
Annals of Actuarial Science, Vol. 6, part 1, pp. 23–64. & Institute and Faculty of Actuaries 2011
doi:10.1017/S1748499511000315
First published online 9 December 2011

The construction of the claims reserve distribution by
means of a semi-Markov backward simulation model

Fulvio Gismondi
Guglielmo Marconi University, Italy

Jacques Janssen
JACAN and EURIA University of West Bretagne, France

Raimondo Manca*

Universita ‘‘La Sapienza’’, Dipartimento di Metodi and Modelli per l’Economia, Italy

Abstract
The claims reserving problem is currently one of the most debated in actuarial literature. The high

level of interest in this topic is due to the fact that Solvency II rules will come into operation in 2014.

Indeed, it is expected that quantile computations will be compulsory in the evaluation of company

risk and for this reason we think that the construction of the claims reserve random variable

distribution assumes a fundamental relevance.

The aim of this paper is to present a method for constructing the claims reserve distribution

which can take into account IBNyR (Issued But Not yet Reported) claims in a natural way. The

construction of the distribution function for each time of the observed interval is done by means of a

Monte Carlo simulation model applied on a backward time semi-Markov process. It should be

pointed out that this is the first time that a simulation model based on semi-Markov with backward

recurrence time has been presented. The method is totally different from the models given in the

current literature.

The most important features given in the paper are:

1) for the first time the Monte Carlo simulation method is applied to a backward semi-Markov

environment;

2) the Monte Carlo simulation permits the construction of the random variable of the claims reserve

for each year of the studied horizon in a natural way;

3) as already pointed out, the backward process attached to the semi-Markov process permits

taking into account the evaluation of the IBNyR claims in a natural way.

In the last part of the paper an applicative example constructed from tables that summarise 4 years

of claims from an important Italian insurance company will be given.
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1. Introduction

The claims reserve is the amount that a non-life insurance company should put on its balance sheet

taking into account all the claims incurred but not yet, partially or totally, paid. That means forecasting

the present value of expenses that derive from both the IBNeR (incurred but not enough reported)

claims, (in the sense that they are not yet settled), and the IBNyR (incurred but not yet reported) claims.

Currently, the claims reserve problem is one of the most debated in the actuarial literature

concerned with non-life insurance problems. In the first 2009 issue of the ASTIN Bulletin, about 1/3

of the papers were on this topic and, at the moment, any issue of almost any actuarial journal

contains at least one paper on this topic.

The relevance of this topic is due to the fact that the Solvency II rules will be applied from January 2014

with an amendment of two months. Rules similar but less demanding were applied in Australia at the

beginning of the last decade (Australian Prudential Regulation Authority, 1999). Quantile computations

will become compulsory in the evaluation of claims reserve (outstanding liabilities) risk. In this light, it is

easy to understand that not only the evaluation of the claims reserve but also the construction of the

claims reserve random variable distribution assumes a fundamental relevance.

At first, the claims reserve of insurance companies was evaluated by means of deterministic models

like the Chain-Ladder (CL) and the Bornhuetter & Ferguson (BF) (1972) methods.

As regards these approaches, we recall the Quarg & Mack (2004) paper that improved the classical

CL model introducing the ratio between the paid and the incurred loss and giving a way to evaluate

the IBNyR claims; the Faculty and Institute of Actuaries’ manual (1997); Taylor’s book (2000) and

the most recent Wüthrich & Merz (2008) book in which the deterministic methods for the claims

reserve evaluation were described.

Since the end of the eighties, many studies have been dedicated to the construction of the standard

deviation error in order to provide a way of measuring risk in the claims-reserving problem.

In this context, we recall the papers by Taylor & Ashe (1983), Ashe (1986), Renshaw (1989),

Christofides (1990), Verrall (1989, 1990, 1991, 1996, 2000), Wright (1990), Schnieper (1991),

Mack (1993, 1994, 1999), Quarg & Mack (2004) and more recently, Mack (2008).

Since the second half of the nineties, the claims reserving papers have focused not only on variance

computation but also on predicting of the distribution. The first paper in this environment was

Wright (1997).

Fundamentally speaking, two approaches were used for the distribution construction, the

bootstrapping method and the Markov Chain Monte Carlo (MCMC) method. Two papers,

England & Verrall (2002, 2006), reported the main results written on these topics. The second

paper is by far the most complete due to the fact that it was written four years later and that it is

devoted only to these arguments. Furthermore, for a complete bibliography on the distributional

methods the interested reader can also refer to the Wüthrich & Merz (2008) book.

As regards the bootstrap environment, we recall the papers by England & Verrall (1999, 2006),

England (2002), Kirschner et al. (2002), Pinheiro et al. (2003), Taylor & McGuire (2007), Liu &

Verrall (2009), Bjökwall et al. (2009) and also the Wüthrich & Merz (2008) book. In the MCMC

case the papers of Haastrup & Arias, 1996, de Alba (2002), England & Verrall (2002, 2005, 2006),
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Ntzoufras & Dellaportas (2002), Verrall (2004), Gigante & Sigalotti (2005) Merz & Wüthrich

(2006, 2007), Peters et al. (2009) and once again the Wüthrich & Merz (2008) book.

The reported bibliography on this topic is not complete, given the large amount of literature that

has been written and the fact that new papers are continually being published. The interested reader

can find a good reference list in Schmidt (2010).

We should mention that almost all the papers started with the deterministic model and, as a first

step, (from the 1980s) these papers tried to introduce risk evaluation by computing the standard

deviation error. Subsequently, once the relevance of the distributional methods was understood, the

research became devoted to the probability distribution construction of the claims reserve using the

bootstrapping or the MCMC methodology but always starting from the CL or BF methods.

Our paper, on the other hand, works with a totally different viewpoint. Firstly, the independence of

the cumulative claims of different accident years is supposed, as in all the papers on this topic, and

secondly, it is supposed that the evolution of the claim stages

1. IBNyR claims (IBNR),

2. Open Claims (OC),

3. Partially Paid claims (PP),

4. Reopened Claims (RC),

5. Without Payment closed claims (CWP),

6. Closed Claims with payment (PCC),

moves in time following a Discrete Time Homogeneous Semi-Markov Process (DTHSMP). The

stages of claims are chosen following the subdivision given in the tables that summarised the

situation of the claims of four years of one of the most important Italian insurance companies.

In general non-homogeneity is closer to the real world, but in order to apply it, non-homogeneity

needs a lot of data. For example if we have to work in a horizon time of length T and with m states

in homogeneous case we have to evaluate T 1 1 of m 3 m order. In the non-homogeneous case we

have to evaluate respectively T 3 (T21)/2 1 T m 3 m matrices. Non-homogeneity implies a

quadratic increasing of the number of variables that should be evaluated, the homogeneity a linear

increasing. This is the main reason why it is difficult to apply non-homogeneous models in a real

world application. Furthermore, in the case of claims we think that the duration inside the states

does not depend greatly on the starting time because it depends, rather, on the behaviour of the

people that have to manage the claim. Fundamentally, the waiting time depends on the insured

person taking time to report the claim, the insurer taking time to pay, the judgment that can have a

random duration and so on. We think that none of these times depends on the moment in which the

claim happened. These are the reasons whereby we choose to construct a homogeneous model.

Homogeneous semi-Markov Processes (HSMP) were defined independently by Levy (1954), Smith

(1954) & Takacs (1954). DTHSMP and its numerical solution were described in De Dominicis

& Manca (1984a) and successively in Corradi et al. (2004) and Barbu et al. (2004). A complete

description of homogeneous SMP both in continuous and discrete time environment can be found

in Janssen & Manca (2006 and 2007). Applications of the semi-Markov processes in insurance

were presented, for example, in Janssen (1966), Hoem (1972), Janssen & De Dominicis (1984),

The construction of the claims reserve distribution by means of a semi-Markov backward simulation model
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De Dominicis & Manca (1984b), Balcer & Sahin (1986), De Medici et al. (1995), Janssen & Manca

(1997), Haberman & Pitacco (1999), Stenberg et al. (2006, 2007), Janssen & Manca (2007),

D’Amico et al. (2009).

In Norberg (1993, 1999) four stages were defined

1. Covered not incurred,

2. Incurred not reported,

3. Reported not settled,

4. Settled.

that are in time sequence. It should be pointed out that the stage covered–not-incurred in the claim

reserving evaluation does not make sense because only the incurred claims should be taken into

consideration. The trajectory among the other three stages is not random. The randomness is given

by the waiting time inside the states and it is modeled by a non-homogeneous marked Poisson

process. Our model, that is in a discrete time environment has two randomness, time and the

transitions between the stages. Furthermore, Poisson processes suppose a time evolution modeled by

negative exponential distribution functions (d.f.) in continuous time case and geometric in the

discrete time case whereas the waiting time d.f. in a SMP can be managed by any type of parametric

and also non-parametric distribution.

Another paper (Hesselager (1994)) presented a model in which the stages of the claims are states of

a non-homogeneous continuous time Markov process. In some senses this paper generalized the

model presented in Norberg (1993). In Hesselager’s paper the states are the same of the ones given

in Norberg’s paper. A new state is introduced only by dividing the Reported But Not Settled claims

in two parts; the subdivision is, therefore, a function of the claim cost. Firstly, we have to recall that

in continuous time Markov processes waiting time distribution functions are negative exponential

and it is very unlikely that this happens in real problems. Finally it should also be pointed out that,

in our model, the ‘‘delay times’’ due to IBNyR claims are considered in a natural way in a discrete

time environment too.

The approach of this paper is new because a Monte Carlo semi-Markov model with backward

recurrence time has never been applied. In Biffi et al. (2007), the idea of constructing the

claims reserving by means of a Monte Carlo DTHSMP was presented. The paper was,

fundamentally, a simple explanation of the idea. The IBNyR claims were not considered in that

paper given the lack of backward recurrence time. In Biffi et al. (2008a, 2008b) the same idea was

applied in a credit risk environment and the backward processes were not applied in this paper

either. Furthermore, this approach is totally different from the claims reserve stochastic models of

other authors.

The main contributions of this paper are that:

1) the Monte Carlo simulation method has been applied to a backward semi-Markov environment

for the first time;

2) the Monte Carlo simulation permits the construction of the random variable of the claims

reserve for each year of the studied horizon in a natural way;

3) the backward process attached to the semi-Markov process permits evaluation of the IBNyR

claims to be taken into account in a natural way.

Fulvio Gismondi et al.

