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Abstract Let E → B be a fibre bundle and let E′ → B be a vector bundle. Let G be a compact Lie
group acting fibre preservingly and freely on both E and E′ − 0, where 0 is the zero section of E′ → B.
Let f : E → E′ be a fibre-preserving G-equivariant map and let Zf = {x ∈ E | f(x) = 0} be the zero
set of f . In this paper we give a lower bound for the cohomological dimension of the zero set Zf when a
fibre of E → B is a real Stiefel manifold with a free Z/2-action or a complex Stiefel manifold with a free
S1-action. This generalizes a well-known result of Dold for sphere bundles equipped with free involutions.
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1. Introduction

There are many interesting results regarding continuous maps from spheres to Euclidean
spaces. One of them is the classical Borsuk–Ulam theorem. A simple version of the
theorem is the following.

Borsuk–Ulam theorem. If n � m, then for every continuous antipode-preserving
map f : Sn → Rm there exists a point x ∈ Sn such that f(x) = 0.

This simple-looking theorem has a host of extensions and generalizations, and many
interesting applications in various areas of mathematics. A comprehensive survey of sev-
eral topics centred around the Borsuk–Ulam theorem up to 1985 can be seen in [31].
A more recent account of various generalizations and applications of the theorem is the
recent monograph by Matoušek [23].

In this paper we aim to give a generalization of the Borsuk–Ulam theorem in the
setting of fibre bundles. This line of thought was initiated by the works of Dold [7],
Fadell [11], Izydorek [15], Jaworowski [17] and Nakaoka [25]. In [7], Dold proved the
following generalization of the Borsuk–Ulam theorem.
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Theorem 1.1. Let B be a paracompact space. Let E → B and E′ → B be vector
bundles of dimensions n and m, respectively. Let f : S(E) → E′ be a fibre-preserving
map such that f(−x) = −f(x) for all x ∈ S(E), where S(E) is the sphere bundle of
E → B. If n > m and Zf = {x ∈ S(E) | f(x) = 0}, then

cohom. dim(Zf ) � cohom. dim(B) + (n − m − 1).

Taking B to be a point yields the classical Borsuk–Ulam theorem. Considering a fibre
bundle as a parametrization of the fibre by the base, the above theorem is a parametrized
version of the following generalization of the Borsuk–Ulam theorem due to Yang [33,34].

Theorem 1.2. Let T be a free involution on Sn and let f : Sn → Rm be a continuous
map. If n � m and Af = {x ∈ Sn | f(x) = f(T (x))}, then

cohom. dim(Af ) � (n − m).

Dold [7] and Nakaoka [25] defined certain polynomials associated with fibre bundles
with free actions of circle and cyclic groups of prime order. These polynomials were called
characteristic polynomials and were used for obtaining parametrized Borsuk–Ulam-type
results. Mattos and Santos [5] obtained parametrized Borsuk–Ulam theorems for bundles
whose fibre has the mod p cohomology algebra (p odd) of a product of two spheres with
any free Z/p-action and for bundles whose fibre has the rational cohomology algebra
of a product of two spheres with any free S1-action. Jaworowski obtained parametrized
Borsuk–Ulam theorems for lens space bundles in [19] and for sphere bundles in [17,18,
20]. Singh [30] obtained parametrized Borsuk–Ulam theorems for fibre bundles whose
fibre has the mod 2 cohomology algebra of a real or a complex projective space with
any free involution. In a very recent paper, Mattos et al . [6] proved results of this kind
for fibre bundles whose fibre is a space of type (a, b). Here a space of type (a, b) is a
certain product or wedge of spheres and projective spaces depending on the parity of the
integers a and b. These spaces were introduced by Toda [32] and James [16], and have
been studied extensively in the context of transformation groups [8,9,28,29].

Let k and n be integers such that 1 � k < n. Then the real Stiefel manifold Vk(Rn) is
the space of orthonormal k-frames in Rn. Similarly, the complex Stiefel manifold Vk(Cn)
is defined as the space of orthonormal k-frames in Cn. Since V1(Rn) = Sn−1 and V1(Cn) =
S2n−1, we can view Stiefel manifolds as generalizations of spheres. It is worth mentioning
that Stiefel manifolds have been studied extensively in the context of transformation
groups. In particular, equivariant maps between Stiefel manifolds and Euclidean spaces
have been investigated in [13,14,21,26] and many other works. The purpose of this paper
is to prove parametrized versions of some of these results and generalize Dold’s theorem
to fibre bundles whose fibre is either a real Stiefel manifold with a free Z/2-action or a
complex Stiefel manifold with a free S1-action. For simplicity we refer to such bundles as
Stiefel bundles. Unlike Dold [7], our Stiefel bundles are not necessarily associated with
vector bundles.

For real Stiefel bundles we prove the following result.
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Theorem 1.3. Let Vk(Rn) ↪→ E → B be a fibre bundle with a fibre-preserving free
Z/2-action such that the induced action on each fibre is equivalent to the antipodal
action. Suppose that the quotient bundle Xk(Rn) ↪→ Ē → B admits a cohomology
extension of the fibre with respect to Z/2. Let Rm ↪→ E′ → B be a vector bundle with
a fibre-preserving Z/2-action that is free outside the zero section. Let f : E → E′ be a
fibre-preserving Z/2-equivariant map and let Zf = {x ∈ E | f(x) = 0}. If (n − k) � m,
then

cohom. dim(Zf ) � cohom. dim(B) + (n − k − m).

