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Abstract For each group G having an infinite normal subgroup with the relative property (T) (e.g. G =
H × K, with H infinite with property (T) and K arbitrary) and each countable abelian group Λ we
construct free ergodic measure-preserving actions σΛ of G on the probability space such that the first
cohomology group of σΛ, H1(σΛ, G), is equal to Char(G)× Λ. We deduce that G has uncountably many
non-stably orbit-equivalent actions. We also calculate 1-cohomology groups and show existence of ‘many’
non-stably orbit-equivalent actions for free products of groups as above.
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0. Introduction

Let G be a countable discrete group and σ : G → Aut(X, µ) a free measure preserving
(m.p.) action of G on the probability space (X, µ), which we also view as an integral
preserving action of G on the abelian von Neumann algebra A = L∞(X, µ). A 1-cocycle
for (σ, G) is a map w : G → U(A), satisfying wgσg(wh) = wgh, ∀g, h ∈ G, where
U(A) = {u ∈ A | uu∗ = 1} denotes the group of unitary elements in A. The set of 1-
cocycles for σ is denoted Z 1(σ, G) and is endowed with the Polish group structure given by
point multiplication and pointwise convergence in the norm ‖·‖2. The 1-cohomology group
of σ, H1(σ, G), is the quotient of Z 1(σ, G) by the subgroup of coboundaries B1(σ, G) =
{σg(u)u∗ | u ∈ U(A)}.

The group H1(σ, G) was first mentioned by Singer [Si55], related to his study of
automorphisms of group measure space von Neumann algebras [MvN43]. Feldman and
Moore extended the definition to countable, measurable equivalence relations and pointed
out that H1(σ, G) depends only on the orbit-equivalence (OE) class of (σ, G) [FM77-1,
FM77-2], thus being an OE invariant for actions. Schmidt showed in [S80,S81] that
H1(σ, G) is Polish (i.e. B1(σ, G) closed in Z 1(σ, G)) if and only if σ is strongly ergodic, i.e.
has no non-trivial asymptotically invariant sequences, and noticed that Bernoulli actions
of non-amenable groups are always strongly ergodic (so their H1 group is Polish). On the
other hand, by [D63,OW80,CFW81] all free ergodic m.p. actions of infinite amenable
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groups are OE and non-strongly ergodic, thus having all the same (‘wild’) H1-group.
Results of Connes and Weiss in [CW80] and [S81] show that, for a fixed G, H1(σ, G) is
countable discrete ∀σ if and only if G has the property (T) of Kazhdan.

Moore produced the first examples of free ergodic m.p. actions of infinite groups with
trivial 1-cohomology (see [M82, p. 220]; note that the groups in these examples have
the property (T) of Kazhdan). Then in [Ge87] Gefter showed that if a Kazhdan group
G can be densely embedded into a compact simply connected semi-simple Lie group
G and K ⊂ G is a closed subgroup, then the action of G by left translation on G/K

has H1-group equal to Char(G × K) (the character group of G × K). But these initial
calculations were not followed up upon and, in fact, after an intense activity during 1977–
1987 [FM77-1,FM77-2,OW80,S80,S81,CFW81,CW80,Z84,Ge87,GeGo88,P86,
JS87], the whole area of orbit-equivalence ergodic theory went through more than a
decade of relative neglect.

In fact, even after the spectacular revival of this subject in recent years [Fu99,G00,
G02,Hj02,P01,P02,MoSh06,GP05,P04], 1-cohomology was not really exploited as
a tool to distinguish between orbit-inequivalent actions of groups. And this despite a new
calculation of H1-groups was obtained in [P01,PSa03], this time for Bernoulli actions
σ of arbitrary property (T) groups, more generally for groups G having infinite normal
subgroups with the relative property (T) of Kazhdan and Margulis (called weakly rigid
in [P01, P03, PSa03]). Thus, it was shown in [PSa03] that for such (σ, G) one has
H1(σ, G) = Char(G).

In this paper we consider an even larger class of groups, denoted wT , generalizing the
weakly rigid groups of [P01,PSa03], and for each G ∈ wT calculate H1(σ′, G) for a large
family of quotients σ′ : G → Aut(X ′, µ′) of the Bernoulli actions σ of G on (X, µ) =∏

g∈G(T, λ)g. Thus, our main result shows that given any countable discrete abelian group
Λ there exists a free ergodic action σΛ of G implemented by the restriction of σ to an
appropriate σ-invariant subalgebra of L∞(X, µ), such that H1(σΛ, G) = Char(G) × Λ as
topological groups. We also calculate the 1-cohomology for similar quotients of Bernoulli
actions of free products of groups in wT . We deduce that each G ∈ wT , or G a free
product of infinite Kazhdan groups, has a continuous family of free ergodic m.p. actions
with mutually non-isomorphic H1-groups, and which are thus OE inequivalent.

These results, together with prior ones in [Ge87,PSa03], establish 1-cohomology as
an effective OE invariant, adding to the existing pool of methods used to differentiate
orbit-inequivalent actions [CoZ89,Fu99,G00,G02,MoSh06]. Rather than depending
on the group only, like the cost or �2-Betti numbers in [G00, G02], the H1-invariant
depends also on the action, proving particularly useful in distinguishing large classes of
orbit-inequivalent actions of the same group.

Before stating the results in more details, let us define the class wT more precisely.
It consists of all countable discrete groups G that have an infinite subgroup H with the
following properties.

(a) H ⊂ G has the relative property (T) of Kazhdan and Margulis (see [Ma82,
dHV89]), i.e. all unitary representations of G that weakly contain the trivial repre-
sentation of G must contain the trivial representation of H (when restricted to H).
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(b) H is wq-normal in G, i.e. given any intermediate subgroup H ⊂ K � G there
exists g ∈ G \ K with gKg−1 ∩ K infinite (see Definition 2.3 for other equivalent
characterizations of this property).

For instance, if there exist finitely many subgroups H = H0 ⊂ H1 ⊂ · · · ⊂ Hn = G with
all consecutive inclusions Hj ⊂ Hj+1 normal, then H ⊂ G is wq-normal. Thus, weakly
rigid groups are in the class wT .

Theorem 0.1. Let G ∈ wT . Let σ be a Bernoulli action of G on the probability space
(X, µ) =

∏
g(X0, µ0)g and β a free action of a group Γ on (X, µ) that commutes with σ

and such that the restriction σΓ of σ to the fixed point algebra {a ∈ L∞(X, µ) | βh(a) =
a, ∀h ∈ Γ} is still a free action of G. Denote by Charβ(Γ ) the group of characters γ

on Γ for which there exist unitary elements u ∈ L∞(X, µ) with βh(u) = γ(h)u, ∀h ∈ Γ .
Then H1(σΓ , G) = Char(G) × Charβ(Γ ) as topological groups.

Since any countable abelian group Λ can be realized as Charβ(Γ ), for some appropriate
action β of a group Γ commuting with the Bernoulli action σ, and noticing that H1(σ, G)
are even invariant to stable orbit equivalence, we deduce the following corollary.

Corollary 0.2. Let G ∈ wT . Given any countable discrete abelian group Λ there exists
a free ergodic m.p. action σΛ of G on the standard non-atomic probability space such
that H1(σΛ, G) = Char(G)×Λ. Moreover, σΛ can be taken to be ‘quotients’ of Bernoulli
G-actions. Thus, any G ∈ wT has a continuous family of mutually non-stably orbit-
equivalent free ergodic m.p. actions on the probability space.

Examples of groups in the class wT covered by the above results are the infinite
property (T) groups, the groups Z2 � Γ , for Γ ⊂ SL(2, Z) non-amenable (cf. [K67,
Ma82, B91]) and the groups ZN � Γ for suitable actions of arithmetic lattices Γ in
SU(n, 1) or SO(n, 1), n � 2 (cf. [V05]). Note that if G ∈ wT and K is a group acting
on G by automorphisms then G � K ∈ wT . Also, if G ∈ wT and K is an arbitrary
group, then G × K ∈ wT . Moreover, if G has an infinite subgroup H ⊂ G with the
relative property (T) (not necessarily normal), then G × K is wq-rigid for all K infinite.
In particular, any product between an infinite property (T) group and an arbitrary
group is in the class wT . Thus, Corollary 0.2 covers a recent result of Hjorth [Hj02],
showing that infinite property (T) groups have uncountably many orbit-inequivalent
actions. Moreover, rather than an existence result, Corollary 0.2 provides a concrete list
of uncountably many inequivalent actions (indexed by the virtual isomorphism classes of
all countable, discrete, abelian groups (see Corollary 2.13)).

Note also that if G0 ∈ wT and K0, K are arbitrary groups with K infinite, then
(G0 ∗ K0) × K ∈ wT . However, if G = G0 ∗ K0 with G0 ∈ wT and K0 non-trivial, then
G is not in the class wT (see Corollary 3.7). Yet we can still calculate in this case the
1-cohomology for the quotients of Bernoulli G-actions σΛ considered in Corollary 0.2.
While H1(σΛ, G) are ‘huge’ (non-locally compact) in this case, if we denote by H̃1(σΛ, G)
the quotient of H1(σΛ, G) by the connected component of 1, then we get the following
theorem.
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Theorem 0.3. Let {Gn}n�0 be a sequence of countable groups such that each Gn is
either amenable or belongs to the class wT and denote G = ∗n�0Gn. Assume the set J

of indices j � 0 for which Gj ∈ wT is non-empty and that Gj has totally disconnected
character group, ∀j ∈ J . If Λ is a countable abelian group, then

H̃1(σΛ, G) �
∏
j∈J

Char(Gj) × Λ|J|

as Polish groups.

