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Item Response Theory models (IRT, Lord & Novik, 
1968) and Rasch Models (RM, Rasch, 1960) are funda-
mental in psychology. Their derivations generally 
assume monotonicity, continuity and asymptotical 
behavior of the item response function, plus general 
criteria or additional requirements like local stochas-
tic independence, sufficiency of statistics, conditional 
inference or specific objectivity. The need for a dense 
set of items to account for interval scales has also 
been debated (Fischer, 1995a). For istance, the multi-
dimensional Polytomous RM can be derived from suf-
ficiency, while the Partial Credit model (PCM, Masters, 
1982) and the Rating Scale model (RSM, Andrich, 
1978; 1982) from conditional inference (Fischer, 1995b). 
Similarly, the conditional RM and the original RM can 
be derived requiring “measurement interchangeability” 
(Kelderman, 1995).

Derivations based on formal frameworks are rele-
vant to gain insight on a model. The derivation based 
on conditional inference, for instance, describes both 
PCM and RSM as special cases of the Power Series 
Distribution. Similarly, the derivation based on items 
“interchangeability” (in respect to their relation to each 
other and with other variables) connects the RM to the 
Generalized Linear Models. Alternative derivations 
can also be given borrowing techniques from statistical 
physics: a derivation of the Polytomous RM based on 
the method of the steepest descent (Darwin & Fowler, 

1922a; 1922b; 1923) was given by Ebneth (1993)  
considering a testee answering a fictional series of 
tasks. The average numbers of equivalent task series, 
conditional to constraints, were used to obtain the 
probability. A derivation of the dichotomous RM, 
based on Boltzmann’s most probable distribution 
(MPD) method (see Huang, 1987) was instead given 
by Noventa, Stefanutti, & Vidotto (2013) conceiving 
a test as a distribution of responses with several pos-
sible outcomes constrained by means of latent traits 
and item characteristics. The RM was derived as the 
distribution maximizing the number of possible 
outcomes.

Although these two approaches to RM are based on 
different techniques, they are related by the principle 
of Maximum Entropy (MaxEnt). Indeed, they both 
converge to the asymptotic probability distribution 
that corresponds to the condition of maximum igno-
rance about the system (Jaynes, 1982).

In the present work, the derivation of the dichoto-
mous RM given in Noventa et al. (2013) is extended 
to the Polytomous RM and its implications are dis-
cussed in light of the aforementioned literature, in 
particular, the Darwin-Fowler derivation (Ebneth, 
1993), the MaxEnt principle and the use of a statis-
tical physics framework for understanding the ratio-
nale of IRT and RM.

A brief introduction to the MPD method and the 
MaxEnt principle

The “most probable distribution” method

The MPD is a combinatorial method suggested by 
Boltzmann in 1877 to derive the energy distribution 
of particles in a gas. Particles are allocated into  
energy levels ε{ }

k
 (like marbles in boxes) with occupation 
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numbers { }
k

n  under the constraints given by their total 
number N and energy E:

 
= =ε∑∑ k k

kk

k
n N n E

 
(1)

Since particles can be distributed in several ways, 
there are different possible combinations (and sets of 

frequencies = k

k

n
f

N
). Some of these combinations are 

also equivalent, since identical particles can be swapped. 
To understand which combination is more likely to be 
observed in Nature, multiplicity is defined as the number 
of ways in which a particular combination is realized:

 

!
({ })

!
=

∏k

k k

N
W n

n  
(2)

The logarithm of the multiplicity is known as 
Boltzmann’s Entropy. The gist of the MPD method is 
that the final probability distribution is associated to 
the combination that is realized in the maximum 
number of ways. To find such a probability the multi-
plicity (2), under the constraints (1), is maximed using 
the method of the Lagrangian multipliers:

1 2({ ln ({}) })  Λ = + λ − + λ − ε
              ∑ ∑

k

k k

k

k k k
n W n N n E n

 
(3)

were 1 2,λ λ ∈R. The difficulty in maximizing (3) rely 
on the integer nature of { }kn  and in the factorials con-
tained in the multiplicity. An approximate derivation, 
based on the fact that the limit → ∞N  is taken, requires 
Stirling’s approximation for factorials and a contin-
uous approximation for { }kn . A better result, still in the 
continuity approximation, is obtained by replacing 
factorials with the Gamma function (Landsberg, 1954). 
An elegant derivation was given by Clinton and Massa 
(1972) avoiding both continuity and Stirling’s approxi-
mations. Since the present work relies on this deriva-
tion, it is useful to briefly sketch it for the present case: 
Clinton and Massa noticed that Λ({ })kn  is in a max-
imum if, moving a particle both in or out of an energy 
level, the following system of inequalities is satisfied:

 

1 1

1 1

( , , , ) ( , , 1, )

( , , , ) ( , , 1, )

Λ ≥ Λ +
Λ ≥ Λ −
 … … … … … … … …

k k
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n n n n

n n n n  (4)

Substitution of (3) in the system (4) leads to:

( )
( )

1 2

1 2

ln 1 0

ln 0
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+ λ + λ ≤

ε
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k k

k k

n

n

so that any occupation number (once divided by N) is 
bounded by:

( ) ( ) ( ) ( )1 1

2 2

exp exp1
exp exp

−λ −λ
−λ − ≤ ≤ −λε εk

k k

n

N N N N

 (5)

Since these are actually the occupation frequencies, 
for the squeeze theorem the probability can be defined 
taking the limit → ∞N  where the terms 1/N vanishes:
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The condition p 1=
kk∑  is used to introduce a nor-

malization term:

 ( )
( )

k
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∑ ε
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(7)

 and finally the probability is:
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(8)

It is immediate the similarity of (8) with the 
Polytomous RM if the occupation numbers 

k
n  are a 

measure of how many times a category response is 
chosen in N trials by a testee. Although with some 
differences in assumptions and methods, this line of 
reasoning is close to Ebneth’s (1993). His derivation, 
however, requires the concept of statistical ensemble, 
a collection of N copies of the system that, indepen-
dently and randomly, assume all the possible states 
allowed to the system (Huang, 1987). For instance,  
N copies of the entire gas. This concept is fundamen-
tal in statistical physics which is based on averages 
over ensembles, but it is not required in the MPD 
method (Landsberg, 1954).

Boltzmann’s “molecular” perspective (the ensem-
ble is the set of N particles) is followed in the present 
work, so that all the possible response patterns of the 
joint population of subjects and items are accounted 
(see section 3). Probability (8) is then derived as the 
most likely response pattern that can be observed in 
the population. The concept of MPD is well justified 
in a MaxEnt framework.

The principle of Maximum Entropy

Information Entropy is a measure of uncertainty 
(Shannon, 1948). The higher the entropy of a system 
the more unpredictable is its state. The concept was 
inspired by Gibbs statistical Entropy:

 
log= −I

k
k kS p p∑

 
(9)

and takes maximum value when the distribution is 
uniform. Connections between statistical entropy and 
information theory were higlighted by Jaynes (1957). 
In particular, he suggested the importance of a MaxEnt 
principle, briefly stated as “when we make inferences 
based on incomplete information we should drawn 
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them from that probability distribution that has the 
maximum entropy permitted by the information we 
do have” (Jaynes, 1982). Such a method is a general-
ization of the usual methods of statistical inference 
that allows the choice of different priors. For instance, 
the MaxEnt solution for a set of probabilities 1=kk

p∑  
over some events 

k
x  is the uniform distribution 

(Laplace’s principle of indifference). Adding some 
functions ( )j kf x , whose expected values are constrained 

( ) = ∈Rj k jE f x a    , the result is the is the exponential 
family:
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( )( )
( )( )
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j
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∑

∑
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(10)

where λ ∈Rj . On the one side, the MaxEnt distribution 
works as the inverse of the Darmois-Koopman-Pitman 
theorem and creates a model for which the data are 
sufficient statistics (Jaynes, 1982). On the other side, it 
relates Gibbs and Boltzmann Entropies:

1
lim log lim log log

→∞ →∞
≈ = − =k k

k k I
N N

k k

n n
W p p S

N N N
∑ ∑

 
(11)

The probability distribution that maximizes entropy 
is numerically identical to the frequency that possesses 
the greatest multiplicity (Jaynes, 1982). Boltzmann’s 
Entropy is the limit of Gibbs’ Entropy if probabilities 
are equal. Working on the concept of ensemble Gibbs 
formulation is however more general and allows to 
describe interacting particles (Jaynes, 1965). Hence, the 
Boltzmann entropy seems to be a suitable description 
of RM since it requires independence between subjects 
and items.

