
THE JOURNAL OF NAVIGATION (2018), 71, 955–970. c© The Royal Institute of Navigation 2018
doi:10.1017/S0373463317001035

Fusion-based Satellite Clock Bias
Prediction Considering Characteristics

and Fitted Residue
Jicang Lu, Chao Zhang, Yong Zheng and Ruopu Wang
(Zhengzhou Information Science and Technology Institute, China)

(E-mail: lujicang@sina.com)

As Satellite Clock Bias (SCB) prediction may be affected by various factors such as periodic
items, sampling length, and stochastic items, a fusion-based prediction method is proposed by
considering characteristics of SCB and fitted residue. On this basis, an instance algorithm is
presented by fusing four typical prediction models. First, we use Empirical Mode Decompo-
sition (EMD) to pre-process and decompose the SCB series into multiple components with
various characteristics. Then, we analyse the fitting performance of each model for different
components and prediction length, namely short-, mid- and long-term prediction, and select
models with the best performance. Next, we analyse fitted residue of the reconstructed SCB,
and select the model with the best fitting results. Finally, we fuse the multiple selected models
for SCB prediction. The method is tested using Global Positioning System (GPS) precise clock
products provided by the International Global Navigation Satellite System Service (IGS). Exper-
imental results show that, compared with single prediction models and existing combination
models, the proposed fusion-based prediction method improves accuracy and stability. In par-
ticular, the proposed method is more stable and has better performance for mid- and long-term
prediction.
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1. INTRODUCTION. As a major component of satellite navigation technology, it is
important to analyse the characteristics and bias of satellites’ on board atomic clocks. The
clocks may experience relativity and gravitational redshift effects due to height and rela-
tive motion (Cacciapuoti et al., 2007). In addition, compared with ground atomic clocks,
the environment of an on board atomic clock is more complex. The atomic clock is sen-
sitive to various outside and intrinsic factors, such as temperature, humidity, collision,
relative motion, etc. Therefore, atomic clocks could suffer large deviations without effec-
tive corrections (Tang et al., 2015). It is well known that the fundamental principle of
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satellite navigation and positioning is the measurement of time. Therefore, high stability
and accuracy of on board atomic clocks is a key issue for precise applications such as
accurate navigation and positioning (Shi et al., 2015), long baseline navigation (Batista,
2015), precise point positioning (Li and Zhao, 2012), precise timing (Griggs et al., 2014)
and so on.

Satellite clock monitoring and bias prediction for satellite navigation systems such as
the Global Positioning System (GPS), Beidou, GLONASS and Galileo has been achieved
by capturing real-time clock information from observing stations from wide areas. Analysis
and prediction results are released after several days or weeks of processing. For example,
the International Global Navigation Satellite System Service (IGS) provides clock bias and
precise ephemeris products for GPS and GLONASS periodically. The International GNSS
Monitoring and Assessment System (iGMAS) can provide precise orbit and clock bias
products for GPS, Beidou, GLONASS and Galileo. However, these results and products
are generally time-late and may not satisfy some real-time precise applications when satel-
lite signals are lost. In addition, the prediction length is not long enough for some long-term
precise applications. To date, a number of Satellite Clock Bias (SCB) analysis and predic-
tion models or algorithms, such as the Quadratic Polynomial (QP) model (Huang et al.,
2014; Wang et al., 2016), Spectrum Analysis (SA) (Heo et al., 2010; Senior et al., 2008),
Grey system Model (GM) (Yuan et al., 2008; Zheng et al., 2008), Auto Regressive Inte-
grated Moving Average (ARIMA) model (Xi et al., 2014; Stein and Evans, 1990), Kalman
Model (Galleani and Tavella, 2010; Davis et al., 2012; Pratt et al., 2013), Least Square
Support Vector Machine (LS-SVM) model (Liu et al., 2013), Wavelet Neural Network
(WNN) model (Ai et al., 2016; Wang et al., 2017), etc. In addition, combination prediction
methods were also proposed by combining typical multiple models (Lei et al., 2014; Wang
et al., 2011; Xu et al., 2016). However, existing models or algorithms generally do not
take fully into account the influences of factors such as periodic items, sampling length,
stochastic items and so on, which result in low precision and usability. SCB is caused by
multiple factors, which result in the various characteristics. Therefore, in order to research
and design more precise and reasonable prediction methods or models for particular appli-
cations, the influences of periodic and stochastic effects as well as sampling length should
be considered.