Since property (T) groups have finite (thus totally disconnected) character group, from
the above theorem we get the following corollary.

Corollary 0.4. Let H1, H2, . . . , Hk be infinite property (T) groups and 0 � n � ∞.
The free product group H1 ∗ H2 ∗ · · · ∗ Hk ∗ Fn has continuously many non-stably orbit-
equivalent free ergodic m.p. actions.

The use of von Neumann algebras framework and non-commutative analysis tools is
crucial for the approach in this paper. Thus, the construction used in Theorem 0.1, as
well as its proof, become quite natural in von Neumann algebra context, where similar
ideas have been used in [P01] to compute the 1-cohomology and fundamental group
for non-commutative (Connes–Størmer) Bernoulli actions of weakly rigid groups on the
hyperfinite II1 factor R, and in [C75b] to compute the approximately inner, centrally
free part X (M) of the outer automorphism group of a II1 factor M .

The paper is organized as follows. In § 1 we present some basic facts on 1-cohomology
for actions, including a detailed discussion of the similar concept for full (pseudo)groups
and equivalence relations. Also, we revisit the results on 1-cohomology in [FM77-1,
FM77-2,S80,S81]. In § 2 we prove Theorem 0.1 and its consequences. In § 3 we consider
actions of free product groups and prove Theorem 0.3.

1. 1-cohomology for actions and equivalence relations

We recall here the definition and basic properties of the 1-cohomology groups for
actions and equivalence relations, using the framework of von Neumann algebras. We
revisit this way the results in [S80, S81, FM77-1, FM77-2] and prove the invariance
of 1-cohomology groups to stable orbit equivalence. The von Neumann algebra setting
leads us to adopt Dye’s initial point of view [D63] of regarding equivalence relations as
full (pseudo)groups and to use Singer’s observation [Si55] that the group of 1-cocycles of
an action is naturally isomorphic to the group of automorphisms of the associated group
measure space von Neumann algebra that leave the Cartan subalgebra pointwise fixed.

1.1. 1-cohomology for actions

Let σ : G → Aut(X, µ) be a free measure preserving (m.p.) action of the (at most)
countable discrete group G on the standard probability space (X, µ) and still denote by
σ the action it implements on A = L∞(X, µ). Denote U(A) = {u ∈ A | uu∗ = 1} the
group of unitary elements of A. A function w : G → U(A) satisfying wgσg(wh) = wgh,
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∀g, h ∈ G, is called a 1-cocycle for σ. Note that a scalar valued function w : G → U(A)
is a 1-cocycle if and only if w ∈ Char(G).

Two 1-cocycles w, w′ are cohomologous, w ∼c w′, if there exists u ∈ U(A) such that
w′

g = u∗wgσg(u), ∀g ∈ G. A 1-cocycle w is coboundary if w ∼c 1, where 1g = 1, ∀g.
Denote by Z 1(σ, G) (or simply Z 1(σ), when there is no risk of confusion) the set

of 1-cocycles for σ, endowed with the structure of a topological (commutative) group
given by point multiplication and pointwise convergence in norm ‖ · ‖2. Denote by
B1(σ, G) = B1(σ) ⊂ Z 1(σ) the subgroup of coboundaries and by H1(σ, G) = H1(σ)
the quotient group Z 1(σ)/B1(σ) = Z 1(σ)/∼c, called the first cohomology group of σ.
Note that Char(G) with its usual topology can be viewed as a compact subgroup of
Z 1(σ) and its image in H1(σ) is a compact subgroup. If in addition σ is weakly mixing,
then the image of Char(G) in H1(σ) is faithful (see Lemma 2.4 (1)).

The groups B1(σ), Z 1(σ), H1(σ) were first considered in [Si55]. As noticed in [Si55],
they can be identified with certain groups of automorphisms of the finite von Neumann
algebra M = A�σ G, as explained below. Note that there exists a unique normal faithful
trace τ on M that extends the integral

∫
· dµ on A and that M is a factor if and only if

σ is ergodic. For x ∈ M we denote ‖x‖2 = τ(x∗x)1/2.

1.2. Automorphisms associated with 1-cocycles

Let Aut0(M ; A) denote the group of automorphisms of M that leave all elements
of A fixed, endowed with the topology of pointwise convergence in norm ‖ · ‖2 (the
topology it inherits from Aut(M, τ)). If θ ∈ Aut0(M ; A), then wθ

g = θ(ug)u∗
g, g ∈ G, is a

1-cocycle, where {ug}g ⊂ M denote the canonical unitaries implementing the action σ.
Conversely, if w ∈ Z 1(σ) then θw(aug) = awgug, a ∈ A, g ∈ G, defines an automorphism
of M that fixes A. Clearly, θ �→ wθ, w �→ θw are group morphisms and are inverse
one another, thus identifying Z 1(σ) with Aut0(M ; A) as topological groups, with B1(σ)
corresponding to the inner automorphism group Int0(M ; A) = {Ad(u) | u ∈ U(A)}. Thus,
H1(σ) is naturally isomorphic to

Out0(M ; A) def= Aut0(M ; A)/ Int0(M ; A).

The groups Aut0(M ; A), Int0(M ; A), Out0(M ; A) actually make sense for any inclusion
A ⊂ M consisting of a II1 factor M with a Cartan subalgebra A, i.e. a maximal abelian
∗-subalgebra of M with normalizer NM (A) def= {u ∈ U(M) | uAu∗ = A} generating M . In
order to interpret Out0(M ; A) as 1-cohomology group in this more general case, we will
recall from [D63,FM77-1,FM77-2] two alternative, equivalent ways of viewing Cartan
subalgebra inclusions A ⊂ M .

1.3. Full pseudogroups and equivalence relations

With A ⊂ M as above, let

GNM (A) = {v ∈ M | vv∗, v∗v ∈ P(A), vAv∗ = Avv∗},

where P(A) denotes the idempotents (or projections) in A. Identify A with L∞(X, µ),
for some probability space (X, µ), with µ corresponding to τ|A, where τ is the trace on
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M . We denote by G = GA⊂M the set of all local isomorphisms φv = Ad(v), v ∈ GNM (A),
defined modulo sets of measure zero. For φ ∈ G denote by R(φ) ⊂ X the domain of
definition of φ and by L(φ) ⊂ X the range of φ. Thus, if φ = φv then v∗v = χR(φ),
vv∗ = χL(φ).

We endow G with the natural pseudogroup structure given by composition: if φ, ψ ∈ G,
then ψ · φ is the local isomorphism with domain R = {x ∈ R(φ) | φ(x) ∈ R(ψ)}, defined
on R by ψ · φ(x) = ψ(φ(x)). Thus, if φ = φv and ψ = ψw, then ψ · φ = φwv. We
call (GA⊂M , ·) the full pseudogroup associated with A ⊂ M . Since {vn}n ⊂ GNM (A)
with {vnv∗

n}n, respectively {v∗
nvn}n, mutually orthogonal implies

∑
n vn ∈ GNM (A), it

follows that G = GA⊂M satisfies the following axioms.

(1.3.0) idX ∈ G and if φ ∈ G, Y ⊂ R(φ) measurable, then φ|Y ∈ G. Thus, the set of units
(or idempotents) G0 of G coincides with the set {idY ∈ G | Y ⊂ X measurable}.

(1.3.1) Let R, L ⊂ X be measurable subsets with µ(R) = µ(L) and φ : R � L a measurable,
measure preserving isomorphism. Then φ ∈ G if and only if there exists a countable
partition of R with measurable subsets {Rn}n such that φ|Rn

∈ G, ∀n.

Note that the factoriality of M amounts to the ergodicity of the action of G on L∞(X, µ)
and that M is separable in the norm ‖ · ‖2 if and only if G is countably generated as a
pseudogroup satisfying (1.3.0), (1.3.1). If M = A �σ G for some free m.p. action σ of a
group G, then we denote GA⊂M by Gσ. Note that if φ : R � L is an m.p. isomorphism,
for some measurable subsets R, L ⊂ X with µ(R) = µ(L), then φ ∈ Gσ if and only
if there exist gn ∈ G and a partition of R with measurable subsets {Rn}n such that
φ|Rn

= σ(gn)|Rn
, ∀n.

A pseudogroup G of m.p. local isomorphisms of the probability space (X, µ) satisfying
(1.3.0), (1.3.1) is called an abstract full pseudogroup.

If an abstract full pseudogroup G acting on (X, µ) is given, then let CG denote the
algebra of formal finite linear combinations

∑
φ cφφ. Let τ(φ) denote the measure of

the largest set on which φ acts as the identity and extend it by linearity to CG. Then
define a sesquilinear form on CG by 〈x, y〉 = τ(y∗x) and denote by L2(G) the Hilbert
space obtained by completing CG/Iτ in the norm ‖x‖2 = τ(x∗x)1/2, where Iτ = {x |
〈x, x〉 = 0}. Each φ ∈ G acts on L2(G) as the operator uφ of left multiplication by φ.
Denote by L(G) the von Neumann algebra generated by the operators {uφ, φ ∈ G} and
by L(G0) � L∞(X, µ) the von Neumann subalgebra generated by the units G0.

