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ABSTRACT

The evaluation of future cash flows and solvency capital recently gained im-
portance in general insurance. To assist in this process, our paper proposes a
novel loss reserving model, designed for individual claims developing in discrete
time. We model the occurrence of claims, as well as their reporting delay, the
time to the first payment, and the cash flows in the development process. Our
approach uses development factors similar to those of the well-known chain–
laddermethod.We suggest theMultivariate SkewNormal distribution as amul-
tivariate distribution suitable formodeling these development factors. Empirical
analysis using a real portfolio and out-of-sample prediction tests demonstrate
the relevance of the model proposed.
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1. INTRODUCTION

We develop a novel stochastic model for loss reserving in general insurance.
The model uses detailed information on the development of individual claims.
A vector of discrete random variables describes the claim’s evolution over time,
which evolves from occurrence of the accident until settlement or censoring of
the claim. The corresponding streamof payments is expressed in terms of chain–
ladder alike development factors (or: link ratios) and modeled with a multivari-
ate, parametric distribution. The model leads to a theoretical expression for the
expected value of the outstanding amount for each claim, and a corresponding
predictive distribution follows by simulation.

We divide the time structure of a general insurance claim in three parts (see
Figure 1). Between occurrence of the accident and notification to the insurance
company, the insurer is liable for the claim amount but is unaware of the claim’s
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FIGURE 1: Evolution of a general insurance claim.

existence. The claim is said to be Incurred But Not Reported (IBNR). After
notification, the company knows the claim and the first payment (if any) will
follow. In this paper, we use the expression Reported But Not Paid (RBNP)
to describe an incurred and reported claim for which no payments have been
made yet. Then, the initial payment occurs and several partial payments (and
refunds) follow. The claim finally closes at the closure or settlement date. From
reporting until closure of the claim, the insurer is aware of its existence, but the
final amount is still unknown: the claim is Reported But Not Settled (RBNS).
This structure provides a flexible framework that can be simplified or extended
if necessary.

At the evaluation date, the actuary should estimate technical provisions.
Loosely speaking, the insurer must predict, with maximum accuracy, the total
amount needed to pay claims that he has legally committed to cover. One part
of the total amount comes from the completion of RBNS claims. Predictions
for costs related to RBNP and IBNR claims form the second part of the total
amount.

With the introduction of Solvency II and IFRS 4 Phase 2, the evaluation
of future cash flows and regulatory-required solvency capital becomes more
important and current techniques for loss reserving may have to be improved,
adjusted or extended. In general, existing methods for claims reserving are de-
signed for aggregated data, conveniently summarized in a run-off triangle with
occurrence and development years. The chain–ladder approach (as studied in
Mack, 1993, 1999) is the most popular member of this category. A rich litera-
ture exists about those techniques, see England and Verrall (2002) or Wüthrich
and Merz (2008) for an overview.

Leaving the track of data aggregated in run-off triangles, Arjas (1989), Nor-
berg (1993) and Norberg (1999) develop a mathematical framework for the de-
velopment of individual claims in continuous time. More recent contributions
in this direction are Zhao et al. (2009) andAntonio and Plat (2013). Verrall et al.
(2010), Martinez et al. (2011) and Martinez et al. (2012) extend the traditional
chain–ladder framework towards the use of extra data sources.
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Inspired by Murphy and McLennan (2006), Drieskens et al. (2012) present
a discrete time model for the development of individual large claims in
reinsurance. Building blocks in Drieskens et al. (2012) are the large claim
status, the open claim status and (chain–ladder alike) development factors.
Rosenlund (2012) introduces the so-called “Reserve by Detailed Conditioning”
(RDC) method (see Appendix Aof his paper). This method is designed for the
development of individual claims in discrete time. RDC leads to a point predic-
tion of the outstanding loss amount by conditioning on specific characteristics
of the observed development of an individual claim.

Similar to the discrete time approach in Drieskens et al. (2012) and
Rosenlund (2012) (and in contrast to the continuous time approach from Nor-
berg (1993) and Antonio and Plat (2013)), we use discrete random variables —
at the level of an individual claim — for the reporting delay, the first payment
delay, the number of payments and the number of periods between two con-
secutive payments. Individual development factors structure the development
pattern. We propose the family of Multivariate Skew Symmetric (MSS) distri-
butions (more specifically: the Multivariate Skew Normal (MSN)) to model the
resulting, dependent development factors at individual claim level. Although
Drieskens et al. (2012) and Rosenlund (2012) rely on the empirical distribu-
tion of eachmodel component, our approach uses parametric distributions. The
joint modeling of the development factors proposed in our paper is an alterna-
tive for Rosenlund’s conditioning on the cumulative paid amount.

Our paper is organized as follows. We introduce the statistical model in Sec-
tion 2.We present the data in Section 3 and develop this real example in Sections
4 and 5. Finally, we conclude in Section 6. Some technical developments are
gathered in an Appendix, for the sake of completeness.

2. THE MODEL

Suppose we have a data set at our disposal with detailed information on the de-
velopment of individual claims.More specifically, themodel uses the occurrence
date, the reporting date, the date(s) of payment(s) (and refund(s)) made for the
claim, the amount(s) paid for the claim and the closure date. Figure 1 illustrates
the development of an individual claim in continuous time.

2.1. Model specification

2.1.1. Time components. We leave the continuous time framework from Fig-
ure 1 and work in discrete time (e.g. with periods of one year). We denote
the kth claim from occurrence period i with (ik). Hereby, k = 1, . . . , Ki and
i = 1, . . . , I where I denotes the number of occurrence periods under consid-
eration, and Ki is the number of claims originating in period i . In our discrete
time framework, we identify:
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FIGURE 2: Development of a random claim in continuous time. The x-axis represents the date of each event
and the y-axis represents the cumulative amount paid for the claim.

• the random variable Tik is the reporting delay for claim (ik), i.e. the number
of periods between the occurrence period of the claim and its notification to
the insurance company;

• the random variable Qik is the first payment delay, representing the number
of periods between notification and the first payment for claim (ik);

• the random variable Uik denotes the number of period(s) with partial pay-
ment (> 0) after the first one; and

• the random variable Nikj represents the delay between two periods with pay-
ment which is the number of periods between payments j and j + 1. We
use Nik,Uik+1 to denote the number of periods between the last payment and
the settlement of the claim. Consequently, Nik = ∑Uik+1

j=1 Nikj is the num-
ber of periods between the first payment and the period of settlement of the
claim.

Each component follows a discrete distribution f : N → [0, 1], re-
spectively f1(t; ν), f2(q; ψ), f3(u; β) and f4(n; φ) (with corresponding cdf
F1(.; ν), . . . , F4(.; φ)). By definition, Pr(Nikj = 0) = 0, j = 1, . . . ,Uik. In the
sequel of the text, we will interpret “periods” as years. Per claim and per dis-
crete time period, we aggregate all intermediate payments. Figure 2 represents
the development of a random claim from the data set. Following the approach
presented in this paper, Figure 3 transforms the data set to discrete time periods.