For more precise and stable prediction of SCB, we propose a fusion-based prediction
method by considering various characteristics and fitted residue. First, an Empirical Mode
Decomposition (EMD) algorithm is used to pre-process and decompose the observed SCB
series into multiple components with various periodic characteristics. Then, existing typ-
ical prediction models are used to fit each component with different characteristics and
sampling length. The fitting residue is analysed and the model with best fitting results
is selected to reconstruct the SCB. Next, the synthetic residue between the original and
reconstructed data (referred to as primary fitted error) is computed and fitted by multiple
prediction models, and the model with best fitting results is selected. Finally, the selected
models are fused to predict future SCB in the short-, mid- and long-term. The proposed
fusion-based prediction method is tested and analysed using the GPS SCB from the IGS.

2. RELATED WORKS. In this section, some typical SCB prediction models (QP, SA,
GM and ARIMA) will be briefly explained, using their mathematical expressions. Their
performance will also be briefly summarised.
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2.1. Typical prediction model.
2.1.1. QP model. The multinomial model is one of the most popular models in SCB

analysis. Under this scheme, QP is a more typical model, which can be expressed as

xi = α0 + α1�ti + α2�t2i +
∫ ti

t0
f (t)dt (1)

where xi is the observed SCB at time ti, for the SCB dealt with differential processing, it
could be the first or higher order difference of SCB. α0, α1 and α2 are the fitting parame-
ters to be computed. �ti = ti − t0 is the difference between observed time ti and reference
time t0.

∫ ti
t0

f (t)dt is the stochastic error with a normal distribution, which is denoted as
ei. Generally, the stochastic term is the clock noise, which is typically composed of five
noise processes, that is White Phase Modulation (WPM), Flicker Phase Modulation (FPM),
White Frequency Modulation (WFM), Flicker Frequency Modulation (FFM) and Random
Walk Frequency Modulation (RWFM). Thus, the noise is non- stationary.

Denote

α =

⎡
⎣α0

α1
α2

⎤
⎦ , A =

⎡
⎢⎢⎣

1 �t1 �t21
1 �t2 �t22

· · · · · · · · ·
1 �tn �t2n

⎤
⎥⎥⎦ , X =

⎡
⎢⎢⎣

x1
x2
· · ·
xn

⎤
⎥⎥⎦ , e =

⎡
⎢⎢⎣

e1
e2
· · ·
en

⎤
⎥⎥⎦ ,

then

X = Aα + e (2)

where α̂ can be estimated by the least squares method as

α̂ = (ATA)−1ATX. (3)

With the estimated parameters, we can use

x̂j = α̂0 + α̂1(tj − t0) + α̂2(tj − t0)2 (4)

to obtain the fitted value of the observed data (j ≤ n) and predict the future data (j > n).
2.1.2. SA model. For SCB with periodic characteristics, Spectrum Analysis (SA) can

describe it better. The model can be described as

xi = α0 + β0�ti +
m∑

k=1

Ak sin(2π fk�ti + φk) + ei (5)

where α0 and β0 are constant and coefficient terms during long-term variations, respec-
tively. m is the number of the main periodic characteristics. fk is the frequency correspond-
ing to the periodic characteristics and Ak and φk are amplitude and phase, respectively.
ei is the residue of xi. m and fk can be determined by fast Fourier transform. Denote
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αk = Ak cos φk, βk = Ak sin φk, we then have

xi = α0 + β0�ti +
m∑

k=1

(αk sin(2π fk�ti) + βk cos(2π fk�ti)) + ei (6)

Denote

H =

⎡
⎢⎢⎣

1 �t1 sin(2π f1�t1) cos(2π f1�t1) sin(2π fm�t1) cos(2π fm�t1)
1 �t2 sin(2π f1�t2) cos(2π f1�t2) sin(2π fm�t2) cos(2π fm�t2)

· · · · · · · · · · · · · · · · · · · · · · · ·
1 �tn sin(2π f1�tn) cos(2π f1�tn) sin(2π fm�tn) cos(2π fm�tn)

⎤
⎥⎥⎦

T

,

a =
[
α0 β0 α1 β1 · · · · · · αk βk

]T, e =
[
e1 e2 · · · en

]T, then, there is

X = Ha + e (7)

where â can be estimated by the least squares method as

â = (HTH)−1HTX. (8)

With the estimated parameters, we can use

x̂j = α̂0 + β̂0�tj +
m∑

k=1

(
α̂k sin(2π fk�tj ) + β̂k cos(2π fk�tj )

)
(9)

to obtain the fitted value of the observed data (j ≤ n) and predict the future data (j > n).
2.1.3. Grey system Model (GM). The Grey system Model (GM) is a prediction sys-

tem with incomplete definite information, that is, part of the information is known and
part unknown, and some relationships between various factors are generally uncertain. The
principle is: first, process the original data series with accumulated additive or subtrac-
tive factors to generate a new data series. This process decreases the randomisation of the
original data and results in some regular characteristics. Then, establish a model based on
differential equations to predict the future data. On the basis of this principle, multiple types
of GM models have been presented by setting various parameters. Among these models,
GM(1, 1), which is constructed by a first order differential equation with only one variable,
is the most popular.