It is easy to check that L(G) is a finite von Neumann algebra with Cartan subalgebra
L(G0) = L∞(X, µ) and faithful normal trace τ extending the integral on L∞(X, µ) and
satisfying τ(uφ) = τ(φ), with L2(L(G)) = L2(G) the standard representation of (L(G), τ).
Moreover, if A = L(G0), M = L(G), then

GNM (A) = {auφ | φ ∈ G, a ∈ I(A)},

where I(A) denotes the set of partial isometries in A. Thus, the full pseudogroup GA⊂M

associated with the Cartan subalgebra inclusion L(G0) ⊂ L(G) can be naturally identified
with the initial abstract pseudogroup G. Also, note that L(G) is a factor if and only if G is
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ergodic, in which case either L(G) � Mn×n(C) (when (X, µ) is the n-points probability
space) or L(G) is a II1 factor (when (X, µ) has no atoms, equivalently when G has
infinitely many elements).

If the abstract full pseudogroup G is generated by a countable set of local isomorphisms
{φn}n ⊂ G and one considers a standard Borel structure on X with σ-field X , then φn

can be taken Borel. If one denotes R = RG the equivalence relation implemented by the
orbits of φ ∈ G, then each class of equivalence in R is countable and R lies in the σ-field
X × X . Moreover, all φ ∈ G can be recuperated from R as graphs of local isomorphisms
that lie in R ∩ X × X . Such R is called a countable measure preserving (m.p.) standard
equivalence relation. The m.p. standard equivalence relation RA⊂M associated with a
Cartan subalgebra inclusion A ⊂ M is the equivalence relation implemented by the
orbits of GA⊂M . In the case where G is given by an action σ of a countable group G, the
orbits of Gσ coincide with the orbits of σ and one denotes the corresponding equivalence
relation by Rσ.

An isomorphism between two full pseudogroups (respectively m.p. equivalence rela-
tions) is an isomorphism of the corresponding probability spaces that takes one full
pseudogroup (respectively m.p. equivalence relation) onto the other. Such an isomorphism
clearly agrees with the correspondence between pseudogroups and equivalence relations
described above. Two Cartan subalgebra inclusions (A1 ⊂ M1, τ1), (A2 ⊂ M2, τ2) are
isomorphic if there exists θ : (M1, τ1) � (M2, τ2) such that θ(A1) = A2. Note that if this
is the case then

GA1⊂M1 � GA2⊂M2 , RA1⊂M1 � RA2⊂M2 .

Conversely, if G1 � G2 then (L(G1,0) ⊂ L(G1)) � (L(G2,0) ⊂ L(G2)), by the way we have
constructed a Cartan subalgebra inclusion from a full pseudogroup. In particular, two
free ergodic m.p. actions σi : Gi → Aut(Xi, µi) are orbit equivalent if and only if

(A1 ⊂ A1 �σ1 G1) � (A2 ⊂ A2 �σ2 G2).

1.4. Amplifications and stable orbit equivalence

If M is a II1 factor and t > 0, then for any n � m � t and any projections p ∈
Mn×n(M), q ∈ Mm×m(M) of (normalized) trace τ(p) = t/n, τ(q) = t/m, one has
pMn×n(M)p � qMm×m(M)q. Indeed, because if we regard Mm×m(M) as a ‘corner’
of Mn×n(M) then p, q have the same trace in Mn×n(M), so they are conjugate by a
unitary U in Mn×n(M), which implements an isomorphism between pMn×n(M)p and
qMm×m(M)q. One denotes by M t this common (up to isomorphism) II1 factor and calls
it the amplification of M by t.

Similarly, if A ⊂ M is a Cartan subalgebra of the II1 factor M , then (A ⊂ M)t = (At ⊂
M t) denotes the (isomorphism class of the) Cartan subalgebra inclusion p(A ⊗ Dn ⊂
M ⊗Mn×n(C))p where n � t, Dn is the diagonal subalgebra of Mn×n(C) and p ∈ A⊗Dn

is a projection of trace τ(p) = t/n. In this case, the fact that the isomorphism class of
(A ⊂ M)t does not depend on the choice of n, p follows from a lemma of Dye [D63],
showing that if M0 is a II1 factor and A0 ⊂ M0 is a Cartan subalgebra, then two
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projections p, q ∈ A0 having the same trace are conjugate by a unitary element in the
normalizer of A0 in M0.

If G is an ergodic full pseudogroup on the non-atomic probability space, then Gt is
the full pseudogroup obtained by restricting the full pseudogroup generated by G × Dn

to a subset of measure t/n, where Dn is the pseudogroup of permutations of the n-
points probability space with the counting measure. If R is an ergodic m.p. standard
equivalence relation, then Rt is defined in a similar way. Again, Gt, Rt are defined only
up to isomorphism.

(A ⊂ M)t (respectively Gt, Rt) is called the t-amplification of A ⊂ M (respectively of
G, R). We clearly have

G(A⊂M)t = Gt
(A⊂M), R(A⊂M)t = Rt

(A⊂M)

and if G, R correspond with one another then so do Rt, Gt, ∀t. Note that

((A ⊂ M)t)s = (A ⊂ M)st, (Gt)s = Gts, (Rt)s = Rts, ∀t, s > 0.

Two ergodic full pseudogroups Gi, i = 1, 2 (respectively ergodic equivalence relations
Ri, i = 1, 2), are stably orbit equivalent if G1 � Gt

2 (respectively R1 � Rt
2), for some

t > 0. Two free ergodic m.p. actions (σi, Gi), i = 1, 2, are stably orbit equivalent if
Gσ1 � Gt

σ2
for some t. Note that this is equivalent to the existence of subsets of positive

measure Yi ⊂ Xi and of an isomorphism Ψ : (Y1, µ1/µ1(Y1)) � (Y2, µ2/µ2(Y2)) such that
Ψ(σ1(G1)x ∩ Y1) = σ2(G2)Ψ(x) ∩ Y2, a.e. in x ∈ Y1.

1.5. 1-cohomology for full pseudogroups

Let G be a full pseudogroup acting on the probability space (X, µ) and denote A =
L∞(X, µ). A 1-cocycle for G is a map w : G → I(A) satisfying the relation wφφ(wψ) =
wφψ, ∀φ, ψ ∈ G. In particular, this implies that the support of wφ, wφw∗

φ, is equal to the
range r(φ) of φ. Thus, widY

= χY , ∀Y ⊂ X measurable.
We denote by Z 1(G) the set of all 1-cocycles and endow it with the (commutative)

semigroup structure given by point multiplication. We denote by 1 the 1-cocycle given
by 1φ = r(φ), ∀φ ∈ G. If we let (w−1)φ = wφ

∗, then we clearly have ww−1 = 1 and
1w = w, ∀w ∈ Z 1(G). Thus, together also with the topology given by pointwise norm
‖ · ‖2-convergence, Z 1(G) is a commutative Polish group.

Two 1-cocycles w1, w2 are cohomologous, w1 ∼c w2, if there exists u ∈ U(A) such that
w2(φ) = u∗w2(φ)φ(u), ∀φ ∈ G. A 1-cocycle w cohomologous to 1 is called a coboundary
for G and the set of coboundaries is denoted B1(G). It is clearly a subgroup of Z 1(G).
We denote the quotient group

H1(G) def= Z 1(G)/B1(G) = Z 1(G)/∼c

and call it the first cohomology group of G.
By the correspondence between countably generated full pseudogroups and countable

m.p. standard equivalence relations described in § 1.3, one can alternatively view the
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1-cohomology groups Z 1(G), B1(G), H1(G) as associated to the equivalence relation R =
RG , in which case one recovers the definition of H1(R) from p. 308 of [FM77-1,FM77-2].

Let now A ⊂ M be a II1 factor with a Cartan subalgebra. If θ ∈ Aut0(M ; A) and
φv = Ad(v) ∈ GA⊂M for some v ∈ GNM (A), then wθ(φv) = θ(v)v∗ is a well defined
1-cocycle for G. Conversely, if w ∈ H1(G), then there exists a unique automorphism
θw ∈ Aut0(M ; A) satisfying θw(av) = awφvv, ∀a ∈ A, v ∈ GNM (A).

Proposition 1.5.1. θ �→ wθ is an isomorphism of topological groups, from Aut0(M ; A)
onto Z 1(GA⊂M ), that takes Int0(M ; A) = {Ad(u) | u ∈ U(A)} onto B1(GA⊂M ) and whose
inverse is w �→ θw. Thus, θ �→ wθ implements an isomorphism between the topological
groups Out0(M ; A) = Aut0(M ; A)/ Int0(M ; A) and H1(GA⊂M ).

Proof. This is trivial by the definitions. �

By a well-known lemma of Connes (see, for example, [C75]), if θ ∈ Aut0(M ; A) satisfies
θ|pMp = Ad(u)|pMp for some p ∈ P(A), u ∈ U(A) then θ ∈ Int0(M ; A). Thus, θ �→ θ|pMp

defines an isomorphism from Out0(M ; A) onto Out0(pMp; Ap). Applying this to the
Cartan subalgebra inclusion L(G0) ⊂ L(G) for G an ergodic full pseudogroup acting
on the non-atomic probability space, from Proposition 1.5.1 we obtain that H1(G) is
naturally isomorphic to H1(Gt), ∀t > 0. In particular, since Proposition 1.5.1 also implies
H1(σ) = H1(Gσ), it follows that H1(σ) is invariant to stable orbit equivalence. We have
thus shown the following corollary.

Corollary 1.5.2.

