmetric and antisymmetric modes, respectively.
For oscillatory instabilities (λ = 0), (C 1) can be readily solved to obtain

a± = r
±
0 e±λ(ξ±L̂)/vg . (C 10)

Substituting this into (C 3)–(C 5), we obtain a linear problem that is solved as

(Ψ, F ) = R2
0r

+
0 (Ψ0, F0) exp ((4 + λ)(ξ + L̂)/vg)

+ R2
0r

−
0 (−Ψ0, F0) exp (−(4 + λ)(ξ − L̂)/vg)

+ r+
1 (Ψ1, F1) exp (µξ ) + r−

1 (−Ψ1, F1) exp (−µξ ), (C 11)

where Ψ0, Ψ1 (which depend on y), F0, and F1 (which are constant) are calculated in
closed form, but their fairly involved expressions are omitted here. We just point out
that those terms proportional to r

±
1 represent slowly varying internal waves associated

with the mean flow, and exhibit a dispersion relation

(1 − S)µ2[
√
λd − tanh(

√
λd)] = λ2

√
λ. (C 12)
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Substituting (C 11) into (C 2) (with ε = 0), and integrating this latter equation, we
obtain

b± = r
±
2 exp(±λ(ξ ± L̂)/vg) + H3r

±
0 ξ exp(±(4 + λ)(ξ + L̂)/vg)

+ H4r
∓
0 exp(∓(4 + λ)(ξ + L̂)/vg) + H5r

±
1 exp(±µξ ) + H

∓
6 r

∓
1 exp(∓µξ ), (C 13)

where the closed-form expressions for the coefficients H3, . . . , H6 are again omitted.
Substituting (C 13), (C 10) and (C 11) into the boundary conditions (C 6) and (C 7a)
gives a homogeneous system of six linear equations in the six unknowns, r

±
0 , r

±
1

and r
±
2 . Imposing that this system possesses non-trivial solutions provides a complex

equation that determines the growth rate λ for each set of values of the parameters.
Imposing that λ be purely imaginary, we obtain the marginal instability curves plotted
in figures 7 and 9.

C.2. Short-wave instabilities

Now we look for slowly modulated waves whose frequency and wavenumber are both
large. Thus, the quotient of these two quantities (the phase velocity) must coincide
with the group velocity at leading order. It turns out that these waves and the
eigenvalue λ can be written as

(a±, b±) = (a±
0 , b

±
0 )e±iKξ/

√
ε + O(

√
ε), (C 14)

(Ψ, F ) = (Ψ +
0 , F +

0 )eiKξ/
√

ε + (Ψ −
0 , F −

0 )e−iKξ/ε

+ r+
1 (Ψ1, 1)eiKξ/

√
(1−S)dε + r−

1 (−Ψ1, 1)e−iKξ/
√

(1−S)dε, (C 15)

λ = ivgK/
√

ε + λ1 + O(
√

ε), (C 16)

where those terms proportional to r
±
1 represent the slowly varying internal waves that

also appeared in (C 11), and we have taken into account that according to (C 12),
µ 	 λ/

√
(1 − S)d as λ → ∞. Note that these internal waves do not affect the surface

waves at leading order (namely, no O(1)-terms proportional to r
±
1 appear on the

right-hand side of (C 14)). As a consequence, the internal waves will not play any role
in the stability analysis below; they would be needed only to impose the boundary
condition (C 6c). Substituting these into (C 1)–(C 3), (C 4b, c), (C 5a) and (C 6a, b), we
obtain

Ψ1 =
√

(1 − S)d(y + d), (C 17)

and

λ1a
±
0 ∓ vga

±
0ξ = −iα0K

2b
±
0 , (C 18)

λ1b
±
0 ∓ vgb

±
0ξ = −iα0K

2a
±
0 + 2iα1|A±

s |2a±
0 ± 2i

∫ 0

−d

e2yΨ
±
0y dy, (C 19)

Ψ
±
0yy = 0 in − d < y < 0, (C 20)

Ψ
±
0 ∓ vgF

±
0 = ∓4|A±

s |2a±
0 , −vgΨ

±
0y ± (1 − S)F ±

0 = 0 at y = 0, (C 21)

Ψ
±
0 = 0 at y = −d, (C 22)

A±
s (a±

0 + b
±
0 ) = A∓

s (a∓
0 + b

∓
0 )e∓2iKL̂/

√
ε,

Ā±
s (a±

0 − b
±
0 ) = Ā∓

s (a∓
0 − b

∓
0 )e∓2iKL̂/

√
ε at ξ = ±L̂.

