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Abstract We study the asymptotic behaviour of the periodically mixed Zaremba problem. We cover
the part of the boundary by a chess board with a small period (square size) ε and impose the Dirichlet
condition on black and the Neumann condition on white squares. As ε → 0, we get the effective boundary
condition which is always of the Dirichlet type. The Dirichlet data on the boundary, however, depend on
the ratio between the magnitudes of the two boundary values.
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1. Introduction

Suppose that a part of the boundary, denoted Γ, of the domain Ω ⊂ R3 is covered by
a fine chess board with square size ε. On each black square, we impose the Dirichlet
boundary condition

uε = gε

and on each white square the Neumann condition

∂uε

∂n
= h.

As ε→ 0 the squares become smaller and smaller but, at the same time, their number
becomes larger and larger. At the end, the black and white squares merge and we get
some homogeneous grey area.
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The question is: what happens with the boundary condition? Which one prevails? Do
we get Dirichlet, Neumann or something else?

We call the boundary condition satisfied by the limit the effective boundary condition,
as it should be effectively applied in situations when ε is small. So, what is the effective
boundary condition?

The periodic function, as its period tends to zero, tends (weakly) to its mean value.
As the original (microscopic) boundary condition is equally spread mix of Dirichlet and
Neumann condition, at first glance, one would expect some average between the Neumann
and Dirichlet condition. Disappointingly, the first answer is much simpler. The effective
boundary condition is always the Dirichlet condition

u = G on Γ.

On the bright side, the value of the effective Dirichlet datum G is not so obvious and
depends on the ratio between the magnitudes of gε and h.

As expected (taking int account [3]), if the Dirichlet datum gε and the Neumann datum
h have the same magnitude, then only gε remains in the picture and h disappears. Thus
the effective Dirichlet value G is derived from gε only, and does not depend on h. If gε

is weaker (for example, in the sense of L2 norm) then there is a critical ratio when they
both appear in the limit Dirichlet condition. Beyond that critical ratio, the Neumann
datum h becomes dominant and the Dirichlet datum gε disappears from the limit.

Boundary value problems with the periodic structure on the micro-level have been
studied, using the method of homogenization, for more then 50 years (see e.g. [1]). In
particular, effective boundary conditions with periodic geometry are not new subjects
(see e.g. [2–5] or [8]). Problems similar to ours have been studied in [3], in case of heat-
conduction equation in two dimensions (see also [2]). The main difference is that the
Dirichlet condition in those papers is homogeneous, corresponding to our situation with
gε = 0. Thus, the limit satisfies the homogeneous Dirichlet condition. An asymptotic
expansion was found and the second-order corrector contains the trace of the Neumann
boundary condition. The idea was generalized in paper [4] to n dimension and almost-
periodic boundary condition, but still with zero Dirichlet datum g = 0.

The novelty and the most important feature here is that the Dirichlet value gε is not
zero and depends on ε in the way that gε = εβg. Also, we use a different approach based on
the very-weak formulation of the problem, weak convergence and the boundary-layer-type
test function.

Further analysis, with higher-order asymptotics, can be found in [11]. Application of
similar ideas, to the viscous fluid flow was done in [10, 12].
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Figure 1. Domain Ω with alternating Neumann and Dirichlet conditions on Γ.

1.1. The geometry

Let Ω ⊂ R3 be a smooth bounded domain. We assume, for simplicity, that the boundary
∂Ω has a flat part

Σ = {x = (x1, x2, x3) ∈ R3 : x′ = (x1, x2) ⊂ ω, x3 = 0} ⊂ ∂Ω.

Let Γ ⊂⊂ Σ be compactly embedded in Σ, with smooth boundary ∂Γ. We cover Γ with
chessboard. The square size (and period) is denoted ε.

As we said before, on each black square, we impose the Dirichlet boundary condition
and on each white square the Neumann condition.

More precisely, we denote by Y = 〈0, 1〉2 the unit square consisting of four squares of
equal size

Y11 =
〈

0,
1
2

〉2

,Y21 =
〈

1
2
, 1
〉
×
〈

0,
1
2

〉
,Y12 =

〈
0,

1
2

〉
×
〈

1
2
, 1
〉
,Y22 =

〈
1
2
, 1
〉2

.

Now Y11 and Y22 are black squares, while Y12 and Y21 are white ones.

