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SUMMARY
The dynamical stability of the cable-driven lower-limb rehabilitation training robot (CLLRTR) is a
crucial question. Based on the established dynamics model of CLLRTR, the solution to the wrench
closure of the under-constrained system is presented. Secondly, the stability index of CLLRTR is
proposed by the Krasovski method. Finally, in order to analyze the stability distribution of CLLRTR
in the workspace, the stability evaluation index in the workspace is calculated using the eigenvalue
decomposition method. The stability distribution laws of CLLRTR are further verified by the exper-
imental study. The results provide references for studying trajectory planning and anti-pendulum
control of CLLRTR.

KEYWORDS: Rehabilitation; Cable-driven robot; Krasovski method; Wrench enclosure;
Dynamical stability.

1. Introduction
The aging of the population, cerebral thrombosis, traffic accidents, and so on lead to an increase in the
number of patients with physical movement injuries.1, 2 Medical research data show that effectively
improve the ability of the functional movement of the limbs, muscle strength, and coordination of the
patients with the motor disorder through the modern medical treatment and task-oriented repetitive
motion.2–5

In order to better help patients, the field of rehabilitation training robots has attracted a large
number of clinicians, therapists, and engineers. It is hoped that some new technologies can be devel-
oped to realize the spatial functional movements with the different patient’s needs and effectively
improve the daily living standards and happiness of the patients. Ming et al.6 firstly proposed that the
cable-driven parallel robot (CDPR) is divided into four categories: (1) when m = n, it is an incom-
plete constrained positioning mechanisms, where m is the number of cables, and n is the number
of degrees of freedom (DOF) for the end-effector; (2) when m = n + 1, it is a complete constrained
positioning mechanisms; (3) when m > n + 1, it is a redundant constrained positioning mechanisms;
and (4) when m < n, it is an under-constrained positioning mechanisms. Because of less constraints,
when m < n, this kind of robot is relatively few studied. A large number of the works have been
carried out on the assisted exoskeleton robot, especially on the lower-limb rehabilitation robot. The
rehabilitation of the patients is carried out by simulating the trajectory of the joints of the lower
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limb in the normal walking gait, and it has a good effect on the rehabilitation of the patients.7 Liu
et al.8 analyzed the dynamic modelling method of the rigid-flexible coupled parallel mechanism.
The variation characteristics of the dynamic stress for the flexible components are discussed. Berti
et al.9 proposed an efficient algorithm to solve the direct geometrico-static problem of the under-
constrained cable-driven parallel robots based on the interval analysis. The algorithm can find all
direct geometrico-static solutions and real solutions with non-negative cable tensions. Yu et al.10 pre-
sented a multi-modal control scheme for rehabilitation robots. Several control schemes have been
proposed for robotic exoskeletons driven by series elastic actuators integrated into the controller to
guarantee the safety of the patient. The research progress on rehabilitation training methods and its
control strategies of CLLRTR are relatively slow at home.11–14 And the type of training action is
single, the space range of motion is relatively small, and the motion of the end-executor is in one
same plane. Furthermore, the control methods mainly focus on the speed or position servo control
mode. It can’t train the muscle strength of the patients, and the training methods are mostly passive
training. Khor et al.15 designed an upper and lower limb hybrid training rehabilitation robot. Both
the upper and lower limbs of the patients are subjected to alternating rigid forces, which may cause
secondary injury to the patients. ABBASNEJAD designed a CDPR to help rehabilitation training
of patient lower limb.16 But the four cables were distributed in one same plane, so the lower limb
can only move in the same plane. It limits the DOF and flexibility of the rehabilitation training.
In order to solve the problem that the general external wrench in some parts of the trajectory can-
not be balanced, a reconfigurable design of the robot is investigated in which the cable attachment
points on the base can move with the motion of the limb in its trajectory. The results show that the
area of wrench-closure zones in the trajectory can be increased using different actuation schemes.16

Considering the coupling of the cable vibrations and the end-effector vibrations, the dynamic stiff-
ness of the CDPR was analyzed. The effects of the changes in cable stiffness on the whole robot
were obtained.17 Yang et al.18, 19 proposed an adaptive controller for a cable-driven parallel rehabili-
tation robot. The controller with a fuzzy tuner can adjust and optimize the control parameters on the
basis of position error. Lamine et al.20 proposed an algorithm of the CDPR. The algorithm can pro-
vide reliable and robust results against rounding error effects. However, the high computation time
could be a limiting factor. Kino et al.21 proposed a CDPR with an active balancer. The method of
the approximate trajectory of the balancer was used to estimate load parameters. An adaptive con-
troller was proposed to examine the method. The research results demonstrate the usefulness of the
proposed controller through simulation. Lu et al.22 studied the kinematics and dynamics of novel
3SPU + 2RPU + R type parallel manipulator with a couple-constrained wrench. The study results
show that the novel parallel manipulator has a large workspace in any direction. Bosscher et al.23

