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LOCAL COHOMOLOGY UNDER SMALL PERTURBATIONS

LUÍS DUARTE

Abstract. Let (R,m) be a Noetherian local ring and I an ideal of R. We

study how local cohomology modules with support in m change for small

perturbations J of I, that is, for ideals J such that I ≡ J mod m
N for large

N, under the hypothesis that R/I and R/J share the same Hilbert function. As

one of our main results, we show that if R/I is generalized Cohen–Macaulay,

then the local cohomology modules of R/J are isomorphic to the corresponding

local cohomology modules of R/I, except possibly the top one. In particular,

this answers a question raised by Quy and V. D. Trung. Our approach also

allows us to prove that if R/I is Buchsbaum, then so is R/J . Finally, under

some additional assumptions, we show that if R/I satisfies Serre’s property

(Sn), then so does R/J .

§1. Introduction

Let (R,m) be a Noetherian local ring and I = (f1, . . . ,fr) be an ideal of R. In this

paper, we study ideals J that satisfy I ≡ J mod mN for some integer N > 0, which we

call pertubations of I. A natural way to obtain such ideals is by altering generators of I

by elements of mN , that is, to consider ideals of the form Iε = (f1 + ε1, . . . ,fr + εr) with

ε1, . . . , εr ∈ mN . This example is particularly relevant when R is a ring of formal power

series over a field, and f1+ ε1, . . . ,fr + εr are polynomial truncations of f1, . . . ,fr. It then

becomes of great importance to know when a given property is preserved under sufficiently

small perturbations, as this is related to the problem of trying to approximate analytic

singularities by algebraic singularities.

Many efforts have been made in the literature to determine under which assumptions

the two rings R/J and R/I are isomorphic (see [2], [3], [9], [14], and [17]). However, this

turns out to be a rather restrictive condition, usually requiring the rings to have very good

singularities. For this reason, efforts shifted toward finding conditions that ensure that R/I

and R/J , even if not isomorphic, still share some relevant attributes.

In this context, one feature which has been extensively investigated in the literature is

the Hilbert function (see [5], [12], [15], [16], [19] and [20]). The study of its behavior under

small perturbations started with the work of Srinivas and Trivedi [19]. They showed that

the Hilbert–Samuel function of a sufficiently small perturbation is at most the original

Hilbert–Samuel function (see [19, Lemma 3]). Moreover, assuming R is generalized Cohen–

Macaulay and f1, . . . ,fr is part of a system of parameters of R, they showed that for N � 0

the Hilbert function of I = (f1, . . . ,fr) coincides with that of Iε = (f1+ ε1, . . . ,fr + εr) for

any ε1, . . . , εr ∈mN (see [19, Corollary 5]). The authors asked if this same result holds true

whenever f1, . . . ,fr is a filter-regular sequence in any Noetherian local ring R. This question

was later positively answered by Ma, Quy, and Smirnov [12]. Then, in [15], Quy and Ngo
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2 L. DUARTE

Viet Trung were able to find a different approach to the main result of [12], one which

allowed them to obtain a specific value for the number N for which the result is valid. We

also point out that in [5, Theorem 4.5] the author describes another instance in which the

Hilbert function is preserved under small perturbations.

In general, the behavior of a perturbation J of I can be very different from that of I. As

such, in order to guarantee that R/J shares similar properties to R/I, we will impose some

assumptions on R/J . In this direction, the work of Srinivas and Trivedi leads us to consider

perturbations which do not change the Hilbert function. This can be viewed as saying that

the singularity of a perturbation is not worse than the original singularity. While two ideals

with the same Hilbert function do not necessarily share other similar features (such as being

Cohen–Macaulay or generalized Cohen–Macaulay), in the case of perturbations they often

do: in the main result of [5] the author has shown that, for any p ∈N, any sufficiently small

perturbation J of I with the same Hilbert function as I is such that the Betti numbers

βR
i (R/I) and βR

i (R/J) coincide for 0≤ i≤ p.

In this paper, we continue along this line of investigation by studying how local

cohomology modules of R/I with support in the maximal ideal m are affected by considering

sufficiently small perturbations J of I, provided I and J share the same Hilbert function.

Our motivation partially originates from [16], where Quy and Van Duc Trung ask the

following:

Question 1.1. If f1, . . . ,fr is a filter-regular sequence in R, does there exist N > 0 such

that, for every ε1, . . . , εr ∈ mN we have �(H0
m(R/(f1, . . . ,fr))) = �(H0

m(R/(f1 + ε1, . . . ,fr +

εr)))?

Since, by [12], sufficiently small perturbations of filter-regular sequences preserve the

Hilbert function, this is just one instance of the problem studied in this paper. In light of

this fact, one could even ask the following more general question: given an ideal I, does

there exist N > 0 such that H0
m(R/I)∼=H0

m(R/J) whenever J is such that J ≡ I mod mN

and I and J have the same Hilbert function? We provide a positive answer to the question

of [16] in its stronger form. Indeed, we obtain a result which also holds for higher local

cohomology modules, provided they are finitely generated.

Theorem A.1. (Theorem 3.4). Let (R,m) be a Noetherian local ring and I be an ideal

of R such that Hi
m(R/I) are finitely generated for every i = 0,1, . . . ,p. There exists N > 0

with the following property: for every ideal J such that J ≡ I mod mN and such that I and

J have the same Hilbert function, we have that

Hi
m(R/I)∼=Hi

m(R/J) ∀i= 0,1, . . . ,p.

Theorem A significantly extends [16, Theorem 3.2] by removing the assumptions that R

is generalized Cohen–Macaulay and I is generated by a system of parameters.

The starting point for the proof of Theorem A will be the use of the main result of

[5]. When R/I has finite projective dimension, this result allows us to compare the whole

free resolution of R/J with that of R/I. We say that a complex Cε is a perturbation of

a complex C if Cε is obtained by perturbing the maps of C by maps ε with image in a

sufficiently large power of m. Perturbations of complexes have been studied, for example, by

Eisenbud in [6], where the homology of Cε is compared with that of C. In fact, throughout

this paper, we will extensively use a slightly improved version of Eisenbud’s theorem (see

Theorem 2.3). Other related articles are [1] and [8], where, assuming C is a free resolution,
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LOCAL COHOMOLOGY UNDER SMALL PERTURBATIONS 3

the authors study the existence of uniform bounds for how small the perturbations of the

maps of C need to be so that the complex Cε is also exact. In these results, however, it is

always assumed that the perturbation Cε of C is already a complex. The main result of [5],

on the other hand, shows that we can in fact build a complex (actually, a free resolution of

R/J) which is a perturbation of a free resolution of R/I.