26

https://doi.org/10.1017/S1748499511000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499511000315


In section 2, a brief introduction to the discrete time homogeneous SMP is given. Section 3 presents

the DTHSMP with attached a backward time process (see Silvestrov, 1980) and, more recently,

Limnios & Opris-an, 2001 and Janssen & Manca, 2006). This section will show how the backward

recurrence time process attached to a DTHSMP allows the problem of the forecasting of IBNyR to

be solved in a natural way. In section 4 a quick introduction to DTHSMP with reward is given.

Section 5 describes how the claims reserve problem can be solved by means of DTHSMP. Section 6

explains how the claims reserve stochastic process evolution can be constructed by means of the

Monte Carlo simulation model applied to a DTHSMP with backward recurrence time. Section 7

reports a real data example. Some conclusions close the paper.

2. The discrete time homogeneous semi-Markov processes

On a complete probability space (V, F, P) we introduce the random variable (r.v.) Jn; n 2 N, with

values in the set of states E 5 {1, 2, y, m} representing the state at the n-th transition. Let us

consider the r.v. Tn; n 2 N; with values in N and representing the time of the n-th transition.

Jn : O! E Tn : O! N:

The process (Jn,Tn) is a homogeneous Markovian renewal process if its kernel

Q ¼ QijðtÞ
h i

satisfying the following property:

QijðtÞ �P Jnþ1 ¼ j; Tnþ1�Tn � tj Jn ¼ i; ðJn;TnÞ; 0 � non
� �
¼ P Jnþ1 ¼ j; Tnþ1�Tn � tj Jn ¼ i

� �
:

ð2:1Þ

Remark 1: In the claims reserve problem the states of the system are the stages of the incurred

claims. Under the SMP hypotheses it results that the future of the system (stages evolution) depends

only on the present. The past history is cancelled. &

It results that:

pij � P Jnþ1 ¼ jjJn ¼ i
� �

¼ lim
t!1

QijðtÞ; i; j 2 E; t 2 N; ð2:2Þ

The matrix P 5 [pij] expresses the transition probability matrix of the embedded homogeneous

Markov chain.

Furthermore it is necessary to introduce the probability that the process will have a transition from

state i within a time t:

HiðtÞ � P Tnþ1�Tn � tj Jn ¼ i
� �

¼
X
j2E

QijðtÞ:

If i is not an absorbing state, it is clear that

lim
t!1

HiðtÞ ¼ 1:

Furthermore, the following probabilities are considered:

bijðtÞ ¼ P Jnþ1 ¼ j; Tnþ1�Tn ¼ tj Jn ¼ i
� �

:

The construction of the claims reserve distribution by means of a semi-Markov backward simulation model
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These probabilities can be given in function of the Qij(t):

bijðtÞ ¼
Qijð0Þ ¼ 0 if t ¼ 0

QijðtÞ�Qijðt�1Þ if t ¼ 1; 2; . . .

(

Now it is possible to define the distribution functions (d.f.) of the waiting time in each state i, given

that the state j successively occupied is known:

FijðtÞ ¼ P Tnþ1�Tn � tj Jn ¼ i; Jnþ1 ¼ j
� �

:

These probabilities can be obtained by means of the following formula:

FijðtÞ ¼
QijðtÞ=pij if pij 6¼ 0

1 if pij ¼ 0:

(

Defining N(t) 5 sup{n|Tn r t}, 8t 2 N, the DTHSMP Z ¼ ZðtÞ; t 2 Nð Þ can be defined, as

Z(t) 5 JN(t), representing, for each waiting time, the state occupied by the process.

The semi-Markov process transition probabilities are defined in the following way:

fijðtÞ ¼ P ZðtÞ ¼ jjZð0Þ ¼ i½ �:

Remark 2: In a homogeneous environment the time represents the duration after a given transi-

tion. So the elements of couple (Tn, Jn) represents respectively the time and the state of the n-th

transition. If we wish to follow the system after this transition if Jn 5 i then the duration time begins

from 0, TN(0) 5 Tn and Z(0) 5 i. &

The fij(t) are obtained by solving the following evolution equations:

fijðtÞ ¼ dijð1�HiðtÞÞ þ
X
b2E

Xt

W¼1

bibðWÞfbjðt�WÞ ð2:3Þ

where dij represents the Kronecker symbol.

fij(t) represents the probability of remaining in state j at time t, given that at time 0 the system

entered state i.

Remark 3: If the pij and the Fij(t) are known then it is possible to solve (2.1) obtaining the Qij(t).

From the Qij(t) the bij(t) and the Hi(t) can be obtained and in this way (2.3) can be solved. &

In the first part of formula (2.3) the 12Hi(t) gives the probability of the system not having

transitions up to the time t given that it entered the state i at time 0. The 12Hi(t) in our insurance

model represents the probability that our system does not change stage within the time t. This part

makes sense if and only if i 5 j.

In the second part of (2.3), bib(W) represents the probability of the system entering state b just at time

W given that it entered state i at time 0 (homogeneous behaviour). After the transition, the system

will go to state j following one of the possible trajectories that go from state b in a time W and bring

the system to state j at time t.
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There are well known algorithms which make the solution of equation possible (2.3), see for

example Janssen & Manca (2007).

3. DTHSMP with initial backward recurrence time process

Definition 1: Let B(t) 5 t2TN(t) be the backward recurrence time process in a semi-Markov

environment. It represents the difference between the observation time t and the time of the last

transition. (see Limnios & Opris-an, 2001, Janssen & Manca, 2006). &

Remark 4: The concept of backward time is very easy to understand. Imagine that a person goes

to a bus station then the elapsed time between the arrival of the last bus and the arrival of the person

is a backward time. In non-life insurance the time between the moment in which the claims occurred

and the time in which it was reported is another example of backward time.

Then we define the following probability:

bfijðl; tÞ ¼ P ZðtÞ ¼ jjZð0Þ ¼ i; Bð0Þ ¼ l½ �; ð3:1Þ

where (3.1) represents the semi-Markov transition probabilities with initial backward recurrence

time.

Remark 5: As pointed out in Remark 2, if the system is followed after the n-th transition, this time

with a backward recurrence time l, the system is in state i (Z(0) 5 i) but the transition in i happened l

periods before. We know also that, taking into account the duration time, it entered this state at

time 2l where l represents the initial backward time (see Figure 1). (3.1) gives the probability of

being in state j at time t. &

In Figure 1 a trajectory of an HSMP with initial backward recurrence time is reported. In a

homogeneous environment the system starts from time 0. We have that N(0) 5 n, because we start

to follow our system after the n-th transition. The starting backward is B(0) 5 l then Tn 5 2l

represents, in function of homogeneous hypothesis, the time of the n-th transition and Jn the related

Z0

0–I

I

Jn= i

Jh–1= j

TN(0)=Tn
TN(t)=Th–1

Tn

Tn+1 Th–1 Th

R+

Zt

t

Figure 1. HSMP with backward time trajectory
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state. The time t represents the duration from 0. Jh21 5 j the state of the h21-th transition, Th21 the

time of arrival in the state j and N(t) 5 h21, h21 . n.

To present the evolution equations of probabilities (3.1) we introduce the following notation:

Diðl; tÞ ¼
1�Hiðl þ tÞ

1�HiðlÞ
ð3:2Þ

which represents the probability of having no transition from state i between times 2l and t given

that no transition occured from state i between times 2l and 0.

Moreover by

bijðl; tÞ ¼
bijðl þ tÞ

1�HiðlÞ
ð3:3Þ

we denote the probability of making the next transition from state i to state j just at time t given that

the system does not make transitions from state i between times 2l and 0.

The relation (3.4) represents the evolution equations of (3.1)

bfijðl; tÞ ¼ Diðl; tÞ þ
X
b2E

Xt

W¼sþ1

bibðl; WÞfbjðt�WÞ; ð3:4Þ

Remark 6: As results from (3.2) and (3.3), the initial data necessary to solve the evolution

equation (3.4) are the same as those necessary to solve relation (2.3). The introduction of backward

recurrence times gives greater information on the studied system without the necessity of new

statistical data. &

Remark 7: According to our assumptions, if we constructed the Qij(t) correctly, then the con-

ditioned probabilities (3.2) and (3.3) take into account, by definition, the non-movement from the

state i for a time l. The (3.4) solution gives the probabilities of being in state j at time t given that the

observed system was in the state i at time 0 and given that it has been in this state from a time l. The

IBNyR represents this kind of situation. For example, if an accident occurred at time s and it was

reported at time s 1 l, then l will be a backward time. Our model permits the consideration of the

time before the reporting of the accident in a natural way. &

4. Discounted semi-Markov reward processes with initial backward time

Now we introduce the reward structure. A permanence (or rate) reward ci(t) is paid or received

for the permanence in the state i. The process stays in the state i at the time t and for his stay the

reward is given for an insurance contract starting at time 0. An impulse (or transition) reward gij(t)

is paid due to the transition from state i to state j at time t for a contract starting at time 0. The

permanence reward can be seen as an annuity-type payment and it can be a positive or a negative

sum. The impulse reward can be seen as a lump-sum payment. We assume that permanence

and impulse rewards are sums of money that have to be discounted using a discrete time discount

factor n(t).
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Following the line of research of Stenberg et al. (2006) we define the accumulated reward process by

means of the following relation:

Definition 2: Let ji(t) be the stochastic process that represents the discounted accumulated

Discrete Time Homogeneous Semi-Markov ReWard Process (DTHSMRWP) starting at time 0 from

the state i, defined at time t by

xi tð Þ ¼ w TNð0Þþ14tjJNð0Þ ¼ i;TNð0Þ ¼ 0
� � Pt

t¼1

ciðtÞnðtÞ

þ
P
k2E

Pt
y¼1

w JNð0Þþ1 ¼ k;TNð0Þþ1 ¼ yjJNð0Þ ¼ i;TNð0Þ ¼ 0
� �

PTNð0Þþ1

t¼1

ciðtÞnðtÞ þ gi;JNð0Þþ1
TNð0Þþ1

� �
nðTNð0Þþ1Þ þ xJNð0Þþ1

t�TNð0Þþ1

� �
nðTNð0Þþ1Þ

 !
;

ð4:1Þ

where:

1) wðaÞ ¼
1 if the event a is verified

0 if the event a is not verified

�
2) TN(0) represents the random time of the n-th transition and TN(0) 1 1 the random time of the

n 1 1-st transition. &

If we denote by Vi(t) 5 E[ji(t)], by taking the expectation of (4.1) we have

Vi tð Þ ¼ ð1�HiðtÞÞ
Xt

t¼1

ciðtÞnðtÞ þ
X
k2E

Xt

y¼1

bik yð Þ
Xy
t¼1

ciðtÞnðtÞ þ gi;k yð ÞnðyÞ þ Vk t�yð ÞnðyÞ

 !
: ð4:2Þ

where y represents the possible values that the r.v. TN(0) 1 1 can assume within the time t.