presented a calculation method of the stability of the CDPR based on the slope of the motion screw.
The method can evaluate the dynamical stability of the CDPR. But the method can’t consider the
influence of the cable tension on the stability. Nathan Michael et al. analyzed the static stability of
the CDPR using the Hessian matrix and discussed spatial configuration. The motion of the CDPR is
stable when eigenvalues of the Hessian matrix are positive.24 Wang25 analyzed the stability of CDPR
by the hybrid force-position-pose approach and presented the stability evaluation index. Behzadipour
et al.26 applied the total stiffness matrix of the system to evaluate the stability. The requirements for
the process of the calculation, the total stiffness, and the stability of the system are very strict. It is
difficult to quantitatively evaluate the dynamical stability of the system.

The main operated object of CLLRTR is the human lower limb, so it has strict requirements for
the dynamical stability of this kind system. This paper proposes an under-constrained cable-driven
lower-limb rehabilitation robot that can complete different functional motions in space. The kinemics
and dynamics of CLLRTR are analyzed in Section 3. The workspace and optimization method of the
cable tensions are discussed in Section 4. According to the Krasovski method, the analysis method
and evaluation index of the dynamical stability are introduced in Section 5. And the distribution of
the dynamical stability of CLLRTR is analyzed and calculated in Section 6. The experimental results
can provide a safe trajectory planning area for different training modes of lower-limb rehabilitation
robots.
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Table I. The symbols describing the important variables.

Parameter Meaning Parameter Meaning

Li Cable length T Cable tension vector
[X, Y, Z]T Position of the footplate T∗ Minimal norm solution

to the cable tension
[ϕ1, ϕ2, ϕ3]T Posture of footplate V(x) Lyapunov function
ORP Rotation matrix D Eigenvalue matrix of F(x)
J+ Structure matrix of the system λi Eigenvalue
Jw Wrench matrix composed of the S Dynamical stability index

gravity and inertia forces
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Fig. 1. Cable-driven lower-limb rehabilitation training robot: (a) one side model of CLLRTR; (b) simplified
model diagram of one side of CLLRTR.

2. Configuration of CLLRTR
CLLRTR is mainly used to restorative training for different levels of disability of the lower limb by
controlling means of cables. The system of CLLRTR is shown in Fig. 1. The construction of this
CLLRTR is symmetrical. Each side of CLLRTR is formed by three cables.

CLLRTR is composed of the cables, fixed pulleys, servo motors, and footplate (end-effector) that
guide the motion of the leg during the rehabilitation training. The footplate is connected to the roller
fixed on servo motor by means of cables and fixed pulleys, and each group of cables is driven by
an independent servo motor, as shown in Fig. 1(a). The simplified model diagram of one side of
CLLRTR is shown in Fig. 1(b). A fixed frame (O, X, Y, Z) is attached to the base of CLLRTR and is
referred to as the base frame. A moving frame (P, x, y, z) is attached to the footplate, where P is the
reference point that is positioned at the geometric centre of the footplate. Point bi , at which the ith

(i = 1, 2, 3) cable enters the spool of the ith fixed pulley, is the position of the fixed pulley. Point Pi

is a junction position between the ith cable and the footplate. The ith cable length is noted by Li . The
posture of the footplate is noted by the vector [ϕ1, ϕ2, ϕ3]T. The position of the footplate is described
by using P = [x, y, z]T . In addition, the symbols describing of the important variables are shown in
Table I.

3. Dynamics of CLLRTR
Assume that the motion of the footplate with n DOF is realized by the driving of m cables, and
m < n ≤ 6. This paper mainly studies the footplate with n = 6 DOF. Because the cable length of the
rehabilitation robot is shorter and the cable inertia is smaller, the mass and elastic deformation of the
cable, which has very little effect on the system, can be ignored. Referring to Fig. 1, the cable length
can be written as:

Li =
√(

xi − x pi
)2 + (

yi − ypi
)2 + (

zi − z pi
)2

(i= 1, 2, . . . , m) (1)
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where (xi , yi , zi ) is the positions bi in the base frame.
(
x pi , ypi , z pi