(1) H1(Gt) is naturally isomorphic to H1(G), ∀t > 0.

(2) If σ is a free ergodic measure preserving action, then H1(σ) = H1(Gσ) and H1(σ) is
invariant to stable orbit equivalence. Also, Z 1(σ) = Z 1(Gσ) and Z 1(σ) is invariant
to orbit equivalence.

Note that the equality H1(σ) = H1(Gσ) (and thus the invariance of H1(σ) to orbit
equivalence) was already shown in [FM77-1,FM77-2].

1.6. The closure of B1(G) in Z1(G)

Given any ergodic full pseudogroup G, the groups B1(G) � Int0(M ; A) are naturally
isomorphic to U(A)/T, where A = L(G0), M = L(G). But this isomorphism does not
always carry the topology that B1(G) (respectively Int0(M ; A)) inherits from Z 1(G)
(respectively Aut0(M ; A)) onto the quotient of the ‖ · ‖2-topology on U(A)/T. It was
shown by Schmidt in [S80,S81] that the two topologies on B1(σ) coincide if and only if
the action σ is strongly ergodic. We recall his result in the statement below, relating it
to a result of Connes, showing that the group of inner automorphisms of a II1 factor is
closed if and only if the factor has no non-trivial central sequences [C75].

Proposition 1.6.1. Let A ⊂ M be a II1 factor with a Cartan subalgebra. The following
conditions are equivalent.
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(a) H1(GA⊂M ) is a Polish group (equivalently H1(GA⊂M ) is separate), i.e. B1(GA⊂M )
is closed in Z 1(GA⊂M ).

(b) Int0(M ; A) is closed in Aut0(M ; A).

(c) The action of GA⊂M on A is strongly ergodic, i.e. it has no non-trivial asymptotically
invariant sequences.

(d) M ′ ∩ Aω = C, where ω is a free ultrafilter on N.

Moreover, if M = A�σ G for some free action σ of a group G on (A, τ), then the above
conditions are equivalent to σ being strongly ergodic.

Proof. (a) ⇔ (b) follows from Proposition 1.5.1 and (c) ⇔ (d) is well known (and
trivial). Then notice that (b) ⇔ (d) is a relative version of the result of Connes in
[C75], showing that ‘Int(N) is closed in Aut(N) if and only if N has no non-trivial
central sequences’ for II1 factors N . Thus, a proof of (b) ⇔ (d) is obtained by following
the argument in [C75], but replacing everywhere Int(N) by Int0(M ; A), Aut(N) by
Aut0(M ; A) and ‘non-trivial central sequences of N ’ by ‘non-trivial central sequences of
M that are contained in A’.

To prove the last part, note that σ is strongly ergodic if and only if {ug}′
g ∩ Aω = C,

where {ug}g ⊂ M denote the canonical unitaries implementing the action σ of G on A.
But {ug}′

g ∩Aω = (A∪{ug}g)′ ∩Aω = M ′ ∩Aω, hence strong ergodicity of σ is equivalent
to (d). �

It was shown in [S80, S81] that arbitrary ergodic m.p. actions σ of infinite prop-
erty (T) groups G are always strongly ergodic, and that in fact B1(σ) is always open
(and thus also closed) in Z 1(σ). The interpretation of the inclusion B1(σ) ⊂ Z 1(σ) as
Int0(M ; A) ⊂ Aut0(M ; A) makes this result into a relative version of the rigidity result
in [C80], showing that for property (T) factors Int(M) is open in Aut(M). We notice
here the following generalization.

Proposition 1.6.2. Assume that G has an infinite subgroup H ⊂ G such that the pair
(G, H) has the relative property (T). If σ is a free m.p. action of G on the probability
space such that σ|H is ergodic, then σ is strongly ergodic, equivalently B1(σ) is closed in
Z 1(σ). Moreover, the subgroup Z 1

H(σ) def= {w ∈ Z 1(σ) | w|H ∼c 1H} is open and closed in
Z 1(σ).

Proof. Since (G, H) has the relative property (T), by [Jol05] there exist a finite subset
F ⊂ G and δ > 0 such that if π : G → U(H), ξ ∈ H, ‖ξ‖2 = 1 satisfy ‖πg(ξ) − ξ‖2 � δ,
∀g ∈ F , then ‖πh(ξ) − ξ‖2 � 1

2 , ∀h ∈ H, and π|H has a non-trivial fixed vector.
If σ is not strongly ergodic, then there exists p ∈ P(A) such that τ(p) = 1

2 and
‖σg(p) − p‖2 � 1

2δ, ∀g ∈ F . But then u = 1−2p satisfies τ(u) = 0 and ‖σg(u) − u‖2 � δ,
∀g ∈ F . Taking π to be the G-representation induced by σ on L2(A, τ) � C1, it follows
that L2(A, τ) � C1 contains a non-trivial vector fixed by σ|H . But this contradicts the
ergodicity of σ|H .
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Let now M = A �σ G and θ = θw ∈ Aut0(M ; A) be the automorphism associated to
some w ∈ Z 1(σ) satisfying

‖θ(ug) − ug‖2 = ‖wg − 1‖2 � δ, ∀g ∈ F.

Then the unitary representation π : G → U(L2(M, τ)) defined by πg(ξ) = ugξθ(u∗
g)

satisfies
‖πg(1̂) − 1̂‖2 = ‖wg − 1‖2 � δ, ∀g ∈ F.

Thus, ‖wh − 1‖2 = ‖πh(1̂) − 1̂‖2 � 1
2 implying

‖θ(vuh) − vuh‖2 = ‖θ(uh) − uh‖2 � 1
2 , ∀h ∈ H, v ∈ U(A).

It follows that if b denotes the element of minimal norm ‖ · ‖2 in cow{u∗
hv∗θ(vuh) | h ∈

H, v ∈ U(A)}, then ‖b − 1‖2 � 1
2 and vuhb = bθ(vuh) = bwhvuh, ∀h ∈ H, v ∈ U(A).

But this implies b �= 0 and xb = bθ(x), ∀x ∈ N = A �σ|H H. In particular [b, A] = 0 so
b ∈ A ⊂ N . Since N is a factor (because σ|H is ergodic), this implies b is a scalar multiple
of a unitary element u in A satisfying wh = u∗σh(u), ∀h ∈ H. Thus w ∈ Z 1

H(σ), showing
that Z 1

H(σ) is open (thus closed too). �

Corollary 1.6.3. If G has an infinite subgroup H ⊂ G such that the pair (G, H) has
the relative property (T), then Char(G)/{γ ∈ Char(G) | γ|H = 1H} is a finite group.

Proof. Take σ to be the (classic) Bernoulli G-action and view Char(G) as a subgroup of
Z1(σ), as in § 1.1. By Proposition 1.6.2 it follows that γ ∈ Char(G) satisfies γ|H ∼c 1H

if and only if γ|H = 1H (because σ|H is mixing; see also Lemma 2.4 (1)). Thus, Z 1
H(σ) ∩

Char(G) = {γ ∈ Char(G) | γ|H = 1H} and the statement follows from Proposition 1.6.2.
�

Other actions shown to be strongly ergodic in [S80,S81] are the Bernoulli actions of
non-amenable groups and the action of SL(2, Z) on (T2, λ). There is in fact a common
explanation for these examples: in both cases the representation implemented by (σ, G)
on L2(X, µ) � C1 can be realized as ⊕i�

2(G/Γi) with Γi ⊂ G amenable subgroups. (If
σ is a Bernoulli G-action, then Γi can even be taken finite (see also [J83b]). If in turn
G = SL(2, Z), then the action σ of G on L2(T2, λ) � C1 � �2(Z2 \ {(0, 0)}) corresponds
to the action of G on Z2 \ {(0, 0)} and Γi are stabilizers of elements hi ∈ Z2 \ {(0, 0)},
thus amenable.) Hence, if (σ, G) is not strongly ergodic, then the trivial representation
of G is weakly contained in ⊕i�

2(G/Hi) and the following general observation applies.

Lemma 1.6.4. Let G be a non-amenable group and {Hi}i the family of amenable sub-
groups of G. Then the trivial representation of G is not weakly contained in ⊕i�

2(G/Hi)
(thus not weakly contained in ⊕i�

2(G/Hi) ⊗̄ �2(N) either).

Proof. This follows immediately from the continuity of induction of representations.
Indeed, every �2(G/Hi) is equivalent to the induced from Hi to G of the trivial represen-
tation 1Hi of Hi, IndG

Hi
1Hi . Since Hi is amenable, 1Hi follows weakly contained in the

left regular representation λHi of Hi. Thus, IndG
Hi

1Hi is weakly contained in IndG
Hi

(λHi),
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which in turn is just the left regular representation λG of G. Altogether, this shows that
if 1G is weakly contained in ⊕i�

2(G/Hi), then it is weakly contained in a multiple of λG.
Since the latter is weakly equivalent to λG, 1G follows weakly contained in λG, implying
that G is amenable, a contradiction. �

If one defines the property (τ) for a group G with respect to a family L of sub-
groups by requiring that the trivial representation of G is not an accumulation point of
⊕H∈L�2(G/H), like in [L94], then the above lemma can be restated as follows.

If G is non-amenable, then it has the property (τ) with respect to the family L of its
amenable subgroups.