The mean present value given by (4.2) can be subdivided into 4 parts:

ð1�HiðtÞÞ
Xt

t¼1

ciðtÞnðtÞ; ð4:3Þ

bik yð Þ
Xy
t¼1

ciðtÞnðtÞ; ð4:4Þ

bik yð Þgi;k yð ÞnðyÞ; ð4:5Þ

bik yð ÞVk t�yð ÞnðyÞ; ð4:6Þ

(4.3) gives the mean present value of the permanence rewards that are obtained if there are no

transitions from the state i up to time t

bik(y) means that the system had a transition into state k exactly at time y. (4.4) gives the mean

present value of the permanence rewards that is obtained by remaining in the state i up to the time y.

(4.5) gives the mean present value of the impulse reward that is obtained because of the transition

from the state i to the state k at time y.
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(4.6) gives the mean present value of all the rewards that were obtained in a time t2y starting from

the state k. This amount must be discounted at time 0.

Definition 3: Let ji(l;t) be the discounted accumulated DTHSMRWP with initial backward time,

defined by

bxi l; tð Þ ¼ w TNð0Þþ14tjJNð0Þ ¼ i;TNð0Þ ¼ �l;TNð0Þþ140
� � Pt

t¼1

ciðtÞnðtÞ

þ
P
k2E

Pt
y¼1

w JNð0Þþ1 ¼ k;TNð0Þþ1 ¼ yjJNð0Þ ¼ i;TNð0Þ ¼ �l;TNð0Þþ140
� �

�

PTNð0Þþ1

t¼1

ciðtÞnðtÞ þ gi;JNð0Þþ1
TNð0Þþ1

� �
nðTNð0Þþ1Þ þ xJNð0Þþ1

t�TNð0Þþ1

� �
nðTNð0Þþ1Þ

 !
:

ð4:7Þ

If we denote by Vb
i l; tð Þ ¼ E xb

i l; tð Þ
h i

, by taking the expectation of (4.7) we have

bVi l; tð Þ ¼ diðl; tÞ
Xt

t¼1

ciðtÞnðtÞ

 !
þ
X
k2E

Xt

y¼1

bik l; yð Þ
Xy
t¼1

ciðtÞnðtÞ þ gi;k yð ÞnðyÞ þ Vk t�yð ÞnðyÞ

 !
:

ð4:8Þ

The (4.8) relation is a general relation that gives the mean present value of the rewards that were

paid in the horizon time that was followed by (4.8). It is possible to obtain different relations

depending on the case study (see Janssen & Manca, 2007). &

Remark 8: The DTHSMRWP is a class of processes. The evolution equation changes if we have

only permanence rewards or only transition rewards; it changes if we have fixed or variable interest

rate. There are DTHSMRWP without discount factors and so on. Non-life insurance includes health

insurance contracts and also accident insurance and it is possible to have both permanence and

transition rewards. In our case we will present an example to motor insurance. In this case the

DTHSMRWP model will be discounted and without the permanence rewards. &

In this case the evolution equation (4.8) will assume the following form

bVi l; tð Þ ¼
X
k2E

Xt

y¼1

bik l; yð Þ gi;k yð ÞnðyÞ þ Vk t�yð ÞnðyÞ
� �

: ð4:9Þ

Following the approach of Stenberg et al. (2006) and particularising at our case, it is possible to

derive recursive equations for the higher order moments of the reward processes ji(l;t). For example,

the second moment of the (4.9) is given by:

bVi l; tð Þ
� �ð2Þ

¼
P
k2E

Pt
y¼1

bik l; yð Þ gi;k yð ÞnðyÞ
� �2

þ 2
P
k2I

Pt
y¼1

bik l; yð Þgi;k yð ÞnðyÞVk t�yð Þ

þ
P
k2I

Pt
y¼1

bik l; yð Þ Vk t�yð Þð Þ
ð2Þ nðyÞð Þ

2:

ð4:10Þ

Once the (4.9) and (4.10) evolution equations are solved, clearly it is possible to compute the

variance and the standard deviations.
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The other higher order moments can be obtained by means of the general relations given in Stenberg

et al. (2006).

Remark 9: Our equations (4.9) and (4.10) make provision in a complete and natural way for the

time spent in a state before we begin to follow the system. Indeed the backward recurrence time

process attached to the DTHSMRWP offers this opportunity. &

5. The DTHSMRWP claims reserving model with recurrence backward times

Once a claim occurs it can be reported (OC) or not reported (IBNyR). In the stage of not

being reported it can wait for a random time before it is finally reported. In the same way, a reported

claim can be partially or totally paid or closed without payments and, in this case too, the

waiting time inside the state (OC) is a random variable (r.v.). It is very important to consider the

duration inside the claims stages in a thorough way. This can be done by means of the backward

time processes.

Furthermore, if we work according to the Markovian hypothesis (the future depends

only on the present), and take into account the fact that the transitions between the claims

stages depend on the starting and on the arriving stages, then we can suppose that the stage

represents the state of a system that evolves under a DTHSMP to which a backward time process is

attached.

To re-cap by means of backward time, it is possible to consider, and in a natural way, the time spent

in a stage before the transition to another stage.

To solve the evolution equation of a DTSMP it is necessary to construct the embedded MC P and the

matrix of the conditioned waiting time distribution functions F(t),t 5 1,y,T where T is the time

horizon in which the studied system will be followed.

The non-parametric P and the F constructions are very simple if there are the raw data.

As results from (2.2) P is a limit at 1N and for its computation we should consider all the

transitions that will happen in [0, T]. The F construction can be done simultaneously with

the P. Indeed, for each i, j we can construct a frequency time vector �fij ¼
�f ijðtÞ; t ¼ 1; . . . ;T
n o

.

In each element of this vector the transition number that happened just at time t will be

stored. Dividing the elements of this vector by pij and recursively summing the previous element

to the subsequent a non-parametric conditioned waiting time distribution function (d.f.)

is obtained.

It is clear that T could not cover all the time in which the studied phenomenon makes sense. In this

case we have to use a truncated d.f. The truncation could be done taking into account past

experiences.

In the claims reserve case, supposing a time interval of at least 20 years, it will be possible to avoid

the d.f. truncation because it is reasonable to assume that 20 years are sufficient to close any

occurred claims.
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Example 1: The construction of P and F. We suppose that T 5 4, m 5 3 and that we know that the

studied phenomenon never can wait inside a state more than 4 time periods. From raw data we

obtain the following matrices:

�P¼

48 201 123

32 154 211

85 302 288

2
664

3
775; N ¼

372

397

675

2
664

3
775; P¼

:129 :540 :331

:081 :388 :531

:126 :447 :427

2
664

3
775

�F¼

13 45 22

8 28 75

12 88 89

2
6664

3
7775

4 62 17

9 31 28

23 26 57

2
6664

3
7775

20 54 42

11 44 47

18 118 98

2
6664

3
7775

11 40 42

4 51 61

32 70 44

2
6664

3
7775

2
6664

3
7775

~F¼

:271 :224 :178

:25 :182 :355

:141 :291 :309

2
6664

3
7775

:083 :308 :138

:281 :201 :133

:271 :086 :198

2
6664

3
7775

:417 :269 :342

:344 :286 :223

:212 :391 :340

2
6664

3
7775

:229 :199 :342

:125 :331 :289

:376 :232 :153

2
6664

3
7775

2
6664

3
7775

F¼

:271 :224 :178

:25 :182 :355

:141 :291 :309

2
6664

3
7775

:354 :532 :316

:531 :383 :488

:412 :377 :507

2
6664

3
7775

:771 :801 658

:875 :669 :711

:624 :768 :847

2
6664

3
7775

1 1 1

1 1 1

1 1 1

2
6664

3
7775

2
6664

3
7775:

In the matrix �P the element �p23 ¼ 211 means that there were 211 transitions from the state 2 to state

3 in the considered time horizon. The element n2 5 397 denotes that there were 397 transitions from

state 2. In matrix P, 0.531 is the probability of going from state 2 to state 3 in the considered time

horizon. �f2;3 ¼ ½
�f 2;3ð1Þ;

�f 2;3ð2Þ;
�f 2;3ð3Þ;

�f 2;3ð4Þ� ¼ ½75;28;47;61� represents the number of transitions

from state 2 to state 3 that happened in the first, the second, the third and the fourth year

respectively. ~f2;3 ¼ ½0:355;0:133;0:223;0:289� is the vector of the probabilities that a transition from

the state 2 to state 3 will happen in the first, the second, the third and the fourth year.

As can be easily understood, the elements of matrix F represent the waiting time d.f. and are

obtained by summing the corresponding elements of the four sub-matrices of the matrix ~F: &

Once the P and F are constructed, it will be possible to solve (4.9) and (4.10) and, if necessary, to

compute also the skewness and the kurtosis (see Stenberg et al., 2006). These results are obtained for

each starting state, for each year of the time horizon and for each backward time. This means that we

can take into account, the IBNyR and of IBNeR claims, again in a natural way, by considering the time

at which the claims arrived in the stage.

If we were only looking for the results that can be obtained solving our SMP we could stop here, but

we are also interested in the distributional study of the claim reserving process for the given time

horizon so we need another approach to solve the problem.

6. The Monte Carlo DTHSMRWP for the claim reserve distribution
construction

6.1 The claim reserve construction

Our aim is to construct the distribution of the claims reserve and it will be carried out by means of

a Monte Carlo simulation method applied to our DTHSMRWP with backward recurrence time.
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We should mention that this is the first time that a simulation SMP with backward time has been

presented.

The first paper that introduced a real life Monte Carlo HSMP simulation model in the context of the

claims reserving problem was Biffi et al. (2007). Another paper, which was divided into two parts,

Biffi et al. (2008a, 2008b) proposed a Monte Carlo non-homogeneous SMP model in a credit risk

environment.

To apply the Monte Carlo simulation method it is necessary to compute the P and F matrices and

begin the simulation as is described in Limnios & Opris-an (2001). More precisely, it is possible to

construct a trajectory of the process starting at time 0 from the state i in two steps:

– extracting a pseudorandom number that gives the arriving state of the transition taking into

account the probability distribution pij, jAE,

– extracting another pseudorandom number that gives the time t of the transition considering the

conditioned waiting time d.f. Fij(t), t 5 1,y,T.