Basic assumptions, definitions and notations

Measurement scale and equivalence classes

Given a set of subjects  {1, , }ν ∈ … s , a set of items 
{1, , }∈ …i m , and a random variable, whose realizations 

are response categories {0, , }ν ν= ∈ …
i i

X x c , the response 
matrix of a test is { }νi

x . In the dichotomous case, 1=c .  
A generalization of the response matrix to the popula-
tion can be either a finite or an infinite matrix { }νi

x  with 
ν ∈S and ∈i I , where S and I are the populations of all 
the subjects and items. The union =P S I∪ , endowed 
with a weak order relation ≾, allows comparisons 
between subjects and items. A common scale for latent 
traits and item parameters is a triple , ,φP M  where 

: , ,φ → ≤≾P M , with ⊆ RM , is an homomorphism 
that preserves the weak order (see for instance Krantz, 
Luce, Suppes, & Tversky, 1971; Luce, Krantz, Suppes, & 
Tversky, 1990; Suppes & Zinnes, 1963). Equivalence 
classes of all the subjects and of all the items 

possessing the same position on the measurement 
scale can be defined as:

 

( ){ }
( ){ }
ν: ,

:

S S A M

I i I i D M

α

δ

= ν ∈ φ = α ∈ ⊆

= ∈ φ = δ ∈ ⊆  (12)

where α ∈A and δ ∈D are the values of the latent trait 
and of the item characteristic. Let j and k be the indexes 
spanning these sets, assuming they have at least count-
able cardinalities.

In order to build a Polytomous RM, thresholds are 
also needed. They are generally conceived as locations on 
the latent trait set that indicate a subject has exceeded 
a particular category response. Let { }0, , c∈ …r  be the 
index spanning the category responses, hence τ

kr
 is 

the threshold value needed for scoring the category 
=jkx r  in an item of characteristic δ

k
. Thresholds  

appear then to be both levels of latent trait and item 
characteristic, A Dτ ∈

kr
∩ . In what follows, the situa-

tion is considered in which A D= , so that there is 
always a match between levels of latent trait and of 
item characteristic.

Probability

An important debate in IRT concerns the source of 
randomness. In the stochastic subject view, probability 
explains variations due to the person or to the test sit-
uation, in the random sampling view, probability is the 
proportion of subjects with the same latent trait giving 
positive answers (Moleenar, 1995). Another important 
debate concerns whether latent traits and item charac-
teristics are on an ordinal level or on a metric con-
tinuum (Michell, 1990). In the former case, different 
subjects and items might be associated to the same 
non-metric scale value, in the latter, the probability of 
subjects and items to possess the same values would 
be zero. Interestingly, the MPD method accommodates 
all the previous perspectives. Equivalence classes (12) 
are defined independently on whether they describe 
an ordinal ranking or a coarse-grained description of 
a continuum (i.e, classes due to limited precision in 
measurement). Indeed, the MPD method moves from 
occupation numbers, so it is not important whether 
they result from resampling a subject or from dif-
ferent testees. In the most general perspective the 
response might be rewritten as νit

jkrx  where the supra-
indexes refer to subjects, items, and repetitions, while 
sub-indexes refer to latent traits, item characteristics, 
and category responses. Since debating about the  
existence of subjects with the same latent trait and 
item with the same characteristic is pointless in the 
MPD framework, , ,ν i t will be dropped.

Let jkX  be the response variable corresponding to a 
subject with latent trait α j, answering to an item with 
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characteristic  δ
k
, and let { }0, ,= ∈ …jkx r c  be its realiza-

tion. The matrix { }jkx  can be ordered by increasing 
levels of latent trait and item characteristic and then 
partitioned into different blocks characterized by a 
couple ( ,  α δj k). The number of responses within each 
block is given by a set of numbers { }jkrn . If 

0=
=jk jkrr

c
N n∑  

is the total number of cells in the specific jk-th block, 
then the ratio /jkr jkn N  gives the proportion of responses 
for the r-th category (the number of subjects giving a 
response r to a certain class of items or the proportion 
of responses of a single subject to a single item depend-
ing on the view). The probability of drawing from the 
population a testee with latent trait jα , answering r 
(whose threshold is 

kr
τ ) to an item with a characteristic 

value of  
k

δ , is then:

 
( ), , : lim

→ ∞
= α δ τ =

jk

jkr

jk j k kr
N

jk

n
P X r

N  
(13)

where the limit accounts for an infinite population. 
The law of total probability becomes:

 
( )

=0

= , , = 1α δ τ
c

jk j k kr
r

P X r∑
 

(14)

The most probable distribution for a Polytomous test

Permutations

Multiplicity can be derived consideing that the total 
number of ways in which jkrn  responses can fill the jkN  
cells of the block is given by the binomial coefficient:

 ( )
!

! !
= =

−
jk jk

jkr
jkr jkr jk jkr

N N
W

n n N n

       
(15)

Once the response category  = 0 r  has been filled, 
there is room left for 0−jk jkN n  responses in the other 
categories, and so on. Hence:

2

0 0
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that, after some algebra, yields:

 
0

!
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= jk

jk c
r jkr

N
W

n∏  (16)

so that all the possible ways in which all the blocks can 
be filled is given by:

 { }( ) !

!
= =

j

jk

jkr j
jk

k
kr jkr

N
W n W

n
∏ ∏  (17)

that is exactly multiplicity (2) but generalized to the 
joint population of subjects and items.

Constraints

The first constraint that must be taken into account is 
given by the total number of cells in each block, that 
must sum up to the total number N of cells in the 
response matrix. It follows that:

 
= =jk jkr

jkrjk

N N n∑ ∑
 (18)

The second constraint depends on the fact that the 
number of possible outcomes defined by the multi-
plicity (17) depends on , ,α δ  and τ. The number of 
responses jkrn  is conditional to latent traits, item char-
acteristics and thresholds. The constraint can be mod-
eled as an implicit function of , ,α δ τj k kr  and .jkrn  
Namely, { } { } { } { }( ), , , =α δ τ µjkr j k krH n , with µ ∈R . 
However, to avoid any interaction between different 
response categories in different blocks, additive inde-
pendence is assumed:

{ } { } { } { }( ) { }( ), , , , , , ≤α δ τ = α δ τ = µjkr j k kr jkr j k kt t r
jkr

H n h n∑
 

(19)

Notice that, in each block, constraints likely depend 
on all the thresholds { } ≤

τ
kt t r

 that precede the one asso-
ciated to the r-th category. Any { }( )α δ, ,: ,

≤= τjkr jkr j k kt t r
h h n  

is a generic constraint for the r-th category in the jk-th 
cluster, and is assumed to be a monotonic function of 
its arguments.

Derivation of the most probable distribution

The MPD can be derived by maximizing the Boltzmann 
Entropy given by (17) under the effect of constraints 
(18) and (19). As in section (2) this extremality problem 
under external constraints is reduced with Lagrangian 
multipliers method to the unconstrained maximiza-
tion of the function:

 

{ }( ) { }( )

{ }( )

1

2

ln

, , , ≤

Λ = + λ −

+ λ α δ τ − µ

jkr jkr jkr
jkr

jkr j k kt t r
jkr

n W n n N

h n

     

     

∑

∑
 

(20)

where 1, 2λ λ ∈R and the sets of { } { } { }, ,α δ τj k kr  enter 
in the equation as parameters. As noticed, the variables 

jkrn  are positive integers so the previous equation is not 
differentiable. Since the derivation follows exactly the 
step given in section (2), apart from some minor 
changes, full proof is given in Appendix A. There is 
however a point worth to be mentioned: not all the 
shape of the constraint jkrh  do define a probability.  
A unique solution can be achieved when the constraints 
are linear functions of jkrn , that is =jkr jkr jkrh n f  where 

https://doi.org/10.1017/sjp.2014.81 Published online by Cambridge University Press

https://doi.org/10.1017/sjp.2014.81


Rasch Models as MaxEnt Distributions  5

{ }: ( , , )= ≤
α δ τjkr j k kt t r

f f  is a generic functions of latent 
traits, item characteristics and thresholds (addition of 
constants or functions unrelated to jkrn  does not affect 
the multiplicity, see Appendix A). Interestingly, linear 
constraints are related to averages of latent traits, 
thresholds and item characteristics over all blocks and 
category responses. They are indeed the expected values 
of the sufficient statistics for the exponential family as 
in equation (10).