The accident occurs at 06/17/1997, thus the occurrence period corresponds
to the year “1997”. The claim is reported to the company on 07/22/1997, thus:
t(ik) = 0.Afirst payment is done on 09/24/1997, implying a first payment delay of
0 periods (q(ik) = 0). Consequently, payments follow on 10/21/1997, 11/07/1997,
05/08/1998, 12/11/1998, 03/23/1999, 02/23/2000, 01/03/2001 and 02/24/2001.
Therefore, u(ik) = 4 and n(ik),1 = n(ik),2 = n(ik),3 = n(ik),4 = 1. Closure is at
08/13/2001, thus n(ik),5 = 0.
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FIGURE 3: Development of the claim from Figure 2 in a discrete time framework (with yearly periods).

2.1.2. Exposure and occurrence measures. To distinguish explicitly between
IBNR and RBNS/RBNP claims, we need a stochastic process driving the oc-
currence of claims, while accounting for the exposure in a specific occurrence
period. The number of claims for occurrence period i , say Ki , follows a Poisson
distribution with occurrence measure θw(i). w(i) is the exposure registered for
occurrence period i (i = 1, . . . , I). However, since we only observe reported
claims, the Poisson distribution should be thinned in the following way:

θw(i)F1(t∗i − 1; ν). (1)

Evaluation then takes place t∗i periods after occurrence period i , and is done at
the beginning of this period. As introduced in Section 2.1.1, F1(.; ν) is the cdf
assumed for reporting delay.

2.1.3. Development pattern.

Structuring the development pattern. Let the random variable Yikj (> 0) rep-
resent the j th incremental partial amount for the kth claim (k = 1, . . . , Ki )
from occurrence period i (i = 1, . . . , I). We hereby aggregate intermediate pay-
ments from the same discrete time period in the development of a claim (as
illustrated in Figure 3). The total cumulative amount paid for claim (ik) follows
by multiplying the initial amount, Yik1, with one or more link ratios. The initial
amount, together with the vector of link ratio(s), forms the development pattern
of the claim. This approach is similar to the chain–ladder method (see Mack
1993,1999). However, with chain–ladder, the index j is for development period
instead of partial payment. Using a development-to-development period model
(as chain–ladder does) with individual claims can be problematic because the
length of the development pattern differs among claims, andmany development
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factors will have value one. We avoid this in the payment-to-payment approach
(in discrete time) used in our paper.

For a claim (ik) with a strict positive value ofUik = uik, the vector �
(ik)
uik+1 of

length uik + 1 gives the development pattern

�
(ik)
uik+1 =

[
Yik1 λ

(ik)
1 . . . λ(ik)

uik

]′
, (2)

where

λ
(ik)
j =

∑ j+1
r=1 Yikr∑ j
r=1Yikr

, (3)

for j = 1, . . . , uik. In the stochastic version of the chain–ladder model, succes-
sive development factors are supposed to be non-correlated given past informa-
tion. Moreover, independence is assumed between the initial payment and the
vector of development factors. The Paid IncurredChain (PIC)model fromMerz
and Wüthrich (2010) is an exception. The study by Happ and Wüthrich (2013)
examines dependence structures for link ratios in the PICmodel. In our individ-
ual framework, the assumption of independence is problematic and unrealistic
(as demonstrated empirically in Section 4.2.3, Figures 6 (Bodily Injury) and 7
(Material Damage)). This motivates the use of a flexible multivariate distribu-
tion for �

(ik)
uik+1 (i = 1, . . . , I and k = 1, . . . , Ki ). Such a distribution should be

able to account for the dependence present in the development pattern vector,
as well as the asymmetry in each of its components.

A flexible multivariate distribution for the development pattern. Our paper uses the
family of MSS distributions (see Gupta and Chen, 2004; Akdemir and Gupta,
2010) to model the development pattern of a claim (ik) on log scale. More
specifically, we will use the MSN distribution, a multivariate extension of the
Univariate Skew Normal (USN), distribution (from Roberts and Geisser, 1966
and Azzalini, 1985).

Definition 2.1 (MSS and MSN distribution). Let μ = [μ1 . . . μk]′ be a vector
of location parameters, � a (k× k) positive definite symmetric scale matrix and
� = [�1 . . . �k]′ a vector of shape parameters. The (k × 1) random vector X
follows a MSS distribution if its density function is of the form

MSS
(
x; μ, �1/2, �

)
= 2k

det(�)1/2
g∗ (

�−1/2 (x − μ)
) k∏
j=1

H
(
� je′

j�
−1/2 (x − μ)

)
, (4)

where g∗(x) = ∏k
j=1 g(xj ), g(·) is a density function symmetric around 0, H(·)

https://doi.org/10.1017/asb.2013.20 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2013.20


INDIVIDUAL LOSS RESERVING WITH THEMSN FRAMEWORK 405

is an absolutely continuous cumulative distribution function with H′(·) symmetric
around 0 and e′

j are the elementary vectors of the coordinate system Rk.1

TheMSN distribution is obtained from (4) by replacing g(·) and H(·) with the pdf
and cdf of the standard Normal distribution, respectively.

2.2. The likelihood

For the sake of clarity, the likelihood function will be divided into three
parts: an expression for the likelihood of closed, RBNP and RBNS
claims.

Closed claims. For closed claims (Cl), the likelihood function is given below.
Hereby, t∗ik refers to the evaluation date, expressed as number of periods after
occurrence, and evaluation is performed at the beginning of this period. (ik)Cl
refers to a closed claim.

LCl ∝
∏
(ik)Cl

MSN(ln
(
�uik+1

) ; μuik+1, �
1/2
uik+1, �uik+1|uik)

·
∏
(ik)Cl

f1(tik; ν|Tik ≤ t∗ik − 1) · f2(qik; ψ |Qik ≤ t∗ik − tik − 1)

·
∏
(ik)Cl

f3(uik; β|Uik ≤ t∗ik − qik − tik − 1)

·
∏
(ik)Cl

I(uik = 0)(1) + I(uik = 1) f4(nik1; φ|0 < Nik1 ≤ t∗ik − tik − qik − uik)

+ I(uik > 1) f4(nik1; φ|0 < Nik1 ≤ t∗ik − tik − qik − uik)

·
uik∏
j=2

f4

⎛
⎝nikj ; φ|0 < Nikj ≤ t∗ik − tik − qik − (uik − j + 1) −

j−1∑
p=1

nikp

⎞
⎠ . (5)

The first component in this likelihood (i.e. “MSN(. . .)”) is the multivariate dis-
tribution of the development pattern, given the total number of link ratio(s).
The other components, f1(.), f2(.), f3(.) and f4(.), refer to reporting delay, first
payment delay, the number of periods with payment and the delay between two
periods with payment.

RBNS claims. For RBNS claims, the likelihood is (with u∗
ik the observed

number of periods with payment after the first one, and (ik)RBNS indicating an
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RBNS claim)

LRBNS ∝
∏

(ik)RBNS

MSN(ln
(
�u∗

ik+1
) ; μu∗

ik+1�
1/2
u∗
ik+1, �u∗

ik+1|u∗
ik)

·
∏

(ik)RBNS

f1(tik; ν|Tik ≤ t∗ik − 1) · f2(qik; ψ |Qik ≤ t∗ik − tik − 1)

·
∏

(ik)RBNS

(1 − F3(u∗
ik − 1; β))

·
∏
(ik)Cl

I(u∗
ik = 0)(1) + I(u∗

ik = 1) f4(nik1; φ|0 < Nik1 ≤ t∗ik − tik − qik − u∗
ik)

+ I(u∗
ik > 1) f4(nik1; φ|0 < Nik1 ≤ t∗ik − tik − qik − u∗

ik)

·
u∗
ik∏

j=2

f4(nikj ; φ|0 < Nikj ≤ t∗ik − tik − qik − (u∗
ik − j + 1) −

j−1∑
p=1

nikp). (6)

RBNP claims. Finally, for RBNP claims, the likelihood function is (with
(ik)RBNP indicating an RBNP claim)

LRBNP ∝
∏

(ik)RBNP

f1(tik; ν|Tik ≤ t∗ik − 1) · (1 − F2(t∗ik − tik − 1; ψ)). (7)

2.3. Analytical results for best estimates of outstanding reserves

The model specified in Sections 2.1 and 2.2 allows to derive analytical results
for the nth moment of an IBNR, RBNP and RBNS claim, as well as for the
expected value of the IBNR, RBNP and RBNS reserve. Proofs are deferred to
Appendix A. We drop the (ik) subscript for reasons of simplicity.