We prove the following result for complex Stiefel bundles.

Theorem 1.4. Let Vk(Cn) ↪→ E → B be a fibre bundle with a fibre-preserving free
S1-action such that the induced action on each fibre is equivalent to the standard action.
Suppose that the quotient bundle Xk(Cn) ↪→ Ē → B admits a cohomology extension
of the fibre with respect to Z/p, where p is a prime. Let Rm ↪→ E′ → B be an even-
dimensional vector bundle with a fibre-preserving S1-action that is free outside the zero
section, and let f : E → E′ be a fibre-preserving S1-equivariant map. If 2(n − k) � m,
then

cohom. dim(Zf ) � cohom. dim(B) + (2n − 2k − m + 1).

The notation in the theorems is explained in §§ 1 and 2. After the above introduc-
tion in § 1, we record some useful results in § 2. In § 3 we discuss free actions on Stiefel
manifolds and the cohomology structure of their orbit spaces. In § 4 we construct char-
acteristic polynomials for Stiefel bundles following Dold’s technique [7]. We prove our
main theorems in § 5. Finally, in § 6 we give a bound for the cohomological dimension of
the coincidence set of a map.

2. Some preliminaries

All spaces under consideration will be paracompact Hausdorff spaces and the cohomology
used will be the Čech cohomology. The Čech cohomology theory satisfies the continuity
property in the sense that if a cohomology class vanishes on a closed set, then it also
vanishes on a neighbourhood of that set. We refer the reader to [10, Chapter X] for
details on Čech cohomology. Throughout the paper the cyclic group Z/p of order p (p
any prime) will be used as a coefficient group in cohomology.

A space X is said to be of finite covering dimension if there is some integer n such that
for every open covering U of X there is an open refinement V of U that has order at most
n+1. The covering dimension of X, denoted by cov. dim(X), is defined as the smallest n

for which this statement holds. The cohomological dimension, denoted cohom. dim(X, A),
of a paracompact Hausdorff space X with respect to an abelian group A is the largest
positive integer n such that Hn(X, Y ; A) �= 0 for some closed subspace Y of X. We refer
the reader to [24] for basic results on dimension theory. We will also use the following
well-known result of Quillen [27].
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Theorem 2.1 (Quillen [27, Proposition A.11]). Let G be a compact Lie group
acting on a paracompact Hausdorff space X and let X/G be the orbit space. If A is any
abelian group, then

cohom. dim(X/G, A) � cohom. dim(X, A).

Let G be a compact Lie group acting continuously and freely on a space X. Then

X → X/G

is a principal G-bundle. Let
G ↪→ EG → BG

be the universal principal G-bundle, where BG is the classifying space of the group G.
Then we can take a classifying map

X/G → BG

for the principal G-bundle X → X/G. The group G acts diagonally on X × EG with
orbit space

XG = (X × EG)/G.

The projection X × EG → EG is G-equivariant and gives a fibration

X ↪→ XG → BG,

called the Borel fibration [3, Chapter IV]. The Leray–Serre spectral sequence {E∗,∗
r , dr}

associated with the Borel fibration converges to H∗(XG; Z/2) as an algebra, with

Ek,l
2 = Hk(BG; Hl(X; Z/2)),

the cohomology of the base BG with locally constant coefficients Hl(X; Z/2) twisted by
a canonical action of π1(BG) (see [22]).

We recall that BZ/2 = RP∞ and

H∗(BZ/2; Z/2) ∼= Z/2[s],

where s is a homogeneous element of degree 1. Similarly, BS1 = CP∞ and, for any
prime p,

H∗(BS1 ; Z/p) ∼= Z/p[t],

where t is a homogeneous element of degree 2.
According to Bredon [4, p. 372], a fibre bundle X ↪→ E → B is said to admit a

cohomology extension of the fibre with respect to Z/p if the inclusion of a typical fibre
X ↪→ E induces surjection in the cohomology

H∗(E, Z/p) � H∗(X, Z/p).

Clearly, any trivial bundle admits a cohomology extension of the fibre. Also, any projec-
tive space bundle admits a cohomology extension of the fibre (see § 4). Assuming that
a fibre bundle admits a cohomology extension of the fibre, we can use the well-known
Leray–Hirsch theorem [4, p. 372, Theorem 1.4] in the proofs of our theorems.
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3. Free actions on Stiefel manifolds and their quotients

For 1 � k < n let Vk(Rn) denote the real Stiefel manifold of orthonormal k-frames in
Rn. It is a compact connected Hausdorff smooth manifold with

dim(Vk(Rn)) = kn − k(k + 1)
2

.

Similarly, the complex Stiefel manifold Vk(Cn) defined as the space of orthonormal
k-frames in Cn is a compact connected Hausdorff smooth manifold with

dim(Vk(Cn)) = 2nk − k2.

The real Stiefel manifold Vk(Rn) admits the antipodal involution given by

(x1, . . . , xk) �→ (−x1, . . . ,−xk) for (x1, . . . , xk) ∈ Vk(Rn).

The quotient space, denoted by Xk(Rn), is known as a real projective Stiefel manifold.
Similarly, the complex Stiefel manifold Vk(Cn) admits the standard free S1-action given
by

(ζ, (z1, . . . , zk)) �→ (ζz1, . . . , ζzk) for ζ ∈ S1 and (z1, . . . , zk) ∈ Vk(Cn).