We denote the observed data series as {x(0)
i , i = 1, 2, . . . n} and the corresponding times

are {t(0)
i , i = 1, 2, . . . n}. Next we calculate the cumulative sum of the observed data series

and the resulting series is {x(1)
i , i = 1, 2, . . . n}. Then, for first order GM dx(1)

dt + ax(1) = u, the
differential equation after derivative discretisation can be expressed as follows

X = AU (10)

where X =

⎡
⎢⎢⎣

x(0)
2

x(0)
3

x(0)
n

⎤
⎥⎥⎦, A =

⎡
⎢⎢⎣

−[x(1)
1 + x(1)

2 ]/2
−[x(1)

2 + x(1)
3 ]/2

· · ·
−[x(1)

n−1 + x()
n ]/2

1
1

· · ·
1

⎤
⎥⎥⎦, U =

[
a
u

]
.

https://doi.org/10.1017/S0373463317001035 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317001035


NO. 4 FUSION-BASED SATELLITE CLOCK BIAS PREDICTION 959

Then, the value Û can be estimated by the least squares method as

Û = (ATA)−1(ATX) =
[

â
û

]
. (11)

With the estimated parameters, we can use

x̂(0)
j =

(
1 − eâ

) [
x(0)

1 − û
â

]
e−â(j −1) (12)

to obtain the fitted value of the observed data (j ≤ n) and predict the future data (j > n).
2.1.4. Auto Regressive Integrated Moving Average (ARIMA) model. ARIMA is

derived from the Auto Regression Moving Average (ARMA) model by pre-processing
the original data series with d-th order difference, and can be denoted as ARIMA(p , d, q).
When d = 0, ARIMA(p , d, q) is ARMA(p , q). ARMA is a popular model used to fit stable
sequences and includes Auto Regression (AR), Moving Average (MA) and ARMA. For
most non-stable sequences such as SCB series, it always becomes stable after dealing with
first or higher order differences. Therefore, ARIMA can be used to fit and predict SCB.

Denote the SCB series after d-th order difference as {x(−d)
i , i = 1, 2, . . . n}, then,

ARIMA(p , d, q) can be expressed as

x(−d)
i = φ1x(−d)

i−1 + · · · φpx(−d)
i−p + εi − θ1εi−1 − · · · − θqεi−q (13)

where φ1, . . . , φp are parameters of auto regression, θ1, . . . , θq are parameters of a moving
average and p and q are orders of auto regression and a moving average, respectively.
εi, εi−1, . . . , εi−q are white noise with normal distribution

(
0, σ 2

ε

)
. When p = 0 or q = 0, the

model is MA(q) or AR(p), respectively.
The construction and application of ARIMA includes two parts: estimation of param-

eters and determination of model orders. The former part is a complex procedure. The
popular methods used to estimate parameters are moment estimation, maximum likelihood
estimation, or least squares estimation. Moment estimation is a rough method with lower
computation complexity, but the accuracy is lower than the other two methods. The least
squares method is a special case of maximum likelihood method with some specific con-
ditions. Performance of the least squares method is the best, but the procedure is more
complex. For a data series, there may be multiple groups of p and q satisfying the require-
ment. The model should be optimised by determining the best p and q. At present, Akaike
Information Criterion (AIC) norm and Bayesian Information Criterion (BIC) norm are two
widely used methods for parameter optimisation.

The performance of the above four typical models have been researched and analysed
(Wang et al., 2016; Senior et al., 2008; Yuan et al., 2008; Xi et al., 2014; Wang et al., 2015),
and can be described as follows.

(1) For short-term prediction, all of the four models perform well. However, SA consid-
ers the periodic variation, while the exponential coefficients of GM(1, 1) are related to
the number of elements in the observed SCB series. Sufficient sampling data should
be provided, otherwise, prediction precision cannot be guaranteed.

(2) For mid- and long-term prediction, SA and GM(1, 1) will perform well with suffi-
cient sampling data. QP and ARIMA(p , 1, q) are not suitable for mid- and long-term
prediction because of error accumulation.
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(3) For periodic characteristics analysis, SA is more suitable. However, SA performs
better only when there is sufficient sampling data.

(4) As to satellite clock types, ARMA(p , 1, q) is more easily affected by clock type
and prediction condition. The results from Rubidium atomic clocks will be more
accurate than those of Caesium atomic clocks (Heo et al., 2010; Wang et al.,
2015).