Under weaker assumptions than those of Theorem A, we show that one can compare the

lengths of Hi
m(R/I) and Hi

m(R/J), as well as the annihilators of Hi
m(R/I) and Hi

m(R/J)

(see Theorems 3.2 and 3.3). Theorem A has several important consequences, see Corollary

3.5. For instance, we deduce that properties such as being Cohen–Macaulay or being

generalized Cohen–Macaulay are preserved under small enough perturbations, assuming

that the ideal and its perturbation share the same Hilbert function.

Finally, we focus on the property of being Buchsbaum. Thanks to the techniques

developed in this paper, we are able to compare the truncated normalized dualizing

complexes of R/I and R/J provided R/I is generalized Cohen–Macaulay, showing that they

are isomorphic in the derived category. As a consequence, we deduce that the Buchsbaum

property is also preserved under sufficiently small pertubations which preserve the Hilbert

function.

Theorem B.1. (Theorem 3.6). Let (R,m) be a Noetherian local ring and I be an ideal

of R such that R/I is generalized Cohen–Macaulay. There exists N > 0 with the following

property: for every ideal J such that J ≡ I mod mN and such that I and J have the same

Hilbert function, we have that R/I is Buchsbaum if and only if R/J is Buchsbaum.

We also show that, under some additional assumptions, Serre’s properties (Sn) are also

preserved under small perturbations which preserve the Hilbert function.

Theorem C.1. (Theorem 3.8). Suppose (R,m) is excellent. Let I be an ideal of R for

which R/I is formally equidimensional. There exists N > 0 with the following property: if

J is an ideal of R for which I ≡ J mod mN , R/J is formally equidimensional and R/J has

the same Hilbert function as R/I, then for every n≥ 0 if R/I satisfies Serre’s property (Sn)

then so does R/J .

§2. Preliminaries

In this section, we will introduce some preliminary results and notation which will be

used throughout this paper.

(R,m) will denote a Noetherian local ring and k = R/m will denote its residue field.

An element f ∈ R is called filter-regular if AssR((0 : (f))) ⊆ {m}. A sequence of elements

f1, . . . ,fr of R is called a filter-regular sequence if, for every 1 ≤ i ≤ r, the image of fi in

R/(f1, . . . ,fi−1) is a filter-regular element.

Given an R-module M, we will denote its length by �(M). We will use Hi
m(M) to denote

the ith local cohomology module of M with respect to the maximal ideal m. The ring R is

said to be generalized Cohen–Macaulay if the local cohomology modules Hi
m(R) have finite

length for every i < dim(R).

The Hilbert function HFR : Z≥0 → Z≥0 of R is defined to be the Hilbert function of its

associated graded ring grm(R) =
⊕∞

i=0m
i/mi+1, which is a standard graded k -algebra. In

other words, HFR is given by HFR(i) = dimk(m
i/mi+1) for every i≥ 0.
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4 L. DUARTE

2.1 Initial modules and ideals

An m-filtration M of M is a collection {Mi}i≥0 of submodules of M such that mMi ⊆
Mi+1 ⊆Mi for every i ≥ 0. The filtration M is called stable (or good) if mMn =Mn+1 for

all sufficiently large n. Given an m-filtration M, we define the associated graded module of

M with respect to M as

gr
M
(M) =

∞⊕
i=0

Mi

Mi+1
.

Since M is an m-filtration, gr
M
(M) has a natural structure of a graded module over

grm(R). In case M= {miM}i≥0 is the m-adic filtration of M, we will denote gr
M
(M) simply

by grm(M).

If N is a submodule of M, we define the initial module of N, denoted by N∗, as the kernel

of the graded map of grm(R)-modules

grm(M)→ grm(M/N)

induced by the projection M →M/N , so that grm(M/N)∼=grm(M)/N∗. We thus have that

N∗ =
∞⊕
i=0

N ∩miM +mi+1M

mi+1M
∼=

∞⊕
i=0

N ∩miM

N ∩mi+1M
.

Therefore, N∗ can also be viewed as the associated graded module of N with respect to

the filtration {N ∩miM}i≥0. For another description of N∗, in terms of initial forms, we

refer the reader to [5]. Whenever we write N∗, the inclusion N ⊆M will be implicit from

the context.

Remark 2.1. In what follows, we will refer to the Hilbert function of an ideal I ⊆
R to mean the Hilbert function of the local ring R/I, that is, the Hilbert function of

grm/I(R/I). Thanks to the isomorphism described above, it coincides with the Hilbert

function of grm(R)/I∗.

If I is an ideal of R, and N ⊆M are finitely generated R-modules, then by the Artin–Rees

lemma there exists a positive number s such that

InM ∩N = In−s(IsM ∩N) for every n≥ s.

We will use AR(I,N ⊆M) to denote this Artin–Rees number, that is, the smallest such s.

We thus have that the filtration {miM ∩N}i≥0 of N is stable. Moreover, according to

[11, Proposition 2.1(a)], the number AR(m,N ⊆ M) is related to the initial module N∗

of N. More precisely, AR(m,N ⊆M) coincides with the largest degree of an element in a

minimal set of homogeneous generators of N∗ as a grm(R)-module. In particular, if we have

finitely generated modules N1 ⊆M1 and N2 ⊆M2 such that N∗
1 and N∗

2 are isomorphic as

grm(R)-modules, then AR(m,N1 ⊆M1) = AR(m,N2 ⊆M2).

The following result states that taking initial modules behaves well with respect to taking

quotients. It can be shown as in [15, Lemma 2.1].

Proposition 2.2. Let L⊆N ⊆M be finitely generated R-modules. Then(
N

L

)∗
∼= N∗

L∗ .
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LOCAL COHOMOLOGY UNDER SMALL PERTURBATIONS 5

Here
(
N
L

)∗
is computed inside grm(

M
L ) ∼= grm(M)

L∗ , while N∗ and L∗ are computed inside

grm(M).

2.2 Approximations of complexes

We now discuss a result which will be crucial in the proof of our main results ahead. Let

C : · · · Cn+1 Cn Cn−1 · · ·fn+1 fn

be a complex of finitely generated R-modules. An m-adic approximation of C of order

d= (. . . ,dn+1,dn,dn−1, . . .) ∈ N
Z is a complex Cε of the form

Cε : · · · Cn+1 Cn Cn−1 · · · ,fn+1+εn+1 fn+εn

where εn is a map from Cn to mdnCn−1 for all n.