We choose the second way of constructing the trajectory. Our simulation model obtains the time t

from the first construction of a pseudorandom number by means of the Hi(t) values and the state j

from the second construction that can be obtained by the following probability function:

bijðtÞ

HiðtÞ�Hiðt�1Þ
¼ P Jnþ1 ¼ jjJn ¼ i;Tnþ1�Tn ¼ t

� �
: ð6:1Þ

Indeed, it results:

X
j2E

bijðtÞ

HiðtÞ�Hiðt�1Þ
¼ 1

We prefer this second way because by extracting the time t, if t is outside of our time horizon T, we

can avoid looking for the state of the related transition. In this way it is possible to avoid one

pseudorandom number extraction for the studied trajectory. Taking into account that in the

example that we will present in the next section we constructed 122,000,000 trajectories the

relevance of this fact can be understood.

Remark 10: Hi(t) and (6.1) hold in the DTHSMP without backward time. The corresponding

elements in DTHSMP with backward time can be constructed in the following way:

Hiðl; tÞ ¼
Hiðl þ tÞ

1�HiðlÞ
; ð6:2Þ

�bijðl; tÞ ¼
bijðl; tÞ

Hiðl; tÞ�Hiðl; t�1Þ
ð6:3Þ

We are working with a reward process and we also have to construct the trajectory cost. We know

that in the SMP reward models for motor car claim reserving the costs are only given for the state

transitions (impulse rewards). It is clear that in other non-life insurance cases, permanence rewards

exist and it is easy to consider them in our model.
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Once the transition makes sense (it is inside our horizon time), then we suppose that the r.v. cost of

the claims for each time of our horizon is known. More precisely, given a transition, we know from

our data the mean cost of claims. It should be mentioned that the probability distribution and the

related values of the cost of claims that occurred because of the transition from the state i to the

state j at time t were not available to us. These costs could easily be constructed with real data but

we were unable to obtain them.

We would like to show how the model works. Taking into account these constraints and aiming to

simplify we constructed the r.v. costs giving only 5 different values. The central value was the known

value. The first two values were smaller with respect to the known mean and the other two larger

values. The values of the r.v. were placed in increasing order. The related probability values were

constructed giving the highest probability to the central value and the smallest probabilities to the

two external values.

It will be necessary, to obtain the cost, another pseudorandom number extraction. One of the

possible trajectories and the related costs are constructed in the following way. The model is

homogeneous so we begin at time 0 with a backward time 0 in one of the states i of the claims

process. We carry out the first step of the construction and by means of (6.2) we obtain the time t1.

If t1 . T we stop the simulation because we are outside the horizon time. Otherwise we place k1 5 t1

and we carry out the extraction to find the transition state by means of (6.3). Supposing that this

state is j1 then we have to carry out another extraction to compute the related claims cost Sj1 . Now

we have to discount this cost from time k1 to the time 0 by means of the risk free interest rate r. We

obtain it in this way:

0Ci;k1 ;1 ¼ ð1þ rÞ�k1 Sj1

We will also construct another matrix in which we put:

0Ni;k1 ;1 ¼ 1

where the 0 in suffix represents the backward time.

The second step of the trajectory construction will work in the following way. We extract the time t2

and if t1 1 t2rT we put k2 5 k1 1 t2, then we extract j2 having j1 as starting state and starting time

0 (homogeneity). The cost of this transition, obtained by the third pseudorandom number

extraction, will be Sj2 . The new value of the cost will be discounted for the time k2 and the

corresponding elements of the other matrix will assume, respectively, the following values:

0Ci;k2 ;1 ¼ 1þ rð Þ
�k2 � Sj2 ;

0Ni;k2 ;1 ¼ 1 :

A new extraction will be carried out when

t1 þ t2 þ � � � þ th ¼ kh � T and kh þ thþ14T

the trajectory cost and the other matrix value will be given by

0Ci;k1 ;1 þ
0Ci;k2 ;1 þ � � � þ

0Ci;kh ;1;
0Ni;k1 ;1 ¼

0Ni;k2 ;1 ¼ � � � ¼
0Ni;kh ;1 ¼ 1:

At this point we will start with another trajectory that begins from the same state i.
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If it makes sense, we carry out the first three pseudorandom number extractions. We obtain t
0

1; j
0

1; S
0

1

and we compute 0C
0

i;k
0

1
;1

if:

9s ¼ 1; . . . ; h : ks ¼ k
0

1 and 0Ci;ks ;1 ¼
0C

0

i;k
0

1
;1

then 0Ni;ks ;1  
0Ni;ks ;1 þ 1

9s ¼ 1; . . . ; h : ks ¼ k
0

1 and 0Ci;ks ;1 6¼
0C

0

i;k
0

1
;1

then 0Ni;ks ;2 ¼ 1

ks 6¼ k
0

1; 8s ¼ 1; . . . ; h : then 0Ci;khþ1 ;1  
0C

0

i;k
0

1
;1

8>>><
>>>:

De facto, the vector 0Ci;ks
will contain all the different values of costs for a claim paid or partially

paid (the only two states in which there is a payment) starting from the state i paid at time ks and the

vector 0Ni;ks
denoting their occurrences. After the second simulated trajectory given that h’ is the

total number of the different payment times obtained in the two trajectories we will have that hr h0

and we suppose that h05 6. it will result:

To clarify; starting from the data contained in the Table 1, we start with the third trajectory. We

suppose that we obtained the following results:

0Ci;2;1 ¼ 433; 0Ci;4;1 ¼ 617; 0Ci;7;1 ¼ 1420; 0Ci;8;1 ¼ 645; 0Ci;11;1 ¼ 2310; 0Ci;12;1 ¼ 844:

Table 1, after the introduction of the third trajectory becomes:

Greater clarification is offered in Table 2. After two trajectory constructions we had 8 different

times in which a transition arrived. Times 1, 2 and 11 happened once, times 6 and 7 twice. The two

extractions related to time 6 had the same cost whereas the two at time 7 had two different costs.

Table 2. Value of the vectors 0Ci;ks
and 0Ni;ks

after three steps

0Ci,1
0Ci,2

0Ci,4
0Ci,6

0Ci,7
0Ci,8

0Ci,11
0Ci,12

315 433 617 564 1210 645 2310 844

822 1420 812

956

0Ni,1
0Ni,2

0Ni,4
0Ni,6

0Ni,7
0Ni,8

0Ni,11
0Ni,12

1 1 2 2 1 1 3 1

1 1 1

1

Table 1. Value of the vectors 0Ci;ks
and 0Ni;ks

after two steps

0Ci,1
0Ci,4

0Ci,6
0Ci,7

0Ci,8
0Ci,11

315 617 564 1210 812 2310

822 956

0Ni,1
0Ni,4

0Ni,6
0Ni,7

0Ni,8
0Ni,11

1 1 2 1 1 2

1 1
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At last times 4, 8 and 11 three times respectively with two, three and one type of cost. All this

information can easily be read in the table.

The program for each starting state will construct 1,000,000 trajectories twice. If there are 40,000

claims at time 1 in the state 2 (OC) we will carry out 250 repetitions for the first construction and

another 250 for the second after which the comparison of the results can be carried out.

The 0Ci;ks
and 0Ni;ks

are a couple of the basic vectors of our simulation.

Remark 11: We suppose the evaluation is to be carried out at the end of year 0. We know what

happened at the end of the starting year, but we do not know what will happen at the end of

the next 12 years. &

Remark 12: The program will construct 8i, where i is not an absorbing state, the two tables 0Ci

and 0Ni. that will be ordered in function of the year and for each year in increasing order

of the cost. &

We could now evaluate the r.v. that we are looking for. The r.v. values will be given by all the

different 0Ci;ks
elements that we obtained computing the 1,000,000 trajectories. The r.v. probability

values corresponding to the 0Ci;ks
values will be given by 0Ni;ks

occurrences corresponding to the
0Ci;ks

values divided by the sum of all the elements that are in the vector 0Ni;ks
.

Afterwards, the second simulation process will start. We will carry out the same number of

trajectories as we carried out in the previous simulation process. If the values of the r.v. of the two

simulations are the same and the probability distribution differs less than an e, as was decided

before the beginning of the simulation then our process will be stopped. Otherwise we will

merge the two simulation processes considering the 0Ci,k obtained in both the processes and the

corresponding occurrences 0Ni,k. This fact permits the computing of the new probability

distribution. Now a new simulation process that will construct the double of the trajectories of

the initial simulation process will be started.

The results obtained from the third simulation process will be compared to the simulation process

obtained by the sum of the first two. If we obtain the conditions we want, then our process will be

stopped, otherwise, we will merge the first three simulation processes and will start with the fourth

simulation process that will be four times larger than the first process and we will continue this

iterative process up to the point at which it converges.

In Figures 2.1 and 2.2 two trajectory examples are reported. The x-axis represents the time and the

y-axis the states. The vertical lines with E and S at top represent, respectively, the states of the

system and the possible costs of the claims. Now the trajectory given in Figure 2.1 will be described.

The system starts at time 0 from the state j0. After the first two extractions the system will arrive at

time 2 in the state j1. Now the cost of the claim due to the transition from j0 to j1 needs to be

computed. We carry out another pseudo-random number extraction to obtain the cost g1. This cost

is discounted at time 0 and put in V0. Now with another two extractions the system arrives at time 3

in the state j2. Another extraction will give g2, the cost of transition.

The discounted value at time 0 of this cost will be summed to V0 and so on. At the end of trajectory,

when the time obtained is greater than T, the trajectory cost will be in V0.
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This process will be repeated for each backward time and we will obtain hCi;ks
; hNi;ks

, h 5 0,1,y,T.

In Figure 2.1, T 5 7. Figure 2.2 shows the case in which a trajectory begins at time 1 because of the

recurrence backward time 1 and ends because of a time extraction that surpasses the horizon time T.

6.2 Example of the merging process

We suppose that we have three different costs for each year and that the first simulation is stopped

after the construction of 100 trajectories and that we start with a recurrence backward time 3. The

results obtained in the first simulation are reported in Table 3.1.

In Table 3.2 the results of the second 100 trajectories are given. The two results are different so we

merge the two results and we obtain Table 3.3. We suppose that the subsequent 200 simulations

gave approximately the same results and we stop the simulation process.

E E E E

�1

�2

�3

�4

�5

j1

j2

j3

j4

j5

j0

Vo

E E E E

SSSSSSS

0 1 2 3 4 5 6 7

Figure 2.1. Example of trajectory that ends just at the end of horizon time

E E

0 1 2 3 4 5 6 7

E E

�3

�2�1

j3

j2

j1j0
V0

E E E E

S S S S S S S

Figure 2.2. Example of trajectory with backward time 1 that ends before the end of horizon time
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– At this point we merge the column of Table 3.3 and we obtain the results reported in Table 4.