Proposition 2.2 (nth moment of an IBNR or RBNP claim.). Let C be the ran-
dom variable representing the total claim amount of an IBNR (or RBNP) claim

C = Y1 · λ1 · λ2 · . . . · λU . (8)

Using the model assumptions from Sections 2.1 and 2.2 with location vector μ,
scale matrix � and shape vector �, the nth moment of C is given by

E

⎡
⎢⎣2U+1 exp

(
t′nμU+1 + 0.5t′n�

1/2
U+1

(
�

1/2
U+1

)′
tn
)

·
U+1∏
j=1

�

⎛
⎜⎝� j ·

((
�

1/2
U+1

)′
tn
)
j√

1 + �2
j

⎞
⎟⎠

⎤
⎥⎦ . (9)

tn is an ((U+ 1)× 1) vector, specified as [n n . . . n]′. In formula (9) (as well as in
formula (13) and elsewhere in the text), the expected value is taken with respect
to the random variable U.
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Proposition 2.3 gives the corresponding result for an RBNS claim. The distin-
guishing feature between Propositions 2.2 and 2.3 is the fact that for an RBNS
claim part of the development pattern has already been observed.

Proposition 2.3 (nth moment of an RBNS claim.). Define

�U+1 =
[
�A
�B

]
, μU+1 =

[
μA
μB

]
,

�
1/2
U+1 =

[
�AA 0
�BA �BB

]
, �U+1 =

[
�A
�B

]
, (10)

where �A, μA and �A are UA × 1 (with UA < U + 1). �AA is a UA ×UA lower
triangular matrix with positive diagonal elements and �BB is a UB × UB lower
triangular matrix with positive diagonal elements. Hereby, UB +UA = U+ 1, the
total number of periods with partial payment.

We define [μ∗
U+1|�A = 	A] := μB + �BA�

−1
AA (	A − μA), �

∗
U+1 = �BB and

�∗
U+1 = �B. The conditional final amount of a claim C, given past information,

is defined as

[C|�A = 	A] = y1 · �1 · . . . · �uA−1 · λuA . . . · λU . (11)

Using the model assumptions from Sections 2.1 and 2.2, the nth conditional mo-
ment of C is given by

E[Cn|�A = 	A] = (
y1 · �1 · . . . · �uA−1

)n
·E

[
2UB exp

(
h ′
nμ

∗
U+1 + 0.5h ′

n

(
�∗
U+1

)1/2 ((
�∗
U+1

)1/2)′
hn

)

·
UB∏
j=1

�

⎛
⎜⎜⎜⎝

�∗
j ·

(((
�∗
U+1

)1/2)′
hn

)
j√

1 + (
�∗

j

)2
⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ , (12)

with the (UB × 1) vector hn := [n n . . . n]′.

Analytical expressions for the expected values of the total outstanding IBNR,
RBNP and RBNS reserves follow immediately from Propositions 2.2 and 2.3.

Proposition 2.4 (Best estimates for the IBNR, RBNP and RBNS reserves.). Let
I denote the observed information for all claims in the data set. We define tn,
hn, μ∗

U+1, �
∗
U+1 and �∗

U+1 as in Propositions 2.2 and 2.3, respectively. Using the
model assumptions from Sections 2.1 and 2.2, the best estimate of the outstanding
IBNR, RBNP and RBNS reserves follow:
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(a) The expected value of the total amount outstanding for IBNR and RBNP
claims, respectively, is

E[IBNR|I] versus E[RBNP|I]

= (x) · E
[
2U+1 exp(t′1μU+1 + 0.5t′1�

1/2
U+1

(
�

1/2
U+1

)′
t1)

·
U+1∏
j=1

�

⎛
⎝� j · ((�

1/2
U+1)

′t1) j√
1 + �2

j

⎞
⎠

⎤
⎦ , (13)

where (x) should be replaced with E[KIBNR] in case of IBNR reserves, and
with kRBNP, the observed number of open claims without payment, in case
of RBNP reserves. The expected number of IBNR claims follows from the
Poisson distribution driving the occurrence of claims (appropriately thinned
to represent IBNR claims).

(b) The expected value of the total amount outstanding for RBNS claims is

E[RBNS|I]
=

∑
(ik)RBNS

y1 · �1 · . . . · �u1−1

·E
[
2UB exp(h′

1μ
∗
U+1 + 0.5h′

1

(
�∗
U+1

)1/2 ((
�∗
U+1

)1/2)′
h1)

·
UB∏
j=1

�

⎛
⎜⎜⎜⎝

�∗
j ·

(((
�∗
U+1

)1/2)′
h1

)
j√

1 +
(
�∗

j

)2

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ , (14)

where the sum goes over all RBNS claims.

In Propositions 2.2, 2.3 and 2.4, except in the case of degenerate distribution, we
need to empirically average over the outcome of U to obtain numerical results.

3. THE DATA

3.1. Background

We use the data set from Antonio and Plat (2013) on a portfolio of general lia-
bility insurance policies for private individuals.2 Available information is from
January 1997 until December 2004. Originally, information is available until Au-
gust 2009, but to enable out-of-sample prediction, we remove the observations
from January 2005 to August 2009. Two types of payments are registered in
the data set: Bodily Injury (BI) and Material Damage (MD).3 Section 2 (see
Figures 2 and 3) visualizes a claim from the data set.

https://doi.org/10.1017/asb.2013.20 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2013.20


INDIVIDUAL LOSS RESERVING WITH THEMSN FRAMEWORK 409

TABLE 1

DESCRIPTIVE STATISTICS FOR CLOSED CLAIMS: FIRST PAYMENT, TOTAL CLAIM AMOUNT, AND
DEVELOPMENT FACTORS λ j WITH j ≤ 4 FOR BI CLAIMS AND j ≤ 2 FOR MD CLAIMS.

Number of
Class Variables Mean Median s.e. Minimum Maximum Observations

Y1 1, 008 351 3, 274 0.18 148, 900 2, 961
λ1 10.24 3.23 31.52 1.01 653.33 991

BI λ2 4.50 1.95 10.80 1.00 127.74 253
λ3 2.73 1.80 2.18 1.00 11.94 89
λ4 2.67 1.92 2.22 1.00 11.44 37

Total Claim 2, 961 624 11, 825 6.3 410, 500 2, 961

Y1 298 151 528 0.35 68, 810 181, 828
MD λ1 5.44 2.18 11.71 1.00 371.40 1, 555

λ2 2.16 1.41 1.73 1.01 6.93 13
Total Claim 305 153 679 0.35 108, 300 181, 828

3.2. Descriptive statistics

The data set consists of 279, 094 reported claims; 273, 977 of these claims are
related to MD and 5, 117 to BI. A total of 268, 484 MD claims (181, 828 with
at least one payment and 86, 656 with no payment) and 4, 098 BI claims (2, 961
with at least one payment and 1, 137 with no payment) are closed in the data
set. We present descriptive statistics for closed claims with positive payments in
Table 1. In Section 4.1, descriptive graphics follow representing reporting delay,
first payment delay and the number of periods with payment (see Figure 4).
We illustrate dependence between development factors in Figures 6 (BI) and 7
(MD).