Let now G act by automorphisms on a discrete group H and denote by σ the action
it implements on the finite group von Neumann algebra (L(H), τ), then note that the
ensuing representation of G on L2(L(H) � C1) = �2(H \ {e}) is equal to ⊕h�2(G/Γh),
where Γh ⊂ G denotes the stabilizer of h ∈ H \ {e}, Γh = {γ ∈ G | γ(h) = h}.
Lemma 1.6.4 thus gives us the following corollary.

Corollary 1.6.5. Assume G is non-amenable and the stabilizer of each h ∈ H \ {e} is
amenable. For any non-amenable Γ ⊂ G the action σ|Γ of Γ on (L(H), τ) is strongly
ergodic. In particular, if Γ ⊂ SL(2, Z) is non-amenable then the restriction to Γ of the
canonical action of SL(2, Z) on (T2, µ) is strongly ergodic.

Finally, note that if one takes H = G and lets G act on itself by conjugation, then
Lemma 1.6.4 implies that if G is non-amenable and the commutant in G of any h ∈ G\{e}
is amenable, then G is not inner amenable either.

2. 1-cohomology for quotients of Bernoulli actions

In this section we consider groups G satisfying some ‘mild’ rigidity property and construct
many examples of actions (σ′, G) for which we can explicitly calculate the 1-cohomology.
The actions σ′ are quotients of the Bernoulli G-actions σ (or of other ‘malleable’ actions
of G), obtained by restricting σ to subalgebras that are fixed points of groups of auto-
morphisms in the commutant of σ. The construction is inspired from [P01], where a
similar idea is used to produce actions on the hyperfinite II1 factor that have prescribed
fundamental group and prescribed 1-cohomology.

This calculation of H1(σ′, G) works whenever the 1-cohomology group of the ‘initial’
action (σ, G) is equal to the character group of G. For G weakly rigid and σ Bernoulli
action, H1(σ, G) was shown equal to Char(G) in [PSa03], by adapting to the commuta-
tive case the proof of the general result for non-commutative Bernoulli actions in [P01].
We begin by extending the result in [PSa03] to a more general context in which the argu-
ment in [P01,PSa03] still works. Recall in this respect that an action σ : G → Aut(X, µ)
is weakly mixing if and only if L2(X, µ) has no σ-invariant finite-dimensional subspaces.

Definition 2.1 (see [P01, P03]). An integral preserving action σ : G → Aut(A, τ)
of G on A � L∞(X, µ) is w-malleable if there exist a decreasing sequence of abelian
von Neumann algebras {(An, τ)}n containing A and actions σn : G → Aut(An, τ), such
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that ∩An = A, σn|An+1 = σn+1, σn|A = σ, ∀n, and such that for each n the flip auto-
morphism α1 on An ⊗̄An, defined by α1(x ⊗ y) = y ⊗ x, x, y ∈ An, is in the connected
component of the identity in the Polish group σ̃n(G)′ ∩ Aut(An ⊗̄An, τ × τ), where σ̃n

is the automorphism on An ⊗̄An given by σ̃n(g) = σn(g) ⊗ σn(g), g ∈ G. If H ⊂ G is a
subgroup, then the action σ is w-malleable w-mixing/H (respectively w-malleable mix-
ing) if the extensions σn can be chosen so that σn|H are weakly mixing (respectively so
that σn are mixing), ∀n.

Example 2.1′. Let (g, s) �→ gs be an action of the group G on a set S, (Y0, ν0) be
a non-trivial standard probability space. Let (X, µ) =

∏
s(Y0, ν0)s and denote by σ the

Bernoulli action of G on L∞(X, µ) implemented by σg((xs)s) = (x′
s)s, where x′

s = xg−1s.
If either of the following conditions is satisfied, then σ is free.

(2.1.1) (Y0, ν0) has no atoms and ∀g �= e, ∃s ∈ S with gs �= s.

(2.1.1′) (Y0, ν0) is arbitrary but ∀g �= e, ∃ infinitely many s ∈ S with gs �= s.

Moreover, if H ⊂ G is a subgroup such that

(2.1.2) ∀S0 ⊂ S finite, ∃F∞ ⊂ H, an infinite set with hS0 ∩ S0 = ∅, ∀h ∈ F∞,

then σ|H is weakly mixing. Also, if

(2.1.2′) ∀S0 ⊂ S finite, ∃F0 ⊂ G, a finite set with hS0 ∩ S0 = ∅, ∀h ∈ G \ F0,

then σ is (strongly) mixing. If S = G and we let G act on itself by left multiplication,
then σ is called a classic Bernoulli G-action.

Lemma 2.2. Let G be a group with an infinite subgroup H ⊂ G. A Bernoulli action
(σ, G) satisfying (2.1.1), (2.1.2) is free, w-malleable w-mixing/H. Also, a classic Bernoulli
action is free, w-malleable mixing (on G).

Proof. The proof of [P03, 1.6.1] or of [PSa03, Lemma 3.2] shows that if (Y0, ν0) � (T, λ)
then σ is malleable. For general (Y0, ν0), the proof of 3.6 in [PSa03] or 5.15 in [P01]
shows that the action σ can be ‘approximated from above’ by Bernoulli actions with base
space � (T, λ), all satisfying (2.1.2), thus being w-malleable w-mixing/H. If σ is a classic
Bernoulli action, then (2.1.2′) is satisfied, so σ is mixing. �

Definition 2.3. Let G be a group. An infinite subgroup H ⊂ G is wq-normal in G if
there exists a countable ordinal ı and a well ordered family of intermediate subgroups
H = H0 ⊂ H1 ⊂ · · · ⊂ Hj ⊂ · · · ⊂ Hı = G such that for each j < ı, Hj+1 is the group
generated by the elements g ∈ G with gHjg

−1 ∩ Hj infinite and such that if j � ı has no
‘predecessor’ then Hj =

⋃
n<j Hn. Note that this condition is equivalent to the following.

(2.3′) There exists no intermediate subgroup H ⊂ K � G such that gKg−1 ∩ K is finite
∀g ∈ G \ K. Equivalently, for all H ⊂ K � G there exists g ∈ G \ K, gKg−1 ∩ K

is infinite.
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Indeed, if H ⊂ G satisfies (2.3′), then it clearly satisfies Definition 2.3, by (countable
transfinite) induction. Conversely, assume H ⊂ G satisfies Definition 2.3 and let K � G

be a subgroup containing H such that gKg−1 ∩ K finite ∀g ∈ G \ K. We show that
this implies K = G, giving a contradiction. It is sufficient to show that Hj ⊂ K implies
Hj+1 ⊂ K. If there exists g ∈ Hj+1\K = Hj+1\K∩Hj+1, then we would have gKg−1∩K

finite so in particular gHjg
−1 ∩ Hj finite. But this implies that all g ∈ Hj+1 for which

gHjg
−1 ∩ Hj is infinite lie in K ∩ Hj+1, thus K ⊃ Hj+1 by the way Hj+1 was defined.

By Definition 2.3 we see that if H ⊂ G is wq-normal and G is embedded as a normal
subgroup in some larger group Ḡ (or even merely as a quasi-normal subgroup G ⊂ Ḡ,
i.e. so that gGg−1 ∩ G has finite index in G, ∀g ∈ Ḡ) then H ⊂ Ḡ is wq-normal. Note
that if a group G has an infinite subgroup H ⊂ G with the relative property (T), but
not necessarily normal, then G×K is wq-rigid for any infinite group K. Indeed, because
the inclusions H ⊂ H ×K ⊂ G×K clearly check the condition in Definition 2.3. On the
other hand, (2.3′) shows that an inclusion of groups of the form H ⊂ G = H ∗ H ′, with
H infinite and H ′ non-trivial, is not wq-normal.

Lemma 2.4. Let G be an infinite group and σ a free ergodic measure preserving action
of G on the probability space.

(1) Assume σ is weakly mixing and for each γ ∈ Char(G) denote wγ the 1-cocycle
wγ

g = γ(g)1, g ∈ G. Then the group morphism γ �→ wγ is 1 to 1 and continuous
from Char(G) into H1(σ, G).

(2) Assume H ⊂ G is an infinite subgroup of G such that either H is normal in G and
σ|H is weakly mixing or H is wq-normal in G and σ|H is mixing. If w ∈ Z 1(σ, G)
is such that w|H ∈ Char(H), then w ∈ Char(G).

Proof. (1) If w1(g) = u∗w2(g)σg(u), ∀g ∈ G, then σg(u) ∈ Cu, ∀g ∈ G and since σ is
weakly mixing, this implies u ∈ C1 so w1 = w2.

(2) In both cases, it is clearly sufficient to prove that if g0 ∈ G is such that
H ′ = g−1

0 Hg0 ∩ H is infinite and σ is weakly mixing on H ′ with w|H = γ ∈ Char(H),
then wg0 ∈ C1. To see this, take k ∈ H ′ and put h = g0kg−1

0 ∈ H. Then hg0 = g0k.
The 1-cocycle relation yields whσh(wg0) = wg0σg0(wk). Since wh, wk ∈ C1, this implies
σh(wg0) ∈ Cwg0 . Thus, σh(wg0) ∈ Cwg0 , ∀h ∈ g0H

′g−1
0 . Since σ|g0H′g−1

0
is weakly mixing

(because σ|H′ is weakly mixing), this implies wg0 ∈ C1. �

Corollary 2.5. Let H ⊂ G, σ be as in Lemma 2.4 (2). If the restriction to H of any
w ∈ Z 1(σ, G) is cohomologous to a character of H, then H1(σ, G) = Char(G).