Thus, we define

γD = Y11 ∪ Y22 − the Dirichlet (black) squares (1)

γN = Y12 ∪ Y21 − the Neumann (white) squares (2)

Let

ΓD
ε =

( ⋃
i∈Z2

ε(i + γD)

)
∩ Γ − the Dirichlet (black) boundary (3)

ΓN
ε =

( ⋃
i∈Z2

ε(i + γN )

)
∩ Γ − the Neumann (white) boundary. (4)

Clearly, ΓN
ε ∪ ΓD

ε = Γ and ΓN
ε ∩ ΓD

ε = ∅.
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2. The problem

For simplicity, our model problem is the Laplace equation. In order to focus on the mixed
boundary condition, we take the zero right-hand side. On the rest of the boundary we
assume the homogeneous boundary condition. That is by no means essential, any other
boundary condition will do.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δuε = 0 in Ω

uε = εβg on ΓD
ε - Dirichlet part

∂uε

∂n
= h on ΓN

ε - Neumann part

uε = 0 on ∂Ω\Γ.

(5)

To take into account the magnitude of those two conditions, we have placed εβ in front
of the Dirichlet condition. As the problem is linear it makes no sense to put some power
of ε in front of both boundary values, so we have picked the Dirichlet one, but it would
be the same if we have picked the Neumann one.

The standard weak formulation approach demands to assume that g ∈ H
1
2 (ΓD

ε ) and
h ∈ L2(ΓN

ε ). It gives the existence of the weak solution in H1(Ω) (see for instance [14] or
[16]). It is an easy exercise. However, there is a regularity issue with the solution since
the standard Elliptic regularity does not apply [16].

We do not use the usual weak formulation of the problem, but the very-weak one:
Find uε ∈ L2(Ω), such that for all

φ ∈ H =
{
ψ ∈ H1(Ω);Δψ ∈ L2(Ω), ψ = 0 on Γ\ΓN

ε and
∂ψ

∂n
= 0 on ΓN

ε

}
∫

Ω

uεΔφ = εβ

〈
g

∣∣∣∣ ∂φ∂n
〉

ΓD
ε

−
∫

ΓN
ε

h φ, (6)

where
〈 · ∣∣ · 〉

ΓD
ε

stands for duality between H−1/2(ΓD
ε ) and H1/2(ΓD

ε ). We notice here
that φ ∈ H1(Ω) is insufficient to define the trace of the normal derivative on the boundary,
but if (in addition) Δφ ∈ L2(Ω), then the trace ∂φ

∂n is defined but in the weaker sense,
and belongs to H−1/2(Γ), the dual of the standard trace space H1/2(Γ) . The reader can
consult, for instance [17]. For the very-weak formulation of the elliptic problems, see for
instance, [6] and for the generalization to the Navier-Stokes system [7].

Usually, the very-weak formulation is used due to the lack of regularity. We use it
here to facilitate the asymptotic analysis on the boundary. Indeed, the advantage of this
formulation is that (unlike in the weak formulation) the Dirichlet boundary condition
here appears explicitly in the formulation (see e.g. [9]).

As described above, our goal is to study the asymptotic behaviour of the solution
as ε→ 0. It turns out that the effective condition is always of the Dirichlet type. The
effective Dirichlet value on the boundary depends on β.

For β < 1 it equals g. For β = 1, it is a linear combination of g and h, while for β > 1,
it is proportional to h.
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3. Asymptotic analysis

3.1. A priori estimates

Proposition 1. Suppose that g ∈ H
1
2
00(Γ) and h ∈ L2(Γ). Let uε be the solution to

the problem (5). Then, there exists a constant C > 0, independent from ε, such that

|uε|H1(Ω) ≤ C(εβ |g|
H

1
2 (Γ)

+ |h|L2(Γ)) (7)

|uε|L2(Ω) ≤ C(εβ |g|
H

1
2 (Γ)

+ ε |h|L2(Γ)). (8)

Proof. The H1(Ω) estimate is straightforward but not optimal. The L2(Ω) estimate is
sharp and we give the proof in detail. The idea is to take the test function as the solution
to the transposed problem

− Δφ = uε in Ω

φ = 0 on ΓD
ε ,

∂φ

∂n
= 0 on ΓN

ε (9)

φ = 0 on ∂Ω\Γ.

It has a unique weak solution φ ∈ H1(Ω) such that

|φ|H1(Ω) ≤ C |uε|L2(Ω) . (10)

Furthermore, it is easy to see that

|φ|H−1/2(Γ) ≤ C |uε|L2(Ω) . (11)

However, since that is a mixed problem, there is a regularity issue with such a test function
(see e.g. [16] or [17]).