For any integer n, let Hn(C) denote the nth homology module of C. We will

consider the initial module Hn(C)∗ =
⊕

pHn(C)∗p of Hn(C) with respect to the inclusion

Hn(C) ⊆ Cn/im (fn+1), where the latter has a natural m-adic filtration induced by

{miCn}i≥0, and we want to compare such an initial module with the one obtained

from a perturbed complex Cε. We warn the reader that the initial module of Hn(C) is

computed inside grm(Cn/im(fn+1)), while the initial module of Hn(Cε) is computed inside

grm(Cn/im(fn+1+ εn+1)). Despite this difference, the following theorem, which consists of

a slight improvement of the main result of [6], shows a close relation between them.

Theorem 2.3. Let

C : · · · Cn+1 Cn Cn−1 · · ·fn+1 fn

be a complex of finitely generated R-modules. There exists a sequence of integers d =

(. . . ,dn+1,dn,dn−1, . . .) such that, whenever

Cε : · · · Cn+1 Cn Cn−1 · · ·fn+1+εn+1 fn+εn

is a complex which is an m-adic approximation of C of order d = (. . . ,dn+1,dn,dn−1, . . .),

we have that

(i) Hn(Cε)
∗
p is a subquotient of Hn(C)∗p for all n and all p.

(ii) If Hn(C) and Hn−1(C) are both annihilated by some power of m, then Hn(C)∗ ∼=
Hn(Cε)

∗. Moreover, in this case we have im(fn+1)
∗ = im(fn+1+εn+1)

∗ and ker(fn)
∗ ∼=

ker(fn+ εn)
∗, where all these modules are computed inside grm(Cn).

The statements in Theorem 2.3 are shown in [6] and [5, Theorem 2.4], except for the

second claim made in point (ii). We now prove this claim.

Proof. Applying point (i) to the complex 0 Cn Cn−1 0
fn

, we obtain

that, for dn large enough, ker(fn+ εn)
∗ is isomorphic to a graded subquotient of ker(fn)

∗.

Moreover, since im(fn+1+εn+1)≡ im(fn+1) mod mdn+1Cn, by [5, Proposition 3.1], for dn+1

large enough we have that im(fn+1)
∗ ⊆ im(fn+1+ εn+1)

∗. In particular, dimk(ker(fn)
∗
p) ≥

dimk(ker(fn+ εn)
∗
p) and dimk(im(fn+1)

∗
p) ≤ dimk(im(fn+1+ εn+1)

∗
p) for every p ≥ 0. Also,

since for dn and dn+1 large enough we know that Hn(C)∗ ∼=Hn(Cε)
∗, by Proposition 2.2

https://doi.org/10.1017/nmj.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.18


6 L. DUARTE

we have that

ker(fn)
∗

im(fn+1)∗
∼=
(

ker(fn)

im(fn+1)

)∗
∼=
(

ker(fn+ εn)

im(fn+1+ εn+1)

)∗
∼= ker(fn+ εn)

∗

im(fn+1+ εn+1)∗
.

Hence

dimk(ker(fn)
∗
p)−dimk(im(fn+1)

∗
p) = dimk(ker(fn+ εn)

∗
p)−dimk(im(fn+1+ εn+1)

∗
p),

for every p ≥ 0. This holds if and only if dimk(ker(fn)
∗
p) = dimk(ker(fn + εn)

∗
p) and also

dimk(im(fn+1)
∗
p) = dimk(im(fn+1+εn+1)

∗
p) for every p≥ 0, that is, if and only if ker(fn)

∗ ∼=
ker(fn+ εn)

∗ and im(fn+1)
∗ = im(fn+1+ εn+1)

∗.

We will also need the following:

Proposition 2.4. Let f : C → D be a map of finitely generated R-modules. Set s =

AR(m, im(f) ⊆ D) and r = AR(m,ker(f) ⊆ C). Then for every N > s+ r and every map

ε : C →mND the following are equivalent:

(i) im(f)∗ = im(f + ε)∗.

(ii) ker(f)∗ ∼= ker(f + ε)∗.

(iii) ker(f)∗ = ker(f + ε)∗.

(iv) ker(f)≡ ker(f + ε) mod mN−sC.

To prove it, we will require a lemma. We will denote by μ(M) the minimal number of

generators of an R-module M.

Lemma 2.5. Let (R,m) be a Noetherian local ring and let M ⊆ F be finitely generated

R-modules. For N > AR(m,M ⊆ F ) the following holds: if Mε is a submodule of F such

that M ≡Mε mod mNF , then

(i) μ(mnM)≤ μ(mnMε) for every n≥ 0.

(ii) if μ(mnM) = μ(mnMε) for some n≥ 0 and {f1, . . . ,fr} is a minimal generating set of

mnM , then there exist ε1, . . . , εr ∈mN+nF such that {f1+ ε1, . . . ,fr+ εr} is a minimal

generating set of mnMε.

(iii) if μ(mnM) = μ(mnMε) for all n≥ 0, then M∗ =Mε
∗.

Proof. Let s=AR(m,M ⊆ F ) and let {f1, . . . ,fr} be a minimal generating set of mnM .

As mnM ≡ mnMε mod mN+nF , there are ε1, . . . , εr ∈ mN+nF such that fi+ εi ∈ mnMε for

i = 1, . . . , r. To prove (i), as well as (ii), it is enough to show that {f1+ ε1, . . . ,fr + εr} is

part of a minimal generating set of mnMε. By Nakayama, this is equivalent to proving that

the image of {f1 + ε1, . . . ,fr + εr} in mnMε/m
n+1Mε is an R/m-linearly independent set;

so supposing a1, . . . ,ar ∈R are such that
∑r

i=1ai(fi+ εi) ∈mn+1Mε, we need to show that

a1, . . . ,ar ∈m. Indeed, this implies that

r∑
i=1

aifi ∈mnM ∩
(
mn+1Mε+

(
r∑

i=1

aiεi

))
⊆mnM ∩ (mn+1Mε+mN+nF )

=mnM ∩ (m(mnMε+mN+n−1F ))
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=mnM ∩ (m(mnM +mN+n−1F ))

=mn+1M +mN+nF ∩mnM

⊆mn+1M +mN+nF ∩M

⊆mn+1M +mN+n−sM

=mn+1M.

Because {f1, . . . ,fr} is a minimal system of generators of M, we conclude that a1, . . . ,ar ∈m.

We now prove (iii). First of all, we will show that

mnF ∩Mε ⊆mn−sMε for all n≥ s. (2.1)

Let n≥ s and suppose x is a nonzero element in mnF ∩Mε. We will show that x∈mn−sMε.