)
is the position Pi in the base

frame, and it can be written as: ⎡
⎣ x pi

ypi

z pi

⎤
⎦ =

⎡
⎣ x

y
z

⎤
⎦ + ORp

⎡
⎣

px pi
p ypi
pz pi

⎤
⎦ (2)

where [px pi ,
p ypi ,

pz pi ]T is the position Pi in the moving frame. The rotation matrix ORP can be
written as:

oRP = Rz(ϕ3)Ry(ϕ2)Rx(ϕ1)

=
⎡
⎢⎣

cos ϕ3 − sin ϕ3 0

sin ϕ3 cos ϕ3 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

cos ϕ2 0 sin ϕ2

0 1 0

− sin ϕ2 0 cos ϕ2

⎤
⎥⎦

⎡
⎢⎣

1 0 0

0 cos ϕ1 − sin ϕ1

0 sin ϕ1 cos ϕ1

⎤
⎥⎦

The desired motion of the footplate is realized by the driving of m cables. The generalized
dynamical equation of CLLRTR can be obtained by the Newton–Euler equation:

AT = b (3)

where A is the structure matrix, it can be written as:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 − x p1

L1

x2 − x p2

L2

xm − x pm

Lm

y1 − yp1

L1

y2 − yp2

L2

ym − ypm

Lm

z1 − z p1

L1

z2 − z p2

L2

zm − z pm

Lm(
y1 − yp1

)
x p1 + (

z1 − z p1
)

yp1

L1

(
y2 − yp2

)
x p2 + (

z2 − z p2
)

yp2

L2
· · ·

(
ym − ypm

)
x pm + (

zm − z pm
)

ypm

Lm(
x1 − x p1

)
z p1 + (

z1 − z p1
)

x p1

L1

(
x2 − x p2

)
z p2 + (

z2 − z p2
)

x p2

L2

(
xm − x pm

)
z pm + (

zm − z pm
)

x pm

Lm(
y1 − yp1

)
x p1 + (

x1 − x p1
)

yp1

L1

(
y2 − yp2

)
x p2 + (

x2 − x p2
)

yp2

L2

(
ym − ypm

)
x pm + (

xm − z pm
)

ypm

Lm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

T = [t1 t2 · · · tm]T (5)

[
Mẍ Mÿ M(z̈ − g) Jxϕ̈1 Jyϕ̈2 Jzϕ̈3

]T
(6)

where ti > 0 (i = 1, 2, . . . , m) is the cable tension, M is the equivalent mass of the lower limb and
the footplate. Jx, Jy, and Jz are the rotary inertia respectively around axis X, Y, Z. ẍ, ÿ, and z̈ are the
translational acceleration respectively among the directions X, Y, Z. g is the gravity acceleration. ϕ̈1,
ϕ̈2, and ϕ̈3 are the angle acceleration respectively around axis X, Y, Z.

4. Analysis of Workspace

4.1. Analysis of wrench enclosure
It is known that at least n + 1 cables are required to satisfy the principle of vector closure in n DOF
CDPR system from the principle of vector closure.27 Moreover, the principle of vector closure can
ensure that the tension force of each cable is all positive, and there is a unique solution to any external
wrench.

The under-constrained CLLRTR with a 6-DOF footplate is studied in the study. The gravity and
the inertia forces generated by the equivalent mass will be treated as tensions generated by the virtual
cables. Their unit vectors can be written as eg, ex , ey, ez . The dynamical Eq. (3) of CLLRTR can be
expressed as:

J+T+ = 0 (7)
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where, {
J+ = [A Jw]

T+ = [
t1 t2 · · · tm Mg Max May Maz

]T (8)

where ax , ay , and az are the translational acceleration of the footplate respectively among the
directions X, Y, Z. Jw is the wrench matrix that is composed of the gravity and inertia forces:

Jw = [
Jg Jx Jy Jz

] =
[

eg ex ey ez

0 0 0 0

]
(9)

where Jg , Jx , Jy , and Jz are the wrench of the footplate in the gravity, X, Y, and Z directions,
respectively.

There are at most 3 DOF of the footplate can be dynamically controlled by adjusting the cable
length when the number of the cable m is equal to 1 or 2. The formula m ≥ n + 1 can be completely
satisfied when the wrench matrix Jw is considered, that is, there is 1 ≤ n ≤ 3 when m is equal to 1 or 2,
and the system satisfies the conditions of the wrench closure. There are at most 6 DOF of the footplate
can be dynamically controlled by adjusting the cable length when the number of cable m ≥ 3. The
formula m ≥ n + 1 can be completely satisfied when the wrench matrix Jw is considered. Namely,
there is 1 ≤ n ≤ 6 when the number of cables m ≥ 3, and the system satisfies the conditions of the
wrench closure. The under-constrained CLLRTR satisfies the m ≤ n, hence, the robot also satisfies
the conditions of the wrench closure formula m ≥ n + 1 when m ≥ 3 and 3 < n ≤ 6. In summary, the
6-DOF CLLRTR can guarantee and meet the conditions of the wrench closure when the number of
the driving cables m meets 3 ≤ m ≤ n.