Theorem 2.6. Let G be a countable discrete group with an infinite subgroup H ⊂ G

such that (G, H) has the relative property (T). Let σ be a free ergodic m.p. action of G

on the probability space. Assume that σ is w-malleable w-mixing/H. Then the restriction
to H of any 1-cocycle w for (σ, G) is cohomologous to a character on H. If in addition
we assume that either H is normal in G, or σ|H is mixing with H wq-normal in G, then
H1(σ, G) = Char(G).
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Proof. Let w ∈ Z 1(σ, G). The proof that if σ is a classic (left) Bernoulli action (thus
w-malleable mixing by Lemma 2.2) then H1(σ, G) = Char(G) in [P01,PSa03] only uses
the condition that σ is w-malleable w-mixing/H to derive that w|H is cohomologous to
a character of H. But then Lemma 2.4 shows that w is cohomologous to a character of
G, so H1(σ, G) = Char(G) by Corollary 2.5. �

Lemma 2.7. Let G, Γ be discrete groups with G infinite. Let σ be a free, weakly mixing
m.p. action of G on the probability space and β a free measure preserving action of Γ

on the same probability space which commutes with σ. If

AΓ def= {a ∈ A | βh(a) = a, ∀h ∈ Γ},

then σg(AΓ ) = AΓ , ∀g ∈ G, so σΓ
g

def= σg|AΓ defines an integral preserving action of G

on AΓ .

Proof. Since βh(σg(a)) = σg(βh(a)) = σg(a), ∀h ∈ Γ , a ∈ AΓ , it follows that σg leaves
AΓ invariant ∀g ∈ G. �

Lemma 2.8. With G, Γ , σ, β, AΓ , σΓ as in Lemma 2.7, assume the action σΓ of G on
AΓ is free. For each γ ∈ Char(Γ ) denote

Uγ
def= {v ∈ U(A) | βh(v) = γ(h)v, ∀h ∈ Γ} and Charβ(Γ ) def= {γ ∈ Char(Γ ) | Uγ �= ∅}.

Then the following holds.

(1) UγUγ′ = Uγγ′ , ∀γ, γ′ ∈ Char(G), and Charβ(Γ ) is a countable group.

(2) If γ0 ∈ Char(G), γ ∈ Charβ(Γ ) and v ∈ Uγ , then wγ0,γ(g) def= σg(v)v∗γ0(g) lies in
AΓ , for all g ∈ G, and wγ0,γ defines a 1-cocycle for (σΓ , G) whose class in H1(σΓ , G)
does not depend on the choice of v ∈ Uγ .

Proof. (1) If v ∈ Uγ , v′ ∈ Uγ′ , then βh(vv′) = βh(v)βh(v′) = γ(h)γ′(h)vv′, so vv′ ∈ Uγγ′ .
This also implies that Charβ(Γ ) is a group. Noticing that {Uγ}γ are mutually orthogonal
in L2(A, τ) = L2(X, µ), by the separability of L2(X, µ), Charβ(Γ ) follows countable.

(2) Since σ, β commute, σg(Uγ) = Uγ , ∀g ∈ G, γ ∈ Charβ(Γ ). In particular, σg(v)v∗ ∈
U1 = U(AΓ ), ∀g ∈ G, showing that the function wγ0,γ takes values in U(AΓ ). Since wγ0,γ

is clearly a 1-cocycle for σ (in fact wγ0,γ ∼c γ01 as elements in Z 1(σ, G)), it follows that
wγ0,γ ∈ Z 1(σΓ , G).

If v′ is another element in Uγ , then u = v′v∗ ∈ U(AΓ ) and the associated 1-cocycles
wγ0,γ constructed out of v, v′ follow cohomologous via u, in Z 1(σΓ , G). �

Theorem 2.9. Let (σ, G), (β, Γ ) be commuting, free m.p. actions on the same prob-
ability space, with G infinite and σ weakly mixing (as in Lemmas 2.7 and 2.8). Let
AΓ , (σΓ , G) be defined as in Lemma 2.7 and Charβ(Γ ) as in Lemma 2.8. Also, for
γ0 ∈ Char(Γ ), γ ∈ Charβ(Γ ) let wγ0,γ be defined as in Lemma 2.8 (2). If Charβ(Γ ) is
given the discrete topology, then ∆ : Char(G) × Charβ(Γ ) → H1(σΓ , G), defined by let-
ting ∆(γ0, γ) be the class of wγ0,γ in H1(σΓ , G), is a 1 to 1 continuous group morphism.
If in addition H1(σ, G) = Char(G), then ∆ is an isomorphism of topological groups.
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Proof. The map ∆ is clearly a group morphism and continuous. To see that it is 1 to 1 let
γ0 ∈ Char(G), γ ∈ Charβ(Γ ) and v ∈ Uγ and represent the element ∆(γ0, γ) ∈ H1(σΓ , G)
by the 1-cocycle wγ0,γ

g = σg(v)v∗γ0(g), g ∈ G. If wγ0,γ ∼c 1, then there exists u ∈ U(AΓ )
such that σg(u)u∗ = σg(v)v∗γ0(g), ∀g ∈ G. Thus, if we denote u0 = uv∗ ∈ U(A) then
σg(u0)u∗

0 = γ0(g)1, ∀g. It follows that σg(Cu0) = Cu0, ∀g ∈ G, and since σ is weakly
mixing this implies u0 ∈ C1 and γ0 = 1. Thus, v ∈ Cu ⊂ U(AΓ ) = U1, showing that
γ = 1 as well.

If we assume H1(σ, G) = Char(G) and take w ∈ Z 1(σΓ , G), then we can view w as
a 1-cocycle for σ. But then w ∼c γ01, for some γ0 ∈ Char(G). Since σ is ergodic, there
exists a unique v ∈ U(A) (up to multiplication by a scalar) such that wg = σg(v)v∗γ0(g),
∀g ∈ G. Since w is AΓ -valued, σg(v)v∗ ∈ U(AΓ ), ∀g. Thus σg(v)v∗ = βh(σg(v)v∗) =
σg(βh(v))βh(v)∗, ∀g. By the uniqueness of v this implies that βh(v) = γ(h)v, for some
scalar γ(h). The map Γ � h �→ γ(h) is easily seen to be a character, so w = wγ0,γ showing
that (γ0, γ) �→ wγ0,γ is onto.

Since H1(σ, G) = Char(G) is compact, by § 1.1 and Proposition 1.6.1 σ is strongly
ergodic so σΓ is also strongly ergodic. Thus H1(σΓ , G) is Polish, with ∆(Char(G)) a
closed subgroup, implying that ∆(Charβ(Γ )) � H1(σΓ )/∆(Char(G)) is Polish. Since it
is also countable, it is discrete. Thus, ∆ is an isomorphism of topological groups. �

Note that in the above proof, from the hypothesis H1(σ, G) = Char(G) we only used
the following fact.

(2.9′) There exists a continuous group morphism H1(σ, G) � ŵ0 �→ w0 ∈ Z 1(σ, G) retract
of the quotient map Z 1(σ, G) → H1(σ, G) such that each w0 is AΓ -valued (so that
it can be viewed as an element w0 ∈ Z 1(σΓ , G)).

Thus, the above proof of Theorem 2.9 shows that H1(σΓ , G) � H1(σ, G) × Charβ(Γ )
whenever condition (2.9′) is satisfied.

Lemma 2.10. Let G be an infinite group and σ be the Bernoulli action of G on
(X, µ) =

∏
g(T, λ)g. With the notation of Lemma 2.8 and Theorem 2.9, for any countable

abelian group Λ there exists a countable abelian group Γ and a free action β of Γ on
(X, µ) such that Charβ(Γ ) = Λ, [σ, β] = 0 and σ|AΓ is a free action of G. Moreover, if
Λ is finite then one can take Γ = Λ and β to be any action of Γ = Λ on (X, µ) that
commutes with σ and such that σ × β is a free action of G × Γ .

Proof. Let Γ be a countable dense subgroup in the (second countable) compact group Λ̂

and let µ0 be the Haar measure on Λ̂. Let β0 denote the action of Γ on L∞(Λ̂, µ0) = L(Λ)
given by β0(h)(uγ) = γ(h)uγ , ∀h ∈ Γ , where {uγ}γ∈Λ ⊂ L(Λ) denotes the canonical basis
of unitaries in the group von Neumann algebra L(Λ) and γ ∈ Λ is viewed as a character
on Γ ⊂ Λ̂. Denote A0 = L∞(Λ̂, µ0) ⊗̄L∞(T, λ) and let τ0 be the state on A0 given by the
product measure µ0 × λ. Let β denote the product action of Γ on ⊗̄g∈G(A0, τ0)g given
by β(h) = ⊗g(β0(h) ⊗ id)g.

Since

(A0, τ0) �
(

L∞(T, λ),
∫

· dλ

)
,
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we can view σ as the Bernoulli action of G on A = ⊗̄g(A0, τ0)g. By the construction of β

we have [σ, β] = 0. Also, the fixed point algebra AΓ contains a σ-invariant subalgebra on
which σ acts as the (classic) Bernoulli action. Thus, the restriction σΓ = σ|AΓ is a free,
mixing action of G. Finally, we see by construction that Charβ(Γ ) = Λ.

The last part is trivial, once we notice that if the action σ × β of G × Γ on A is free,
then the action σΓ of G on AΓ is free. �

From now on, it will be convenient to use the following notation.

2.11. Notation

We denote by wT the class of discrete countable groups G which have infinite, wq-
normal subgroups H ⊂ G such that the pair (G, H) has the relative property (T).