Let l be the largest natural number for which a∈mlMε. By means of contradiction, suppose

l < n− s. Let {f1, . . . ,fr} be a minimal generating set of mlM . Then by (ii) there are

ε1, . . . , εr ∈ mN+lF such that {f1 + ε1, . . . ,fr + εr} is a minimal generating set of mlMε.

Writing x= a1(f1+ ε1)+ · · ·+ar(fr+ εr), we observe that

r∑
i=1

aifi = x−
r∑

i=1

aiεi ∈ (mnF +mN+lF )∩M

⊆ml+s+1F ∩M

⊆ml+1M.

Hence, all a1, . . . ,ar must belong to m. But this implies that a ∈ml+1Mε, which contradicts

our choice of l. We have thus shown (2.1). We now prove that M∗ =Mε
∗. By [5, Proposition

3.1] we have M∗ ⊆Mε
∗. It remains to prove the reverse inclusion. Since

M∗ =
∞⊕
i=0

M ∩miF +mi+1F

mi+1F
and Mε

∗ =
∞⊕
i=0

Mε∩miF +mi+1F

mi+1F
,

it is enough to show that

Mε∩miF ⊆M ∩miF +mi+1F = (M +mi+1F )∩miF for all i≥ 0.

Indeed, this clear if i < N , while if i ≥ N we have by (2.1) that Mε ∩miF ⊆ mi−sMε ⊆
mi−s(M +mNF )⊆M +mN+i−sF ⊆M +mi+1F .

Proof of Proposition 2.4. (i) ⇒ (iv): For every x ∈ ker(f + ε) we have that f(x) =

−ε(x) ∈mND∩ im(f)⊆mN−sim(f), which implies that there exists x′ ∈mN−sC such that

f(x) = f(x′), that is, x−x′ ∈ ker(f). This shows that ker(f + ε) ⊆ ker(f)+mN−sC. Since

the hypothesis im(f)∗ = im(f + ε)∗ implies that AR(m, im(f + ε) ⊆D) = s, the proof that

that ker(f)⊆ ker(f + ε)+mN−sC follows by the same argument.

(iv) ⇒ (iii): Since N − s > r, by [5, Proposition 3.1] we have that ker(f)∗ ⊆ ker(f + ε)∗.

On the other hand, by Theorem 2.3 applied to the complex 0 C D 0
f

,

ker(f + ε)∗ is isomorphic to a graded subquotient of ker(f)∗. Hence, we must have the

equality ker(f)∗ = ker(f + ε)∗.

(iii) clearly implies (ii). We now show (ii) ⇒ (i): Since

grm(im(f))∼= grm

(
C

ker(f)

)
∼= grm(C)

ker(f)∗
,
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8 L. DUARTE

for every n≥ 0 we have that

μ(mnim(f)) = dimk(grm(im(f))n) = dimk

(
grm(C)

ker(f)∗

)
n

= dimk

(
grm(C)n
ker(f)∗n

)
= dimk(grm(C)n)−dimk(ker(f)

∗
n)

and similarly with f replaced by f + ε. Since ker(f)∗ ∼= ker(f + ε)∗ by hypothesis, we have

dimk(ker(f)
∗
n) = dimk(ker(f + ε)∗n) for all n ≥ 0. We thus conclude that μ(mnim(f)) =

μ(mnim(f+ ε)) for all n≥ 0. As im(f)≡ im(f+ ε) mod mND, it now follows by Lemma 2.5

that im(f)∗ = im(f + ε)∗.

§3. Local cohomology under small perturbations

We start by setting up the notation that we will be using for the rest of the paper. Let

I be a fixed ideal of R and let J be an ideal such that J ≡ I mod mN and such that I and

J have the same Hilbert function.

Remark 3.1. We recall that, by [12], if I = (f1, . . . ,fr), where f1, . . . ,fr ∈R is a filter-

regular sequence in R, then, for N � 0, I and J have the same Hilbert function for every

ideal J of the form (f1+ ε1, . . . ,fr+ εr), where ε1, . . . , εr are any elements in mN .

Let (̂−) denote m-adic completion. From I +mN = J +mN , we get (I +mN )R̂ = (J +

mN )R̂, that is, Î ≡ Ĵ mod m̂N . Also, by [5, Proposition 3.2] and [7, Theorem 7.1] we have

that grm̂(R̂/Î) = grm(R/I) ∼= grm(R/J) = grm̂(R̂/Ĵ); hence, R̂/Î and R̂/Ĵ have the same

Hilbert function. Since Hi
m(R/I) ∼= Hi

m̂
(R̂/Î) and Hi

m(R/J) ∼= Hi
m̂
(R̂/Ĵ) for all i, in the

proofs of all the results in this section we will always be able to assume that R is complete.

With this new assumption, by the Cohen structure theorem, R is a quotient ring of a

complete regular local ring S. Let n be the maximal ideal of S and L be the ideal of S such

that R= S/L. Let also I0,J0 ⊇L be the ideals of S such that I = I0/L and J = J0/L. Since

I+mN = J+mN , that is, I0
L + n

N+L
L = J0

L + n
N+L
L , it follows that I0 ≡ J0 mod nN . Also, by

hypothesis S/I0 =R/I and S/J0 =R/J have the same Hilbert function.

Let d= dim(S). As S is regular, there is a finite free resolution

F• : 0 Fd Fd−1 · · · F1 F0
fd fd−1 f2 f1

of R/I as an S -module. Here, Fi = 0 and fi = 0 if i > pdS(R/I). By [5, Theorem 3.6], given

any N0 ∈ N, for N � 0 there exists a minimal free resolution of R/J of the form

F ε
• : 0 Fd Fd−1 · · · F1 F0,

fd+εd fd−1+εd−1 f2+ε2 f1+ε1

where εi(Fi)⊆ nN0Fi−1 for every i= 1, . . . ,d.

We will use (−)∨ to denote the functor HomS(−,ES(k)), where ES(k) is the injective

hull of the residue field k = S/n as an S -module. By local duality (see [7, Appendix A4.2])

we have that

Hi
m(R/I)∨ ∼= Extd−i

S (R/I,S)∼=Hd−i(HomS(F•,S)) for all i, (3.1)

and

Hi
m(R/J)∨ ∼= Extd−i

S (R/J,S)∼=Hd−i(HomS(F
ε
• ,S)) for all i. (3.2)
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Notice that HomS(F
ε
• ,S) is an n-adic approximation of the cochain complex HomS(F•,S)

of order (. . . ,N0,N0,N0, . . .).