2.2. Existing combination prediction method. For a particular prediction model, the
performance can be influenced by various factors, such as sampling length, periodic char-
acteristics, prediction length and type of atomic clock. For example, some models are
appropriate for short-term prediction, while some are appropriate for mid- and long-term
prediction. Some models are appropriate for periodic items, while some are appropriate for
stochastic ones. Therefore, for particular applications, a combination prediction model that
is superior to a single model can be obtained by combining multiple models, making the
best use of the advantages of each. Existing combination prediction models can be divided
into two categories: one is to combine the results of each model by weighted linear or
nonlinear combination, such as the algorithms proposed by Wang et al. (2011) and Wang
(2010). The other category is to select models for different components, and then super-
impose them as the final prediction results. For example, Xu et al. (2016) combined QP
and AR. Xu et al. (2013a; 2013b) combined QP and a functional network. Lei et al. (2014)
combined QP and a least squares support vector machine. The principle of these two cat-
egories are illustrated in Figure 1, the left panel denotes the former category, and the right
panel denotes the latter.

It can be seen from Figure 1 and existing research (Xu et al., 2016; 2013a; 2013b; Lei
et al., 2014) that the combination methods generally did not take fully into account the char-
acteristics of the single models under different conditions, as well as various characteristics

Figure 1. Principle of existing combination prediction model for SCB.
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of observed SCB. Therefore, it has been difficult to obtain a combination prediction model
with a superior and more stable performance under a variety of conditions.

3. FUSION-BASED SCB PREDICTION METHOD. First, this section analyses the
characteristics of SCB. Then, an appropriate pre-process method will be presented to
decompose an SCB series into multiple components with various characteristics. Finally, a
fusion-based prediction method will be presented.

3.1. Characteristic analysis of the SCB. Due to influences of intrinsic physical char-
acteristics and outside environments, the SCB series will show non-stable characteristics
(Heo et al., 2010). In addition, the on board atomic clocks are generally caesium or rubid-
ium atomic clocks, and the frequency drift over an extended period of time is usually
nonlinear (Galleani et al., 2003; Zucca and Tavella, 2015). The factors above will influ-
ence stability and accuracy of satellite clocks, and lead to clock offset. Generally, the offset
consists of systematic and stochastic offsets.

The systematic offset is caused by initial phase offset, frequency offset and frequency
drift after a long period of working. Initial phase offset is a constant. The intrinsic fre-
quencies are different for different atomic clocks. The difference will increase linearly as
time elapses, which results in a frequency offset. Frequency drift is the intrinsic charac-
teristic of all standard atomic frequencies and will increase non-linearly as time elapses.
Frequency offset and drift display as trend characteristics in SCB, which leads to nonlin-
ear characteristics after a long period. In addition, on board atomic clocks are influenced
by multiple factors such as temperature, humidity, vibration, radiation and gravitation.
Accompanied with the rotation and revolution of the Earth, and periodic variation of the
orbit, these factors lead to the periodic variation characteristics of atomic clocks. For
bias with this characteristic, the periodic variation function is generally used for better
fitting.

The stochastic offset is caused by noise inside the electronic equipment. Although the
physical mechanism of the noise is not presently clear, it can be described as multiple inde-
pendent energy spectrum noises. There are five modulations of noise, namely random walk
frequency modulation, flicker frequency modulation, white frequency modulation, flicker
phase modulation and white phase modulation. In addition, GPS rubidium atomic clocks
are also influenced by very low frequency noise flicker walk frequency modulation and ran-
dom run frequency modulation. The superposition of these noises gives a stochastic model
of SCB. Research (Guo, 2006) shows that the energy spectrum of most stochastic noise
emanates at a low Fourier frequency. In other words, the noise will show non-stationary
characteristics after long-term working, which leads to non-stationary SCB.

In summary, SCB is generally the superposition of multiple types of data such as peri-
odic data, trend data, and stochastic data. At the same time, SCB shows non-stationary and
nonlinear characteristics.

3.2. EMD and the usability for SCB analysis. EMD was proposed in 1998 by Huang
et al. (1998) of the National Aeronautics and Space Administration (NASA). EMD aims
to provide a new adaptive processing method for time-frequency signals. The principle
is firstly to decompose a time series signal as finite number of Intrinsic Mode Func-
tions (IMFs) with different time-scales, followed by processing each IMF with a Hilbert
transform to obtain the time-frequency spectrogram. The signal can be reconstructed by
superimposing the IMFs.
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Figure 2. Procedure of fusion and EMD-based SCB prediction.

The IMFs must satisfy the following requirements:

(1) During the whole time range, the number of the local extreme points must be equal
to that of the zero-crossing point for the function, or differ by one only.

(2) At any time, an average of the local maximum value envelope (upper envelope solid)
and the local minimum value envelope (lower envelope solid) must be zero.