Based on the multi-finger friction-free grab model and the convex set theory,26 the convex
conditions to judge the wrench closure of the 6-DOF CLLRTR with m cables can be obtained:

(1) The cable-driven wrench is closure.
(2) The column of matrix J+ can be positive projected onto Rn .
(3) The neighbouring region of the origin is contained in the convex packet of {Ji }.
(4) There is no vector η ∈ Rn , and η �= 0 to meet all ηJi ≥ 0, i = 1, 2, ..., m.

The above descriptions about the four conditions are all equivalent. The condition (4) has a prac-
tical significance for the calculation application. The vector η can be obtained based on the column
of matrix J+: the support plane is formed by the two arbitrary selected column vectors from matrix
J+, and the normal vector of the support plane formed by the two-column vectors Ji and J j can be
expressed by using ηi j .

4.2. Analysis and solution of workspace
There are two methods to solve and analyze the workspace of the parallel robot: the analytical method
and the numerical method. The analytical method can completely analyze the workspace of the par-
allel robot, because the configuration of this kind of parallel robot systems is very complex, and
the system exists mechanical coupling. The analytical method is not a perfect solution to solve the
position solution of the under-constrained parallel robot system. Hence, the analytical method does
not apply to the workspace solution of this kind of spatial parallel robot system with a complex con-
figuration. It is necessary to further consider the feasible range of changes in the cable tension, and
the actual workspace of this kind of CDPR (i.e., the wrench feasible workspace) will be significantly
smaller than that of the corresponding theoretical analysis. The numerical method has defects: a large
amount of the calculation work and limited precision. However, the numerical method is easy to pro-
gram, and can intuitively display the actual workspace of the system. Therefore, this paper will use
the numerical method to solve the workspace of CLLRTR. On this basis, the stability of CLLRTR is
analyzed.

The workspace of CLLRTR is the set of the spatial positions that can be reached by the end-
effector (i.e., the centre of mass of the footplate) when the constraint conditions are met.28 The
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workspace description of CLLRTR can be written as follows:

W = {
(x, y, z, ϕ1, ϕ2, ϕ3) ∈ R6|g0 (x, y, z, ϕ1, ϕ2, ϕ3)� 0

}
(10)

where W is the generalized workspace of CLLRTR, R6 is the six-dimensional real number field, and
g0(•) represents the set of equations to the constraint conditions of CLLRTR.

The posture of the footplate is given using the Monte-Carlo method, the spatial position of the
footplate and the cable length can be obtained through Eqs. (1) and (2). And the spatial position
should satisfy the following conditions:

⎧⎪⎨
⎪⎩

min(x1, x2, . . . , xm) < x < max(x1, x2, . . . , xm)

min(y1, y2, . . . , ym) < y < max(y1, y2, . . . , ym)

min(z1, z2, . . . , zm) < z < max(z1, z2, . . . , zm)

(11)

Equation (3) can be regarded as a non-homogeneous linear equation set about T when the posture
of the footplate is determined. There is rank (A) ≤ min(m, n) when the system does not occur in
the singular motion. The under-constrained CLLRTR is studied in the paper, hence, there is rank
(A) ≤ m. There is no solution to the equation if rank (A) �= m rank (A, b), that is, the position does
not satisfy the constraint conditions of CLLRTR. Else if rank (A) = rank (A, b) = m, the equation
has a unique solution. Based on the Eq. (3), the cable tension can be expressed as:

T = A−1b (12)

Else if rank (A) = rank(A, b) < m, the equation has infinitely many solutions. Based on the
Moore–Penrose generalized inverse theory matrix, the minimal norm solution to the cable tension
can be written as:

T∗ = AT (
AAT)−1

b (13)

The physical significance of the minimal norm solution of the cable tension in Eq. (13) is an
optimal solution to the cable tensions that satisfy the constraint conditions of CLLRTR.

The cable can only provide the tension force, so the cable tension must be positive, and it cannot
exceed the maximum allowable tension that the cable can withstand to ensure the safety and stability
of the system, namely, the cable tension must meet the following conditions:

0 < ti < T f max = Tlim

k
(14)

where T f max is the maximum allowable tension that the cable can withstand to ensure the safety and
stability of the system, Tlim is the limit cable tension, and k is the safety coefficient which is subject
to 1.5 < k < 2.