Theorem 3.2. Let (R,m) be a Noetherian local ring and let I be an ideal of R. There

exists N > 0 with the following property: for every ideal J such that J ≡ I mod mN and such

that I and J have the same Hilbert function, one has that

(i) if Hi
m(R/I) is finitely generated, then Hi

m(R/J) is also finitely generated and

�(Hi
m(R/I))≥ �(Hi

m(R/J)).

(ii) if Hi
m(R/I) and Hi−1

m (R/I) are both finitely generated, then

�(Hi
m(R/I)) = �(Hi

m(R/J)).

Proof. Let M =Hd−i(HomS(F•,S)) and K =Hd−i(HomS(F
ε
• ,S)).

By point (i) of Theorem 2.3, we have that, given that N0 � 0, the initial module K∗

of K is a graded subquotient of the initial module M∗ of M. It follows that �(M) =∑
p≥0dimk(M

∗
p ) ≥

∑
p≥0dimk(K

∗
p) = �(K). Assuming Hi

m(R/I) is finitely generated, we

then have that Hi
m(R/I)∨ ∼=M has finite length and �(Hi

m(R/I)) = �(Hi
m(R/I)∨) = �(M).

Since �(M) ≥ �(K), it follows that K has finite length and �(K) = �(K∨) = �(Hi
m(R/J)).

This shows (i).

If in addition we assume that Hi−1
m (R/I) is finitely generated, we then have that

Hi−1
m (R/I)∨ ∼= Hd−i+1(HomS(F•,S)) has finite length. This means that there is a power

of n that annihilates both Hd−i(HomS(F•,S)) and Hd−i+1(HomS(F•,S)). By point (ii) of

Theorem 2.3 we obtain that, given N0 � 0, K∗ ∼= M∗. We conclude that �(Hi
m(R/I)) =

�(M) =
∑

p≥0dimk

(
M∗

p

)
=
∑

p≥0dimk

(
K∗

p

)
= �(K) = �(Hi

m(R/J)).

Given an R-module M, for each i, we define

�im(M) = inf{n ∈ N : mnHi
m(M) = 0}.

Next we show that the assumptions of Theorem 3.2(ii) are also enough for us to able to

compare Ann(Hi
m(R/J)) with Ann(Hi

m(R/I)).

Theorem 3.3. Let (R,m) be a Noetherian local ring and I be an ideal of R for which

Hi
m(R/I) and Hi−1

m (R/I) are finitely generated. There exists N > 0 with the following

property: for every ideal J such that J ≡ I mod mN and such that I and J have the same

Hilbert function, we have

Ann(Hi
m(R/J)) = Ann(Hi

m(R/I)).

Proof. Let (−)′ denote the functor HomS(−,S). For simplicity of notation, rewrite the

piece

F ′
d−i−1 F ′

d−i F ′
d−i+1 F ′

d−i+2 F ′
d−i+3,

f ′
d−i f ′

d−i+1 f ′
d−i+2 f ′

d−i+3
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of HomS(F•,S) and the piece

F ′
d−i−1 F ′

d−i F ′
d−i+1 F ′

d−i+2 F ′
d−i+3,

f ′
d−i+ε′d−i f ′

d−i+1+ε′d−i+1 f ′
d−i+2+ε′d−i+2 f ′

d−i+3+ε′d−i+3

of HomS(F
ε
• ,S) respectively as

G F H U V,d h u v (3.3)

and

G F H U V.
d+δ h+ε u+ι v+γ

(3.4)

We recall that δ, ε, ι, and γ are such that im(δ)⊆mN0F , im(ε)⊆mN0H, im(ι)⊆mN0U and

im(γ)⊆mN0V , where N0 is a natural number which can be sufficiently large, given that N

is made large enough.

Assuming Hi
m(R/I) is finitely generated, by Theorem 3.2 we can assume N is large

enough so that Hi
m(R/J) is also finitely generated. Let l = �im(R/I) and l′ = �im(R/J).

l coincides with the least integer p for which np annihilates Hi
m(R/I)∨ ∼= ker(h)

im(d) , while l′

coincides with the least integer p for which np annihilates Hi
m(R/J)∨ ∼= ker(h+ε)

im(d+δ) .

Moreover, since we are assuming Hi
m(R/I) and Hi−1

m (R/I) are finitely generated, the

cohomologies of (3.7) at F and H are annihilated by some power of n. By Theorem 2.3(ii)

applied to (3.7) and (3.8) it follows that ker(h)∗ ∼=ker(h+ε)∗. As such, let r=AR(n,ker(h)⊆
F ) = AR(n,ker(h+ ε)⊆ F ) and let s=AR(n, im(h)⊆H). By Proposition 2.4, if N0 is large

enough we also have ker(h)≡ ker(h+ ε) mod nN0−sF .

Next we show that l′ ≤ l. Since nlker(h)⊆ im(d) and using the fact that im(d)≡ im(d+

δ) mod nN0F , we observe that

nlker(h+ ε)⊆ nl(ker(h)+nN0−sF )

⊆ im(d)+nN0−sF

⊆ im(d+ δ)+nN0F +nN0−sF

= im(d+ δ)+nN0−sF.

Consequently, if N0 is large enough, namely N0 > l+ r+s, then

nlker(h+ ε)⊆ (im(d+ δ)+nN0−sF )∩ker(h+ ε)

= im(d+ δ)+nN0−sF ∩ker(h+ ε)

⊆ im(d+ δ)+nN0−s−rker(h+ ε)

⊆ im(d+ δ)+nl+1ker(h+ ε).

By Nakayama, this implies that nlker(h+ ε)⊆ im(d+ δ), and thus l′ ≤ l.

Let now a ∈ S be any element in Ann(Hi
m(R/I)) = Ann(Hi

m(R/I)∨) = Ann
(

ker(h)
im(d)

)
. We

obtain that

aker(h+ ε)⊆ a(ker(h)+nN0−sF )

⊆ im(d)+nN0−sF

⊆ im(d+ δ)+nN0−sF.

(3.5)
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Hence,

aker(h+ ε)⊆ (im(d+ δ)+nN0−sF )∩ker(h+ ε)

= im(d+ δ)+ker(h+ ε)∩nN0−sF

⊆ im(d+ δ)+nN0−s−rker(h+ ε)

⊆ im(d+ δ)+nlker(h+ ε)

⊆ im(d+ δ).

(3.6)

This shows that a∈Ann
(

ker(h+ε)
im(d+δ)

)
=Ann(Hi

m(R/J)∨)=Ann(Hi
m(R/J)). We conclude that

Ann(Hi
m(R/I)) ⊆ Ann(Hi

m(R/J)). The proof of Ann(Hi
m(R/I)) ⊇ Ann(Hi

m(R/J)) follows

in a similar way by repeating the same arguments of (3.5) and (3.6) for a ∈Ann(Hi
m(R/J))

and with the interchanges h↔ h+ ε and d↔ d+ δ.