The probability resulting from maximizing (20) is 
then:

 

( )
{ }( )( )

{ }( )( )
2

20

exp , ,  
, ,

exp , ,  

≤

≤=

λ α δ τ
= α δ τ =

λ α δ τ

j k kt t r

jk j k kr c

j k kt t rr

f
P X r

f∑  
(21)

since 1λ  becomes a normalization term 2λ  and is a scale 
factor. As it can also be easily noticed, PCM and RSM 
can be obtained from equation (21) setting the appro-
priate constraint (19) to:

{ } { } { } { }( ) ( )( )
02

1
, , ,

=

α δ τ = α − δ − τ
λ jkr

r

RSM jkr j k kr jkr j k kt
t

H n n
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(22)

 
{ } { } { } { }( ) ( ))

02

1
, , ,

=

α δ τ = α − τ
λ

r

PCM jkr j k kr jkr j kt
jkr t

H n n
      

∑ ∑
 

(23)

Similar constraints can be given for any form of the 
Polytmous RM (Rasch, 1961).

Discussion

In the present work Boltzmann’s MPD method was 
used to obtain the Polytomous RM. This method-
ology was chosen for sake of simplicity: first, although 
methods like the steepest descent are preferable (Jaynes, 
1982; Schrödinger, 1946), they lack the intuitivity of 
the MPD method. Darwin-Fowler’s method, indeed, 
requires the concept of ensemble and knowledge of 
complex analysis. The MPD method instead needs few 
assumptions, is based on simple algebra and appears to 
be more suited for exploratory and introductory pur-
pouses (Landsberg, 1954). Second, “the Boltzmann 
MPD method and the Darwin-Fowler method lead to 
the same result in the limit → ∞N ” (Jaynes, 1982; 
Schrödinger, 1946). They are equivalent in light of the 
MaxEnt principle, since the maximization of the total 
number of outcomes can be replaced by the maximiza-
tion of the number of ways in which equally probable 
outcomes, conditional to the constraints, can be real-
ized. Third, but not less important, it is argued that 
Boltzmann Entropy is a sufficient framework to 
describe the RM since it requires the independence 
of its basic elements, that is, subjects and items. The 
concept of ensemble, meaning a set of mental copies 

of the system assuming all its possible microstates, is 
however essential to extend the model to account for 
interactions. The concept however needs to be defined 
in the framework of psychology.

A possible solution was given by Ebneth (1993), in 
the stochastic subject view, considering a testee under-
going a series of fictional tasks as the ensemble. In the 
present work a different perspective is higlighted, 
that defines the concept of ensemble in relation to the 
idea of a test as a collection of responses of different 
subjects to several items. Following the ideas of sec-
tion (3.2), a more general approach enclosing both 
stochastic subject view and random sampling view might 
be given considering an ensemble as the set of all the 
response matrices in the joint population of subjects 
and items.

From the perspective of statistical physics, different 
ensembles are possible: the microcanonical is the one in 
which states are equally likely since they possess the 
same energy; the canonical is the one in which some 
states are more likely than others since energy can 
vary; a grand-canonical is the one in which the total 
number of basic elements may also vary. Most impor-
tantly, the descriptions given by the different ensem-
bles are equivalent in an infinite population, in which 
fluctuations are negligible, so that most of the micro-
states have the same average values of energy and of 
basic elements.

The equivalent of probability (21) can be derived as 
the probability associated to a canonical (C) or a grand-
canonical (GC) statistical ensemble (Huang, 1987):

( )
( )

( )
( )

( )( )
( )( )

expexp
,

exp exp

−β µ −−β
= =

−β −β µ −

j ij iji
C i GC i

ii j ij ii j

N HH
P H P H

H N H

∑
∑ ∑ ∑  

(24)

In the case of a gas of particles, β is the Boltzmann 
factor associated to the temperature, Hi is the 
Hamiltonian (a function describing the energy) of  
the i-th microstate, Nij is the number of particles of 
the j-th species in the i-th microstates and µ ij  is the 
chemical potential describing the energy related to 
exchanges of particles. In the case of a test a parallel 
might be to associate to β a discrimination factor,  
Hi to a function (the constraints) describing latent 
traits, item characteristics and thresholds, Nij might 
be the number of subjects in the j-th category and µ ij  
a related function describing changes in the number 
of subjects in a category (or in a formal similarity 
with the multidimensional polytomous RM they might 
be associated to person’s value and weight param-
eter in the j-th latent trait).