}
(C 23)

Here, we are ignoring two oscillatory boundary layers, of O(ε1/4)-thicknesses, attached
to the free surface and the bottom plate, and two lateral regions attached to the lateral
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Figure 18. The quantity α0α̂1 that governs the short-wave instability for d = 3 (– – –),
5 (– · –), 10 (· · ·) and ∞ (——).

walls, and only impose inviscid boundary conditions. Also, we are not imposing the
boundary condition (C 6c), which would be needed only to determine the complex
constants r

±
1 . The spatial detuning 2KL̂/

√
ε can be eliminated upon replacing a

±
0 →

a
±
0 eiKL̂ξ/

√
ε and λ1 → λ1 + iKL̂/

√
ε, which does not change the stability properties;

also, antisymmetric modes turn into symmetric ones replacing a
±
0 → a

±
0 eiπξ/(2L̂) and

λ1 → λ1 + iπ/(2L̂). Thus, we can replace (C 23) by

A±
s (a±

0 + b
±
0 ) = A∓

s (a∓
0 + b

∓
0 ), Ā±

s (a±
0 − b

±
0 ) = Ā∓

s (a∓
0 − b

∓
0 ) at ξ = ±L̂, (C 24)

and consider only symmetric modes. Now, integration of (C 20)–(C 22) yields

F
±
0 =

−4vg|A±
s |2a±

0

(1 − S)d − v2
g

, Ψ
±
0 = ∓4(1 − S)|A±

s |2(y + d)a±
0

(1 − S)d − v2
g

. (C 25)

Substituting this into (C 19) and using the expression of A±
s in (4.20) (with R

±
0 given

by (4.24)), we obtain

λ1b
±
0 ∓ vgb

±
0ξ = i{−α0K

2 + 2α̂1R
2
0 exp[±4(ξ ∓ L̂)/vg]}a±

0 , (C 26)

where

α̂1 = α1 − 2(1 − S)

(1 − S)d − v2
g

. (C 27)

Note that F
±
0 , Ψ

±
0 and α̂1 diverge as (1 − S)d = v2

g , but this point has been excluded
from the analysis, see (4.18). Equation (C 27) in conjunction with (C 18) and the
boundary conditions (C 24) determines the eigenvalue λ1. Since (C 26) has variable
coefficients, this problem must be solved numerically, to obtain the results plotted in
figures 7 and 9. These numerical results show that if the product α0α̂1 (which is plotted
in figure 18 for several representative values of d) is positive, then the instability sets
in as R0 increases.

C.2.1. The limit R0 → ∞
Let us rewrite the problem as follows. Since we are only considering symmetric

modes, we set

a(ξ ) ≡ a+
0 (ξ ) ≡ a−

0 (−ξ ), b(ξ ) ≡ b+
0 (ξ ) ≡ b−

0 (−ξ ) ≡ a(ξ )V (ξ ), (C 28)
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to rewrite (C 18) and (C 26) as

vga
′ = (λ1 + iα0K

2V )a, (C 29)

vgV
′ = −i[α0K

2(V 2 − 1) + 2α̂1R
2
0 exp(4(ξ − L̂)/vg)]. (C 30)

Also, the boundary conditions (C 24) yield, after some algebra,

1 + V (L̂)

1 − V (L̂)
= exp(−2i(Θ−

0 − Θ+
0 − 2δ))

1 + V (−L̂)

1 − V (−L̂)
, (C 31)

1 + V (L̂)

1 + V (−L̂)
= exp(−i(Θ−

0 − Θ+
0 − 2δ) − 4L̂/vg)

a(−L̂)

a(L̂)
, (C 32)

where Θ−
0 and Θ+

0 are given by (4.28). The second condition invoking (C 29) leads to
the following expression for the eigenvalue λ1

λ1 = −2 − vg

2L̂

[
i(Θ−

0 − Θ+
0 − 2δ) +

iα0K
2

vg

∫ L̂

−L̂

V (ξ ) dξ + ln
1 + V (L̂)

1 + V (−L̂)

]
, (C 33)

where V is calculated numerically from (C 30)–(C 31). Now, we take the limit

|V | ∼ R0 � 1, K ∼ 1 (C 34)

in (C 30), in which

V 	 −
√

−2α0α̂1R0 exp(2(L̂ − ξ )/vg)

α0K
. (C 35)

This expression applies except in two boundary layers near ξ = ±L̂, which are
required to satisfy the boundary condition (C 31). Substituting this into (C 33), we
obtain

λ1 =
vgKR0

√
α0α̂1(1 − exp(−4L̂/vg))

4L̂
, (C 36)

which shows that these small scales are destabilizing for sufficiently large R0 if
α0α̂1 > 0. Thus, if α0α̂1 > 0, then the steady state is unstable for sufficiently large R0,
for arbitrary values of the remaining parameters. If instead α0α̂1 exhibits the opposite
sign, then the right-hand side of (C 36) is purely imaginary and we do not come to
any conclusion from the analysis above; the calculation of the real part of λ1 would
require us to consider higher-order terms. Note that the instability is enhanced by
increasing either α0α̂1 or R0.
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