Note that all infinite property (T) groups are in the class wT . Also, by Definition 2.3
it follows that wT is closed to inductive limits and normal extensions (i.e. if G ∈ wT and
G ⊂ Ḡ is a normal inclusion of groups then Ḡ ∈ wT ). In particular, if G ∈ wT and K is
a group acting on G by automorphisms then G � K ∈ wT . For instance, if G is infinite
with property (T) and K is an arbitrary group, then G × K ∈ wT . Other examples of
groups in the class wT are Z2 � SL(2, Z) [K67,Ma82], and more generally Z2 � Γ for
Γ ⊂ SL(2, Z) non-amenable (cf. [B91]).

Corollary 2.12. Let G ∈ wT . Given any countable discrete abelian group Λ there exists
a free ergodic m.p. action σΛ of G on the standard non-atomic probability space such
that H1(σΛ, G) = Char(G) × Λ. Moreover, if σ denotes the Bernoulli action of G on
(X, µ) =

∏
g(T, µ)g then all σΛ can be taken to be quotients of (σ, (X, µ)) and such that

the exact sequences of 1-cohomology groups B1(σΛ) ↪→ Z 1(σΛ) → H1(σΛ) → 1 are split.
Thus, Z 1(σΛ) � H1(σΛ) × B1(σΛ).

Proof. Since Bernoulli actions with base space (T, µ) are malleable mixing, by [PSa03]
or Theorem 2.6 above we have H1(σ, G) = Char(G) and the statement follows by
Lemma 2.10 and Theorem 2.9. The fact that σΛ can be constructed so that its exact
sequence of 1-cohomology groups is split is clear from the construction in the proof
of Lemma 2.10, which shows that one can select uγ ∈ Uγ such that uγuγ′ = uγγ′ ,
∀γ, γ′ ∈ Λ = Charβ(Γ ). �

Corollary 2.13. If G ∈ wT , then G has a continuous family of mutually non-stably
orbit-equivalent free ergodic m.p. actions on the probability space, indexed by the classes
of virtual isomorphism of all countable, discrete, abelian groups.

Proof. If we denote K = Char(G), then K is compact and open in K ×Λ. Thus, for any
isomorphism θ : K×Λ1 � K×Λ2, θ(K)∩K has finite index both in K and in θ(K). Thus,
Λ1, Λ2 must be virtually isomorphic. It is trivial to see that there are continuously many
virtually non-isomorphic countable, discrete, abelian groups, for instance by considering
all groups

∑
n∈I Z/pnZn with I ⊂ N and pn the prime numbers and noticing that there

are only countably many groups in each virtual isomorphism class. �
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Proof of Theorem 0.1 and Corollary 0.2. Theorem 0.1 now follows trivially from
Theorems 2.6 and 2.9, while Corollary 0.2 is an immediate consequence of Theorem 0.1
and Lemma 2.10. �

Corollary 2.14. Let G be an infinite property (T) group and σ the Bernoulli action of
G on

∏
g(T, λ)g. Denote σn = σZ/nZ, where Z/nZ acts as a (diagonal) product action on∏

g(T, λ)g and σZ/nZ is defined out of σ as in Lemma 2.7. Then σn is not w-malleable,
∀n � 2. If in addition G is an infinite conjugacy class (ICC) group, then the inclusion
of factors N = AZ/nZ �σn

G ⊂ A �σ G = M has Jones index [M : N ] = n [J83], with
M constructed from a Bernoulli action of an ICC Kazhdan group, while N cannot be
constructed from such data, i.e. N cannot be realized as N = A0 �σ0 G0 with G0 ICC
Kazhdan group and (σ0, G0) a Bernoulli action.

Proof. If σn were w-malleable, then by Theorem 2.6 we would have H1(σn, G) =
Char(G). But by Theorem 2.9 we have H1(σn, G) = Char(G) × Z/nZ and since G has
(T), Char(G) is finite so Char(G) � Char(G) × Z/nZ for n � 2, a contradiction.

If N = A0 �σ0 G0 for some Bernoulli action σ0 of an ICC property (T) group G0,
then by the superrigidity result [P04, 7.6] it would follow that (σn, G) and (σ0, G0) are
conjugate actions, with G � G0, showing in particular that H1(σ0, G0) = H1(σn, G).
Since σ0 is a Bernoulli G0-action and G0 � G has property (T), by [PSa03] we have
H1(σ0, G0) = Char(G), while, by Corollary 2.12 therein, H1(σn, G) = Char(G) × Z/nZ,
a contradiction. �

3. 1-cohomology for actions of free products of groups

We now use Theorem 2.9 to calculate the 1-cohomology for quotients of Bernoulli G-
action in the case G is a free product of groups, G = ∗n�0Gn, with all Gn either amenable
or in the class wT , at least one of them with this latter property. Rather than locally
compact as in Theorem 2.9, the H1-group is ‘huge’ in this case, having either U(A)
or U(A)/T as direct summand. Since, however, U(A), U(A)/T are easily seen to be
connected, the quotient of H1 by the connected component of 1 provides a ‘nicer’ group
which is calculable and still an invariant to stable orbit equivalence. This allows us to
distinguish many actions for each such G.

Lemma 3.1. Let G0, G1, . . . be a sequence of groups and G = ∗n�0Gn their free product.
Let σ : G → Aut(X, µ) be a free ergodic measure preserving action of G on the probability
space.

(1) For each sequence w = (wi)i�0 with wi ∈ Z 1(σ|Gi
, Gi), i � 0, there exists a unique

∆(w) ∈ Z 1(σ, G) such that ∆(w)|Gi
= wi, ∀i � 0. The map w �→ ∆(w) is an

isomorphism between the Polish groups
∏

i�0 Z 1(σ|Gi
, Gi) and Z 1(σ, G).

(2) If σ|G0 is ergodic and K ⊂ Z 1(σ|G0) is a Polish subgroup which maps 1 to 1 onto
its image K/∼c in H1(σ|G0 , G0), then ∆ defined in (1) implements a 1 to 1 con-
tinuous morphism ∆′ from K ×

∏
j�1 Z 1(σ|Gj

, Gj) into H1(σ, G). If in addition
K/∼c = H1(σ|G0 , G0) is also surjective (so if the 1-cohomology exact sequence for
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H1(σ|G0 , G0) is split), then ∆′ is an onto isomorphism of topological groups. In par-
ticular, if σ|G0 is weakly mixing then ∆ implements a 1 to 1 continuous morphism ∆′

from Char(G0) ×
∏

j�1 Z 1(σ|Gj
, Gj) into H1(σ, G) and if H1(σ|G0 , G0) = Char(G0)

then ∆′ is an onto isomorphism of Polish groups.

Proof. Part (1) is evident by the isomorphism between Z 1(σ, G) and Aut0(A �σ G; A)
or by noticing that a function w : G → U(A) is a 1-cocycle for σ if and only if
{wgug}g∈G ⊂ A �σ G is a representation of G.

(2) If there existed u ∈ U(A) such that ∆(w)g = σg(u)u∗, ∀g, where w = (w0, w1, . . . )
for some w0 ∈ K, wi ∈ Z 1(σ|Gi

), i � 1, then σg0(u)u∗ = w0(g0), ∀g0 ∈ G0, implying
that w0 = 1. By the ergodicity of σ|G0 this implies u ∈ C1. Thus wi = 1, ∀i, so that
w = (1, 1, . . . , 1). If in addition H1(σ|G0) � K, then ∆′ follows onto because ∆ is onto
and because of the way ∆ is defined. �

From Lemma 3.1 (2) above we see that in case σ|G0 is weakly mixing, then in order to
calculate H1(σ, G) for G = ∗n�0Gn we need to know H1(σ|G0 , G0) and Z 1(σ|Gi

, Gi) for
i � 1. By Corollary 2.12, all these groups can be calculated if σ is a Bernoulli G-action,
or certain quotients of it, and G0 ∈ wT . The groups Z 1 can in fact be calculated for
amenable equivalence relations as well, as shown below.

For convenience, we denote by G the Polish group U(A) (with the topology given by
convergence in norm ‖ · ‖2), where A = L∞(T, µ) as usual, and by G0 the ‘pointed’ space
G/T. It is easy to see that G is contractible (use for instance the proofs in [PT93]), so
that both G, G0 are connected. Also, G∞ � G and G × G0 � G0.

Lemma 3.2.

(1) If Gi ∈ wT , Λ is a countable discrete abelian group and σ′ is an action of Gi of the
form σΛ, as constructed in Lemma 2.10, then Z 1(σ′) � G0 × Char(Gi) × Λ.

(2) If σ′ is a free m.p. action of a finite group with n � 2 elements on the probability
space (X, µ) and Y ⊂ X is a measurable subset with µ(Y ) = (n − 1)/n, then
H1(σ′) = {1} and B1(σ′) = Z 1(σ′) � U(L∞(Y, µ)). In particular, if (X, µ) is
non-atomic, then Z 1(σ′) � G.

(3) If σ′ is a free ergodic m.p. action of an infinite amenable group, then Z 1(σ′) � G.
Moreover, B1(σ′) is proper and dense in Z 1(σ′).

Proof. Part (1) is clear by Theorems 2.6 and 2.9, Lemma 2.10 and the last part of
Corollary 2.12, while (2) is a folklore result.