If C• : · · · → Cn → Cn+1 → ·· · is a complex of R-modules, we will denote by τrC
• the

complex obtained by truncating C• at the rth place, that is, τrC
• : 0→Br+1(C•)→Cr+1 →

Cr+2 → ·· · , where Br+1(C•) = im(Cr → Cr+1). Then Hn(τrC
•) =Hn(C•) for n > r and

Hn(τrC
•) = 0 otherwise.

Theorem 3.4. Let (R,m) be a Noetherian local ring and I be an ideal of R such that

Hi
m(R/I) are finitely generated for every i=0,1, . . . ,p. There exists N > 0 with the following

property: for every ideal J such that J ≡ I mod mN and such that I and J have the same

Hilbert function, we have that

Hi
m(R/I)∼=Hi

m(R/J) ∀i= 0,1, . . . ,p.

Proof. It is enough to show Hi
m(R/I)∨ ∼= Hi

m(R/J)∨ for all i = 0,1, . . . ,p, which, by

local duality, is equivalent to showing that Hd−i(HomS(F•,S)) ∼=Hd−i(HomS(F
ε
• ,S)) for

all i= 0,1, . . . ,p. In fact, we will show the existence of an isomorphism

τd−p−1HomS(F•,S)∼= τd−p−1HomS(F
ε
• ,S).

In order to simplify notation, we write

HomS(F•,S) : 0 P0 · · · Pd−2 Pd−1 Pd 0,
g1 gd−1 gd

and

HomS(F
ε
• ,S) : 0 P0 · · · Pd−2 Pd−1 Pd 0,

g1+δ1 gd−1+δd−1 gd+δd

where im(δi)⊆ nN0Pi for every i and the Pi are free S -modules.

We set some notation for the rest of the proof:

1. Denote li = �im(R/I). Since, by Theorem 3.3, for large N we have Ann(Hi
m(R/I)) =

Ann(Hi
m(R/J)), we also have �im(R/J) = li. This means that nli annihilates both

ker(gd−i+1)/im(gd−i) and ker(gd−i+1+ δd−i+1)/im(gd−i+ δd−i) for all i= 0, . . . ,p.

2. Denote sn =AR(n, im(gn)⊆ Pn) and tn =AR(n,ker(gn)⊆ Pn−1) for every n. Then, by

Theorem 2.3(ii) and [11, Proposition 2.1(a)], AR(n, im(gn + δn) ⊆ Pn) coincides with

sn for every n= d, . . . ,d−p and AR(n,ker(gn+ δn)⊆ Pn−1) coincides with tn for every

n= d, . . . ,d−p+1.
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Claim. We claim that, given any N1 > 0, for N � 0 there exist maps αn : Pn → Pn,

n= d−1,d−2, . . . ,d−p−1, such that im(αn)⊆ nN1Pn and such that the all squares in the

following diagram commute:

Pd−p−1 Pd−p · · · Pd−2 Pd−1 Pd 0

Pd−p−1 Pd−p · · · Pd−2 Pd−1 Pd 0

gd−p

id+αd−p−1

gd−p+1

id+αd−p

gd−1

id+αd−2

gd

id+αd−1 id

gd−p+δd−p gd−p+1+δd−p+1 gd−1+δd−1 gd+δd

.

Proof. We start by observing that im(gd) = im(gd+δd). Indeed, we have n
l0Pd ⊆ im(gd)

and also nl0Pd ⊆ im(gd+ δd). Since im(gd) ≡ im(gd+ δd) mod nN0Pd and N0 can be made

large enough by making N large enough, we obtain that im(gd) = im(gd+δd) for N � 0 (it

is enough N0 ≥ l0).

We now proceed to prove the claim by induction on p. Suppose first that p= 0. We need

to show that there exists αd−1 : Pd−1 → nN1Pd−1 such that gd = (gd+δd)(id+αd−1). Let N

be large enough so that N0 ≥ N1+ sd. Since im(gd) = im(gd+ δd), for every x in Pd−1 we

have

(gd+ δd)(x)−gd(x) = δd(x) ∈ nN0Pd∩ im(gd+ δd)

⊆ nN0−sd im(gd+ δd)

⊆ nN1 im(gd+ δd).

Hence, there exists αd−1(x) ∈ nN1Pd−1 such that gd(x) = (gd+δd)(x+αd−1(x)). As Pd−1 is

a free S -module, this shows that the desired map αd−1 exists.

Suppose now that the result is valid for p− 1. Let q = d− p. Then, by hypothesis, for

N � 0 there are maps αq+1 : Pq+1 → nN1+sqPq+1 and αq : Pq → nN1+sqPq making the square

on the right-hand side bellow commute.

Pq−1 Pq Pq+1

Pq−1 Pq Pq+1

gq

id+αq−1

gq+1

id+αq id+αq+1

gq+δq gq+1+δq+1

.

We need to show that there exists αq−1 : Pq−1 → nN1Pq−1 such that the square on the left-

hand side also commutes. Since gq+1gq = 0, the commutativity of the square on the right

implies that im((id+αq)gq) ⊆ ker(qq+1+ δq+1). For N � 0, we can assume N0 ≥ N1+ sq.

Moreover, it is enough to prove the result assuming N1 is such that N1+ sq − tq+1 ≥ ld−q.

For every x in Pq−1, we observe that

(id+αq)(gq(x)) = gq(x)+αq(g(x))

∈ (im(gq)+nN1+sqPq)∩ker(qq+1+ δq+1)

⊆ (im(gq+ δq)+nN0Pq+nN1+sqPq)∩ker(qq+1+ δq+1)

= im(gq+ δq)+nN1+sqPq ∩ker(qq+1+ δq+1)

⊆ im(gq+ δq)+nN1+sq−tq+1ker(qq+1+ δq+1)

⊆ im(gq+ δq).
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It follows that

(id+αq)(gq(x))− (gq+ δq)(x) = αq(gq(x))− δq(x)

∈ (nN1+sqPq+nN0Pq)∩ im(gq+ δq)

= nN1+sqPq ∩ im(gq+ δq)

⊆ nN1 im(gq+ δq).

Hence, there exists αq−1(x) ∈ nN1Pq−1 such that (id+αq)(gq(x)) = (gq + δq)(x+αq−1(x)).

As Pq−1 is a free S -module, this shows that the desired map αq−1 exists.