EMD is excellent in processing nonlinear and non-stationary signals and for satellite
clocks, can reflect the characteristics of SCB more exactly.

First, the SCB series is pre-processed, and decomposed by EMD into multiple IMFs
with different characteristics. Then, each IMF is analysed and the related future IMFs are
predicted. Finally, the residue is analysed and the predicted SCB are obtained by recon-
struction. For the IMFs, when the periodicity is not obvious, the data may vary like a
stochastic sequence. Then, IMFs with this property will be added as one component for
processing. For example, the minimum satellite period is about 1.5 hours, and there will
be six clock biases when the sampling interval is 15 minutes. If an IMF fluctuates fre-
quently within six consecutive datasets, then, it may be more appropriate to consider it as a
stochastic sequence. Note that this paper aims at selecting an appropriate prediction model
for SCB with various characteristics. Therefore, when there are two or more IMFs perform-
ing stochastic characteristics, they will be added as one component for further analysis and
prediction. Other IMFs stay unchanged.

The procedure of SCB decomposition and reconstruction based on EMD is illustrated in
Figure 2. Firstly, select n prediction models {fj (x), j ∈ [1, n]} for the fitting and prediction
of n IMFs {imfi, i ∈ [1, n]}. Then, select an appropriate model to fit and predict the residue
e0 between reconstructed signal x̂′

0 and the original signal. The estimated original signal
can be obtained by adding the results ê0 to x̂′

0.
3.3. Construction of fusion-based prediction model and SCB prediction. SCB is a

superposition of data series with various characteristics. At the same time, performance of
different prediction models varies for data with different characteristics, and the accuracy
and stability of a single model are usually poor. Therefore, for SCB prediction, an appro-
priate data analysis algorithm such as EMD should first be used to decompose the observed
data into multiple components (such as IMFs). Then, the best prediction model should be
selected to fit and estimate each component. Finally, the most accurate and stable predic-
tion results can be obtained by fusing each component predicted by the selected models.
According to this principle, a fusion-based SCB prediction method is proposed by consid-
ering SCB characteristics and fitted residue. The proposed method includes two stages: the
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Figure 3. Framework of the proposed fusion-based SCB prediction method.

first is construction of the fusion-based prediction model, and the second is prediction of
future SCB. The procedure of model construction is illustrated in Figure 3.

The framework in Figure 3 is described as follows:

(1) Determine the length of observed SCB according to future SCB to be predicted. If
the length of SCB to be predicted is p , then the previous observed SCB with length
1, 2, . . ., p will be used for analysis. The i-th data is denoted as xi.

(2) Characteristic analysis and data decomposition. For the previous observed SCB with
length 1, 2, . . ., p , pre-process it with first order difference and decompose it by
methods such as EMD. For observed data of each length, a set {xi,j , j ∈ [1, n]} with
n components such as IMFs can be obtained, where xi =

∑n
j =1 xi,j .
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(3) Data component fitting and prediction. Analyse the characteristics of each com-
ponent, such as periodic, trend and stochastic characteristics. Select the predic-
tion model set for each component, and denote them as {fi,j , j ∈ [1, m1]}, {fi,j , j ∈
[1, m2]}, . . . , {fi,j , j ∈ [1, mn]}, respectively. Then, fit the previously observed SCB
with length 1, 2, . . ., p and predict the future corresponding components.

(4) Prediction model selection and primary fitted residue computation. According to the
above fitting results, take the prediction model with the minimum fitted variance as
the selected model for the specific length of the observed data. The fitted components
are denoted as x̂i,n = x̂(fn,j )

i,n

∣∣∣
min

(
var

(
xi,n−x̂

(fn,j )
i,n

)). The primary fitted results of the observed

data are obtained by superimposing the fitted results of each component, that is x̂′
i =∑n

j =1 x̂i,j . The primary fitted residue is calculated with ê′
i = xi − x′

i.
(5) Residue prediction and fusion model determination. For the primary fitted residue

of observed data of each length, analyse the characteristics and select the predic-
tion model with minimum fitted variance. The estimation result of the primary fitted
residue is êi = ê′

i

∣∣
min

(
var

(
e′

i−ê
′(fj )
i

)). Finally, take the observed data of the length with

the minimum synthetic fitted variance as the reference for SCB prediction.

After the length of observed data is determined, the fusion-based prediction model can
be determined. This consists of the selected prediction models for each component and the
primary fitted residue. Then, the expected future SCB is calculated by x̂i = x̂′

i + êi.

4. APPLICATION EXAMPLE AND EXPERIMENTAL RESULTS ANALYSIS. This
section will present an applied example of the proposed prediction method. The method
will then be tested on an actual SCB series to analyse its performance.