(3) By 1.4 and the results of Dye and Ornstein–Weiss [D63,OW80], we may assume
the infinite amenable group is equal to Z and that the action is mixing (say a Bernoulli
action). Identify Z 1(σ′, Z) with Aut0(A�Z, A) and notice that if u = u1 ∈ M = A�σ′ Z

denotes the canonical unitary implementing the single automorphism σ′(1) of A then
any v ∈ U(A) implements a unique automorphism θv ∈ Aut0(M, A) satisfying θv(au) =
avu. Also, it is trivial to see that U(A) � v �→ θv ∈ Aut0(M, A) is an isomorphism
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of topological groups. The fact that B1(σ′) is dense in Z 1(σ′) is immediate to deduce
from [OW80,CFW81] and part (2). Also, by Lemma 2.4 (1) we have T ⊂ H1(σ′), so
the subgroup B1(σ′) is proper in Z 1(σ′). �

Theorem 3.3. Let {Gn}n�0 be a sequence of groups, at least two of them non-trivial,
and denote G = ∗n�0Gn their free product. Let J = {j � 0 | Gj ∈ wT } and assume
0 ∈ J and Gj amenable for all j not in J . Let Λ be a countable discrete abelian group
and denote by σΛ the action of the group G constructed in Corollary 2.12, as a quotient
of the classic Bernoulli G-action. We have the following isomorphisms of Polish groups.

(1) If J = {0}, then H1(σΛ, G) � G × Char(G0) × Λ.

(2) If J �= {0} (i.e. |J | � 2), then

H1(σΛ, G) � G
|J|−1
0 ×

∏
j∈J

Char(Gj) × Λ|J|.

Proof. This is now trivial by Lemma 3.1 and 3.2 and by the properties of G, G0. �

Definition 3.4. Let σ be a free ergodic m.p. action of an infinite countable discrete group
G on a standard probability space. We denote by H̃1(σ, G) the quotient of Z 1(σ, G) by
the connected component Z 1

0 (σ, G) of 1 in Z 1(σ, G). Since Z 1
0 (σ, G) is a closed subgroup

in H1(σ, G), H̃1(σ, G) with its quotient topology is a totally disconnected Polish group.
Note that, since B1(σ, G) is connected (being the image of the connected topological
group G), one has B1(σ, G) ⊂ Z 1

0 (σ, G) and H̃1(σ, G) coincides with the quotient of
H1(σ, G) by the connected component of 1 in H1(σ, G). Also, since H1(σ, G) is invariant
to stable orbit equivalence, so is H̃1(σ, G). If G is an ergodic full pseudogroup as in § 1.3,
then H̃1(G) is defined similarly and has similar properties.

Corollary 3.5. Under the same assumptions as in Theorem 3.3, if all Gj , j ∈ J , have
finite character group (for instance if they have the property (T)), or more generally
if Char(Gj) is totally disconnected ∀j ∈ J , then H̃1(σΛ, G) �

∏
j∈J Char(Gj) × Λ|J| as

Polish groups.

Proof. Trivial by Theorem 3.3 and the comments in Definition 3.4. �

Corollary 3.6. Let H1, H2, . . . , Hk be infinite property (T) groups and 0 � n � ∞. The
free product group H1∗H2∗· · ·∗Hk∗Fn has uncountably many non-stably orbit-equivalent
free ergodic m.p. actions.

Proof. Clear by Corollary 3.5 and by the argument in the proof of Corollary 2.13. �

Note that the groups G = ∗n�0Gn for which we calculated the 1-cohomology for
quotients of Bernoulli G-actions in this section do have infinite subgroups H0 ⊂ G such
that (G, H0) has the relative property (T): for instance, if H0 ⊂ G0 is the infinite wq-
normal subgroup of G0 ∈ wT such that (G0, H0) has the relative property (T), then
(G, H0) has the relative property (T). It is trivial to see though that gG0g

−1 ∩ G0 is

https://doi.org/10.1017/S1474748006000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748006000016


Computations of 1-cohomology groups 329

finite ∀g ∈ G \ G0, so that by (2.3′) H0 is not wq-normal in G. Furthermore, from
Theorem 2.6 and Lemma 3.2, we deduce the following result (which can in fact also be
proven using Bass–Serre theory).

Corollary 3.7. If G = K1 ∗ K2 with K1, K2 non-trivial groups, then G is not in the
class wT .

Proof. If K1, K2 are finite, then G has the Haagerup approximation property [H79], so
it cannot contain an infinite subgroup with the relative property (T) (see, for example,
[P03]). If say K1 is infinite and we let σ be a Bernoulli G-action, then by Lemma 3.1 (2)
and Lemma 3.2, H1(σ, G) contains either G or G0 as closed subgroups. Since the latter
are not compact (not even locally compact), this contradicts Theorem 2.6. �

Remarks 3.8. (1) Let H̄1(σ, G) denote the quotient of Z 1(σ, G) by the closure of
B1(σ, G) in Z 1(σ, G), or equivalently the quotient of H1(σ, G) by the closure of 1̂ in
H1(σ, G). We see by the definition that H̄1(σ, G) is invariant to stable orbit equiv-
alence. One can use arguments similar to the ones in [P01, P03] to prove that if
G ∈ wT has an infinite amenable quotient K with π : G → K the quotient map,
and σg = σ0(g) ⊗ σ1(π(g)), where σ0 is a Bernoulli G-action and σ1 a Bernoulli K-
action, then H̄1(σ, G) = Char(G), while σ is not strongly ergodic in this case. By using
the construction in the proof of Theorem 2.9, from the action σ one can then construct
free ergodic m.p. actions σΛ of G such that H̄1(σΛ, G) = Char(G) × Λ, for any countable
abelian groups Λ.

(2) Corollary 2.12 and Theorem 3.3 provide computations of the 1-cohomology group
H1(σΛ, G) for the family of actions σΛ constructed in Corollary 2.12, for most groups
G having infinite subgroups with the relative property (T). However, groups hav-
ing the Haagerup compact approximation property [H79], such as the free groups
Fn, 2 � n � ∞, do not contain infinite subgroups with the relative property (T)
(see, for example, [P02]). The problem of calculating the H1-groups for Bernoulli G-
actions and their quotients σΛ when G are free groups, or other non-amenable groups
with the Haagerup property, remains open. Note, however, that by Lemma 3.1 (1) and
Lemma 3.2 (3) if σ is an arbitrary free ergodic m.p. action of Fn on the probability space
then Z 1(σ, Fn) � U(A)n = Gn � G, so H̃1(σ, G) = {1}. (In fact Z 1 is even contractible.)
Also, by Lemma 3.1 (2) one has an embedding of T × Gn−1 into H1(σ, Fn) whenever one
of the generators of Fn acts weak mixing (e.g. when σ is a classic Bernoulli action). All
this indicates that the H1-invariant may be less effective in recognizing orbit-inequivalent
actions of the free groups.

Related to this, our last result below emphasizes the limitations of the ‘deforma-
tion/rigidity’ techniques of [P01,P03] when trying to prove that H1(σ, G) = Char(G)
for arbitrary (commutative and non-commutative) Bernoulli G-actions, beyond the class
of w-rigid groups G dealt with in [P01,PSa03] and the class wT in this paper.

Thus, we let this time G be an arbitrary non-amenable group and σ be the action
of G on the finite von Neumann algebra (N, τ) = ⊗̄ g(N0, τ0)g by (left) Bernoulli shifts,
with the ‘base’ (N0, τ0) either the diffuse abelian von Neumann algebra L∞(T, λ), or a

https://doi.org/10.1017/S1474748006000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748006000016


330 S. Popa

finite-dimensional factor Mn×n(C), or the hyperfinite II1 factor R. By [P01,P03] σ is
malleable. More precisely, there exists a continuous action α of R on (N ⊗̄N, τ ⊗ τ) such
that [α, σ̃] = 0 and α1(N ⊗ 1) = 1 ⊗ N , where σ̃g = σg ⊗ σg, g ∈ G.

Proposition 3.9. Let w ∈ Z 1(σ, G). The following conditions are equivalent.

(i) w is cohomologous to a character of G.

(ii) For sufficiently small |t|, the representation πt of G on L2(N, τ) ⊗̄L2(N, τ) given
by f �→ (wg ⊗ 1)σ̃g(f)αt(w∗

g ⊗ 1) is a direct sum between a multiple of the triv-
ial representation of G and a subrepresentation of a multiple of the left regular
representation of G.

Proof. If wg = γ(g)uσg(u∗), g ∈ G, for some γ ∈ Char(G) and u ∈ U(N), then
Ut(f) = (u ⊗ 1)fαt(u∗ ⊗ 1), for f ∈ L2(N, τ) ⊗̄L2(N, τ) defines a unitary operator that
intertwines the representations π0 and πt, which thus follow equivalent. But π0 = σ̃ is a
direct sum between one copy of the trivial representation of G and a subrepresentation
of a multiple of the left regular representation of G (see, for example, [S80,J83b]). This
shows that (i) =⇒ (ii).

Conversely, since limt→0 ‖πt(g)(1) − 1‖2 = 0, ∀g, where 1 = 1N ⊗ 1N , if πt satisfy (ii),
then for t small enough πt(g)(1) follows close to 1 uniformly in g ∈ G, i.e. (wg ⊗1)αt(w∗

g ⊗
1), g ∈ G, is uniformly close to 1 (in the norm ‖ · ‖2). But then the argument in [P01]
or [PSa03] shows that w is cohomologous to a character, thus (ii) =⇒ (i). �
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