The quotient of Vk(Cn) by this action is known as a complex projective Stiefel manifold,
which we denote by Xk(Cn). Note that X1(Rn) = RPn−1 and X1(Cn) = CPn−1. Hence,
projective Stiefel manifolds can be thought of as generalizations of projective spaces.

Projective Stiefel manifolds are important objects of study in topology and their var-
ious invariants have been investigated in detail. One of their important properties is
that they classify sections of multiples of line bundles, which is useful in the immersion
problem of real projective spaces into Euclidean spaces.

Let p be a prime. Let V (v1, . . . , vl) denote any commutative and associative algebra
with unit over Z/p generated by the set {v1, . . . , vl} such that v2

j = v2j if 2j � l and
v2

j = 0 otherwise, and such that the set of square-free monomials {vε1
1 · · · vεl

l | εj ∈
{0, 1}} form an additive basis of V (v1, . . . , vl). Note that if p is an odd prime and all
the generators are of odd degree, then V (v1, . . . , vl) is the exterior algebra over Z/p

generated by {v1, . . . , vl}. Let the notation V (v1, . . . , vj−1, v̂j , vj+1, . . . , vl) mean that vj

is not included in the generating set.
For integers 1 � k � n, define

N(p, n, k) = min
{

j

∣∣∣∣ n − k + 1 � j � n and
(

n

j

)
�≡ 0 mod p

}
.

It is clear that n − k + 1 � N(p, n, k) � n and

N(p, n, n) � N(p, n, n − 1) � · · · � N(p, n, 2) � N(p, n, 1) = n.

This number has been computed in many cases in a very recent paper by Petrović and
Prvulović [26]. Using Lucas’s formula, they proved that N(p, n, k) = n for each k if and
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only if n = pr for some r. In a similar way, they proved that N(p, n, k) = n − k + 1 for
each k if and only if n = pr − 1 for some r.

Gitler and Handel [12] used the Leray–Serre spectral sequence associated with the
fibration

Vk(Rn) ↪→ Xk(Rn) → RP∞

to compute the mod 2 cohomology algebra of Xk(Rn). Following a similar approach,
Astey et al . [1] used the fibration

Vk(Cn) ↪→ Xk(Cn) → CP∞

to compute the mod p cohomology algebra of Xk(Cn). Their results are recorded in the
following theorems, which will be crucial for our proofs.

Theorem 3.1 (Gitler and Handel [12, Theorem 1.6]). Let 1 � k < n and
N = N(p, n, k). Then

H∗(Xk(Rn); Z/2) ∼=
Z/2[u]
〈uN 〉 ⊗ V (vn−k, . . . , vN−2, v̂N−1, vN , . . . , vn−1)

as an algebra, where deg(u) = 1 and deg(vj) = j.

Theorem 3.2 (Astey et al . [1, Theorems 1.1 and 1.2]). Let p be a prime, let
1 � k < n and let N = N(p, n, k). Then

H∗(Xk(Cn); Z/p) ∼=
Z/p[u]
〈uN 〉 ⊗ V (vn−k+1, . . . ,vN−1, v̂N ,vN+1, . . . ,vn)

as an algebra, where deg(u) = 2 and deg(vj) = 2j − 1.

4. Characteristic polynomials for bundles

Let X ↪→ E
π−→ B be a fibre bundle with a fibre-preserving free action of a compact Lie

group G such that the quotient bundle X̄ ↪→ Ē → B admits a cohomology extension
of the fibre with respect to Z/p. With this hypothesis, and following Dold [7], we define
characteristic polynomials for the bundles under consideration.

4.1. Characteristic polynomials for Vk(Rn) ↪→ E → B with Z/2-action

Let Z/2 act freely on Vk(Rn) by the antipodal map

(x1, . . . , xk) �→ (−x1, . . . ,−xk).

Then, by Theorem 3.1, H∗(Xk(Rn); Z/2) is a free graded algebra over Z/2 generated by
the set

{uiv
εn−k

n−k · · · vεN−2
N−2 vεN

N · · · vεn−1
n−1 | 0 � i � N − 1 and εj ∈ {0, 1}}
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subject to the relations

uN = 0,

v2
j = v2j for n − k � j �

⌊
n − 1

2

⌋
and j �= N − 1,

v2
j = 0 for

⌈
n − 1

2

⌉
� j � n − 1 and j �= N − 1.

Recall that u ∈ H1(Xk(Rn); Z/2) and vj ∈ Hj(Xk(Rn); Z/2). We assume that the
quotient bundle Xk(Rn) ↪→ Ē → B admits a cohomology extension of the fibre with
respect to Z/2. Therefore, by the Leray–Hirsch theorem there exist elements a ∈ H1(Ē)
and bj ∈ Hj(Ē) such that the restriction to a typical fibre

H∗(Ē) → H∗(Xk(Rn))

maps a �→ u and bj �→ vj . Observe that the homomorphism induced by π̄ : Ē → B makes
H∗(Ē) an H∗(B)-module with a basis

{aib
εn−k

n−k · · · bεN−2
N−2 bεN

N · · · bεn−1
n−1 | 0 � i � N − 1 and εj ∈ {0, 1}}.