4. DISTRIBUTIONAL ASSUMPTIONS AND ESTIMATION RESULTS

4.1. Distributional assumptions

Distributions for number of periods. For the random variables describing the
time structure part of a claim’s development (i.e. {Tik}, {Qik}, {Uik} and {Nik}
from Section 2.1), we consider mixtures of a discrete distribution with degen-
erate components (similar to Antonio and Plat, 2013). For reporting delay, for
instance, we investigate distributions of the following type:

f1(t; ν) =
p∑

s=0

νs Is(t) +
(
1 −

p∑
s=0

νs

)
fT|T>p(t), (15)

where Is(t) = 1 for reporting in the sth period after the period of occurrence
and 0 otherwise. f (t) is the pdf of a discrete distribution with parameter(s)
νp+1, . . . , νp+q . Further on, we investigate the use of a Geometric, Binomial,
Poisson and Negative Binomial distribution for f (.), combined with different
values for p (p = 0, 1, 2, 3).
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TABLE 2

MODEL SELECTION FOR {Tik}, {Qik}, {Uik}, USING THE STRUCTURE FROM (15) WITH A GEOMETRIC
DISTRIBUTION FOR THE BASIC COUNT DISTRIBUTION.

BI MD

p AIC BIC AIC BIC

(T; ν) basic dist. 3, 120 3, 126 88, 730 88, 740
0 2, 987 3, 000 85, 714 85, 735
1 2, 966 2, 985 85, 484 85, 515
2 2, 961 2, 987 85, 479 85, 521
3 2, 963 2, 994 85, 485 85, 537

(Q; ψ) basic dist. 4, 882 4, 888 116, 611 116, 621
0 4, 605 4, 617 111, 045 111, 066
1 4, 575 4, 594 110, 680 110, 711
2 4, 577 4, 602 110, 676 110, 717
3 4, 578 4, 609 110, 680 110, 732

(U; β) basic dist. 6, 102 6, 108 18, 255 18, 265
0 6, 096 6, 108 18, 250 18, 270
1 6, 025 6, 043 18, 233 18, 264
2 6, 026 6, 051 18, 233 18, 273
3 6, 017 6, 048 18, 235 18, 285

TABLE 3

ESTIMATION RESULTS FOR THE SELECTED DISTRIBUTION FOR {Tik}, {Qik}, {Uik}, I.E. A GEOMETRIC
DISTRIBUTION WITH DEGENERATE COMPONENTS. PARAMETERS ARE DENOTED AS IN (15).

Report delay First pmt delay Number partial pmt
Parameter (T; νs) (Q; ψs) (U; βs)

Class Index (s.e.) (s.e.) (s.e.)

0 0.8953 0.7127 0.5192
(< 0.001) (< 0.001) (0.010)

1 0.0819 0.2522 0.2470
(0.003) (0.003) (0.008)

BI 2 0.5144 0.6431 0.3094
(0.064) (0.052) (0.022)

0 0.9565 0.9181 0.9896
(< 0.001) (< 0.001) (< 0.001)

1 0.0421 0.0794 0.0103
(< 0.001) (< 0.001) (< 0.001)

MD 2 0.6820 0.6729 0.7184
(0.031) (0.026) (0.125)

Development pattern. For the logarithm of the development pattern vector
(as in (2)), we consider the MSN distribution on the one hand and the special
case where � = 0, i.e. the Multivariate Normal (MN) distribution, on the
other hand. The following structures are considered for the z× zmatrix 
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BI: reporting delay BI: first payment delay BI: number of period(s)

MD: reporting delay MD: first payment delay MD: number of period(s)

FIGURE 4: Observed (solid line) and estimated (broken line) frequency distributions for Bodily Injury (BI, top row) and Material Damage (MD, bottom row). From left
to right: reporting delay, first payment delay and number of intermediate payments after the first one.
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TABLE 4

LOGARITHM OF THE SEVERITY OF THE FIRST AND ONLY PAYMENT: ESTIMATION RESULTS FOR THE
UNIVARIATE SKEW NORMAL DISTRIBUTION (USN) (WITH PARAMETERS μ, σ AND SCALE PARAMETER δ)

AND THE NORMAL DISTRIBUTION (N) (WITH PARAMETERS μ AND σ ).

BI MD

USN N USN N

μ 5.9377 5.9226 4.9541 5.0428
(s.e.) (1.04) (0.03) (0.06) (< 0.01)
σ 1.3966 1.3968 1.1663 1.1637
(s.e.) (0.02) (0.02) (0.01) (< 0.01)
δ −0.0139 – 0.0959 –
(s.e.) (0.94) – (0.07) –
AIC 4, 124 4, 122 284, 855 284, 853
BIC 4, 141 4, 133 284, 885 284, 873

FIGURE 5: Logarithm of the severity of the first and only payment: empirical and fitted densities for Bodily
Injury (top) and Material Damage (bottom).
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unstructured (UN), Toeplitz (TOEP), Compound Symmetry (CS) andDiagonal
(DIA) (see below).

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
1 0 0 . . . 0

σ21 σ 2
2 0 . . . 0

...
. . .

...

...
. . .

...

σz1 σz2 σz3 . . . σ 2
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(UN)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
1 0 0 . . . 0

σ2σ1ρ1 σ 2
2 0 . . . 0

σ3σ1ρ2 σ3σ2ρ1 σ 2
3 . . . 0

...
. . .

...

σzσ1ρz−1 σzσ2ρz−2 σzσ3ρz−3 . . . σ 2
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(TOEP)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
1 0 0 . . . 0

σ2σ1ρ σ 2
2 0 . . . 0

σ3σ1ρ σ3σ2ρ σ 2
3 . . . 0

...
. . .

...

σzσ1ρ σzσ2ρ σzσ3ρ . . . σ 2
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(CS)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
1 0 0 . . . 0
0 σ 2

2 0 . . . 0
0 0 σ 2

3 . . . 0
...

. . .
...

0 0 0 . . . σ 2
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(DIAG)

4.2. Estimation results

Following the discussion and approach in Antonio and Plat (2013), we fit the
model separately for MD and BI payments. We perform data manipulations
and likelihood optimizationwith R.We follow a procedure5 inspired byAkdemir
(2009) to estimate parameters in theMSN distribution. In a first step, we obtain
shape parameters by the maximum product of spacings method (see Cheng and
Amin, 1983 and Ranneby, 1984). Under general conditions, Cheng and Amin
(1983) show that the maximum product of spacings estimator and the maxi-
mum likelihood estimator are asymptotically equivalent. In a second step, loca-
tion and scale parameters follow from applying maximum likelihood method.
In the likelihood optimization, numerical approximation of the Hessian ma-
trix is used to estimate standard errors. For each component in the model, a
model selection step is performed, comparing different models based on AIC
and BIC. We highlight retained model specifications in gray in the tables that
follow.