4.1. Fusion-based prediction model application example. According to the frame-
work illustrated in the last section, four typical models (QP, SA, GM(1,1) and
ARIMA(p ,1,q)) will be taken as examples to test the proposed fusion-based prediction
method (referred to as MergM). Two existing combination prediction methods mentioned
in Section 2.2 will be compared with the proposed method. One is the combination of
QP and AR proposed by Xu et al. (2016) (referred to as LS+AR), the other one is the
weight-based combination model proposed by Wang (2010) (referred to as ComT).

The actual SCB series is from GPS "final"precise SCB data published by IGS, which
were sampled at 15 minute intervals from 2 November 2014 to 1 March 2015. There are
a total of 120 days from the first day of GPS week 1817 to the first day of GPS week
1834 without SCB hops or interruption. The first half of the data is used for construction
and parameters determination of the fusion model, and the other half is used for prediction
and performance analysis. For coverage of various types of satellites and on board atomic
clocks, the satellites be analysed are BLOCK IIA PRN10, BLOCK IIR PRN02, BLOCK
IIR-M PRN05 and BLOCK IIF PRN27. At the same time, the corresponding clock types of
PRN02, PRN05, PRN10 and PRN27 are IIR Rb (built in 2004), IIR-M Rb (built in 2009),
IIA Cs (built in 1996) and IIF Cs (built in 2013), respectively.

The Root Meat Square (RMS) and maximum absolute difference (Range) of prediction

error are taken as criteria to evaluate the performance. RMS is calculated by
√

1
n

∑n
i=1 e2

i ,
where n is the number of elements in the predicted SCB series, ei is the prediction error.
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Range is calculated by emax − emin, where emax and emin are the maximum and minimum
prediction errors, respectively.

4.2. Prediction results and comparison analysis. We use four typical models (QP,
SA, GM(1,1) and ARMA(p ,1,q)), two existing combination models (LS+AR and ComT)
and the proposed fusion-based prediction method MergM to predict the future SCB: one
day (1d, short-term), three days (3d, short-term), 15 days (15d, mid-term), 30 days (30d,
mid-term) and 60 days (60d, long-term), respectively. For existing models, the length of
used observed data is equal to the prediction length, that is, we use the previous 1 d, 3 d,
15 d, 30 d and 60 d observed data to predict the future 1 d, 3 d, 15 d, 30 d and 60 d SCB,
respectively. RMS and Range of the results are shown in Table 1, where the results in italic
and bold are the best two. Taking 3 d, 30 d and 60 d predictions of PRN05 and PRN10
as examples, the prediction errors of each method are plotted in Figure 4 for detailed
comparison.

The comparison results in Table 1 show that, compared with existing models, the pro-
posed fusion-based prediction model possess better stability and accuracy. The results of
the proposed method are the best under almost all conditions. In addition, most existing
methods will accumulate errors over time, which is directly reflected in Figure 4. In com-
parison, the prediction results of the proposed method are more accurate and stable for all
short-term, mid-term and long-term predictions. For example, the RMS for 30 d and 60 d
predictions can be maintained under 36 ns and 90 ns, respectively. The results show that the
proposed method possesses a better synthetic performance.

In addition, the prediction results in Table 1 for IIR Rb of PRN02 perform the best, and
that for IIA Cs of PRN10 perform the worst. When the prediction length is no more than 15
days, the prediction results for rubidium are better than caesium. When prediction lengths
are 30 d and 60 d, the prediction results for the modern atomic clock IIF caesium are bet-
ter than for IIR-M rubidium. The results and analysis show that the prediction results of
the proposed method perform better for rubidium and modern caesium atomic clocks, but
perform worse for caesium atomic clocks which have been working for a comparatively
long period. The reason may be that there is a larger level of uncertainty about the perfor-
mance of aging atomic clocks, which indicate that the atomic clock should be replaced or
upgraded. The facts are also consistent with these inferences; the caesium atomic clock IIA
of PRN10 terminated its service on 16 July 2015, and was replaced by a modern caesium
atomic clock in a IIF satellite on 31 October 2015.

4.3. Determination of parameters during prediction. The parameters involved in the
fusion-based prediction method were recorded and analysed. The parameters include the
quantity of components obtained by EMD, the selected models for each component, the pri-
mary fitted error and the length of observed data needed for optimum prediction. The time
consumed from data decomposition to prediction was also recorded, as well as that by the
combination prediction methods LS+AR and ComT. The experiment was conducted on an
ordinary laptop (Windows 7 64bit, Intel(R) Core(TM) i5-4210U @1·70 GHz 2·40 GHz,
RAM: 4 GB). The results are listed in Table 2, where fi is the prediction model determined
for the i–th component.