We recall that φ ∈ H1(Ω) and Δφ = −uε ∈ H1(Ω). Thus, the traces of those two
functions on Γ are well defined and (denoting φ and its trace on Γ φ

∣∣
Γ

by the same
symbol)

φ ∈ H
1
2 (Γ), Δφ ∈ H

1
2 (Γ).

Let κ ∈ C1(Ω) be such that κ ≥ 0 on Σ and κ = 1 on Γ, while κ = 0 on ∂Ω\Σ. We start
with ∫

Γ

|∇x′φ|2 ≤
∫

Σ

κ |∇x′φ|2

with

∇x′φ =
(
∂φ

∂x1
,
∂φ

∂x2

)
.
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On the other hand∫
Σ

κ |∇φ|2 =
∫

Ω

∂

∂x3
(κ |∇φ|2) =

∫
Ω

∂κ

∂x3
|∇φ|2 + 2

∫
Ω

κ∇φ∇
(
∂φ

∂x3

)

=
∫

Ω

∂κ

∂x3
|∇φ|2 − 2

∫
Ω

κ
∂φ

∂x3
Δφ− 2

∫
Ω

∇κ ∇φ ∂φ

∂x3
+
∫

Σ

κ

(
∂φ

∂x3

)2

≤
∫

Σ

κ

(
∂φ

∂x3

)2

+ C |φ|H1(Ω) (|Δφ|L2(Ω) + |φ|H1(Ω))

≤
∫

Σ

κ

(
∂φ

∂x3

)2

+ C |uε|2L2(Ω) .

Since

|∇φ|2 = |∇x′φ|2 +
(
∂φ

∂x3

)2

we get ∫
Γ

|∇x′φ|2 ≤
∫

Σ

κ |∇x′φ|2 ≤ C |uε|2L2(Ω) ,

so that ∇x′φ ∈ L2(Γ) i.e. φ ∈ H1(Γ). Furthermore, φ = 0 on ΓD
ε . The Poincaré inequality

on perforated domain Γ (see e.g. [15]) implies that

|φ|L2(ΓN
ε ) ≤ C ε |∇φ|L2(Γ) ≤ Cε |uε|L2(Ω) . (12)

Using φ as the test function in (5), and applying (12), gives∫
Ω

|uε|2 = −
∫

Ω

uεΔφ =
∫

Ω

∇uε∇φ− εβ

∫
ΓD

ε

g
∂φ

∂n
(13)

= −εβ

∫
ΓD

ε

g
∂φ

∂n
+
∫

ΓN
ε

h φ ≤ εβ

∣∣∣∣∂φ∂n
∣∣∣∣
H−1/2(ΓD

ε )

|g|H1/2(Γ)

+ |φ|L2(ΓN
ε ) |h|L2(Γ) ≤ C(εβ |g|H1/2(Γ) + ε |h|L2(Γ)) |uε|L2(Ω) .

�

3.2. Convergence

In case β ≤ 0, the convergence and its proof are simple. Although the technique that
we will apply in case β > 0 works here, we prefer to start with a simpler version.

Proposition 2. Suppose that g ∈ H
1
2
00(Γ) and h ∈ L2(Γ). Let uε be the solution to

the problem (5). If β ≤ 0 then

uε

εβ
⇀ v weakly in H1(Ω), (14)

where v ∈ H1(Ω) is the unique solution to the Dirichlet problem

Δv = 0 in Ω, v = g on Γ, v = 0 on ∂Ω\Γ. (15)
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Proof. Due to the estimate (7) the sequence uε

εβ is bounded in H1(Ω) Therefore, it
has a subsequence converging to some v ∈ H1(Ω), weakly in H1(Ω), strongly in L2(Ω),
and (due to the compactness of the trace operator tr : H1(Ω) → L2(Γ)), the trace of uε

εβ

converges to the trace of v strongly in L2(Γ). Let the test function be ψ ∈ H2(Ω) ∩H1
0 (Ω).