For simplicity, we write

ε = (εn−k, . . . , εN−2, εN , . . . , εn−1) and bε = b
εn−k

n−k · · · bεN−2
N−2 bεN

N · · · bεn−1
n−1 .

Then a basis for the H∗(B)-module H∗(Ē) is

{aibε | 0 � i � N − 1 and ε ∈ {0, 1}k−1}. (4.1)

Consider the elements

aN ∈ HN (Ē),

b2
j + b2j ∈ H2j(Ē) for n − k � j �

⌊
n − 1

2

⌋
and j �= N − 1,

b2
j ∈ H2j(Ē) for

⌈
n − 1

2

⌉
� j � n − 1 and j �= N − 1.

These elements can be expressed uniquely in terms of the basis (4.1). Therefore, there
exist unique elements

w0
i,ε ∈ Hd0(i,ε)(B) for 0 � i � N − 1 and ε ∈ {0, 1}k−1,

and

wj
i,ε ∈ Hdj(i,ε)(B) for 0 � i � N − 1, ε ∈ {0, 1}k−1 and n − k � j �= N − 1 � n − 1,
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such that

aN =
∑
i,ε

w0
i,εa

ibε,

b2
j + b2j =

∑
i,ε

wj
i,εa

ibε for n − k � j �
⌊

n − 1
2

⌋
and j �= N − 1,

b2
j =

∑
i,ε

wj
i,εa

ibε for
⌈

n − 1
2

⌉
� j � n − 1 and j �= N − 1.

It is understood that

deg(w0
i,ε) = d0(i, ε) = N − deg(aibε)

and

deg(wj
i,ε) = dj(i, ε) = 2j − deg(aibε) for n − k � j �= N − 1 � n − 1.

Let x be an indeterminate of degree 1. For each n − k � j �= N − 1 � n − 1 let xj be an
indeterminate of degree j. For each ε = (εn−k, . . . , εN−2, εN , . . . , εn−1) ∈ {0, 1}k−1, set

xε = x
εn−k

n−k · · ·xεN−2
N−2 xεN

N · · ·xεn−1
n−1 .

Then the characteristic polynomials in the indeterminates

{x, xn−k, . . . , xN−2, xN , . . . , xn−1},

associated with the fibre bundle Vk(Rn) ↪→ E → B, are defined by

p0(x, xn−k, . . . , xN−2, xN , . . . , xn−1) = xN +
∑
i,ε

w0
i,εx

ixε,

pj(x, xn−k, . . . , xN−2, xN , . . . , xn−1) = x2
j + x2j +

∑
i,ε

wj
i,εx

ixε

for n − k � j �
⌊

n − 1
2

⌋
and j �= N − 1,

pj(x, xn−k, . . . , xN−2, xN , . . . , xn−1) = x2
j +

∑
i,ε

wj
i,εx

ixε

for
⌈

n − 1
2

⌉
� j � n − 1 and j �= N − 1.

On substituting the values for the indeterminates, we obtain the homomorphism of
H∗(B)-algebras

H∗(B)[x, xn−k, . . . , xN−2, xN , . . . , xn−1] → H∗(Ē)

given by

(x, xn−k, . . . , xN−2, xN , . . . , xn−1) �→ (a, bn−k, . . . , bN−2, bN , . . . , bn−1).
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Note that the kernel is the ideal 〈p0, pn−k, . . . , pN−2, pN , . . . , pn−1〉. Hence, we have the
following isomorphism of H∗(B)-algebras:

H∗(B)[x, xn−k, . . . , xN−2, xN , . . . , xn−1]
〈p0, pn−k, . . . , pN−2, pN , . . . , pn−1〉

∼= H∗(Ē). (4.2)

4.2. Characteristic polynomials for Rm ↪→ E′ → B with Z/2-action

We now define the characteristic polynomial associated with the vector bundle Rm ↪→
E′ → B equipped with a fibre preserving Z/2-action on E′ that is free outside the zero
section. The construction is originally due to Dold [7] and Nakaoka [25]. Let

Sm−1 ↪→ SE′ → B

be the associated sphere bundle. The free Z/2-action on SE′ gives the projective space
bundle

RPm−1 ↪→ SE′ → B

and the principal Z/2-bundle SE′ → SE′. It is well known that

H∗(RPm−1; Z/2) ∼=
Z/2[s′]
〈s′m〉 .

Here s′ = g∗(s), where s ∈ H1(BG) and g : RPm−1 → BG is a classifying map for the
principal Z/2-bundle Sm−1 → RPm−1. Let h : SE′ → BG be a classifying map for the
principal Z/2-bundle SE′ → SE′ and let c = h∗(s) ∈ H1(SE′). Then the Z/2-module
homomorphism

θ : H∗(RPm−1) → H∗(SE′)

given by s′ �→ c is a cohomology extension of the fibre. Therefore, by the Leray–Hirsch
theorem H∗(SE′) is an H∗(B)-module with a basis

{1, c, c2, . . . , cm−1}.

Hence, we can write cm ∈ Hm(SE′) as

cm = wm + wm−1c + · · · + w1c
m−1,

where the wi ∈ Hi(B) are unique elements. Now the characteristic polynomial in the
indeterminate x of degree 1 associated with Rm ↪→ E′ → B is defined as

p(x) = wm + wm−1x + · · · + w1x
m−1 + xm.