4.2.1. Distributions for number of periods. For the discrete random variables
{Tik}, {Qik}, {Uik} and {Nik}, we investigate the use of a mixture of p degenerate
distributions with a basic count distribution (see (15)). Consequently, p+ q + 1
parameters have to be estimated for each variable (with q the number of pa-
rameters used in the count distribution). Our model selection procedure (based
on AIC and BIC) prefers a Geometric distribution, combined with degenerate
components. Table 2 shows model selection steps assisting in the choice of the
number of degenerate components. Table 3 displays parameter estimates and
standard errors for the preferred specifications. Observed and estimated results
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TABLE 5

BODILY INJURY: MODEL SELECTION STEPS EXAMINING MSN AND MN SPECIFICATIONS
FOR THE DEVELOPMENT PATTERN VECTOR.

Model No. of Parms. −ll AIC BIC

MSN UN 20 3, 431 6, 902 7, 000
TOEP 14 3, 435 6, 897 6, 966
CS 11 3, 444 6, 910 6, 964
DIA 10 3, 605 7, 230 7, 279

MN UN 20 3, 496 7, 032 7, 128
TOEP 14 3, 499 7, 025 7, 094
CS 11 3, 531 7, 083 7, 137
DIA 10 3, 723 7, 465 7, 514

are compared in Figure 4, at least for the components necessary to project claims
until settlement.

4.2.2. Occurrence of claims. Using the distributions selected for reporting de-
lay, we estimate the thinned Poisson distribution from (1). Hereby, the exposure
measure w(.) is expressed in years. Results are: θ̂BI = 0.7445 (s.e. 0.02) and
θ̂MD = 38.96 (s.e. 0.11).

4.2.3. Development pattern.

The development consists of a single payment. For the logarithm of the severity
of the first and only payment, we explore the use of a Univariate Skew Normal
(USN) as well as aNormal (N) distribution. The estimation results and a graph-
ical goodness-of-fit check are in Table 4 and Figure 5. For the data at hand, the
Normal distribution is to be preferred.

The development consists of more than one payment. We examine the use of the
MSN, as well as the MN distribution for the logarithm of the development pat-
tern vector �

(ik)
Uik+1 (see (2)).

For BI, we restrict themaximal dimension of the development vector, saymp,
to 5 and to mp = 3 for MD.6 Therefore, we fit a location vector of dimension
mp × 1, a scale matrix of dimension mp ×mp and a shape vector of dimension
mp × 1. When observed claims use less development factors, appropriate sub-
vectors and sub-matrices are used in the likelihood. If the simulated number of
periods with payment is larger than mp, we apply a tail factor.7 Tables 5 and 6
(BI) and 7 and 8 (MD) present results of the model selection steps, as well as
parameter estimates for the preferred MSN and the preferred MN distribution.
For the MD case, we initially observed imprecision in dimension 3 estimates
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TABLE 6

BODILY INJURY: PARAMETER ESTIMATES FOR PREFERRED MSN AND MN DISTRIBUTIONS.

MSN Model MNModel

Location Scale Shape Location Scale
μ (s.e.) �1/2

c � μ (s.e.) �1/2
c

μ1 = 5.44 σ1 = 1.27 �1 = 0.51 μ1 = 6.04 σ1 = 1.23
(0.05) σ2 = 1.18 �2 = 2.64 (0.05) σ2 = 0.97
μ2 = 0.53 σ3 = 1.00 �3 = 2.29 μ2 = 1.43 σ3 = 0.86
(0.03) σ4 = 0.83 �4 = −0.32 (0.04) σ4 = 0.82
μ3 = 0.63 σ5 = 0.69 �5 = −0.002 μ3 = 0.95 σ5 = 0.69
(0.05) ρ = −0.28 (0.05) ρ1 = −0.49
μ4 = 1.49 μ4 = 0.64 ρ2 = −0.23
(0.09) (0.08) ρ3 = −0.003
μ5 = 1.12 μ5 = 0.66 ρ4 = −0.26
(0.10) (0.11)

TABLE 7

MATERIAL DAMAGE: MODEL SELECTION STEPS EXAMINING MSN AND MN SPECIFICATIONS
FOR THE DEVELOPMENT PATTERN VECTOR.

Model No. of Parms. −ll AIC BIC

MSN UN 9 4, 260 8, 538 8, 586
TOEP 8 4, 282 8, 580 8, 622
CS 7 4, 508 9, 031 9, 068
DIA 6 4, 740 9, 492 9, 524

MN UN 9 4, 260 8, 538 8, 586
TOEP 8 4, 271 8, 557 8, 600
CS 7 4, 510 9, 033 9, 071
DIA 6 4, 743 9, 498 9, 530

TABLE 8

MATERIAL DAMAGE: PARAMETER ESTIMATES FOR PREFERRED MSN AND MN DISTRIBUTIONS.

MSN Model MNModel

Location Scale Shape Location Scale
μ (s.e.) �1/2

c � μ (s.e) �1/2
c

μ1 = 5.43 σ11 = 1.27 �1 = 0.01 μ1 = 5.43 σ11 = 1.27
(0.03) σ22 = 1.07 �2 = 2.95 (0.03) σ22 = 0.71
μ2 = 0.32 σ33 = 0.65 �3 = 2.95 μ2 = 1.12 σ33 = 0.42
(0.02) σ12 = −0.55 (0.02) σ12 = −0.66
μ3 = 0.32 σ13 = −0.27 μ3 = 1.12 σ13 = −0.41
(0.02) σ23 = −0.04 (0.02) σ23 = −0.12
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FIGURE 6: Bodily injury: empirical observations of the development vector (2) and contour plots obtained
from selected MSN model. First row of plots (from left to right): first link ratio vs. initial payment, second link
ratio vs. initial payment, third link ratio vs. initial payment. Second row (from left to right): fourth link ratio
vs. initial payment, second vs. first link ratio, third vs. first link ratio. Third row (from left to right): fourth vs.
first link ratio, third vs. second link ratio, fourth vs. second link ratio. Fourth row: fourth vs. third link ratio.

(namelyμ3 = 0.18 with s.e. 0.20). Therefore, we reduced theM(S)N distribution
by settingμ2 = μ3,�2 = �3 and by keeping the scale matrix unstructured. This
modification improves the precision of our parameter estimates while having
virtually no impact on the final results. Empirical data and contour plots for
the chosen MSN multivariate densities are in Figures 6 (BI) and 7 (MD).
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FIGURE 7: Material Damage: empirical observations of the development vector (2) and contour plots
obtained from selected MSN model. First row of plots (from left to right): first link ratio vs. initial payment,

second link ratio vs. initial payment. Second row: second vs. first link ratio.

5. PREDICTION RESULTS

We summarize the data set by occurrence and development year in run-off tri-
angles, see Tables 9 and 10. Information with respect to occurrence years 2005
to 2009 (August) is available but not used in the analysis to enable out-of-sample
prediction. This information is printed in bold in the run-off triangles.

5.1. Prediction of the IBNR and RBNP reserves

Analytical best estimate for outstanding IBNR and RBNP reserves. Analytical ex-
pressions for the expected value of the outstanding IBNR and RBNP reserve
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TABLE 9

INCREMENTAL RUN-OFF TRIANGLE FOR BODILY INJURY (IN THOUSANDS).