The calculation steps of the workspace for CLLRTR are as follows:

(1) First of all, the structural parameters of CLLRTR are described. The posture of the footplate
is randomly generated based on the Monte Carlo algorithm in the MATLAB environment. The
rank (A) and rank (A, b) are calculated by Eqs. (4) and (6).

(2) Judge whether the structural matrix meets rank (A) = rank(A, b) = m. If it does, and calculate
the cable tension with Eq. (12), and go to step (4); if it does not, go to step (3).

(3) Judge whether the structural matrix meets rank (A) = rank(A, b) < m. If it does, calculate the
cable tension through Eq. (13), and go to the step (4), if it is not and return to the step (1) to
calculate the next position.

(4) Judge whether the cable tension meets 0 < ti < T f max = Tlim
k , if it does, record this position. If it

does not, return to the step (1) to calculate the next position.
(5) Repeat the steps (1)–(4) until the end.
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5. Dynamical Stability
The stability is the primary condition for the normal operation of the system. The dynamical stability
refers to the ability of CLLRTR system to remain the original motion state when the system is sub-
jected to external interference. The dynamical stability index of CLLRTR is given according to the
Krasovski method, because of the complexity of the robot. The dynamical stability can’t be deter-
mined by using the analytic method directly. Therefore, this paper only applies a numerical method
to calculate the dynamical stability in the workspace, which is more valuable in the engineering
application. The matrix eigenvalue decomposition method is used to calculate whether the stability
margin condition is satisfied, and the stability evaluation index is proposed in the calculation process.

Combined with the Eqs. (1) and (3), the equation of the system can be written as:

f ∗(x) = 0 (15)

where x = [t1 t2 · · · L1 L2 · · · Lm ẍ ÿ z̈ ϕ̈1 ϕ̈2 ϕ̈3]T
, and f ∗(x) = [

f1(x), f2(x), . . . , fm(x),

fd1(x), fd2(x), . . . , fd6(x)
]T

, fi (x) can be obtained through the kinematics Eq. (1), fd j (x) (j = 1,2,
. . .,6) can be obtained through the dynamics Eq. (3). The second-order Taylor expansion at the
equilibrium point x0 can be expressed as follows:

f ∗(x) = f ∗(x0) +
(

∂f ∗(x)

∂xT

)
x0

(x − x0) + 1

2!
∂

∂xT

(
∂f ∗(x)

∂xT

)
x0

(x − x0)
2 + Rn (16)

Ignoring the high-order item Rn , Eq. (16) can be further written as follows:

ẋ = f (x) (17)

CLLRTR is a nonlinear system, and the dynamical stability of the kind system can be calcu-
lated according to the Krasovski method. The partial derivative equations for x on Eq. (17) can be
written as:

J (x) = ∂f (x)

∂xT
(18)

The defined Lyapunov function can be noted as:

V (x) = f T(x) f (x) (19)

There is:

dV(x)

dt
= d f T(x)

dt
f (x) + f T(x)

d f (x)

dt

=
[
∂ f (x)

∂xT
· dx

dt

]T

f (x) + f T(x)

[
∂ f (x)

∂xT
· dx

dt

]
(20)

= f (x)
[
JT (x) + J (x)

]
f T(x)

= f (x)F(x) f T(x)

If F(x) is negative, that is, F(x) < 0, the cable tensions ti > 0 (i = 1, 2, . . . , m), so x �= 0, and it
is known that the function V(x) > 0 from Eq. (19). Combined with the Eqs. (19) and (20), we can
know dV(x)

dt < 0, and the system is asymptotically stable according to the Lyapunov stability theorem.
Hence, there is,

F(x) = J (x) + JT (x) (21)

If the matrix F(x) is negative, the system is gradually stable.
It further shows that the system is gradually stable on a large scale if the above function meets con-

dition: when x → ∞, there is ‖ f (x)‖ → ∞. The system obviously meets this condition. Therefore, it
is only necessary to determine whether the F(x) matrix is negative or not, then we can judge whether
the system is stable.
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Fig. 2. The workspace of CLLRTR. (a) three-dimensional workspace (b) projections on the XOY plane
(c) projections on the YOZ plane.

In the process of the calculation stability, the matrix eigenvalue decomposition method is used to
judge whether the matrix F(x) is negative or not,

F(x)V = VD (22)

V = [
V1 V2 · · · Vm

]
(23)

D =

⎡
⎢⎢⎣

λ1

λ2
. . .