It can be seen from the results in Table 2 that, for the prediction of various lengths of
future SCB, the length of observed data and quantity of components obtained by EMD
are different for different satellites. This indicates that there are differences between char-
acteristics of SCB generated by different types of on board atomic clocks. For example,
for the prediction of PRN27 1 d, 3 d, 15 d, 30 d and 60 d into the future, all the lengths of
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Table 1. Clock bias prediction results comparison (ns).

Prediction Satellite
length number Criterion QP SA GM ARIMA LS+AR ComT MergM

1d PRN02 RMS 5·07 0·16 1·46 0·99 0·31 1·29 0·32
Range 9·34 0·85 2·77 2·16 0·91 2·45 1·15

PRN05 RMS 12·05 2·28 1·98 1·63 1·99 1·11 0·56
Range 23·20 3·92 3·44 2·15 3·35 3·18 1·99

PRN10 RMS 3·65 8·89 14·98 8·66 9·03 8·96 2·35
Range 11·90 19·92 31·75 19·83 20·24 20·83 9·10

PRN27 RMS 2·48 0·25 0·66 1·94 0·40 0·36 0·20
Range 4·71 0·82 1·36 2·87 0·92 0·91 0·81

3d PRN02 RMS 17·06 0·83 0·40 7·43 1·05 6·07 0·42
Range 31·65 2·31 2·00 15·38 3·71 11·45 1·78

PRN05 RMS 26·63 6·34 1·97 3·22 6·08 3·26 0·49
Range 51·09 11·38 3·83 4·28 11·35 7·89 2·01

PRN10 RMS 25·22 24·68 19·52 73·39 23·25 23·10 7·93
Range 64·41 39·96 34·90 138·27 38·67 39·51 19·17

PRN27 RMS 0·43 1·11 0·66 3·50 0·43 1·06 1·09
Range 1·66 3·00 1·55 4·65 1·48 2·08 2·77

15d PRN02 RMS 33·50 5·09 4·66 14·49 14·74 6·70 0·81
Range 65·95 12·06 11·12 29·72 34·32 14·08 3·52

PRN05 RMS 29·32 13·50 13·13 11·66 63·03 4·25 4·36
Range 56·41 25·63 25·46 21·87 137·84 8·68 9·36

PRN10 RMS 18·28 86·49 76·54 325·53 218·42 117·07 36·83
Range 70·98 149·75 130·21 674·03 452·82 226·42 118·48

PRN27 RMS 1·69 10·40 10·35 20·09 20·04 11·48 11·32
Range 5·27 21·16 20·98 42·10 43·04 23·91 22·82

30d PRN02 RMS 86·51 29·48 29·33 31·30 4·86 43·11 2·94
Range 162·94 53·73 54·17 66·56 22·91 82·63 14·24

PRN05 RMS 33·30 40·34 50·25 77·84 48·08 53·59 9·26
Range 83·96 97·22 121·31 178·34 114·73 126·92 33·28

PRN10 RMS 407·72 188·39 188·61 252·03 67·72 258·27 35·34
Range 717·48 301·08 300·86 439·59 126·38 438·14 133·66

PRN27 RMS 40·55 30·36 30·25 17·30 23·35 28·17 25·28
Range 70·51 51·49 51·35 26·19 35·63 46·66 76·98

60d PRN02 RMS 273·30 11·04 10·44 79·92 170·02 89·82 10·35
Range 543·44 43·39 40·42 194·24 365·40 198·66 39·39

PRN05 RMS 250·12 365·48 473·34 244·19 448·11 348·71 89·54
Range 788·72 996·04 1247·05 714·82 1187·40 960·04 358·95

PRN10 RMS 691·57 502·78 526·90 218·62 374·07 481·79 46·37
Range 1425·79 1067·69 1123·11 434·34 771·39 1008·16 108·92

PRN27 RMS 374·13 48·82 42·64 22·97 164·40 49·67 26·49
Range 769·97 147·75 134·28 68·75 334·98 145·52 54·54

observed data needed for optimum prediction are a constant 7 d, and the quantities of EMD
components are a constant 7 d. This indicates that the characteristics of SCB of PRN27 can
be described adequately with 7 d observed data. In comparison, for PRN05, the length of
observed data needed for predicting future 1 d, 3 d, 15 d and 30 d are 8 d, while for 60 d it
is 59 d. These results could provide a better reference to determine the length of observed
data required when designing a prediction method.

It can also be seen from the selected models that, although the quantity of components
for various satellites are different, only SA and ARIMA are selected for these components.
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Figure 4. Comparison of SCB prediction errors for PRN05 in the left panels and PRN10 in the right panels.

