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Low-Reynolds-number flow past a cylinder
with uniform blowing or sucking
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We analyse the low-Reynolds-number flow generated by a cylinder (of radius a) in
a stream (of velocity U∞) which has a uniform through-surface blowing component
(of velocity Ub). The flow is characterized in terms of the Reynolds number Re
(= 2aU∞/ν, where ν is the kinematic viscosity of the fluid) and the dimensionless
blow velocity Λ (= Ub/U∞). We seek the leading-order symmetric solution of
the vorticity field which satisfies the near- and far-field boundary conditions. The
drag coefficient is then determined from the vorticity field. For the no-blow case
Lamb’s (Phil. Mag., vol. 21, 1911, pp. 112–121) expression is retrieved for Re→ 0.
For the strong-sucking case, the asymptotic limit, CD ≈ −2πΛ, is confirmed. The
blowing solution is valid for Λ< 4/Re, after which the flow is unsymmetrical about
θ = π/2. The analytical results are compared with full numerical solutions for the
drag coefficient CD and the fraction of drag due to viscous stresses. The predictions
show good agreement for Re= 0.1 and Λ=−5, 0, 5.

Key words: low-Reynolds-number flows

1. Introduction

The modification of the flow past a body due to a uniform blowing or sucking
component is of fundamental importance in many areas of engineering. For example,
a through-surface flux is introduced to cool turbine blades or modify the force acting
on lifting surfaces or can be generated by a phase change (e.g. evaporation).

Dukowicz (1982) derived a closed-form expression for the drag force acting on
a blowing/sucking sphere at low Reynolds numbers which retrieves Stokes’ (1851)
solution for Λ= 0. For strongly sucking flows, the flow is irrotational in the far field
and the drag force reduces to what is expected by a global momentum analysis. At
a Reynolds number of Re= 1, the difference between the full numerical results and
Dukowicz’s solution is approximately 10 % in the drag coefficient for blowing flows
(Cliffe & Lever 1985).

† Email address for correspondence: ucemkle@ucl.ac.uk
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For the case of a cylinder, the complexity of the analysis is increased by the
requirement of a far-field or Oseen correction (see the discussion by Stokes (1851)).
The study of the force on a cylinder at low Re has been developed over the last 100
years, and it is worth pointing out some of the historical elements, as they provide
a guide to the different ways in which we could treat the problem in this paper.
Later editions of Lamb’s book ‘Hydrodynamics’ include a discussion of the flow
past a cylinder at low Re (Lamb 1932, p. 614, 1911). The technique Lamb employed
attracted criticism in the 1960s because it was not a rigorous asymptotic analysis. The
construction technique that Lamb employed is reasonably accurate, giving predictions
for the drag coefficient up to Re= 1 that are within 5 % of the full solution. Lamb’s
(1911) technique follows that of Oseen, introducing a correction (advective) term to
account for the far-field flow, but it is simpler as it makes use of a transformational
split that is not extendable to the problem in this paper. While a matched asymptotic
solution is mathematically rigorous and can account for the full inertia term, the
series expansion method by Dennis & Shimshoni (1965) is just as powerful and
accurate, though far less elegant mathematically.

The purpose of this paper is to examine the low-Reynolds-number flow past a
cylinder which has a through-surface component and to develop an understanding of
the influence of Re and Λ on the drag force. The leading-order solution is calculated
using a construction technique, which has the advantage of being simple. The fidelity
of this approach is tested with comparisons against full numerical solutions. The
mathematical model is described in § 2. Approximate solutions are developed in
the limit of Λ = 0 and strongly sucking flows and described in § 3. A comparison
between predictions and numerical solutions is shown in § 4.