Development Year

Arrival Year 1 2 3 4 5 6 7 8

1997 261 614 359 526 546 137 130 339
1998 202 473 307 336 269 56 179 78
1999 238 569 393 270 249 286 132 97
2000 237 557 429 496 406 365 247 275
2001 389 628 529 559 446 375 147 239
2002 260 570 533 444 132 122 332 1, 082
2003 236 743 558 237 217 205 171
2004 248 794 401 236 254 98

TABLE 10

INCREMENTAL RUN-OFF TRIANGLE FOR MATERIAL DAMAGE (IN THOUSANDS).

Development Year

Arrival Year 1 2 3 4 5 6 7 8

1997 4, 427 992 89 13 39 27 37 11
1998 4, 389 984 60 35 76 24 0.5 16
1999 5, 280 1, 239 76 110 113 12 0.4 0
2000 5, 445 1, 164 172 16 6 10 0 10
2001 5, 612 1, 838 156 127 13 3 0.4 3
2002 6, 593 1, 592 74 71 17 15 9 9
2003 6, 603 1, 660 150 52 37 18 3
2004 7, 195 1, 417 109 86 39 15

are available from Section 2.3, see Proposition 2.2, where unknown parameters
should be replaced by estimates (as obtained in Section 4.2). Note that these
expressions evaluate claims until settlement, even if this takes place beyond the
boundary of the triangle. Moreover, these results do not incorporate parame-
ter uncertainty (see Section 5.3 for further discussion). Table 12 displays these
analytical results for BI and Table 13 for MD.

Simulation of outstanding IBNR and RBNP reserves. For each occurrence period,
we simulate the number of IBNR claims (for BI and MD separately) from a
Poisson distribution with occurrence measure

θ̂w(i)(1 − F1(t∗i − 1; ν̂)). (16)
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FIGURE 8: Histograms of the reserve obtained for IBNR and RBNP claims with the individual model for
Bodily Injury (left) and Material Damage (right). Parameter uncertainty is not taken into account, claims are

projected until settlement.

Consequently, for each IBNR claim (denoted with (ik)), we simulate the num-
ber of period(s) with partial payments Uik and the corresponding development
pattern vector �

(ik)
Uik

. Note that — with this strategy — we develop a claim until
settlement (which can be beyond the boundary of the triangle). Taking the tim-
ing of partial payments into account would require simulation of the random
variables Tik, Qik and Nikj (see Tables 12 and 13 for results simulated until the
boundary of the triangle).

The prediction routine for the RBNP reserve is similar to the routine for
IBNR claims. However, the number of open RBNP claims is observed, and
therefore does not require a simulation step. The variable Qik should be sim-
ulated from a truncated distribution, using the condition Qik > t∗ik − tik − 1.

Graphical results based on 5,000 simulations are shown in Figure 8. Tables
12 (BI) and 13 (MD) display corresponding numerical results.

5.2. Prediction of the RBNS reserve

Analytical best estimate for outstanding RBNS reserve. Tables 12 (BI) and 13 (MD)
display analytical results for BI andMDpayments. Similar considerations apply
as for IBNR and RBNP reserves.

Simulation of outstanding RBNS reserve. For each RBNS claim in the data set,
we first simulate the number of period(s) with payment from the conditional pdf
f3(u|u ≥ u∗), where u∗ is the observed number of periods with payment after
the first one. Then, we simulate the missing part of the development pattern
vector from the conditionalMSN distribution (by conditioning on the observed
part of the development pattern vector). Finally, we evaluate the RBNS reserve.
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FIGURE 9: Histograms of the reserve obtained for RBNS claims with the individual model for Bodily Injury
(left) and Material Damage (right). Parameter uncertainty is not taken into account, claims are projected until

settlement.

Numerical results based on 5,000 simulations are in Tables 12 (BI) and 13 (MD)
and corresponding graphical results are in Figure 9.

5.3. Discussion of results

Analytical versus simulation-based results, influence of parameter uncertainty, policy limit
and design. Tables 12 (for BI) and 13 (for MD) show prediction results ob-
tained with the individual claims reserving method. The first two “scenarios”
in these tables display IBNR + RBNP (=IBNR+), RBNS and Total reserves
obtained with our preferred distributional assumptions (see Section 4.2.3) when
claims are developed until settlement. Both analytical (first block of rows) and
simulation-based results (second block of rows) are given. The analytical best es-
timate results are close to the mean of the corresponding predictive distribution
based on simulation (“Sim.”). This underpins the usefulness and appropriate-
ness of the analytical formulas. The third block of rows shows simulation-based
results, including parameter uncertainty (“Unc.”). This is achieved by using the
asymptotic normal distribution of the maximum likelihood estimators. At ev-
ery iteration in the routine, we simulate for each building block in the model
the parameter (vector) from its corresponding (uni/multi)variate asymptotic
normal distribution, except for the (co)variance and the shape parameter(s) in
the (MS)N distribution. This approach is inspired by Antonio and Plat (2013)
and by Brouhns et al. (2002). Including parameter uncertainty with respect to
(co)variance and shape parameters is a topic for future research. The fourth
block of rows gives simulation-based results, including parameter uncertainty
and developing claims until settlement, when the policy limit (“Pol. Limit”)
of 2.5 MEuro is taken into account (see Antonio and Plat (2013)). In a fifth
block of rows, we present simulation-based results, accounting for parameter
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FIGURE 10: Bodily Injury: sensitivity of simulated predictive distributions with respect to the specification of
the multivariate distribution for the development pattern vector. “MSN” refers to Multivariate Skew Normal
and “MN” to Multivariate Normal. Parameter uncertainty is not taken into account, claims are projected

until settlement and policy limit is not incorporated.

TABLE 11

SENSITIVITY OF ANALYTICAL BEST ESTIMATE RESULTS WITH RESPECT TO THE SPECIFICATION OF THE
MULTIVARIATE DISTRIBUTION FOR THE DEVELOPMENT PATTERN VECTOR. “MSN” REFERS TO

MULTIVARIATE SKEW NORMAL AND “MN” TO MULTIVARIATE NORMAL. PARAMETER UNCERTAINTY IS
NOT TAKEN INTO ACCOUNT, CLAIMS ARE PROJECTED UNTIL SETTLEMENT AND POLICY LIMIT IS NOT

INCORPORATED.

MSN UN BI 8,132,051 MD 2,320,735
TOEP 8,476,498 2,331,575
CS 8,404,192 2,339,406

MN UN BI 6,836,694 MD 2,327,497
TOEP 6,578,931 2,327,733
CS 6,547,580 2,345,500

uncertainty and policy limits, but restricting the development of claims to the
right boundary of the triangle (i.e. development year 8), instead of developing
claims until settlement.