Dividing by 1488, which is the total number of occurrences we can find the probability

distribution corresponding to the occurrences of Table 4. This result is reported in Table 5. If we

pose that i 5 IBNR then Table 5 represents the r.v. of the single values of the different claim costs

that are reported after three years of backward recurrence time. In Table 6 the corresponding r.v.

of the possible total costs is given. Each total cost is obtained multiplying the single value of each

cost by its recurrence (for the aim of simplicity we did not consider the repetitions). In Table 7 the

increasing total cost (i.t.c) and the related increasing d.f. are reported summing the elements of the

value and probability columns given in Table 6. In Figure 3 the graphs of the i.t.c. and of the i.d.f.

Table 3.1. Value of the vectors 3Ci;ks
and 3Ni;ks

resulting from the first 100 trajectory simulations

3Ci,4
3Ci,5

3Ci,6
3Ci,7

3Ci,8
3Ci,9

3Ci,10
3Ci,11

3Ci,12

315 383 392 417 404 412 309 401 369

406 482 467 522 493 539 434 502 483

875 683 706 601 576 604 582 603 581

795 803 689 765 702 701 706 703

906 1143 823 865 803 803 890 850

1203 1407 989 984 974 905 1034 984

1310 1533 1410 1045 1033 1020 1118 1043

1709 1642 1463 1134 1136 1305 1182

1819 1703 1678 1385 1354 1415 1308

1833 1896 1673 1568 1542 1590

2010 2033 1904 1809 1703 1894

2044 2203 2041 1998 1904 2007

2520 2134 2020 2010 2196

2345 2140 2203 2324

2480 2389 2385 2574

2601 2590 2675

2680 2742

2813

3Ni,4
3Ni,5

3Ni,6
3Ni,7

3Ni,8
3Ni,9

3Ni,10
3Ni,11

3Ni,12

26 14 10 7 8 7 6 7 6

20 10 9 9 11 8 8 5 5

25 13 10 11 10 9 10 9 8

12 11 13 10 10 7 8 7

11 8 8 9 11 9 9 10

10 10 9 10 8 10 8 7

9 8 11 7 6 7 6 8

9 5 5 7 5 7 5

12 8 6 5 6 5 6

4 3 4 6 7 4

3 5 4 3 5 6

4 2 3 4 3 4

3 4 3 2 3

2 3 1 2

3 3 2 3

2 3 2

2 2

1

Fulvio Gismondi et al.

40

https://doi.org/10.1017/S1748499511000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499511000315


are shown. The Capital at Risk (CaR) corresponding to 99.5% SCR (Solvency Capital

Requirement) and 75% MCR (Minimum Capital Requirement) as supposed in Janssen & Manca

(2009) are also reported in the figure. The example explains how to get the results for the state i

and the backward time 3.

– Fixing the state and the time and merging on the backward times it is possible to obtain the r.v. of

the costs for the fixed year and the given state.

Table 3.2. Value of the vectors 3Ci;ks
and 3Ni;ks

resulting from the second 100 trajectory simulations

3Ci,4
3Ci,5

3Ci,6
3Ci,7

3Ci,8
3Ci,9

3Ci,10
3Ci,11

3Ci,12

315 383 392 417 404 412 309 401 369

406 482 467 522 493 539 434 502 483

875 507 706 689 576 604 582 603 581

683 803 823 610 803 701 706 703

906 1253 989 765 974 905 798 850

1203 1407 1410 865 1033 1020 890 984

1533 1642 984 1134 1136 1034 1043

1819 1703 1045 1385 1354 1118 1182

1833 1463 1673 1415 1305 1308

2010 1678 1904 1809 1542 1415

2044 1896 2041 1998 1703 1590

2033 2134 2020 1904 1894

2380 2345 2140 2010 2007

2520 2584 2389 2203 2196

2601 2385 2324

2590 2574

2680 2675

2742

2813

3Ni,4
3Ni,5

3Ni,6
3Ni,7

3Ni,8
3Ni,9

3Ni,10
3Ni,11

3Ni,12

23 15 10 7 8 7 6 7 6

22 12 9 9 11 8 8 5 5

27 14 12 11 10 9 10 9 8

13 14 13 10 10 7 8 7

12 8 8 9 11 9 9 10

11 11 9 10 8 10 8 7

8 11 7 6 7 6 8

12 5 5 7 5 7 5

8 6 5 6 5 6

4 3 4 6 7 4

3 5 4 3 5 6

2 3 4 3 4

3 4 3 2 3

4 2 3 1 2

3 2 3

4 3 2

5 2

1

3
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– It is possible to fix the year and the backward time and in this way we can merge with respect to

the states having the r.v. of the costs for the given year and backward time as results.

Now we suppose that we have constructed the two matrices for all the backward time and the

states; i.e. we have constructed

bCi;k;
bNi;k; k ¼ bþ 1; . . . ;T; 8b 2 0; 1; . . . ;T�1f g; 8i 2 E

Table 3.3. Value of the vectors 3Ci;ks
and 3Ni;ks

after the merging (200 trajectory simulations)

3Ci,4
3Ci,5

3Ci,6
3Ci,7

3Ci,8
3Ci,9

3Ci,10
3Ci,11

3Ci,12

315 383 392 417 404 412 309 401 369

406 482 467 522 493 539 434 502 483

875 507 706 601 576 604 582 603 581

683 803 689 610 702 701 706 703

795 1143 823 765 803 803 798 850

906 1253 989 865 974 905 890 984

1203 1407 1410 984 1033 1020 1034 1043

1310 1533 1642 1045 1134 1136 1118 1182

1709 1703 1463 1385 1354 1305 1308

1819 1833 1678 1673 1415 1415 1415

2010 1896 1904 1568 1542 1590

2044 2033 2041 1809 1703 1894

2203 2134 1998 1904 2007

2380 2345 2020 2010 2196

2520 2480 2140 2203 2324

2584 2389 2385 2574

2601 2590 2675

2680 2742

2813

3Ni,4
3Ni,5

3Ni,6
3Ni,7

3Ni,8
3Ni,9

3Ni,10
3Ni,11

3Ni,12

49 29 20 14 16 14 12 14 12

42 22 18 18 22 16 16 10 10

52 14 22 11 20 18 20 18 16

26 25 24 10 10 14 16 14

12 8 21 19 21 9 9 20

23 8 17 19 19 19 17 14

21 21 20 17 14 17 14 16

9 16 16 12 13 12 13 10

9 13 11 12 11 12 12

24 12 9 9 6 5 4

7 8 8 12 14 10

7 7 7 6 10 10

3 7 8 6 7

2 6 6 4 5

7 2 6 2 5

3 6 4 5

7 6 4

7 3

4
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– If we fix the state and the backward time and we merge with respect to the years of the horizon

time we obtain the two vectors that represent the possible unitary costs and their occurrences

(Table 4 is an example of these two vectors);

– If we divide the vector of occurrences by the total number of occurrences we obtain the r.v. of the

possible unitary costs given the backward time and the state (Table 5 is an example of this r.v.);

– If we multiply the single costs for their occurrences (the second and third vector of Table 4)

and we associate the elements of the probability distribution contained in the third column of

Table 4. Merging of all the elements of the Table 3.3. done on the columns (state i and backward 3)

Position Value Occurrences Position Value Occurrences Position Value Occurrences

1 309 12 41 850 20 80 1678 9

2 315 49 42 865 19 81 1703 13

3 369 12 43 875 52 82 1703 10

4 383 29 44 890 17 83 1709 9

5 392 20 45 905 19 84 1809 6

6 401 14 46 906 23 85 1819 24

7 404 16 47 974 19 86 1833 12

8 406 42 48 984 17 87 1894 10

9 412 14 49 984 14 88 1896 8

10 417 14 50 989 17 89 1904 8

11 434 16 51 1020 17 90 1904 6

12 467 18 52 1033 14 91 1998 8

13 482 22 53 1034 14 92 2007 7

14 483 10 54 1043 16 93 2010 7

15 493 22 55 1045 12 94 2010 4

16 502 10 56 1118 13 95 2020 6

17 507 14 57 1134 13 96 2033 7

18 522 18 58 1136 12 97 2041 7

19 539 16 59 1143 8 98 2044 7

20 576 20 60 1182 10 99 2134 7

21 581 16 61 1203 21 100 2140 6

22 582 20 62 1253 8 101 2196 5

23 601 11 63 1305 12 102 2203 3

24 603 18 64 1308 12 103 2203 2

25 604 18 65 1310 9 104 2324 5

26 610 10 66 1354 11 105 2345 6

27 683 26 67 1385 12 106 2380 2

28 689 24 68 1407 21 107 2385 4

29 701 14 69 1410 20 108 2389 6

30 702 10 70 1415 6 109 2480 2

31 703 14 71 1415 5 110 2520 7

32 706 22 72 1415 4 111 2574 5

33 706 16 73 1463 11 112 2584 3

34 765 19 74 1533 16 113 2590 6

35 795 12 75 1542 14 114 2601 7

36 798 9 76 1568 12 115 2675 4

37 803 25 77 1590 10 116 2680 7

38 803 21 78 1642 16 117 2742 3

39 803 9 79 1673 9 118 2813 4

40 823 21
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Table 5 to the results, we obtain the r.v of the total cost of each single value (Table 6 is an example

of this r.v.).

– If we sum the elements of the probability column we obtain the i.d.f. of the total costs of each

single value

– If we sum the elements of total cost column of each single value we obtain the related i.t.c. and

i.d.f. (Table 7 is an example of this last result).