Probabilities (24) are however conceptually different 
from (21). Boltzmann’s MPD method is based on dif-
ferent assumptions, and probability (21) describes the 
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proportion of subjects in a response category (or the 
propensity distribution) for a given item difficulty. 
Probabilities (24) are instead descriptions of all the 
subjects in all the category responses of all the items. 
Hence, they do not provide distinct distributions for 
distinct blocks of the responses matrix, but the prob-
ability of an entire response matrix. The concept of 
ensemble allows then to introduce interactions whereas 
the Boltzmann approach requires independency: only 
if local stochastic independence holds the probabi-
lites (24), by introducing an additive structure of the 
Hamiltonian like in constraint (19), can be decom-
posed into a product of probabilities (21). Similarly, 
the difference between a dichotomous and a polyto-
mous RM is the absence of local independence between 
the category responses. Such a perspective generalizes 
RM to those situation in which local independence 
does not hold and interactions are required.

It is also important to notice that probability dis-
tributions (24) describe equilibrium solutions that 
satisfy the MaxEnt principle and account for the 
maximum uncertainty. As in the MPD method, they 
decribe a system in the microstate having the high-
est probability, that is a system whose entropy is in a 
maximum, or in other words, for which the knowl-
edge of the observer is minimum. Exponential fam-
ilies are indeed MaxEnt solution in presence of linear 
constraints on the expected value of their sufficient 
statistics. For instance, probability (21) is the one that 
maximizes multiplicity (17) under linear constraints 
on expected values of latent traits, item characteris-
tics and thresholds (see section 4.3). Interestingly, 
multiplicity (17) describes a series of independent 
categorical distributions (over r categories) each related 
to a block ,j k, and within each block there are Njk 
trials. The multinomial distribution (with fixed number 
of trials and unknown probabilities) in itself is an 
exponential family whose inverse parameter map-
ping is the generalization of the logistic function, called 
softmax function, that corresponds to equation (21). 
These concepts can also be traced back in other deri-
vations: the fundamental one is based on sufficiency 
(Fischer, 1995b). The derivation based on conditional 
inference (Fischer, 1995b) connects the RM to the Power 
Series Distribution, that is an exponential family that 
contains the binomial, the geometric, and the Poisson 
distributions (Patil, 1965). Even the derivation based 
on “measurement interchangeability” (Kelderman, 
1995) might have a parallel on the commutative 
nature of constraint (19) that allows the possibility of 
switching items.

Such a line of reasoning suggests that MaxEnt prin-
ciple provides a rationale behind IRT models and 
RM in the framework of psychology (notice also that 
RM, rather than pairwise comparisons or psychometric 

logistic curve depends on which population is con-
sidered). RM would be the most suitable description 
of a test under the constraints previously described. 
Other IRT models related to exponential families 
would be descriptions of systems with different 
combinatorial natures, that is, situations in which a 
different state of information is available. Notice 
however that MaxEnt works with noiseless data, the 
complete case needs a full Bayesian approach (Jaynes, 
1982).

Some final remarks. First, this result does not hold 
for a finite population, in which there is not a unique 
definition of probabilty (21). In such a case, fluctua-
tions are not negligible and distributions describing 
different states should be considered. Second, such 
an approach to IRT and RM appears to separate the 
rationale behind the models from the problem of 
their measurement type. The derivation was indeed 
given independently on the nature of the measure-
ment scale, given by the triple , , φP M , and whose 
type depends on the admissible transformation of 
the homomorphism ɸ that maps subjects and items 
into latent traits and item characteristics as in the 
definition of equivalence classes (12). The MaxEnt 
principle indeed appears to justify the rationale behind 
the models, but does not grant a type of measure-
ment that should be ascertained considering the per-
missible transformations allowed to the homorphism ɸ, 
by a specific constraint. This approach was applied in 
Noventa et al. (2013) to derive the measurement 
scale for the dichotmous RM under the requirement 
of a constraint satisfying specific objectivity. As a 
result, the metric degraded from an interval scale to 
an ordinal one depending on the cardinality of the 
equivalence classes (12). Finite equivalence classes 
granted indeed only an ordinal type, unless the con-
straint satisfied the axioms of conjoint measurement. 
Interestingly, this finding parallells the results of non- 
parametric item response models (see for instance, 
Karabatsos, 2001) in which cancellation axioms, up to 
the last empirically testable finite order, are required 
to obtain ordered-metric scales for respondents and 
items.The higher the cardinality of the sets of items, 
subjects, and category responses, the more the scales 
approximate an intervale scale.