λm

⎤
⎥⎥⎦ (24)

Eq. (22) can be written as the form of Eq. (25) to solve eigenvalue of the matrix D.

(F(x) − DE) = 0 (25)

where D is the eigenvalue matrix of F (x). E is a unit matrix. The column vector Vi of the matrix V is
eigenvector that is corresponding to the eigenvalue λi of the matrix F(x). Due to F(x) is a symmetric
matrix, the eigenvalue λi of the matrix F(x) is all real. If λi < 0, it shows that the matrix F(x) is
negative, that is, the motion of the system is stable; else if λi ≥ 0, it shows that the matrix F(x) is not
negative and the motion of the system is not stable or critical stable.

In order to evaluate the dynamical stability of CLLRTR in the workspace, the maximum value S
of the eigenvalue λi is proposed to measure the stability degree of the motion, that is,

S = max{λ1, λ2, . . . , λm} (26)

The system is not stable or critical stable if S ≥ 0, the system is stable if S < 0, and the smaller the
value of S is, the better the dynamical stability degree of the system is.

6. Numerical Simulation and Experimental Analysis

6.1. Simulation analysis
The workspace of CLLRTR is simulated in the MATLAB environment, and the dynamical stability
index in the workspace is calculated. The structure of CLLRTR is displayed in Fig. 1, and the param-
eters of the prototype are described as follows: the positions of the fixed pulleys are b1(2.3, 0.42,

0.72) m, b2(0.38, 0.48, 0.72) m, b3(0.36, 2.0, 0.72) m. Assume the junctions between the foot-
plate and the cables are vertices of a regular triangle, and the distance between the junctions Pi is
l = 0.15 m. The force acted on the footplate by the lower limb is Fm = 100 N. The acceleration of the
footplate are aX = aY = 0.001 m/s2, aZ = 0. The variable range of the angle ϕ3 is (−0.1 rad, 0.1 rad),
and ϕ1 = ϕ2 = 0. The rotary inertia of the footplate are Jx = 0.54, Jy = 0.26, Jz = 0.28, respectively.
The cable pretension tmin = 15 N, and the cables maximum license tension tmax = 600 N.

The workspace of the CLLRTR is shown in Fig. 2. Figure 2 shows that the workspace of CLLRTR
is a similar triangular prism that is composed of three fixed pulleys and their projections on the XOY
plane. The constraints of the cable pretension and the posture angle for the footplate make the volume
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Table II. The value of the coefficients.

Z/m a4 a3 a2 a1 a0

0.5 3.640 −16.517 29.068 −23.572 6.3355
0.6 3.3607 −15.483 27.855 −23.077 6.2161

Fig. 3. The distribution of the stability evaluation index S on the line (1.225, y, 0.5) m.

of the workspace gradually increases from the bottom surface to the top surface. The range of S in
the workspace is S ∈ [−1.1486, −0.0254]. It indicates that CLLRTR is stable in the workspace.

It is necessary to further analyze the distribution of the dynamical stability evaluation index S
in the workspace. Assuming the posture angles of footplate ϕ1 = ϕ2 = ϕ3 = 0, the distribution of the
dynamical stability evaluation index S on the line (1.225, y, 0.5) m and (1.225, y, 0.6) m are calculated
in the MATLAB environment, respectively. The four polynomial of the dynamical stability evaluation
index S value is fitted by the least-squares method. The fitted four polynomials can be written as:

S = a4 y4 + a3 y3 + a2 y2 + a1 y + a0 (27)

The values of the coefficients in the Eq. (27) are shown in Table II.
The distribution of the dynamical stability evaluation index S on the line (1.225, y, 0.5) m is shown

in Fig. 3. The result shows that the S value becomes smaller firstly and then becomes larger with the
increase of the y value. It indicates that the dynamical stability on the line (1.225, y, 0.5) m gradually
improves firstly then gradually decreases with the increase of the y value, and the point of the best
dynamical stability is at the midpoint of the line.

The distribution of the dynamical stability evaluation index S in the line (1.225, y, 0.6) m is shown
in Fig. 4. The result shows that the variation trend of the dynamical stability evaluation index S in the
line (1.225, y, 0.6) m is the same as in the line (1.225, y, 0.5) m. It indicates that the variation trend
of the robot’s dynamical stability in the line (1.225, y, 0.6) m is also the same as in the line (1.225, y,
0.5) m.

Since the structure of CLLRTR is symmetrical, the changing trend of the dynamical stability in
the X-direction is the same as the changing trend in the Y-direction.

It shows that the dynamical stability of the central area is better than that of the boundary area
in the same plane. The distribution of the cable tension is more uniform in the central area than in
the boundary area, the stronger the ability to keep the motion state unchanged is, and the better the
dynamical stability of CLLRTR is.