Table 5. r.v. of all possible unitary costs, the distribution probability is obtained dividing each occurrence by

the total number of occurrences

Position Value Probability Position Value Probability Position Value Probability

1 309 0.00769 41 850 0.01282 80 1678 0.00577

2 315 0.03141 42 865 0.01218 81 1703 0.00833

3 369 0.00769 43 875 0.03333 82 1703 0.00641

4 383 0.01859 44 890 0.01090 83 1709 0.00577

5 392 0.01282 45 905 0.01218 84 1809 0.00385

6 401 0.00897 46 906 0.01474 85 1819 0.01538

7 404 0.01026 47 974 0.01218 86 1833 0.00769

8 406 0.02692 48 984 0.01090 87 1894 0.00641

9 412 0.00897 49 984 0.00897 88 1896 0.00513

10 417 0.00897 50 989 0.01090 89 1904 0.00513

11 434 0.01026 51 1020 0.01090 90 1904 0.00385

12 467 0.01154 52 1033 0.00897 91 1998 0.00513

13 482 0.01410 53 1034 0.00897 92 2007 0.00449

14 483 0.00641 54 1043 0.01026 93 2010 0.00449

15 493 0.01410 55 1045 0.00769 94 2010 0.00256

16 502 0.00641 56 1118 0.00833 95 2020 0.00385

17 507 0.00897 57 1134 0.00833 96 2033 0.00449

18 522 0.01154 58 1136 0.00769 97 2041 0.00449

19 539 0.01026 59 1143 0.00513 98 2044 0.00449

20 576 0.01282 60 1182 0.00641 99 2134 0.00449

21 581 0.01026 61 1203 0.01346 100 2140 0.00385

22 582 0.01282 62 1253 0.00513 101 2196 0.00321

23 601 0.00705 63 1305 0.00769 102 2203 0.00192

24 603 0.01154 64 1308 0.00769 103 2203 0.00128

25 604 0.01154 65 1310 0.00577 104 2324 0.00321

26 610 0.00641 66 1354 0.00705 105 2345 0.00385

27 683 0.01667 67 1385 0.00769 106 2380 0.00128

28 689 0.01538 68 1407 0.01346 107 2385 0.00256

29 701 0.00897 69 1410 0.01282 108 2389 0.00385

30 702 0.00641 70 1415 0.00385 109 2480 0.00128

31 703 0.00897 71 1415 0.00321 110 2520 0.00449

32 706 0.01410 72 1415 0.00256 111 2574 0.00321

33 706 0.01026 73 1463 0.00705 112 2584 0.00192

34 765 0.01218 74 1533 0.01026 113 2590 0.00385

35 795 0.00769 75 1542 0.00897 114 2601 0.00449

36 798 0.00577 76 1568 0.00769 115 2675 0.00256

37 803 0.01603 77 1590 0.00641 116 2680 0.00449

38 803 0.01346 78 1642 0.01026 117 2742 0.00192

39 803 0.00577 79 1673 0.00577 118 2813 0.00256

40 823 0.01346
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– If we fix the state and we apply the merging process on the backward time, for each state we will

obtain two vectors for each state that will represent the possible unitary costs and their

occurrences for the fixed state. (We can also fix the backward time and apply the merging process

to the states thereby obtaining, for each backward time two vectors that will represent the r.v. that

gives the unitary costs for each backward recurrence time and their occurrences):

– If we divide each element of the vector of occurrences by the total number of occurrences and we

associate this probability distribution to the vector of single unitary costs we obtain the r.v. of the

possible unitary costs given the fixed state;

Table 6. r.v. of costs of each value obtained multiplying the values for the corresponding occurrences

Position Value Probability Position Value Probability Position Value Probability

1 3708 0.00769 41 17000 0.01282 80 15102 0.00577

2 15435 0.03141 42 16435 0.01218 81 22139 0.00833

3 4428 0.00769 43 45500 0.03333 82 17030 0.00641

4 11107 0.01859 44 15130 0.01090 83 15381 0.00577

5 7840 0.01282 45 17195 0.01218 84 10854 0.00385

6 5614 0.00897 46 20838 0.01474 85 43656 0.01538

7 6464 0.01026 47 18506 0.01218 86 21996 0.00769

8 17052 0.02692 48 16728 0.01090 87 18940 0.00641

9 5768 0.00897 49 13776 0.00897 88 15168 0.00513

10 5838 0.00897 50 16813 0.01090 89 15232 0.00513

11 6944 0.01026 51 17340 0.01090 90 11424 0.00385

12 8406 0.01154 52 14462 0.00897 91 15984 0.00513

13 10604 0.01410 53 14476 0.00897 92 14049 0.00449

14 4830 0.00641 54 16688 0.01026 93 14070 0.00449

15 10846 0.01410 55 12540 0.00769 94 8040 0.00256

16 5020 0.00641 56 14534 0.00833 95 12120 0.00385

17 7098 0.00897 57 14742 0.00833 96 14231 0.00449

18 9396 0.01154 58 13632 0.00769 97 14287 0.00449

19 8624 0.01026 59 9144 0.00513 98 14308 0.00449

20 11520 0.01282 60 11820 0.00641 99 14938 0.00449

21 9296 0.01026 61 25263 0.01346 100 12840 0.00385

22 11640 0.01282 62 10024 0.00513 101 10980 0.00321

23 6611 0.00705 63 15660 0.00769 102 6609 0.00192

24 10854 0.01154 64 15696 0.00769 103 4406 0.00128

25 10872 0.01154 65 11790 0.00577 104 11620 0.00321

26 6100 0.00641 66 14894 0.00705 105 14070 0.00385

27 17758 0.01667 67 16620 0.00769 106 4760 0.00128

28 16536 0.01538 68 29547 0.01346 107 9540 0.00256

29 9814 0.00897 69 28200 0.01282 108 14334 0.00385

30 7020 0.00641 70 8490 0.00385 109 4960 0.00128

31 9842 0.00897 71 7075 0.00321 110 17640 0.00449

32 15532 0.01410 72 5660 0.00256 111 12870 0.00321

33 11296 0.01026 73 16093 0.00705 112 7752 0.00192

34 14535 0.01218 74 24528 0.01026 113 15540 0.00385

35 9540 0.00769 75 21588 0.00897 114 18207 0.00449

36 7182 0.00577 76 18816 0.00769 115 10700 0.00256

37 20075 0.01603 77 15900 0.00641 116 18760 0.00449

38 16863 0.01346 78 26272 0.01026 117 8226 0.00192

39 7227 0.00577 79 15057 0.00577 118 11252 0.00256

40 17283 0.01346
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– if we multiply each single cost by its occurrences and we associate at these results to the

vector of the probability distribution we will obtain the r.v. that gives the total cost for the

fixed state;

– after this process, we have 6 different couples of vectors, one for each state, that we then consider.

In each vector there are all the possible unitary costs for each considered state and the related

unitary costs. Now we can merge these 6 couple of vectors and we will obtain two vectors that

Table 7. Increasing total cost and its distribution function

Pos Value Probability Pos Value Probability Pos Value Probability

1 3708 0.00769 41 419418 0.476282 80 1081992 0.837821

2 19143 0.039103 42 435853 0.488462 81 1104131 0.846154

3 23571 0.046795 43 481353 0.521795 82 1121161 0.852564

4 34678 0.065385 44 496483 0.532692 83 1136542 0.858333

5 42518 0.078205 45 513678 0.544872 84 1147396 0.862179

6 48132 0.087179 46 534516 0.559615 85 1191052 0.877564

7 54596 0.097436 47 553022 0.571795 86 1213048 0.885256

8 71648 0.124359 48 569750 0.582692 87 1231988 0.891667

9 77416 0.133333 49 583526 0.591667 88 1247156 0.896795

10 83254 0.142308 50 600339 0.602564 89 1262388 0.901923

11 90198 0.152564 51 617679 0.613462 90 1273812 0.905769

12 98604 0.164103 52 632141 0.622436 91 1289796 0.910897

13 109208 0.178205 53 646617 0.63141 92 1303845 0.915385

14 114038 0.184615 54 663305 0.641667 93 1317915 0.919872

15 124884 0.198718 55 675845 0.649359 94 1325955 0.922436

16 129904 0.205128 56 690379 0.657692 95 1338075 0.926282

17 137002 0.214103 57 705121 0.666026 96 1352306 0.930769

18 146398 0.225641 58 718753 0.673718 97 1366593 0.935256

19 155022 0.235897 59 727897 0.678846 98 1380901 0.939744

20 166542 0.248718 60 739717 0.685256 99 1395839 0.944231

21 175838 0.258974 61 764980 0.698718 100 1408679 0.948077

22 187478 0.271795 62 775004 0.703846 101 1419659 0.951282

23 194089 0.278846 63 790664 0.711538 102 1426268 0.953205

24 204943 0.290385 64 806360 0.719231 103 1430674 0.954487

25 215815 0.301923 65 818150 0.725 104 1442294 0.957692

26 221915 0.308333 66 833044 0.732051 105 1456364 0.961538

27 239673 0.325 67 849664 0.739744 106 1461124 0.962821

28 256209 0.340385 68 879211 0.753205 107 1470664 0.965385

29 266023 0.349359 69 907411 0.766026 108 1484998 0.969231

30 273043 0.355769 70 915901 0.769872 109 1489958 0.970513

31 282885 0.364744 71 922976 0.773077 110 1507598 0.975

32 298417 0.378846 72 928636 0.775641 111 1520468 0.978205

33 309713 0.389103 73 944729 0.782692 112 1528220 0.980128

34 324248 0.401282 74 969257 0.792949 113 1543760 0.983974

35 333788 0.408974 75 990845 0.801923 114 1561967 0.988462

36 340970 0.414744 76 1009661 0.809615 115 1572667 0.991026

37 361045 0.430769 77 1025561 0.816026 116 1591427 0.995513

38 377908 0.444231 78 1051833 0.826282 117 1599653 0.997436

39 385135 0.45 79 1066890 0.832051 118 1610905 1

40 402418 0.463462
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will represent all the possible unitary costs that the company could have in the studied horizon

and their occurrences:

– If we divide each element of the vector of occurrences by the total number of the related

occurrences and we associate this probability distribution to the vector of all possible single

unitary costs we will obtain the r.v. of all the possible unitary costs;

– if we multiply each single cost by its occurrences and we associate the vector of the probability

distribution to these results, we will obtain the r.v. that gives the total costs for the considered

horizon time.

This last variable is the r.v of the claim reserving for the studied insurance company.

Once we have this r.v. we can compute any moment. So we can obtain the mean total cost of the

claims in the considered horizon, the related standard deviation, the skewness and the kurtosis.

Clearly it is possible to compute any quantile so any fixed value of the VaR.

Furthermore, the model gives a lot of information. For example if we want to know the claim costs

for each year of the considered horizon time it can be obtained applying the merging process to the

backward time and to the states which allows us to obtain the r.v. of the claim costs for each year.

We can obtain the mean cost of claims, the VaR, the standard deviation and so on. We could obtain

the r.v. for each year of the horizon time and each state merging with respect to the backward

recurrence time. We could also obtain the r.v. for each year and for each backward recurrence time

beginning the merging process on the states.

It is evident that by means of this model it is possible to obtain in a natural way results that the other

claim reserving models do not give. By means of these results the insurance company could decide

its industrial strategies or find its weaknesses.