As earlier, the evaluation map x �→ c gives the following isomorphism of H∗(B)-algebras:

H∗(B)[x]
〈p(x)〉

∼= H∗(SE′).
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4.3. Characteristic polynomials for Vk(Cn) ↪→ E → B with S1-action

Let S1 act freely on Vk(Cn) in the standard way

(ζ, (z1, . . . , zk)) �→ (ζz1, . . . , ζzk) for ζ ∈ S1 and (z1, . . . , zk) ∈ Vk(Cn).

Then, by Theorem 3.2, H∗(Xk(Cn); Z/p) is a free graded algebra over Z/p generated by
the set

{uiv
εn−k+1
n−k+1 · · ·vεN−1

N−1 v
εN+1
N+1 · · ·vεn

n | 0 � i � N − 1 and εj ∈ {0, 1}}

subject to the following relations depending on the parity of p. For p even, the relations

uN = 0,

v2
j = v2j for n − k + 1 � j � � 1

2n� and j �= N,

v2
j = 0 for  1

2n� � j � n and j �= N

hold, and for p odd the relations

uN = 0,

v2
j = 0 for n − k + 1 � j �= N � n

hold.
We assume that the quotient bundle Xk(Cn) ↪→ Ē → B admits a cohom-

ology extension of the fibre with respect to Z/p. Since u ∈ H2(Xk(Cn); Z/p) and
vj ∈ H2j−1(Xk(Cn); Z/p), by the Leray–Hirsch theorem there exist elements a ∈ H2(Ē)
and bj ∈ H2j−1(Ē) such that the restriction to a typical fibre

H∗(Ē) → H∗(Xk(Cn))

maps a �→ u and bj �→ vj . The homomorphism induced by π̄ : Ē → B makes H∗(Ē) an
H∗(B)-module with a basis

{aib
εn−k+1
n−k+1 · · · bεN−1

N−1 b
εN+1
N+1 · · · bεn

n | 0 � i � N − 1 and εj ∈ {0, 1}}.

We simplify the notation by setting

ε = (εn−k+1, . . . , εN−1, εN+1, . . . , εn) and bε = b
εn−k+1
n−k+1 · · · bεN−1

N−1 b
εN+1
N+1 · · · bεn

n .

Then a basis for the H∗(B)-module H∗(Ē) is

{aibε | 0 � i � N − 1 and ε ∈ {0, 1}k−1}. (4.3)

The elements aN ∈ H2N (Ē), b2
j +b2j ∈ H4j−2(Ē) and b2

j ∈ H4j−2(Ē) can be expressed
uniquely in terms of the basis (4.3). Therefore, there exist unique elements

w0
i,ε ∈ Hd0(i,ε)(B) for 0 � i � N − 1 and ε ∈ {0, 1}k−1,
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and

wj
i,ε ∈ Hdj(i,ε)(B) for 0 � i � N − 1, ε ∈ {0, 1}k−1 and n − k + 1 � j �= N � n,

such that for p even

aN =
∑
i,ε

w0
i,εa

ibε,

b2
j + b2j =

∑
i,ε

wj
i,εa

ibε for n − k + 1 � j � � 1
2n� and j �= N,

b2
j =

∑
i,ε

wj
i,εa

ibε for  1
2n� � j � n and j �= N,

and for p odd

aN =
∑
i,ε

w0
i,εa

ibε,

b2
j =

∑
i,ε

wj
i,εa

ibε for n − k + 1 � j �= N � n.

Let y be an indeterminate of degree 2. For each n − k + 1 � j �= N � n, let yj be
an indeterminate of degree 2j − 1. And for each ε = (εn−k+1, . . . , εN−1, εN+1, . . . , εn) ∈
{0, 1}k−1 set

yε = y
εn−k+1
n−k+1 · · · yεN−1

N−1 y
εN+1
N+1 · · · yεn

n .

Then the characteristic polynomials in the indeterminates

{y, yn−k+1, . . . , yN−1, yN+1, . . . , yn},

associated with the fibre bundle Vk(Cn) ↪→ E → B, for p even are defined by

p0(y, yn−k+1, . . . , yN−1, yN+1, . . . , yn) = yN −
∑
i,ε

w0
i,εy

iyε,

pj(y, yn−k+1, . . . , yN−1, yN+1, . . . , yn) = y2
j + y2j −

∑
i,ε

wj
i,εy

iyε

for n − k + 1 � j � � 1
2n� and j �= N,

pj(y, yn−k+1, . . . , yN−1, yN+1, . . . , yn) = y2
j −

∑
i,ε

wj
i,εy

iyε

for  1
2n� � j � n and j �= N,

and for p odd are defined by

p0(y, yn−k+1, . . . , yN−1, yN+1, . . . , yn) = yN −
∑
i,ε

w0
i,εy

iyε,

pj(y, yn−k+1, . . . , yN−1, yN+1, . . . , yn) = y2
j −

∑
i,ε

wj
i,εy

iyε

for n − k + 1 � j �= N � n.
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The evaluation map

(y, yn−k+1, . . . , yN−1, yN+1, . . . , yn) �→ (a, bn−k+1, . . . , bN−1, bN+1, . . . , bn)

defines a homomorphism of H∗(B)-algebras

H∗(B)[y, yn−k+1, . . . , yN−1, yN+1, . . . , yn] → H∗(Ē),

whose kernel is 〈p0,pn−k+1, . . . ,pN−1,pN+1, . . . ,pn〉. Hence, we have the following iso-
morphism of H∗(B)-algebras:

H∗(B)[y, yn−k+1, . . . , yN−1, yN+1, . . . , yn]
〈p0,pn−k+1, . . . ,pN−1,pN+1, . . . ,pn〉

∼= H∗(Ē). (4.4)

4.4. Characteristic polynomials for Rm ↪→ E′ → B with S1-action

Just as in the real case, we can define the characteristic polynomial associated with
the vector bundle Rm ↪→ E′ → B equipped with a fibre-preserving S1-action that is free
outside the zero section. Recall that m is even here. Let

Sm−1 ↪→ SE′ → B

be the associated sphere bundle and let

CP (m−2)/2 ↪→ SE′ → B

be the projective space bundle obtained by free S1-action. We also obtain the principal
bundle

S1 ↪→ SE′ → SE′.

It is known that

H∗(CP (m−2)/2; Z/p) ∼=
Z/p[t′]
〈t′m/2〉

.

Here t′ = g∗(t), where t ∈ H2(BG) and g : CP (m−2)/2 → BG is a classifying map for
the principal bundle S1 ↪→ Sm−1 → CP (m−2)/2. Let h : SE′ → BG be a classifying map
for the principal bundle S1 ↪→ SE′ → SE′, and let c = h∗(t) ∈ H2(SE′). Then the
Z/p-module homomorphism

θ : H∗(CP (m−2)/2) → H∗(SE′)

given by t′ �→ c is a cohomology extension of the fibre. Therefore, H∗(SE′) is an
H∗(B)-module with a basis

{1, c, c2, . . . , c(m−2)/2},

and we can write cm/2 ∈ Hm(SE′) as

cm/2 = wm + wm−2c + · · · + w2c
(m−2)/2,
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where the wi ∈ Hi(B) are unique elements. Now the characteristic polynomial in the
indeterminate y of degree 2 associated with Rm ↪→ E′ → B is defined as

p(y) = wm + wm−2y + · · · + w2y
(m−2)/2 + ym/2.

The evaluation map y �→ c gives the isomorphism of H∗(B)-algebras

H∗(B)[y]
〈p(y)〉

∼= H∗(SE′).

5. Proofs of theorems

Let X ↪→ E → B be a fibre bundle with a fibre-preserving free action by a compact Lie
group G such that the quotient bundle X̄ ↪→ Ē → B admits a cohomology extension of
the fibre. Let Rm ↪→ E′ → B be a vector bundle with a fibre-preserving G-action on E′

that is free outside the zero section. For a fibre-preserving G-equivariant map

f : E → E′

define the zero set of f as
Zf = {x ∈ E | f(x) = 0}.

Since the set Zf is G-invariant, we denote by

Z̄f = Zf/G

the quotient of Zf by G. For brevity, let X denote a collection of indeterminates, and let
P(X ) denote a collection of polynomials on X . In § 4 we defined characteristic polynomials
P(X ) in H∗(B)[X ] associated with certain fibre bundles, and showed that

H∗(B)[X ]
〈P(X )〉

∼= H∗(Ē)

as H∗(B)-algebras. Therefore, each polynomial q(X ) in H∗(B)[X ] defines an element of
H∗(Ē), which we denote by q(X )|Ē . Let q(X )|Z̄f

denote the image of q(X )|Ē under the
homomorphism

H∗(Ē) → H∗(Z̄f )

induced by the inclusion Z̄f ↪→ Ē. Next we prove our theorems for real and complex
Stiefel bundles.

5.1. The real case

We set

X = {x, xn−k, . . . , xN−2, xN , . . . , xn−1} and J = {0, n − k, . . . , N − 2, N, . . . , n − 1}.

With this notation, following Dold [7], we prove the following results for real Stiefel
bundles.
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Theorem 5.1. Let Vk(Rn) ↪→ E → B be a fibre bundle with a fibre-preserving free
Z/2-action such that the induced action on each fibre is the antipodal action. Suppose
that the quotient bundle Xk(Rn) ↪→ Ē → B admits a cohomology extension of the fibre
with respect to Z/2. Let Rm ↪→ E′ → B be a vector bundle with a fibre-preserving
Z/2-action that is free outside the zero section and let f : E → E′ be a fibre-preserving
Z/2-equivariant map. If q(X ) in H∗(B)[X ] is a polynomial such that q(X )|Z̄f

= 0, then
there exist polynomials {rj(X )}j∈J in H∗(B)[X ] such that

q(X )p(x) =
∑
j∈J

rj(X )pj(X ).

Proof. Let q(X ) in H∗(B)[X ] be such that q(X )|Z̄f
= 0. By the continuity property

of the Čech cohomology theory, there exists an open subset V of Ē such that Z̄f ⊂ V

and q(X )|V = 0. Let
j1 : Ē ↪→ (Ē, V )

be the natural inclusion. Then we have the following long exact cohomology sequence for
the pair (Ē, V ),

· · · → H∗(Ē, V )
j∗
1−→ H∗(Ē) → H∗(V ) → H∗(Ē, V ) → · · · .

Since q(X )|V = 0, there exists an element μ ∈ H∗(Ē, V ) such that j∗
1 (μ) = q(X )|Ē . Let

f̄ : Ē − Z̄f → E′ − 0

be the map induced by f on passing to the quotient. Then the induced map in cohomology

f̄∗ : H∗(E′ − 0) → H∗(Ē − Z̄f )

is an H∗(B)-algebra homomorphism. Recall that p(c) = 0. Therefore,

p(x)|Ē−Z̄f
= p(a) = p(f̄∗(c)) = f̄∗(p(c)) = 0.