Sensitivity analysis: distribution of development vector. According to Figure 10
(simulation based, for BI) and Table 11 (best estimate analytical results), the
structure implied to �1/2

c has minor impact on the expected value of the out-
standing reserve, but it does influence its predictive distribution (obtained with
MSN or MN assumption for (2)). The assumption of a MN versus MSN dis-
tribution for (2) also has a clear impact on the predictive distribution of the
outstanding reserves, at least for BI payments. The impact is negligible forMD8

(see Table 11). Recall from Tables 5 and 7 that all information criteria prefer
the MSN distribution above the MN distribution. This sensitivity is a topic for
future research.
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TABLE 12

BODILY INJURY: COMPARISON OF ESTIMATION RESULTS. IBNR+ DENOTES THE COMBINATION OF IBNR
AND RBNP RESERVES. RESULTS ARE DISPLAYED FOR: ANALYTICAL BEST ESTIMATES (UNTIL SETTLEMENT

OF EACH CLAIM), CORRESPONDING SIMULATION-BASED RESULTS, SIMULATION-BASED RESULTS
INCORPORATING PARAMETER UNCERTAINTY (“UNC.”), SIMULATION-BASED RESULTS ACCOUNTING FOR

INDIVIDUAL POLICY LIMIT OF 2.5 M EURO (“POL. LIMIT”), SIMULATION-BASED RESULTS ACCOUNTING FOR
POLICY LIMITS AND DEVELOPING UNTIL TRIANGLE BOUNDARY. CHAIN–LADDER RESULTS FOR TABLE 9 ARE

DISPLAYED. OBSERVED AMOUNT (i.e. SUM OF BOLD NUMBERS IN TABLE 9) IS 7,684,000 EURO.

Model or Expected
Scenario Item Value S.E. VaR0.95 VaR0.995

Individual MSN IBNR+ 2, 970, 645
Analytical RBNS 5, 433, 548
(Until Settlement) Total 8, 404, 192

Individual MSN IBNR+ 3, 035, 519 494, 771 3, 912, 159 4, 673, 340
Simulated RBNS 5, 439, 318 704, 701 6, 650, 958 7, 738, 003
(Until Settlement) Total 8, 474, 837 853, 812 9, 927, 439 11, 105, 174

Individual MSN Total 8, 568, 506 922, 657 10, 134, 198 11, 406, 905
Sim. + Unc.
(Until Settlement)

Individual MSN Total 8, 568, 355 902, 601 10, 141, 226 11, 320, 931
Sim. + Unc. + Pol. Limit
(Until Settlement)

Individual MSN Total 7, 251, 103 817, 878 8, 679, 618 9, 717, 771
Sim. + Unc. + Pol. Limit
(Until Triangle Bound)

Chain–Ladder Total 9, 126, 639 1, 284, 793 11, 380, 743 13, 061, 937
(Bootstrap, ODP)
Observed Total 7, 684, 000
(Bold, Table 9)

Out-of-sample test and comparison with other reserving methods. The best estimate
results reported in Tables 12 and 13 (simulation-based, until the boundary of the
triangle and taking the policy limit into account) are close to the results obtained
inAntonio and Plat (2013). Our out-of-sample test (see Figure 11) demonstrates
the usefulness of the method developed in this paper. The realized outcomes are
displayed in bold in the lower triangles in Tables 9 and 10. As discussed in An-
tonio and Plat (2013), the lower triangle for BI (see Table 9) shows an extreme
payment (779,383 euro) in occurrence year 2002, development year 8. This is
reflected in a realistic way by the individual loss reserving model. We also com-
pare the results of the individual reservingmethod with the results of a reserving
method for aggregated data. Figure 11 illustrates this comparison. Results for
chain–ladder are obtained by bootstrapping an Overdispersed Poisson (ODP)
model (with the chainladder package in R) for the incremental payments in a
run-off triangle, i.e. Xi j , with i the arrival year and j the development year, (as
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TABLE 13

MATERIAL DAMAGE: COMPARISON OF ESTIMATION RESULTS. IBNR+ DENOTES THE COMBINATION OF
IBNR AND RBNP RESERVES. RESULTS ARE DISPLAYED FOR: ANALYTICAL BEST ESTIMATES (UNTIL
SETTLEMENT OF EACH CLAIM), CORRESPONDING SIMULATION-BASED RESULTS, SIMULATION-BASED

RESULTS INCORPORATING PARAMETER UNCERTAINTY (“UNC.”), SIMULATION-BASED RESULTS
ACCOUNTING FOR INDIVIDUAL POLICY LIMIT OF 2.5 M EURO (“POL. LIMIT”), SIMULATION-BASED RESULTS

ACCOUNTING FOR POLICY LIMITS AND DEVELOPING UNTIL TRIANGLE BOUNDARY. CHAIN–LADDER
RESULTS FOR TABLE 10 ARE DISPLAYED. OBSERVED AMOUNT (i.e. SUM OF BOLD NUMBERS IN TABLE 9) IS

2,102,800 EURO.

Model or Expected
Scenario Item Value S.E. VaR0.95 VaR0.995

Individual MSN IBNR+ 1, 793, 545
Analytical RBNS 524, 945
(Until Settlement) Total 2, 318, 490

Individual MSN IBNR+ 1, 794, 044 44, 387 1, 869, 850 1, 917, 588
Simulated RBNS 524, 984 15, 889 542, 146 562, 096
(Until Settlement) Total 2, 318, 878 47, 109 2, 396, 281 2, 446, 362

Individual MSN Total 2, 443, 614 68, 364 2, 663, 801 2, 901, 795
Sim. + Unc.
(Until Settlement)

Individual MSN Total 2, 442, 226 66, 472 2, 646, 649 2, 919, 822
Sim. + Unc. + Pol. Limit
(Until Settlement)

Individual MSN Total 2, 312, 270 70, 630 2, 429, 363 2, 497, 149
Sim. + Unc. + Pol. Limit
(Until Triangle Bound)

Chain–Ladder Total 3, 053, 641 429, 266 3, 780, 437 4, 202, 478
(Bootstrap, ODP)
Observed Total 2, 102, 800
(Bold, Table 10)

in Table 9). This ODP model specifies: Xi j = φZi j with Zi j ∼ POI(μi j/φ) and
μi j = exp (αi + β j ).

6. CONCLUSIONS

This paper proposes a discrete time individual reserving model inspired by the
chain–ladder model. The model is designed for a data set with the development
of individual claims. Highlights of our contribution are twofold. Firstly, on a
claim by claim as well as aggregate level, analytical expressions for the first
moment of the outstanding reserve are available. Secondly, the predictive distri-
bution of the outstanding reserve is available by simulation. The latter approach
allows taking policy characteristics, such as a policy limit, into account. The case
study performed on a real-life general liability insurance portfolio demonstrates
the usefulness of the model.
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FIGURE 11: Histogram of the total reserve (light gray) obtained with the individual MSN model for Bodily Injury (left) and Material Damage (right). The histograms
are based on 5,000 simulations (for BI) and 5,000 simulations (for MD) until the boundary of the triangle, taking parameter uncertainty and the policy limit into account.

The black reference line is based on 5,000 bootstrap simulations of an Overdispersed Poisson model (with chain–ladder structure) for the Bodily Injury and Material
Damage run-off triangle, respectively. Dotted lines (on the BI plot) and gray bullet (on the MD plot) represent the observed total payment for years 2005 to 2009

(August), i.e. the sum of the numbers in bold in Tables 9 and 10.
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Several directions for future research can be envisaged. We plan further re-
search with respect to the modeling of the first payment, using the Lognormal-
Pareto distribution (see Pigeon and Denuit (2011)). Further investigation of the
multivariate distribution for the development pattern vector is necessary, with
an emphasis on research on inclusion of parameter uncertainty. Precise mod-
eling of inflation effects and inclusion of the “time value of money” will be of
importance in future work. Studying the approach in light of the new solvency
guidelines, is another path to be explored, as well as extending the model to the
reinsurance industry.
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NOTES

1. The scale parameter � is not the usual variance–covariance matrix as in the Multivariate
Normal distribution. An MSS random vector is defined by �1/2 in place of � because of the plu-
rality of the square roots of �. Without subscript, �1/2 designs any square root of the matrix �.