Once again we would like to state that the IBNyR and the IBNeR claims will be evaluated

in a natural way and, from the point of view of semi-Markov process, without increasing
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Figure 3. Graphs of Table 7 with SCR and MCR
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the quantity of data that are necessary to the process to be applied, as clearly explained in D’Amico

et al. (2009).

Remark 13: We use a fixed risk free interest rate r but we could use an interest rate structure in the

same way and also a stochastic interest rate structure without any problems. Clearly with a stochastic

interest rate structure the simulation number of trajectories should be increased. &

7. An example of claims reserve distribution construction

7.1. The Program Inputs

To apply the model described in the two previous sections it is necessary to have the history of

each claim: when the claim incurred, when it was reported, when it was partially paid, what the

cost of this payment was and so on. Each insurance company has these data although it is not

always easy to obtain them. We are not able to have access to raw data of the claim stage

evolution so we were not able to construct the P and F matrices as they should be. We could only

obtain 4 years (2005–2008) of a table in which the claim history of one of the most important

Italian insurance companies is summarised. Each table shows all the not yet settled claims of the

past years that are in the company portfolio at the beginning of the year, together with the

information about the time elapsed since the claims. The reported claims in the year were also

provided. In this way, it was possible to have an idea of the IBNyR claims but not of their

evolution. We could also have computed the mean claims costs for each different case, but we

knew nothing about the claims cost distributions. The situation at the end of the year is also given

in the tables. For this reason it is possible to have an idea of claims evolution and the transitions

among the states.

To construct an example we started with this information and we constructed the transition

matrix P. The transition matrix was constructed in the correct way for a Markov process

because we knew the initial number of claims and which of them had changed their stage within

the year. Clearly, the transition matrix of the Markov chain is different by the transition matrix

embedded in the semi-Markov process. In order to understand this better, we report the
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Figure 4. The Markov chain graph of the claims stages
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graph connected to the matrix in Figure 4 and the claims stage definition already given in the

introductory section.

1. IBNyR claims (IBNR),

2. Open Claims (OC),

3. Partially Paid claims (PP),

4. Reopened Claims (RC),

5. Without Payment closed claims (CWP),

6. Closed Claims with payment (PCC),

The stages of the claims were chosen in function of the subdivision given in the tables. The

transitions were also constructed in function of the data that we got from the tables.

From the data, it results that the PCC is an absorbing state. We cut the possibility of transitions that

go from state 6 to the other states, but it is very simple to introduce it into the model. PCC being an

absorbing state we considered 5 starting states.

The F values were also obtained from our data attempting to use our information, in this case not

too many, in the best way. Regarding the r.v. claims costs we had the mean from data, aiming to

simplify we gave four other values; two smaller and two greater than the mean. After, we construct

the related probability distributions without any data but attempting to be rational.

We worked on a time interval of 13 years. We supposed that inflation was fixed at 1% and that the

risk-free interest rate was 2%.

The model takes into account the evolution of backward times for each year of the studied horizon

time in a natural way. However, for each year and for each starting state it is necessary to know the

number of related claims. More precisely, it is necessary to give as input the number of the claims

that are in the states 2, 3, 4 and 5 at time 0 (state 1 has at least 1 year of backward and state 6 is

supposed absorbing and it makes no sense to start from it) and we had these data. Furthermore, for

each starting state (state from 1 to 5) we should know how many claims have 1, 2,y,T backward

times (the time in which they entered in the state and did not move from it). For IBNyR stage we

had this information but not for the other states. Taking into account the IBNyR stage data and the

ratio among the claim numbers of IBNyR and of the claim numbers of the other states we also

constructed the number of claims for each backward time and for the 4 other starting states. These

inputs are reported in Table 8.

We have, starting from the year 1, 61 different kinds of situations and we constructed the same

initial trajectory number for each of them.

For example if we wished to simulate 1,000,000 trajectories for each kind of claim we divided

1,000,000 by the number of starting claims and we calculated how many trajectory repetitions we

needed to carry out for the case being studied.

For example we have, at year 0, 14853 claims in the state PP. The number of repetition to obtain at

least 1,000,000 trajectories is given by:

1000000

14853

	 

¼ 68
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In the end we divided the results by the number of trajectory repetitions (in our example 68) and we

could get the results for the case being studied and having the same reliability in all the cases because

we construct the same initial number of trajectories for all the cases.

Remark 14: We started with 1,000,000 trajectories for each case because we believe that in order

to have meaningful results for a complex phenomenon by means of Monte Carlo method it is

necessary to start with this number of trajectories. It is also possible to work with a smaller number

but if the Monte Carlo is performed with the iterative process described before, we think that the

convergence will be obtained with about the starting number of trajectories as ours. &

In Figures 5 and 6, the embedded Markov Chain and the waiting time distribution functions with

starting states 1 (IBNR) and 2 (OC) and arriving states 2, 3 (PP), 5 (CWP), 6 (PCC) are reported.

Table 8. Supposed claims number for each state and backward time

Bck-Time 1-IBNR 2-OC 3-PP 4-RC 5-CWP

0 0 296353 14853 19302 38693

1 20243 105945 5310 6900 13833

2 4592 37875 1898 2467 4945

3 1033 13540 679 882 1768

4 401 4840 243 315 632

5 194 1730 87 113 226

6 104 618 31 40 81

7 53 221 11 14 29

8 26 79 4 5 10

9 15 28 1 2 4

10 10 10 0 1 1

11 7 7 0 1 1

121 18 18 0 2 2

Figure 5. Markov Chain embedded in the SMP
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7.2. The Model Results

The model presented solves firstly, the DTHSMP with backward times and gives a lot of

information on the evolution of the claim stages. For example, it gives the probability that a

claim that has 3 years of backward time (the accident occurred 3 years before being reported),

starting from the IBNyR state will be paid after 4 years. We decided not to discuss these aspects

of our study preferring, instead, to concentrate on the reconstruction of the claim reserve

distribution.

The best way to describe how the model works is to briefly describe the algorithm and then to

explain the results that were obtained in the most important steps.

7.2.1. The algorithm description
We work in a discrete time environment and the year is the unit. This is normal because the

insurance companies usually work with this time scale.

First step: INPUTS.

Different inputs of the program:

– the state number,

– the time horizon length,

– the chosen approximation for Monte Carlo application. i.e. for each starting state and time two

simulations with the same number of trajectories will be done, each of them will construct a

random variable. If the values of the two r.v. are equal and the related probability functions differs

Figure 6. Waiting time d.f. with starting states IBNR and OC
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(euclidean distance between two vectors) less than the chosen approximation e, then we stop the

simulation process of the examined case.

– the maximum number of values that each evaluated r.v. can assume (it might be possible that an

r.v. can assume too many different values and it could give the program problems. This input

establishes the maximum number of values that the r.v. can assume),

– the state number from which it makes sense to start (number of non-absorbing states),

– the rate of interest and of inflation,

– the embedded Markov chain P,

– the matrix of waiting time d.f. F,

– the claim number for each starting state and backward time (Table 8)

– the r.v. of the costs for each time and transition.

Second step: DTHSMP with backward recurrence time evolution equation solution.

The program gives the first results that are:

– the solution of the evolution equation (3.4) the probabilities of which are defined in (3.1) (for

more details on this step see Corradi et al., 2004 and Stenberg et al., 2006).

– the probabilities that the next transition will be in a given state given that up to time t there were

no transitions. These probabilities are defined in this way:

jijðtÞ ¼ P Jnþ1 ¼ jjJn ¼ i; Tnþ1�Tn4t
� �

Both these pieces of information could be useful for insurance company managers. In this step the

Hi(l;t) and the bij(l;t) that will be used for the simulations are also computed.

Third step: Construction of the basic vectors with 0,1,y,T-1 backward recurrence time

For each year ks and starting state i and for each backward time h 5 0,1,y,T21, 2 vectors are

constructed: the hCi;ks
and hNi;ks

(see Tables 1, 2, 3.1, 3.2, 3.3).

– each element of the hNi;ks
contains the number of times in which a cost is obtained during all the

foregone Monte Carlo simulations including the repetitions,

– each element of the hCi;ks
contains a different cost. Different costs are in different vector positions,

– the hCi;ks
is ordered in increasing order.

This is the most important step of the algorithm and the iteration begins here in order to decide

when the simulation can be stopped.

This step was explained in the previous section and we would only add that, at the end of this step,

we will divide the vectors hNi;ks
by the number of the repetitions that were carried out for the

studied case obtaining hN
0

i;ks
. In this way, each element of vector hN

0

i;ks
will contain the number of

claims that occurred for the corresponding claim cost (in the example we did not consider the

repetitions). This information tells us how the number of initial claims corresponding to the given

starting state is subdivided in function of the possible claim costs. Multiplying the elements of hCi;ks

by hN
0

i;ks
we will obtain hC

0

i;ks
that gives the global cost for each value of the single claim costs.

Fulvio Gismondi et al.

52

https://doi.org/10.1017/S1748499511000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499511000315


Dividing hN
0

i;ks
by the sum of its elements we obtain the vector h ^

Ni;ks
that represents the evaluation

of the probability function related to the hC
0

i;ks
values.

Fourth step: Merging of the basic vectors in function of time

Now the vectors obtained in the third step are merged with regards to the time. We merge all the

vectors that have the same starting state and backward time. The merging is done on the values of

claim costs that are in increasing order. If there are two equal values the corresponding occurrences

are summed. The first year values will be merged with the ones of the second year. The obtained

vector will be merged with the third year values. The obtained vector will be merged with the fourth

year values and so on. At the end of this process we will have two vectors for each starting state and

for each backward time. In one vector there will be all the different values of the claim costs related

to the starting state and the considered backward time. In the other vector their occurrences. At the

end of this step we will obtain hCi and hN
0

i. We should point out that hN
0

i contains the sum of

occurrences up to the time T. Furthermore, the hC
0

i and h ^
N
0

i will be calculated. They will contain,

respectively, the total cost for each different value and the related probability function.

In particular if we look at the two vectors hC
0

IBNR and h ^
N
0

IBNR we have the r.v. of the incurred but

not reported claims that are reported after h years.

Fifth step: Merging of the vectors in function of the states

This is similar to the fourth step. After the merging on times, the merging is done on the states.

The final result will give hC and hN0. In this case the hC0 and h ^
N
0

will be also calculated.

Sixth step: Results in function of the backward time

Now we have two vectors for each backward recurrence time. We will carry out the last merging

process on the couple of vectors hC and hN0 so after this last process we will obtain the two vectors

C and N0 that respectively contain all the possible values of the unitary costs of claims and the

related occurrences. From these values we will obtain C0 and N̂
0

where:

C0 contains the total cost related at each unitary value. It will be obtained multiplying the elements

of C by the corresponding elements of N0

^
N
0

contains the probability mass distribution related to the elements of C0.