By comparing Fig. 4 with Fig. 3, we can know that the S value decreases gradually with the
increase of the value z. Such as, the dynamical stability evaluation index S = −1.086 in the position
(1.225, 1.21, 0.5) m, and S = −1.195 in the position (1.225, 1.21, 0.6) m, and it indicates that the
lager the value z is, the better the dynamical stability of CLLRTR is. Because the larger the value z
is, the larger the cables tensions will be, and the larger the stiffness of the robot system is. And it will
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Fig. 4. The distribution of the stability evaluation index S on the line (1.225, y, 0.6) m.

Fig. 5. Experimental system of CLLRTR. (a) Experimental system of CLLRTR (b) CDU (c) End-effector
(d) Position sensor.

lead the robot system to have a stronger ability to resist external interferences, which will make the
motion of CLLRTR more stable.

In summary, the dynamical stability of the central area is better than that of the boundary area,
and the dynamical stability is better in the upper area than in the lower area of the workspace of
CLLRTR. Therefore, in the practical application, at the premise of satisfying the motion function of
the lower limbs rehabilitation training, the motion trajectory of the footplate should be planned in
the centre and upper area of the workspace as far as possible. It lays a foundation for the trajectory
planning of the lower-limb rehabilitation training robot.

6.2. Experimental study
The experimental system of CLLRTR with three cables was built to analyze the dynamical stability of
CLLRTR system, as shown in Fig. 5(a). The experimental system consists of three groups the cable-
driven units (CDU), end-effector, control cabinet (including the control card and drivers), position
sensor, and framework. The CDU is shown in Fig. 5(b), the torque motor (Model: 130LYX30N) inte-
grates the photoelectric encoder (Model: BXD-13A-500BM-G05L) and roller. One end of the cable
is attached to the roller across the tension sensor and the pulley. The other end of the cable is attached
to the end-effector. The tension sensors are used to detect the cable tension. The end-effector is shown
in Fig. 5(c). The end-effector is a weight (the mass is 10 kg), and a disturbance (the mass is 1 kg)
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is installed on the edge of the weight to generate external interference force. An infrared reflector
bracket that is installed on the centre of the weight is used to collect the position of the end-effector by
combining itself with the position sensor. As shown in Fig. 5(d), the position sensor emits the infrared
rays, and the infrared rays are reflected by the infrared reflector bracket installed on the end-effector.
Then the position sensor detects the infrared rays and calculates the position of the end-effector. The
correctness of the dynamical stability can be verified by testing the ability of CLLRTR to maintain
the motion state of the end-effector with the external disturbance in the different motion trajectories.

The parameters of the experimental system are the same as the simulation parameters.

6.2.1. Experiment A1. Experiment A1 is mainly used to verify the distribution of the dynamical
stability in the vertical direction of the workspace and the correctness of the theoretical analysis.
Therefore, the vertical midline of the workspace is selected as the motion trajectory A1 of the end-
effector in the experiment A1, as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

x = 840
y = 250
z = 200 + 25t

(0 � t � 10s, A1)

⎧⎨
⎩

ϕ1 = ϕ2 = ϕ3 = 0 (A1-1){
ϕ1 = ϕ2 = π sin(π t/10)/12
ϕ3 = 0 . (A1-2)

(28)

The angles of the end-effector ϕ1 = ϕ2 = ϕ3 = 0 in the experiment A1-1, and ϕ1 = ϕ2 =
π sin(π t/10)/12, ϕ3 = 0 in the experiment A1-2. The effect law of the angles of the end-effector
on the dynamical stability of CLLRTR can be studied by experiment A1-1 and experiment A1-2.

The experimental data of the experiment A1 are shown in Fig. 6 in the interference of the distur-
bance. It can be seen that the motion errors of the position and posture angle gradually increases with
the increase of the value Z (or times in Fig. 6) in the experiment A1-1, and maximum error values
are max[|�X|, |�Y|, |�Z|] = [0.2912, 4.987, 8] mm, max[|�ϕ1|, |�ϕ2|, |�ϕ3|] = [0.64, 0.6, 0.38]
degree; the motion errors in the experiment A1-2 are larger than in the experiment A1-1. In the exper-
iment A1-2, the position errors began to increase after about 1.7 s, and began to decrease gradually
after about 7.3 s. Due to the inertia of the end-effector, the maximum motion errors of the angles ϕ1

and ϕ2 occur at approximately 1.7 and 7.3 s; the maximum error values are max[|�X|, |�Y|, |�Z|]
= [3.7, 6.14, 19.67] mm, and max[|�ϕ1| , |�ϕ2| , |�ϕ3|] = [6.002, 5.69, 0.6] degree in the experi-
ment A1-2. The volatility of the cable tensions is significantly larger in the experiment A1-2 than
in the experiment A1-1. The experimental results show that, in the vertical direction, the ability of
the system to resist external interference gradually increases with the increase of Z value, and the
ability to resist external interference will be decreased with the increase of the posture angles of the
end-effector.