Since im(αn) ⊆ nPn, the maps id + αn : Pn → Pn are isomorphisms for all n = d−
1,d− 2, . . . ,d− p− 1. Therefore, the maps idPd

, id+αd−1, . . . , id+αd−p provide us with an

isomorphism of complexes τd−p−1HomS(F•,S)→ τd−p−1HomS(F
ε
• ,S).

We present some immediate consequences of Theorems 3.2 and 3.4. For a finitely

generated R-module M, we will denote fm(M) = inf{i : Hi
m(M) is not finitely generated}.

Corollary 3.5. Let (R,m) be a Noetherian local ring and let I be an ideal of R. There

exists N > 0 with the following property: for every ideal J such that J ≡ I mod mN and such

that I and J have the same Hilbert function, one has

(i) fm(R/I)≤ fm(R/J).

(ii) depth(R/I) = depth(R/J).

(iii) If R/I is Cohen-Macaulay, then so is R/J .

(iv) If R/I is generalized Cohen-Macaulay, then so is R/J and Hi
m(R/I)∼=Hi

m(R/J) for

every i < dim(R/I).

Proof. (i) is a direct corollary of Theorem 3.2 and (iv) is a particular case of Theorem 3.4.

We now show (ii). Let t = depth(R/I). As a consequence of Theorem 3.2, for sufficiently

large N, Hi
m(R/I) = 0 implies Hi

m(R/J) = 0. Therefore, t ≤ depth(R/J). Let (−)′ denote

the functor HomS(−,S). For simplicity of notation, rewrite the piece

F ′
d−t−1 F ′

d−t F ′
d−t+1 F ′

d−t+2

f ′
d−t f ′

d−t+1 f ′
d−t+2

of HomS(F•,S) and the piece

F ′
d−t−1 F ′

d−t F ′
d−t+1 F ′

d−t+2

f ′
d−t+ε′d−t f ′

d−t+1+ε′d−t+1 f ′
d−t+2+ε′d−t+2

,

of HomS(F
ε
• ,S), respectively, as

G F H U,
g f h (3.7)

and

G F H U,
g+δ f+ε u+γ

(3.8)

where im(δ) ⊆ mN0F , im(ε) ⊆ mN0H, and im(γ) ⊆ mN0U . N0 can be assumed to be large

enough, given that N is large enough. As Ht−1
m (R/I) and Ht−2

m (R/I) are zero, this means

that the cohomologies of HomS(F•,S) at H and U are zero. Therefore, by Theorem 2.3,

im(f)∗ = im(f + ε)∗. Let s = AR(n, im(f) ⊆ H) and r = AR(n,ker(f) ⊆ F ). According to

Proposition 2.4, if N0 is large enough, we also have ker(f)≡ ker(f + ε) mod nN0−sF .
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By means of contradiction, suppose depth(R/J)> t, that is, suppose ker(f+ ε) = im(g+

δ). Then we have that

ker(f)⊆ ker(f + ε)+nN0−sF

= im(g+ δ)+nN0−sF

⊆ im(g)+nN0F +nN0−sF

= im(g)+nN0−sF.

Consequently, if N0 is large enough, namely N0 > r+s, then

ker(f)⊆ (im(g)+nN0−sF )∩ker(f)

= im(g)+nN0−sF ∩ker(f)

⊆ im(g)+nN0−s−rker(f)

⊆ im(g)+nker(f).

By Nakayama, this implies that ker(f) ⊆ im(g) and therefore Ht
m(R/I) = 0, which is a

contradiction. As such, we must have depth(R/J) = t. This finishes the proof of (ii).

Finally, we show (iii). If N is large enough and R/I is Cohen–Macaulay, then, by (ii),

dim(R/J) = dim(R/I) = depth (R/I) = depth (R/J), which means that R/J is also Cohen–

Macaulay. The equality dim(R/J) = dim(R/I) holds from the hypothesis that I and J have

the same Hilbert function.

We now apply the previous results to perturbations of Buchsbaum rings. Recall that a

local ring (R,m) is Buchsbaum if the difference �(R/(x)R)− e(x,R), where x is a system

of parameters of R, is an invariant of R, that is, does not depend on x. Among several

equivalent characterizations of Buchsbaum rings (see [18], [21], and [22]), we will use a

characterization from [18], which relies on the dualizing complex of R.

Denote by D(R) the derived category of the category whose objects are complexes of

R-modules. A bounded bellow complex of R-modules D• is called a dualizing complex of R

if D• has finite cohomology and if there exists an integer h such that

Hi(HomR(k,D
•))∼=

{
0 if i �= h

k if i= h
.

Furthermore, D• is said to be normalized if h = 0. A normalized dualizing complex of R,

if it exists, is unique up to isomorphism in D(R). We refer the reader to [10, Chapter 5]

for more details on dualizing complexes. If R has a normalized dualizing complex D•, then

according to [18, Theorem 2.3(v)], R is Buchsbaum if and only if τ−dim(R)D
• is isomorphic

in D(R) to a complex of k -vector spaces, where k is the residue field of R.

Theorem 3.6. Let (R,m) be a Noetherian local ring and I be an ideal of R such that R/I

is generalized Cohen–Macaulay. There exists N > 0 with the following property: for every

ideal J such that J ≡ I mod mN and such that I and J have the same Hilbert function, we

have that R/I is Buchsbaum if and only if R/J is Buchsbaum.

Proof. Since R/I (resp. R/J) is Buchsbaum if and only if R̂/Î (resp. R̂/Ĵ) is

Buchsbaum, we can assume R is complete. Hence, we can resort to the same setting and

notation as in the previous proofs. Let E• be an injective resolution of the regular ring S.
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We observe that HomS(R/I,E•) is a dualizing complex for R/I. Indeed,

Hi(HomR/I(k,HomS(R/I,E•)))∼=Hi(HomS(k,HomS(R/I,E•)))

∼=Hi(HomS(k,E
•))∼= ExtiS(k,S)

∼=
{
0 if i �= d

k if i= d
,

where d = dim(S). Therefore, the complex HomS(R/I,E•)[d], obtained by a shift of

HomS(R/I,E•)d steps to the left, is a normalized dualizing complex of R/I. As F• is

a free resolution of R/I, the complexes HomS(F•,S) and HomS(R/I,E•) isomorphic in

D(R). Let d′ = dim(R/I) = dim(R/J). We then have that, in D(R),

τ−d′(HomS(R/I,E•)[d]) = (τd−d′HomS(R/I,E•))[d]∼= (τd−d′HomS(F•,S))[d].

Similarly, HomS(R/J,E•)[d] is a normalized dualizing complex for R/J and

τ−d′(HomS(R/J,E•)[d])∼= (τd−d′HomS(F
ε
• ,S))[d] in D(R).