Now consider the pair (Ē, Ē − Z̄f ). Let

j2 : Ē ↪→ (Ē, Ē − Z̄f )

be the natural inclusion. Then we have the following long exact cohomology sequence

· · · → H∗(Ē, Ē − Z̄f )
j∗
2−→ H∗(Ē) → H∗(Ē − Z̄f ) → H∗(Ē, Ē − Z̄f ) → · · · .

Since p(x)|Ē−Z̄f
= 0, there exists an element η ∈ H∗(Ē, Ē−Zf ) such that j∗

2 (η) = p(x)|Ē .
Now, by naturality of the cup product, we get

q(X )p(x)|Ē = j∗
1 (μ)j∗

2 (η) = j∗(μη).

Observe that
μη ∈ H∗(Ē, V ∪ (Ē − Z̄f )) = H∗(Ē, Ē) = 0,
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and hence q(X )p(x)|Ē = 0. Therefore, by (4.2), there exist polynomials

r0(X ), rn−k(X ), . . . , rN−2(X ), rN (X ), . . . , rn−1(X )

in H∗(B)[X ] such that
q(X )p(x) =

∑
j∈J

rj(X )pj(X ).

�

As a consequence of the above theorem, we obtain the announced parametrized
Borsuk–Ulam theorem (Theorem 1.3) for real Stiefel bundles with free Z/2-action.

Proof of Theorem 1.3. Let n − k � m. We first show that the H∗(B)-algebra
homomorphism

n−k−m⊕
i=0

H∗(B)xi → H∗(Z̄f )

given by xi → xi|Z̄f
is a monomorphism. Let q(x) in H∗(B)[X ] be a non-zero polynomial

such that deg(q(x)) � n − k − m. If q(x)|Z̄f
= 0, then by Theorem 5.1 we have

q(x)p(x) =
∑
j∈J

rj(X )pj(X ).

Note that deg(p(x)) = m, deg(p0(X )) = N and deg(pj(X )) = 2j for each n − k � j �=
N − 1 � n − 1. Since

deg(q(x)) + m = max
j∈J

{deg(rj(X )) + deg(pj(X ))},

we get
deg(q(x)) + m � deg(r0(X )) + deg(p0(X )) � deg(p0(X )) = N.

This implies that deg(q(x)) � N −m � n−k−m+1, which is a contradiction. Therefore,
q(x)|Z̄f

�= 0 and
n−k−m⊕

i=0

H∗(B)xi → H∗(Z̄f )

is a monomorphism. This together with Theorem 2.1 gives

cohom. dim(Zf ) � cohom. dim(B) + (n − k − m).

This proves the theorem. �

Note that Dold [7] considered sphere bundles associated with vector bundles. Taking
k = 1 in Theorem 1.3 gives a result for arbitrary sphere bundles. In particular, we obtain
Dold’s theorem (Theorem 1.1).

Taking B to be a point yields an extension of a result of Komiya [21, Corollary 5.7]
and Hara [13, Corollary 4.4].
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Corollary 5.2. Let Z/2 act antipodally on both Vk(Rn) and Rm and let f : Vk(Rn) →
Rm be a Z/2-equivariant map. If (n − k) � m, then

cohom. dim(Zf ) � (n − k − m).

Remark 5.3. It is worth mentioning that the bound in Theorem 1.3 can be improved
for k > 1 by taking the polynomial rj(X ) of maximal degree.

5.2. The complex case

Setting

X = {y, yn−k+1, . . . , yN−1, yN+1, . . . , yn} and J = {0, n−k+1, . . . , N−1, N+1, . . . , n},

and using similar hypotheses and notation to the real case, we prove the following results
for complex Stiefel bundles.

Theorem 5.4. Let Vk(Cn) ↪→ E → B be a fibre bundle with a fibre-preserving free
S1-action such that the induced action on each fibre is the standard action. Suppose
that the quotient bundle Xk(Cn) ↪→ Ē → B admits a cohomology extension of the
fibre. Let Rm ↪→ E′ → B be an even-dimensional vector bundle with a fibre-preserving
S1-action that is free outside the zero section, and let f : E → E′ be a fibre-preserving
S1-equivariant map. If q(y) in H∗(B)[X ] is a polynomial such that q(y)|Z̄f

= 0, then
there exist polynomials {rj(X )}j∈J in H∗(B)[X ] such that

q(y)p(y) =
∑
j∈J

rj(X )pj(X ).

Proof. The proof is similar to that of Theorem 5.1, and hence left to the reader. �

As a consequence, we obtain the parametrized Borsuk–Ulam theorem for complex
Stiefel bundles (Theorem 1.4).

Proof of Theorem 1.4. Let q(y) ∈ H∗(B)[X ] be a non-zero polynomial such that
deg(q(y)) � (2n − 2k − m + 1). Suppose that q(y)|Z̄f

= 0. Then, by Theorem 5.4, there
exist polynomials {rj(X )}j∈J in H∗(B)[X ] such that

q(y)p(y) =
∑
j∈J

rj(X )pj(X ).