2. Mathematical model

We consider a cylinder of radius a fixed at the origin and set in a uniform flow. To
account for the far field at low Reynolds numbers, the Oseen approximation is applied
which uses a linear approximation for the inertia term so that u · ∇u ≈ U∞∂u/∂x,
where U∞ is the far-field velocity. We are interested in examining the flow past a
cylinder with a through-surface flow so that the radial blow component is included,
and therefore seek to determine the leading-order solution to

ρ

(
U∞

∂u
∂x
+ Uba

r
∂u
∂r

)
=−∇p+µ∇2u, (2.1)

where µ is the dynamic viscosity, ρ is the density and Ub is the blow velocity. The
boundary conditions imposed on the flow are

(ur, uθ)= (Ub, 0) (2.2)

at the surface of the cylinder (at r= a) and

(ur, uθ)→ (U∞ cos θ,−U∞ sin θ) (2.3)

in the far field (as r→∞).
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2.1. Defining equations
A vorticity–stream function (ω–ψ) method of solution is employed (see Batchelor
1967, appendix 2), where the velocity and vorticity fields are defined by

ur = 1
r
∂ψ

∂θ
, uθ =−∂ψ

∂r
, ω=−1

r
∂

∂r

(
r
∂ψ

∂r

)
− 1

r2

∂2ψ

∂θ 2
. (2.4a−c)

The boundary conditions (2.2) impose significant constraints on the velocity near the
boundary, mainly because ∂uθ/∂θ = ∂ur/∂θ = 0. This means that

ω= ∂uθ
∂r

∣∣∣∣
r=a

(2.5)

and
∂ur

∂r

∣∣∣∣
r=a

=−Ub

a
(2.6)

(where mass conservation was used in (2.6)). From (2.1), the vorticity equation is

U∞
∂ω

∂x
+ Uba

r
∂ω

∂r
= ν∇2ω. (2.7)

Our starting point is quite similar to that of Lamb (1932) and involves expressing the
vorticity field ω̃ (= 2aω/U∞) as

ω̃= e(Re/4)r̃ cos θP, (2.8)

giving
Re2

8
Λ

1
r̃

cos θP+ Re
2
Λ

r̃
∂P
∂ r̃
+
(

Re
4

)2

P= ∇̃2P, (2.9)

where Re = 2aU∞/ν and r̃ = r/a. Following Dukowicz (1982), we seek the leading-
order symmetric solution, which is of the form

P= P1(r̃) sin θ, (2.10)

where P1 satisfies

P′′1 +
P′1
r̃
(1− 2β)−

((
Re
4

)2

+ 1
r̃2

)
P1 = 0, (2.11)

where β = ReΛ/4. This is valid provided that Re2|Λ|� 1 and for β→−∞ because
the flow is symmetric about θ =π/2, but not for β→∞. The solution that satisfies
P1→ 0 as r̃→∞ is

P1 =C1r̃βK(1+β2)1/2(Re r̃/4). (2.12)

The stream function, ψ , can be constructed by writing it as the sum of the known
blowing and free-stream components, together with a component to be determined. As
such we write

ψ =U∞a(Λθ + r̃ sin θ + f1 sin θ). (2.13)
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Substitution of (2.13) into (2.4) gives

f ′′1 +
f ′1
r
− f1

r2
=− 1

π

∫ π

0
sin θω̃ dθ =− 1

2π
P1(r̃)

∫ 2π

0
e(Re r̃/4) cos θ sin2 θ dθ. (2.14)

The boundary conditions for f1 are

f1(1)=−1, f ′1(1)=−1, lim
r̃→∞

f1(r̃)= 0. (2.15a−c)

The right-hand side of (2.14) is defined as C1p1(r̃), where

p1(r̃)=−r̃β
J1(iRe r̃/4)

iRe r̃/4
K(1+β2)1/2(Re r̃/4). (2.16)

We can solve (2.14) exactly by writing f1 = r̃g1, which transforms the ordinary
differential equation to

d(r̃3g′1)
dr̃

=C1p1(r̃)r̃2. (2.17)

The boundary conditions on g1 are g1(1) = −1, g′1(1) = 0 and g1 → 0 as r̃→∞.
Integrating twice, we find two results. The first is that

f1 =C1r̃
(
− 1

2r̃2
G(1)−

∫ r̃

∞
G(r̃)r̃−3 dr̃

)
, (2.18)

where

G(r̃)=
∫ ∞

r̃
p1(r̃)r̃2 dr̃. (2.19)

The second result (which ensures that the far-field boundary condition is satisfied) is

C1 = 2∫ ∞
1

p1(r̃) dr̃
. (2.20)

The integrand scales as r̃β−2 in the far field (using Kn(z)∼ exp(−z)/z1/2 and J1(iz)∼
exp(z)/z1/2) and so the integral converges when −∞<β < 1.