Starting from the very-weak formulation of the problem∫
Ω

uεΔψ = εβ

∫
ΓD

ε

g
∂ψ

∂n
, (16)

and using

ε−β

∫
Ω

uεΔψ →
∫

Ω

vΔψ (17)
∫

ΓD
ε

g
∂ψ

∂n
→ ∣∣γD

∣∣ ∫
Γ

g
∂ψ

∂n
(18)

∫
ΓN

ε

uε

εβ

∂ψ

∂n
→ ∣∣γN

∣∣ ∫
Γ

v
∂ψ

∂n
. (19)

We now have ∫
Ω

vΔψ =
∣∣γD

∣∣ ∫
Γ

g
∂ψ

∂n
+
∣∣γN

∣∣ ∫
Γ

v
∂ψ

∂n
. (20)

That is exactly the very-weak formulation of the problem

Δv = 0 in Ω, v =
∣∣γD

∣∣ g +
∣∣γN

∣∣ v on Γ, v = 0 on ∂Ω\Γ. (21)

Since
∣∣γD

∣∣+ ∣∣γN
∣∣ = 1 that is equivalent to (15). The Dirichlet problem (15) has a unique

solution v ∈ H1(Ω) so that the whole sequence uε converges to v and not only the
subsequence. �

For other values of β, we have the following theorem:

Theorem 1. Suppose that g ∈ H
1
2
00(Γ) and h ∈ L2(Γ). Let uε be the solution to the

problem (5). Then:

• For β < 1
uε

εβ
⇀ v weakly in L2(Ω),

where v ∈ H1(Ω) is the unique weak solution of the problem

Δv = 0 in Ω, v = 0 on ∂Ω\Γ, v = g on Γ. (22)

• For β = 1
uε

ε
⇀ v weakly in L2(Ω),

where v ∈ L2(Ω) is the unique very-weak solution of the problem

Δv = 0 in Ω, v = 0 on ∂Ω\Γ, v = g +M h on Γ, (23)

and M > 0 is defined from the auxiliary boundary-layer problem (26) with (31).
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• For β > 1
uε

ε
⇀ v weakly in L2(Ω),

where v ∈ L2(Ω) is the unique very-weak solution of the problem

Δv = 0 in Ω, v = 0 on ∂Ω\Γ, v = M h on Γ. (24)

If h ∈ H
1
2
00(Γ) then the solution v ∈ H1(Ω) is weak in all cases.

Proof. Let α = min{β, 1}.
The estimate (8) implies that there exist a subsequence of uε, denoted by the same

symbol, and a function v ∈ L2(Ω) such that

1
εα

uε ⇀ v weakly in L2(Ω). (25)

Our goal is to identify that limit. We have no convergence for the gradient nor for the
trace on the boundary. Thus the only tool we have is the good choice of the test function.
As in the previous case, we start with ψ ∈ H2(Ω) ∩H1

0 (Ω).
Then we need the boundary-layer corrector defined from the problem posed in an

infinite strip
Z = Y × 〈−∞, 0〉.

We denote the fast variable by y = x
ε and then M is the solution to the problem⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ΔyM = 0 in Z

M = 0 on γD,
∂M

∂y3
= −1 on γN

M, is 1 − periodic in y′ = (y1, y2)

∇yM ∈ L2(Z).

(26)

That auxiliary boundary-layer-type problem has a unique solution

M ∈ D1(Z) = {K ∈ H1
loc(Z);∇yK ∈ L2(Z), K = 0 on γD,

K is 1 − periodic in y′},
endowed with the norm

|K|D1(Z) = |∇K|L2(Z) .

The existence proof is an easy exercise, as it is a linear elliptic equation. The variational
form of the problem reads∫

Z

∇yM∇yK = −
∫

γN

K, ∀ K ∈ D1(Z).

Furthermore, there exists a constant M∞ such that M exponentially stabilizes to M∞
far from the upper boundary y3 = 0. More precisely

eλ|y3| (M(y) −M∞) ∈ L2(Z).

The details (up to a slight modification due to the mixed boundary condition) can be
found in [5] or [13].
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Integrating Equation (26) with respect to y′, we get

d2

dy2
3

∫ 1

0

∫ 1

0

M(y1, y2, y3) dy1 dy2 = 0 ⇒
∫ 1

0

∫ 1

0

M(y1, y2, y3) dy1 dy2 = C0y3 + C1.

As ∇yM decays at infinity, we conclude that C0 = 0 so that, for any y3 ≤ 0,

∫ 1

0

∫ 1

0

M(y1, y2, y3) dy1 dy2 = C1 ,

∫ 1

0

∫ 1

0

∂M

∂y3
(y1, y2, y3) dy1 dy2 = 0. (27)

We now construct the test function. Let ψ be a smooth function, such that ψ = 0 on Γ
and let

ψε(x) = ψ(x) + εM(y)
∂ψ

∂x3
(x′, 0).