Since R/I is generalized Cohen–Macaulay, that is, Hi
m(R/I) is finitely generated for all

i = 0,1, . . . ,d′− 1, by the proof of Theorem 3.4 if N is large enough then there exists an

isomorphism τd−d′HomS(F•,S)→ τd−d′HomS(F
ε
• ,S)). We conclude that

τ−d′(HomS(R/I,E•)[d])∼= τ−d′(HomS(R/J,E•)[d]).

Hence, τ−d′(HomS(R/I,E•)[d]) is isomorphic to a complex of k -vector spaces in D(R) if

and only if τ−d′(HomS(R/J,E•)[d]) is isomorphic in D(R) to that same complex of k -vector

spaces. By [18, Theorem 2.3(v)], we conclude that R/I is Buchsbaum if and only if so if

R/J .

Finally, we show that, under some aditional assumptions, Serre’s properties (Sn) are also

preserved under small perturbations which preserve the Hilbert function. We will need the

following lemma.

Lemma 3.7. Let (R,m) be a Noetherian local ring and let N ⊆M be finitely generated

R-modules. Then

AnnR(N)∗ ⊆Anngrm(R)(N
∗)⊆

√
AnnR(N)∗.

In particular, dimR(N) = dimgrm(R)(N
∗).

Proof. It is clear that

AnnR(N)∗ =
⊕
n≥0

AnnR(N)∩mn+mn+1

mn+1
annihilates N∗ ∼=

⊕
n≥0

N ∩mnM

N ∩mn+1M
.

It remains to prove the second inclusion. Take ā ∈ mn/mn+1 a homogenous element in

grm(R), represented by a ∈mn, which annihilates N∗. This means that

a(N ∩mkM)⊆N ∩mk+n+1M for all k ≥ 0.

Applying this consecutively for k = 0,n+1,2(n+1), . . . ,(t−1)(n+1), we obtain

atN ⊆N ∩mt(n+1)M for all t≥ 1.
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In particular, for every t >AR(m,N ⊆M) =: s we have that

atN ⊆N ∩mt(n+1)M ⊆mtn+t−sN ⊆mtn+1N.

Let N = Rx1 + · · ·Rxr. Then, for each i = 1, . . . , r, we have atxi =
∑r

j=1 bijxj for some

bij ∈ mtn+1. Let B be the matrix (δija
t− bij), where δij is the Kronecker delta function.

Denoting by x the vector (x1 · · ·xr)
T , we have Bx = 0. Since det(B)x = adj(B)Bx = 0,

det(B) is in AnnR(N). But, as at ∈ mtn and bij ∈ mtn+1, det(B) is of the form atr + c,

with c ∈ mtn(r−1)+tn+1 = mtnr+1. Hence, atr ∈ AnnR(N)∩mtnr +mtnr+1, meaning that

ātr ∈AnnR(N)∗. This finishes the proof of the second desired inclusion.

We thus have
√

AnnR(N)∗ =
√

Anngrm(R)(N∗), from which it follows that

dimR(N) = dim

(
R

AnnR(N)

)
= dim

(
grm

(
R

AnnR(N)

))
= dim

(
grm(R)

AnnR(N)∗

)

= dim

(
grm(R)√
AnnR(N)∗

)
= dim

⎛⎝ grm(R)√
Anngrm(R)(N∗)

⎞⎠
= dim

(
grm(R)

Anngrm(R)(N∗)

)
= dimgrm(R)(N

∗).

Theorem 3.8. Suppose (R,m) is excellent. Let I be an ideal of R for which R/I is

formally equidimensional. There exists N > 0 with the following property: if J is an ideal

of R for which I ≡ J mod mN , R/J is formally equidimensional, and R/J has the same

Hilbert function as R/I, then for every n≥ 0 if R/I satisfies Serre’s property (Sn) then so

does R/J .

Proof. As R is excellent, by [13, Theorem 23.8] R/I satisfies (Sn) if and only if R̂/Î

satisfies (Sn). Since R̂/Î is equidimensional, by [4, Proposition 2.11], this is equivalent to

dimSExt
d−i
S (R̂/Î,S)≤ i−n,

for every i = 0, . . . ,d − 1, where d = dim(S). Therefore, it is enough to show that

dimSExt
d−i
S (R̂/Ĵ ,S)≤ dimSExt

d−i
S (R̂/Î,S) for all i. Indeed, by Theorem 2.3, for N large

enough Hd−i(HomS(F
ε
• ,S))

∗ is isomorphic to a subquotient of Hd−i(HomS(F•,S))
∗ for all

i, hence we have

dimSExt
d−i
S (R̂/Ĵ ,S) = dimSH

d−i(HomS(F
ε
• ,S))

= dimgrn(S)H
d−i(HomS(F

ε
• ,S))

∗ (by Lemma 3.6)

≤ dimgrn(S)H
d−i(HomS(F•,S))

∗

= dimSH
d−i(HomS(F•,S)) (by Lemma 3.6)

= dimSExt
d−i
S (R̂/Î,S).

Remark 3.9. Write R̂= S/L, where (S,n) is a regular local ring and let

F• : 0 Fd Fd−1 · · · F1 F0,
fd fd−1 f2 f1

be a free resolution of R̂/Î as an S -module. Let (−)′ denote the functor HomS(−,S).
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From [5, Theorems 2.4 and 3.6] and the proofs presented in this section, we see that there

exists a specific value for the number N, depending only on the numbers AR(n, im(fi) ⊆
Fi−1), AR(n, im(f ′

i) ⊆ F ′
i ), AR(n,ker(f ′

i) ⊆ F ′
i−1), and �im(R/I), for which Theorems 3.2,

3.3, 3.4, and 3.6 hold. While this relation can be made more explicit, we decided not to

pursue this direction in this paper, leaving it to the interested reader to analyze the specific

details.

The following example shows that the hypothesis that the Hilbert function is preserved

cannot be omitted in the statements of Theorems 3.2, 3.3, and 3.4.

Example 3.10. Consider the ring R= k[[x,y,z]], which has maximal ideal m= (x,y,z),

and the ideal I =(x2,y). Then R/I is Cohen–Macaulay of dimension one. For eachN > 2, we

consider the ideal JN = (x2,xy,y−zN ), which satisfies J ≡ I mod mN . Then, since x �∈ JN
satisfies xmN ⊂ JN , R/JN has depth zero. Thus, H0

m(R/JN ) �= 0, while H0
m(R/I) = 0.

Notice that xzN ∈ J∗
N\I∗, so that by [5, Proposition 3.2] I and JN do not have the same

Hilbert function.
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