2. As in Antonio and Plat (2013), we discount payments to 1/1/1997 with the appropriate con-
sumer price index.

3. In contrast with Antonio and Plat (2013) a claim can have both BI payments, as well as MD
payments. In Antonio and Plat (2013) a claim with at least one BI payment was considered as BI.

4. For MSN and MN, matrix 

1/2
c refers to the square root of the covariance matrix �, as

obtained by the Cholesky decomposition.
5. A sample R program to verify this approach is available from the authors.
6. In the data set, we observe only eight BI claims with more than five periods with payment

and two MD claims with more than three periods with payment.
7. This tail factor is the geometric average of empirically observed development factors.
8. Results for the Material Damage case are without constraint on μ and �.

REFERENCES

AKDEMIR, D. (2009) A Class of Multivariate Skew Distributions: Properties and Inferential Issues.
PhD thesis, Bowling Green State University, Ohio.

AKDEMIR, D. and GUPTA, A.K. (2010) A matrix variate skew distribution. European Journal of
Pure and Applied Mathematics, 3(2), 128–140.

ANTONIO, K. and PLAT, R. (2013) Micro–level stochastic loss reserving for general insurance.
Scandinavian Actuarial Journal, DOI:10.1080/03461238.2012.755938.

ARJAS, E. (1989) The claims reserving problem in non–life insurance: Some structural ideas.
ASTIN Bulletin, 19(2), 139–152.

AZZALINI, A. (1985) A class of distributions which includes the normal ones. Scandinavian Journal
of Statistics, 12, 171–178.

BROUHNS,N., DENUIT,M. andVERMUNT, J. K. (2002) APoisson log-bilinear regression approach
to the construction of projected lifetables. Insurance: Mathematics and Economics, 31, 373–
393.

https://doi.org/10.1017/asb.2013.20 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2013.20


426 M. PIGEON, K. ANTONIO AND M. DENUIT

CHENG, J.T. and AMIN, N.A.K. (1983) Estimating parameters in continuous univariate distribu-
tionswith a shifted origin. Journal of theRoyal Statistical Society, SeriesB (StatisticalMethod-
ology), 45(3), 394–403.

DRIESKENS, D., HENRY, M., WALHIN, J.-F. and WIELANDTS, J. (2012) Stochastic projection for
large individual losses. Scandinavian Actuarial Journal, 1, 1–39.

ENGLAND, P.D. and VERRALL, R.J. (2002) Stochastic claims reserving in general insurance.British
Actuarial Journal, 8, 443–544.

GUPTA, A.K. and CHEN, J.T. (2004) A class of multivariate skew normal models. The Annals of
the Institute of Statistical Mathematics, 56(2), 305–315.
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APPENDIX

A. PROOF OF PROPOSITION 2.2

By definition,

Mln(�)(t|u) = E
[
exp

(
ln (�U+1)

′ t
) |U = u

]
= E[exp (ln (Y1) t1 + ln (λ1) t2 + . . . + ln (λU) tU+1) |U = u] .

Taking t = tn = [ n n . . . n ]
′
, we obtain

Mln(�)(tn|u) = E[exp (n (ln (Y1) + ln (λ1) + . . . + ln (λU))) |U = u]

= E[(Y1 · λ1 · λ2 · . . . · λU)n |U = u] . (A1)

For a conditional (onU = u) MSS random vector ((u + 1) × 1) and a ((u + 1) × 1) vector t,
the moment generating function is given by

Mln(�)(t|u) = exp
(
t′nμu+1

) ∫
. . .

∫
Ru+1

2u+1 · g∗(zu+1)

· exp
((

�
1/2
u+1

)′
t′nzu+1

)
·
u+1∏
j=1

H
(
� je′

jzu+1
)
dzu+1

= exp
(
t′nμu+1

)
Eg∗(zu+1)

⎡
⎣exp

((
�

1/2
u+1

)′
t′nzu+1

)
·
u+1∏
j=1

H
(
� je′

jzu+1
)⎤⎦ (A2)

with zu+1 = �
−1/2
u+1 (ln (�u+1) − μu+1).

The nth moment of an IBNRclaimC is obtained by taking the expected value of equation
(A1) with respect to random variable U and by including equation (A2)

E[Cn ] = E [E[(Y1 · λ1 · λ2 · . . . · λU)n |U = u]]

= E
[
Mln(�)(tn|U)

]

= E

⎡
⎣ exp

(
t′nμU+1

)
Eg∗(zU+1)

⎡
⎣ exp

((
�

1/2
U+1

)′
t′nzU+1

)

·
U+1∏
j=1

H
(
� je′

jzU+1
)⎤⎦

⎤
⎦ . (A3)
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For the specific case of a MSN distribution, the result becomes

E[Cn ] = E

⎡
⎢⎣2U+1 exp

(
t′nμU+1 + 0.5t′n�

1/2
U+1

(
�

1/2
U+1

)′
tn
)

·
U+1∏
j=1

�

⎛
⎜⎝� j

((
�

1/2
U+1

)′
tn
)
j√

1 + �2
j

⎞
⎟⎠

⎤
⎥⎦ . (A4)

B. PROOF OF PROPOSITION 2.3

Conditional on past information as well as the random variableU, the MSN random vector
defined by

ln (�B|�A = 	A,U = u) = [
ln (y1) ln (�1) . . . ln

(
�uA−1

)
ln

(
λuA

)
. . . ln (λu)

]
(A5)

follows a MSN distribution with parameters μ∗
u+1, �∗

u+1 and �∗
u+1 as defined in Proposi-

tion 2.3. This conditional result can be obtained in the same way as for a MN distribution.
The rest of the proof is similar to the reasoning given in Section A.

C. PROOF OF PROPOSITION 2.4

(a) For IBNR claims, the expected value of the total claim amount is

E[IBNR|I] = E

⎡
⎣ I∑

i=1

KIBNR,i∑
k=1

Y(ik)
1 · λ

(ik)
1 · . . . · λ

(ik)
Uik

⎤
⎦ , (A6)

where KIBNR,i is the random variable representing the number of IBNR claims from
occurrence period i . Because KIBNR,i and �U+1 are independent, we obtain

E[IBNR|I] =
I∑

i=1

E[KIBNR,i ] E
[
Y(ik)
1 · λ

(ik)
1 · . . . · λ

(ik)
Uik

]

= E[KIBNR] · E
[
Y(ik)
1 · λ

(ik)
1 · . . . · λ

(ik)
Uik

]
. (A7)

The result then follows from Proposition 2.2. The proof is similar for RBNP claims.
(b) For RBNS claims, the expected value of the total claim amount is

E[RBNS|I] =
∑

(ik)RBNS

E
[
y(ik)
1 · �

(ik)
1 · . . . · �

(ik)

u(ik)
A −1

· λ
(ik)

u(ik)
A

· . . . · λ
(ik)
Uik

]

=
∑

(ik)RBNS

y(ik)
1 · �

(ik)
1 · . . . · �

(ik)

u(ik)
A −1

· E
[
λ(ik)
uA

· . . . · λ
(ik)
U(ik)

]
. (A8)

The proof then follows from Proposition 2.3.
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