What is important for us is that on the boundary, we have

ψε = 0 on ΓD
ε (28)

and

∂ψε

∂x3
(x′, 0) =

∂ψ

∂x3
(x′, 0) +

∂M

∂y3
(y′, 0)

∂ψ

∂x3
(x′, 0) = 0 on ΓN

ε . (29)

Furthermore

Δψε = Δψ +
1
ε
ΔyM

∂ψ

∂x3
(x′, 0) +

2∑
i=1

∂M

∂yi

∂2ψ

∂xi∂x3
+ εMΔx′

∂ψ

∂xi
(x′, 0)

= Δψ +
2∑

i=1

∂M

∂yi

∂2ψ

∂xi∂x3
+O(ε).

We notice that ∣∣∣∣∣
2∑

i=1

∂M

∂yi

∂2ψ

∂xi∂x3

∣∣∣∣∣
L2(Ω)

≤ C
√
ε

due to the fact that ∇yM ∈ L2(Z).
Then we use ψε as the test function in the very-weak formulation (6)

∫
Ω

uε

εα
Δψε = εβ−α

∫
ΓD

ε

g
∂ψε

∂n
+ ε−α

∫
ΓN

ε

hψε. (30)
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Obviously

ε−α

∫
Ω

uεΔψε →
∫

Ω

vΔψ

∫
ΓD

ε

g
∂ψε

∂n
=
∫

ΓD
ε

g

(
∂ψε

∂n
+
∂M

∂y3

∂ψ

∂x3

)

→
(∣∣γD

∣∣+ ∂M

∂y3

)∫
Γ

g
∂ψ

∂x3

ε−1

∫
ΓN

ε

hψε =
∫

ΓN
ε

h(x′)M
(

x′

ε
, 0
)
∂ψ

∂x3
(x′, 0)

→M

∫
Γ

h(x′)
∂ψ

∂x3
(x′, 0)

with

M =
∫

γN

M(y′, 0) dy′ = C1 (31)

(C1 defined in (27)) and

∂M

∂y3
=
∫

γD

∂M

∂y3
(y′, 0) dy′.

Due to (27), we know that

0 =
∫

γ

∂M

∂y3
(y′, 0) dy′ =

∫
γD

∂M

∂y3
(y′, 0) dy′ +

∫
γN

∂M

∂y3
(y′, 0) dy′

=
∫

γD

∂M

∂y3
(y′, 0) dy′ − ∣∣γN

∣∣ .

so that

∂M

∂y3
=
∣∣γN

∣∣
and

∣∣γD
∣∣+ ∂M

∂y3
=
∣∣γD

∣∣+ ∣∣γN
∣∣ = 1.

Thus, we finally obtain the limit problem in the very-weak form, depending on whether
β is larger, smaller or equal to 1.
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Furthermore, using M as the test function in (26) gives∫
Z

|∇M |2 =
∫

γN

M = M. (32)

For β < 1, we get ∫
Ω

vΔψ =
∫

Γ

g
∂ψ

∂x3
. (33)

For β = 1 ∫
Ω

vΔψ =
∫

Γ

g
∂ψ

∂x3
+M

∫
Γ

h
∂ψ

∂x3
, (34)

where M > 0 (see (32)) is defined from the auxiliary boundary-layer problem (26) with
(31).

Finally, for β > 1 ∫
Ω

vΔψ = M

∫
Γ

h
∂ψ

∂x3
. (35)

So, in all three cases, we get the Dirichlet problem for the Laplace equation

Δv = 0 in Ω

and the Dirichlet condition
v = 0 on ∂Ω\Γ.

The difference is in the Dirichlet condition on Γ that equals

v =

⎧⎪⎨
⎪⎩
g for β < 1

g +M h for β = 1

M h for β > 1

⎫⎪⎬
⎪⎭ on Γ.

�

Remark 1. We could summarize all cases by saying that the effective boundary
condition asymptotically has the form

u = εβg + ε M h on Γ.

In case g = 0, studied by Filo and Luckhaus in [3] and [4], we get

u = εMh.

More precisely, the limit of uε is trivial

uε → 0 in L2(Ω)

but
uε

ε
⇀ v weakly in L2(Ω),

where v is the solution to the problem (24). This does not correspond to the result of Filo
and Luckhaus because they have a non-zero right-hand side and initial condition leading
to the non-trivial limit of uε.
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Remark 2. We have assumed the chess-board structure to simplify the presentation.
In fact, the same result can be obtained for any other periodic distribution of the Dirichlet
and the Neumann condition. We could take the unit cell Y = 〈0, 1〉2, then pick an open
subset γD ⊂ Y with smooth boundary and γN = Y\γD. Then follow the same steps and
get the same result.
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