2.2. Diagnostics
The pressure and viscous drag coefficients for characterizing the force on a cylinder
are

CP =
∫ 2π

0

(
1

Re
∂ω̃

∂ r̃
− 1

2
Λω̃

)
sin θ dθ, Cν =− 1

Re

∫ 2π

0
ω̃ sin θ dθ, (2.21a,b)

which is an extension of the relationship given by Dennis & Shimshoni (1965) to
include a through-surface flow. On substituting (2.8), (2.10), (2.12) into (2.21),

CP =−C1
π

Re

(
(β + (1+ β2)1/2)K(1+β2)1/2(Re/4)+ Re

4
K(1+β2)1/2−1(Re/4)

)
,

Cν =−C1
π

Re
K(1+β2)1/2(Re/4).

 (2.22)
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The ratio of the viscous drag to the total drag coefficient is

Cν

CD
= 1

β + (1+ β2)1/2 + 1+ Re
4

K(1+β2)1/2−1(Re/4)
K(1+β2)1/2(Re/4)

, (2.23)

where CD = CP + Cν . Since Re is small, Cν/CD is effectively a function of ReΛ. It
should be noted that (2.23) does not depend on C1.

3. Approximate solutions

We present a leading-order solution to (2.14) which will then be used to understand
two limits: (a) the no-blow case where the result reduces to Lamb’s (1911) original
solution and (b) strongly sucking flows.

3.1. No-blow case (Λ= 0)
The purpose here is to retrieve Lamb’s solution for the no-blow case. When Λ = 0,
p1 can be expressed exactly as

p1 =−K1(Re r̃/4)
J1(iRe r̃/4)

iRe r̃/4
. (3.1)

Using the substitution z= Re r̃/4, the integral in (2.20) can be written as∫ ∞
1

p1 dr̃= 4
Re

∫ ∞
Re/4

K1(z)
J1(iz)

iz
dz= 4

Re

∫ ∞
Re/4

K1(z)

(
1
2
+
∞∑

n=1

z2n

22n+1n!(n+ 1)!

)
dz,

(3.2)
such that ∫ ∞

1
p1 dr̃= 2

Re

(
K0(Re/4)+

∞∑
n=1

∫ ∞
Re/4

z2nK1(z)
22nn!(n+ 1)! dz

)
. (3.3)

In the limit of Re � 1, the lower limit is close to zero and it can be shown,
using (A 4), that

∞∑
n=1

∫ ∞
0

z2nK1(z)
22nn!(n+ 1)! dz= 1

2
, (3.4)

such that
C1 = Re

1
2 +K0(Re/4)

. (3.5)

The drag coefficient corresponding to (3.5) is

CD =− 2π
1
2 +K0(Re/4)

(
K1(Re/4)+ Re

8
K0(Re/4)

)
∼=− 8π

Re( 1
2 +K0(Re/4))

, (3.6)

where use was made of (A 2). Now, Lamb (1932, p. 616) derived the following
expression for vorticity:

ω=Ce(r̃Re/4) cos θ ∂

∂y
K0(Re r̃/4)=−C

a
Re
4

e(r̃Re/4) cos θK1(Re r̃/4) sin θ, (3.7)
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which is the same expression as that derived here from the vorticity equation. (It
should be noted that there is a typographical error in Lamb’s vorticity expression,
where ekz should read ekx; the correct analysis is given in Lamb (1911) except for
the typographical error of ‘sphere’ which should be ‘cylinder’ after equation (54).) A
higher-order expansion of the stream function was determined,

C= 2U∞
1
2 +K0(Re/4)

, (3.8)

or equivalently

CD =− 8π

Re
(

1
2 +K0(Re/4)

) . (3.9)

Therefore, the general expression for the drag coefficient agrees exactly with Lamb’s
expression as Re→ 0 (the difference for Re= 1 is less than 1 %).