Note that deg(p(y)) = m, deg(p0(X )) = 2N and deg(pj(X )) = 4j−2 for each n−k+1 �
j �= N � n. Now

deg(q(y)) + m = max
j∈J

{deg(rj(X )) + deg(pj(X ))}

implies that

deg(q(y)) + m � deg(r0(X )) + deg(p0(X )) � deg(p0(X )) = 2N.
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This furthermore implies that deg(q(y)) � 2N − m � 2n − 2k − m + 2, which is a
contradiction. Therefore, q(y)|Z̄f

�= 0 and the homomorphism

(2n−2k−m+1)/2⊕
i=0

H∗(B)yi → H∗(Z̄f )

is a monomorphism. This together with Theorem 2.1 gives the bound

cohom. dim(Zf ) � cohom. dim(B) + (2n − 2k − m + 1).

This proves the theorem. �

Taking B to be a point yields the following extension of a result of Hara [13, Corol-
lary 4.10].

Corollary 5.5. Let S1 act in the standard way on both Vk(Cn) and Cm, and let
f : Vk(Cn) → Cm be an S1-equivariant map. If (n − k) � m, then

cohom. dim(Zf ) � (2n − 2k − m + 1).

Remark 5.6. As in the real case, the bound in Theorem 1.4 can be improved for
k > 1 by choosing the polynomial rj(X ) of maximal degree.

6. Cohomological dimension of coincidence point set

Let Vk(Rn) ↪→ E → B be a fibre bundle with a fibre-preserving free Z/2-action such
that the induced action on each fibre is the antipodal action. Suppose that the quotient
bundle Xk(Rn) ↪→ Ē → B admits a cohomology extension of the fibre. Let E′ → B be
an m-dimensional vector bundle and let f : E → E′ be a fibre-preserving map. Here we
do not assume that E′ has an involution. If T : E → E is a generator of the Z/2-action,
then the Z/2-coincidence set of f is defined as

Af = {x ∈ E | f(x) = f(T (x))}.

Notice that Z/2 act on V = E′⊕E′ by permuting the coordinates, and the m-dimensional
diagonal sub-bundle D of V is the fixed-point set of this action. Furthermore, the orthogo-
nal complement D⊥ of D is also an m-dimensional subbundle of V , and the induced action
on D⊥ is free outside the zero section. Consider the Z/2-equivariant map F : E → V given
by

F (x) = (f(x), f(T (x))).

The linear projection along the diagonal defines a Z/2-equivariant fibre-preserving map

g : V → D⊥

such that g(V − D) ⊂ D⊥ − 0. Let h be the composition

(E, E − Af ) F−→ (V, V − D)
g−→ (D⊥, D⊥ − 0).
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Then h : E → D⊥ is a fibre-preserving Z/2-equivariant map and

Zh = h−1(0) = F−1(D) = Af .

Now applying Theorem 1.3 to h gives the following theorem.

Theorem 6.1. Let Vk(Rn) ↪→ E → B be a fibre bundle with a fibre-preserving free
Z/2-action such that the induced action on each fibre is the antipodal action. Suppose
that the quotient bundle Xk(Rn) ↪→ Ē → B admits a cohomology extension of the fibre.
Let E′ → B be an m-dimensional vector bundle and let f : E → E′ be a fibre-preserving
map. If (n − k) � m, then

cohom. dim(Af ) � cohom. dim(B) + (n − k − m).

We conclude by giving a bound for the covering dimension of the coincidence set.
Let X be a space with a G = Z/2 action. Consider the Leray–Serre spectral sequence
{E∗,∗

r , dr} associated with the Borel fibration X ↪→ XG → BG. In [35], Volovikov defined
a numerical index of the involution, denoted by i(X), to be the integer s such that

E∗,0
2 = · · · = E∗,0

s �= E∗,0
s+1.

The index i(X) is defined to be ∞ if

E∗,0
2 = · · · = E∗,0

∞ .

In [33] Yang also defined a numerical index for a space X with a free involution, which
we denote by Yang. index(X). Among other things, Yang proved the following important
result.

Theorem 6.2 (Yang [33, Theorem 4.1]). Let T : X → X be a free involution and
let f : X → Rm be a continuous map. If Yang. index(X) � m, then

cov. dim(Af ) � Yang. index(X) − m.

Volovikov [35] observed that for a space X with a free Z/2-action the two invariants
are related as follows:

i(X) = Yang. index(X) + 1.

Using this, we prove the following result.

Theorem 6.3. Let Z/2 act antipodally on Vk(Rn) and let f : Vk(Rn) → Rm be a
continuous map. If (N − 1) � m, then

cov. dim(Af ) � (n − k − m).

Proof. It was proved by Borel [2] that

H∗(Vk(Rn); Z/2) ∼= V (vn−k, . . . , vn−1),
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where deg(vj) = j. Now consider the Leray–Serre spectral sequence associated with the
Borel fibration

Vk(Rn) ↪→ Vk(Rn)Z/2 → RP∞.

It was proved by Gitler and Handel [12, Theorem 1.6] that the first element of
H∗(Vk(Rn); Z/2) that does not survive to E∞ is vN−1. As a consequence,

E∗,0
2 = · · · = E∗,0

N �= E∗,0
N+1.

Hence, i(Vk(Rn)) = N and Yang. index(Vk(Rn)) = N − 1. If (N − 1) � m, then Yang’s
theorem gives the desired bound cov. dim(Af ) � (n − k − m). �
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