In the course of rehabilitation training, the movement of the experiment A1-1 can be considered as
stable, for the patients with more serious initial training, and the movement in the experiment A1-2
can be considered as unstable. But the movement in the experiment A1-1 and in the experiment A1-2
can be considered as stable for the patients with certain motion ability and in the lower limb strength
rehabilitation training.

6.2.2. Experiment A2. Experiment A2 is mainly used to verify the distribution law of the dynamical
stability in the horizontal section of the workspace. Therefore, the motion trajectory A2 of the end-
effector in the experiment A2 can be expressed as,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = 50 cos(π t/10) + 840

y = 50 sin(π t/10) + 250

z = 400

ϕ1 = ϕ2 = ϕ3 = 0

(0 < t � 20s) (29)
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Fig. 6. The experimental data of the experiment A1. (a) The experimental trajectories (b) The motion errors of
X, Y and Z (c) The motion errors of ϕ1, ϕ2 and ϕ3 (d) The cable tensions.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = 100 cos((t − 30)π/10) + 840

y = 100 sin((t − 30)π/10) + 250

z = 400

ϕ1 = ϕ2 = ϕ3 = 0

(0 < t � 20s) (30)

Eqs. (29) and (30) represent the motion trajectories of the experiment A2-1 and experiment A2-2,
respectively.

The experimental data of the experiment A2 are shown in Fig. 7 in the interference of dis-
turbance. It can be seen that the motion errors in the experiments A2-1 and A2-2 have a certain
periodicity, because the distance between the circular trajectory and the boundary of the workspace
shape determined by the configuration of the robot is periodic. The motion error of the experi-
ment A2-1 is significantly smaller than that of the experiment A2-2. And maximum error values
are max[|�X|, |�Y|, |�Z|] = [26.53, 15.43, 4] mm, max[|�ϕ1|, |�ϕ2|, |�ϕ3|] = [1.7, 1.3, 0.8]
degree in the experiment A2-1; maximum error values are max[|�X|, |�Y|, |�Z|] = [45.2, 53.59,
22] mm, max[|�ϕ1|, |�ϕ2|, |�ϕ3|] = [7.1, 6.12, 4.11] degree in the experiment A2-2. The volatility
of the cable tensions is significantly larger in the experiment A2-2 than in the experiment A2-1. The
experimental results show that, in the horizontal section, the ability of the system to resist external
interference is stronger in the central area than in the boundary area of the workspace.

In the course of rehabilitation training, the movement of the experiment A2-1 can be considered as
stable, for the patients with more serious initial training, and the movement in the experiment A2-2
can be considered as unstable. But the movement in the experiment A2-2 can be considered as stable
for the patients with certain motion ability and in the lower limb strength rehabilitation training.
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Fig. 7. The experimental data of the experiment A2. (a) The experimental trajectories (b) The motion errors of
X, Y and Z (c) The motion errors of ϕ1, ϕ2 and ϕ3 (d) The cable tensions.

The distribution of the dynamical stability index of CLLRTR was verified by the above exper-
iments A1 and A2. The experimental results are consistent with the analysis results, it indicates
that the dynamical stability evaluation method is correct and can be used to evaluate the dynamical
stability of CLLRTR.

7. Conclusion
This paper introduces a CLLRTR that can accomplish different space rehabilitation training. The
dynamical stability of CLLRTR is discussed. The solution to the wrench closure of this kind under-
constrained system is presented by using the virtual cables method, and the dynamical stability index
of CLLRTR is discussed by the Krasovski method. The evaluation index of the dynamical stability
is proposed based on the matrix eigenvalue decomposition method. The experimental results of a
specific CLLRTR show that the dynamical stability of the central area is better than that of the
boundary area, and the dynamical stability of CLLRTR is better in the upper area of the workspace
than in the bottom area in the whole workspace. Moreover, this research can be extended to do with
the incomplete restrained, complete restrained, and redundant restrained CDPRs. The results provide
a reference for designing a new CDU to improve the dynamical stability of CLLRTR. It will make
the fact that patients can receive safe and effective rehabilitation training.
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