3.2. Strongly sucking flow (−Λ� 1)
For strongly sucking flows where |β| � 1 and β < 0, we can write∫ ∞

1
p1 dr̃

K(1+β2)1/2(Re/4)
=−1

2

(
4

Re

)β+1 ∫ ∞
Re/4

zβ
K(1+β2)1/2(z)

K(1+β2)1/2(Re/4)
dz∼= 1

2(β − (1+ β2)1/2 + 1)
,

(3.10)
which can be substituted into (2.22), giving a drag coefficient of

CD ≈−4π

Re
(β + (1+ β2)1/2 + 1)(β − (1+ β2)1/2 + 1). (3.11)

This reduces to
CD ≈−2πΛ. (3.12)

This approximation is appropriate when |β|> 1 or Λ<−4/Re (so that the asymptotic
approximation is valid). Equation (3.12) agrees with a global momentum analysis
when the far-field downstream flow is irrotational, which was derived by Pankhurst
& Thwaites (1953, appendix I) for high-Re flows. This is to be expected because in
both cases, the boundary layer is thin compared with the size of the cylinder.

4. Numerical results

4.1. Solution technique
The Navier–Stokes equation was numerically solved using a finite-element method that
employs a characteristic-based split (CBS) methodology (see Zienkiewicz, Taylor &
Nithiarasu 2005). The ACEsim code has been validated for two-dimensional flows (e.g.
Nicolle & Eames 2011; Klettner & Eames 2012). For low Re, White (1945) suggests a
domain width of 2000a for the no-blow case to be unaffected by boundedness. As the
influence of boundedness is increased for strong blowing/sucking, the domain width
was increased to 20 000a for the two cases of |Λ| = 5.
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FIGURE 1. A comparison between the theoretical predictions and full numerical
calculations of (a) CD and (b) Cν/CD as functions of Λ and ΛRe respectively. In (a,b)
the dot-dashed and full curves correspond to the predictions (2.22), (2.23) for Re= 1, 0.1
respectively and the full numerical simulations for Re=0.1 are represented by crosses. The
numerical results of Dennis & Shimshoni (1965) are plotted as red circles for the no-blow
case. The blue line is the strongly sucking solution, CD =−2πΛ, given in Pankhurst &
Thwaites (1953, appendix I).

4.2. Results
Figure 1(a) shows the drag coefficient as a function of Λ for Re = 0.1. Good
agreement is found between the analytical results and full numerical simulations. The
asymptotic limit for strongly sucking flows (CD ≈ −2πΛ) is confirmed for Re = 1.
Figure 1(b) shows the fraction of the total force due to viscous stresses for Re= 0.1.
For small |Λ| (� 1), the influence of blowing and sucking is symmetric on the drag
force. For strongly sucking flows, the drag force increases linearly with |Λ| because
the viscous stresses near the wall scale as µ|Λ|U∞/a. For strongly blowing flows,
CD→ 0 because the vorticity is blown off the surface of the cylinder. Therefore, the
influence of the through-surface flow is asymmetric on the drag force at large Λ. For
β > 0, the range of validity of the analysis was determined to be β < 1 or Λ< 4/Re
using a scaling analysis.

5. Conclusion

We identified the gap of low-Reynolds-number flow past a cylinder with a through-
surface flow, and studied this problem using a analytical technique that identifies the
leading-order component to the vorticity field. For the case of Λ = 0 and Re→ 0,
we retrieve Lamb’s (1911) result for the drag force. For strongly sucking flows,
where the flow is irrotational outside the thin boundary layer, the asymptotic result
CD ≈−2πΛ is recovered. The agreement between the analytical results and the full
numerical solutions is good for Re= 0.1.

Appendix A. Useful relationships for Kn

We list the recurrent and asymptotic relationships that are used in this paper.

dKn

dz
=−Kn−1(z)− n

z
Kn(z). (A 1)
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The expansion for K1 is

K1(z)= 1
z
+ z

2
log
( z

2

)
+ · · · . (A 2)

When the argument n� 1,

Kn(z)∼= Γ (n)2

( z
2

)−n
. (A 3)

Another useful formula is∫ ∞
0

zmKn(z) dz= 2m−1Γ

(
n+m+ 1

2

)
Γ

(
m+ 1− n

2

)
. (A 4)
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