This couple of vector is the r.v. of the claim reserve of the studied car-insurance company. And it will

be possible to compute any moment of this and any quantile and so any VaR value.

Remark 15: It is possible to arrive to the vectors C0 and ^
N
0

by other ways i.e. merging before on states

and after on backward recurrence times obtaining before the final step the C
0

t and N̂
0

t, {t 5 1,y,T} that

will represent the r.v. of the costs that the insurance company has to pay for each year of the studied

horizon. In this case the couple of vectors will represent the r.v of the costs for each starting state.

Merging these couples and storing the results for each year of the time horizon will give the r.v. of

the total costs that the insurance company will have to pay up to a given year for the claims that

have been incurred but have not yet been settled.
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Finally, merging before on the horizon time and after on backward recurrence times the costs that

depend on the starting state C
0

i and ^
Ni

0

, iAE will be obtained. &

7.2.2. The claim reserving results
The presented model gives a lot of information on the claim reserve problem.

– Information obtained by the DTSMP with backward recurrence time evolution equation:

bfij(l;t): probability of being at time t in the state j given that at time 0 the system was in the state i

and that it arrived in this state l time before.

For example, bf1,6(3;5) gives the probability that an IBNyR claim which occurred 3 years before

and which was reported today will be closed with a payment within 5 years. In the IBNeR case
bf2,5(2;7) gives the probability that at time 0 an open claim that arrived in this state 2 years before

will be closed without payments within 7 years.

fij(t): probability of going into the state j with the next transition given that the system does not

move from the state i up to the time t. For example, f3,6(8) is the probability that a partially paid

claim without transition up to the year 8 will be closed with payment.

bij(l;t): probability of having a transition from state i to the state j exactly at time t given that at time

0 the system was in the state i and that it arrived in this state l time before, b1,3(4;6) is the

probability that a claim which occurred 4 years before being reported today will be partially paid

exactly after another 6 years.

Other information could be obtained by means of the evolution equation parameters but we think

that the presented cases are the most important.

– Information given by the simulation model:

The simulation model gives many and important results for the study of the claim reserve problem.

We know the situation at time 0.

1. The vectors hCi;ks
and hN

0

i;ks
give the different costs and the occurrences of each cost for each

backward time for each starting state and for each horizon time. If we divide the occurrences

that are in the hN
0

i;ks
by their sum we obtain the vector h ^

N
0

i;ks
that is the estimate of the

probability distribution for each time and starting state of the different costs that could be

possible to obtain at year ks starting from state i. If we put together hC
0

i;ks
and h ^

N
0

i;ks
we obtain the

r.v. of the total cost. Indeed, the hCi;ks
represents the possible unitary costs and so the possible

events, the h ^
N
0

i;ks
the r.v. probability distribution and hC

0

i;ks
the corresponding values

8h 5 0,1,y,12 and h represents the backward year.

Our algorithm permits us to obtain the total costs r.v for each year of the time horizon, for

each starting state and for each backward time. Furthermore, if we change some of the data from

Table 8 and we consider the corresponding probability distribution and the unitary costs to be

exact then we can reconstruct the evaluation hN
0

i;ks
of the unitary cost occurrences and construct

h ~C
0

i;ks
that represents another evaluation of the total cost r.v. values. It should be noted that

having reconstructed the r.v. we could, also at this level, reconstruct at any moment, any

variability measure and any risk evaluation.
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2. The vectors hCt; hN
0

t; h; t ¼ f0; 1; . . . ;Tg give the different unitary costs and their occurrences

for each backward time and year. As in the previous case, we can calculate h ^
Nt that represents

the probability distribution of the different costs that can be obtained for each year of our

horizon and each backward time. Now we concentrate our attention on h 5 1. If we multiply the

elements of 0Ct by 0N
0

t; t ¼ 1; . . . ;T we obtain 0C
0

t; t ¼ 1; . . . ;T. For example 0C
0

1 represents the

value of the last observed year and 0 ^
N1 its probability function. The increasing of costs, obtained

by the partial sums of the 0C
0

1, is denoted by 0 ��C
0

1We should mention that, in this case too, for

each of the evaluated elements,we have the distribution and we can construct all the moments,

the variability values and any risk measure.

As should also be noted, given the conditioning for the evaluation of the Monte Carlo semi-

Markov backward model and working as described before on hCt; hN
0

t; h; t ¼ f0;1; . . . ;Tg, the

IBNyR and the IBNeR with backward time are evaluated naturally.

3. 0C and 0N0 contain respectively all the different unitary costs that were made necessary by the

claims with no backward recurrence times and their occurrences. As explained in the previous

cases from 0N0 we can compute
0 ^
N
0

. Multiplying 0C by 0N0 we obtain 0C0. Each element of this

vector gives the total cost that the company should pay for the corresponding unitary cost. The

corresponding element of 0 ^
N gives the probability of this payment. We constructed a new r.v. Its

mean, 0 �C
0

, gives the mean cost of all claims that are in row one of Table 1. Furthermore, 0 ��C
0

will

give the increasing total costs.

It is also possible to evaluate hC and hN0, h 5 {1,y,T}. We can obtain, for these cases too, the

related r.v. It is possible to obtain any moment and risk measure in this case and the h ��C
0

; 8h ¼

1; . . . ;T too.

4. As observed before we will obtain the C and N0. The first vector contains all the unitary

costs that were encountered during the simulation steps. The related occurrences are in the

second vector. We can calculate the C0 by multiplying the elements of C by the corresponding

elements of N0. ^
N
0

will be obtained by dividing each of its elements by their sum. In this

way we obtain another r.v. in which their values are the total cost for each possible unitary

cost and the probability distribution of the total costs. We have constructed the claim

reserve r.v. We can construct any moment of these r.v., any variability index and any risk

measure.

7.2.3. An ‘‘almost’’ real life example
As already mentioned, we do not have the raw data necessary to construct the right input for

DTHSMP, we used the data that summarise 4 years (2005–2008) of claims of one of the most

important Italian insurance companies and were already described in section 7.1. By means of these

data we could give an evaluation of the input that is necessary for our model; hence ‘‘almost’’ in the

title of this subsection. We believe, however, that, with this example, we could show the possible

results that can be obtained by our model. In this section we give the results of the model obtained

by the data given in section 7.1.

Firstly, two matrices of the evolution equation solution are reported in Figures 7.1 and 7.2. The

matrix elements show that with different backward times different solutions are obtained.

Remark 16: The results are very different. For example in the IBNyR case, if we start with a

backward time 1 then, most of them, will be reported within the next year. On the other hand, if we

start with backward equal to 5, most of the not yet reported claims will remain in the IBNyR in the

next year. &
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In Figure 8.1 the total costs that come from Open Claim stage and the related d.f. are reported. This

graph shows the costs that the insurance company will pay considering all the claims that entered

into the system in the stage of Open Claim and the related d.f. Figure 8.2 reports the same but in the

case of IBNyR stage.

Figure 7.1. Evolution equation solution at time 5 with backward time 1

Figure 7.2. Evolution equation solution at time 5 with backward time 5
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Figure 8.1. Total costs that come from the open claim starting stage

Figure 8.2. Total costs that come from the IBNyR claim starting stage
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Figures 9.1 and 9.2 show the total costs that come from all the claims that were reported for year 1

and year 5 respectively. The related d.f. are also shown in the graph.

Figure 10 reports all the 338 different costs that were found during the simulation. The costs are in

increasing order. The pink graph gives the value of the cost and the blue graph the number of claims

Figure 9.1. Total costs that come from the reported claims in the year 1

Figure 9.2. Total costs that come from the reported claims in the year 5 with the related D.F.
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corresponding to the unitary costs. It should be mentioned that the most frequent case is the case of

no claim reimbursement; more than 1/3 of the cases.

The blue graph of Figure 11 is the same as Figure 10 while the pink graph shows the d.f. of different costs.

Figure 10. Total numbers and unitary costs of accidents in the 12 years

Figure 11. Unitary costs with the related distribution function
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Finally, Figure 12 shows the total cost and the related d.f. that is clearly the same as the previous figure.

In the figure the SCR and the MCR are outlined. The MCR is at a very low level but the fact that

more than 1/3 of the claims will be closed without any payment should be taken into account.

8. Conclusions

In this paper we have presented a totally new approach to the solution of the claim reserving

problem while taking into account the SCR and the MCR as defined by the new Solvency II rules.

The problem is solved following the evolution of the claim stages. It is supposed that this evolution

works under a discrete time semi-Markov hypotheses with initial backward recurrence time. The

algorithm used to get the solution and which permits the availability of all the possible probability

distributions derives from a Monte Carlo simulation model.

We do not think that this model is a ‘‘panacea’’ for the claim reserving model but we feel the paper

contributes significantly to the considerable scientific debate that is taking place at the moment.

We should mention that the introduction of backward time permits the taking into account the

IBNyR claims in a natural way. Indeed the initial backward time is attached to a stochastic process

which permits the consideration of the events that happened before the time in which the observed

system begins to be followed.

We could not get the data that are necessary in order to apply in a more satisfactory way a semi-

Markov process. For this reason some of the real life aspects could be developed better by using the

data that are necessary for the application of SMP.

Figure 12. Total cost and the related distribution function with SCR and MCR calculation
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In our opinion, in order to understand the full potential of a new model it is important to have the

correct data. In the same time we think that this paper gives an idea of the potential of our model.

In the near future we hope to obtain the real data that could serve as the correct input for our semi-

Markov model.

If we succeed in this we will apply our model and we would like to compare our results with the results

that can be obtained from the other models that are used for the reconstruction of the claim reserve

probability distribution.
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de l’Association Royale des Actuaries Belges, 63, 35–52.

Janssen, J. & De Dominicis, R. (1984). Finite non-homogeneous semi-Markov processes. Insurance:

Mathematics and Economics, 3, 157–165.

Janssen, J. & Manca, R. (1997). A realistic non-homogeneous stochastic pension funds model on

scenario basis. Scandinavian Actuarial Journal, 113–137.

Janssen, J. & Manca, R. (2006). Applied semi-Markov Processes. Springer Verlag, New York.

Janssen, J. & Manca, R. (2007). Semi-Markov risk models for Finance, Insurance and Reliability.

Springer, New York, NY, USA, 2007.

Janssen, J. & Manca, R. (2009). Outils de construction de modèles internes pour les assurances et
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