In conclusion, the method of the MPD is a pratical 
and combinatorial way to derive the RM moving 
from assumptions of independence. The concept of 
ensemble and a statistical physics approach are 
however needed to generalize the system out of  
independence. Most of all, the MaxEnt principle 
suggests that RM and IRT models, might possess a 
deeper rationale in entropy. They would describe 
the distribution of responses that is more likely to 
find during an experiment.
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Appendix A - Derivation of equation (21)

Following the derivation of Clinton and Massa (1972), 
equation (20) yield two inequalities:

 ( ) ( )1 1 2 1 1 2, , , , , , 1, ,Λ … λ λ ≥ Λ … + λ λr jkr r jkrn n n n  (A1)

 ( ) ( )1 1 2 1 1 2, , , , , , 1, ,Λ … λ λ ≥ Λ … − λ λr jkr r jkrn n n n  (A2)
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In particular, dropping the sums and the indices jk 
for simplicity of notation, and dropping also the cos-
tant terms ,µ N since thay cancel out, they become:

1 2 1 2

! !
ln ( , ) ln ( 1) ( 1, )

! ( 1)!
+ λ + λ ≥ + λ + + λ +

+r r r r

r r

N N
n h n n h n

n n

       … …        

1 2 1 2

! !
ln ( , ) ln ( 1) ( 1,

! ( 1)!
+ λ + λ ≥ + λ − + λ −

−r r r r

r r

N N
n h n n h n

n n

       … …       

so that, expanding the logarithm and simplifying the 
common terms become:

( ) ( )1 2ln( 1) [ 1, , ]+ ≥ λ + λ + … − …
r r r

n h n h n

( ) ( )1 2ln [ , 1, ]− ≥ −λ − λ … − − …
r r r

n h n h n

Once defined the forward and backward finite dif-
ference equations:

 ( ) ( )1, ,∆ = + … − …
r r r

h h n h n  (A3)

 ( ) ( ), 1,∇ = … − − …
r r r

h h n h n  (A4)

the previous inequalities (divided by N) yield upper 
and lower bounds in the proportion of responses given 
by the subjects to the r-th category into the jk-th block:

( ) ( )1 2 1 2exp exp1λ + λ ∆ λ + λ ∇
− ≤ ≤r rr

h hn

N N N N

In an infinite population, namely in the limit → ∞N , 
becomes:

( ) ( )1 2 1 2exp expλ + λ ∆ λ + λ ∇
≤ ≤r rr

h hn

N N N

so that frequencies are bounded by exponentials 
with different arguments, in contrast to equation (6). 
A unique definition of probability is given only if the 
condition ∆ = ∇

r r
h h  holds. This is a functional equation 

that can be solved as a second-order linear homoge-
neous recurrence relation with constant coefficients 
(Aczel, 1966). Solutions have the shape = +r r r rh n f g  
with fr and gr generic functions of latent traits, thresh-
olds and item characteristic values. However, the term 
gr cancels out and can be set equal to zero. Squeeze the-
orem and definition of probability (15) then yield:

 ( ) ( )1 2exp
, , lim

→ ∞

λ + λ
= α δ τ = r

jk j k kr
N

f
P X r

N  
(A5)

only if the limit converges to a finite value. This  
can be obtained by normalizing through the law of 
total probability (14), indeed substitution of (A5) in 
(14) yields:

 ( )
( )

r

2

1

N
exp

exp
= λ

λ r
f∑

 
(A6)

So that once inserted (A6) in equation (A5) it yields 
as result probability (21).
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