What is more, SA is mostly selected for the last component. This is because the last com-
ponent is the main one, which generally shows periodic characteristics and is less affected
by stochastic factors. Therefore, SA is more appropriate than ARIMA, which coincides
with the results pointed out in Section 2.1. For the primary fitted error, GM11 is generally
selected for short-term and mid-term prediction, while SA is generally selected for long-
term prediction. These results show that it is important to decompose and predict SCB
according to the periodic or stochastic characteristics.

In addition, for future prediction of SCB no longer than 30 d, apart from the time con-
sumed for the future 30 d prediction of PRN10, which is 66·95 seconds, all the other
calculations take less than 60 seconds (1 minute). For the future 60 d prediction for all the
satellites, the times consumed are all within 90 seconds (1·5 minutes). Compared with the
two existing combination methods, the time consumed by the proposed method is longer.
The main reason is that most of the IMFs are determined by using the ARIMA model,
which is more complex and time consuming. This indicates that the complexity is influ-
enced by associated single models. Therefore, one way to improve the proposed method
and reduce the complexity is to select more time saving models with higher performance.
For practical SCB prediction applications using observed data sampled at 15 minutes’ inter-
val, the proposed fusion-based prediction method is a more appropriate selection for higher
precision and stability.
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Table 2. Parameters used by the proposed method and the consumed time.

Selected
Length of model for

Prediction Satellite observed Quantity of Selected models primary
length number data (day) component for each component fitted error

Consumed time (s)

LS+AR ComT MergM

1d PRN02 4 7 fi = ARIMA, i ∈ [1,5];
fi = SA, i ∈ [6,7]

GM11 1·15 2·12 20·37

PRN05 8 8 fi = ARIMA, i ∈ [1,7];
fi = SA, i = 8

GM11 1·20 2·32 27·46

PRN10 7 8 fi = ARIMA, i ∈ [1,7];
fi = SA, i = 8

GM11 1·19 2·74 27·23

PRN27 7 7 fi = ARIMA, i ∈ [2,6];
fi = SA, i ∈ {1,7}

GM11 1·28 1·74 26·48

3d PRN02 9 8 fi = ARIMA, i ∈ [1,8] GM11 1·24 2·47 36·47
PRN05 8 8 fi = ARIMA, i ∈ [1,7];

fi = SA, i = 8
GM11 1·23 2·53 28·74

PRN10 3 7 fi = ARIMA, i ∈ [1,6];
fi = SA, i = 7

GM11 1·23 3·09 18·37

PRN27 7 7 fi = ARIMA, i ∈ [2,6];
fi = SA, i ∈ {1,7}

GM11 1·30 1·68 28·38

15d PRN02 12 9 fi = ARIMA, i ∈ [1,8];
fi = SA, i = 9

GM11 1·46 4·02 44·54

PRN05 8 8 fi = ARIMA, i ∈ [1,7];
fi = SA, i = 8

GM11 1·46 6·05 33·63

PRN10 3 7 fi = ARIMA, i ∈ [1,6];
fi = SA, i = 7

SA 1·47 4·40 23·13

PRN27 7 7 fi = ARIMA, i ∈ [1,6];
fi = SA, i = 7

SA 1·48 5·25 27·55

30d PRN02 18 9 fi = ARIMA, i ∈ [1,9] SA 2·05 4·55 54·48
PRN05 8 8 fi = ARIMA, i ∈ [1,7];

fi = SA, i = 8
GM11 2·01 5·05 33·79

PRN10 28 11 fi = ARIMA, i ∈ [1,11] SA 2·02 6·07 66·95
PRN27 7 7 fi = ARIMA, i ∈ [2,6];

fi = SA, i ∈ {1,7}
GM11 2·07 6·19 30·24

60d PRN02 39 10 fi = ARIMA, i ∈ [1,10] SA 3·85 8·04 89·56
PRN05 59 9 fi = ARIMA, i ∈ [1,9] SA 3·88 8·81 86·08
PRN10 29 11 fi = ARIMA, i ∈ [1,11] SA 3·80 10·22 84·79
PRN27 7 7 fi = ARIMA, i ∈ [2,6];

fi = SA, i ∈ {1,7}
GM11 3·58 10·35 46·58

In summary, the experiments covered almost all types of GPS satellites and current
operational on board atomic clocks, such as BLOCK IIR Rb, BLOCK IIR-M Rb, BLOCK
IIA Cs and BLOCK IIF Cs. The prediction results of the proposed method perform well
for all of them, and are better for modern types of satellites and atomic clocks. The above
experimental results and analysis indicate that the proposed method has good practical
usability and outstanding performance.

5. CONCLUSIONS. For SCB prediction, a fusion-based framework is proposed
through the analysis of data characteristics and fitted residue. The proposed framework
also considers issues such as length and pre-processing of the observed data, and fusion
of multiple models. We take four typical models as examples, and a prediction algorithm
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following the proposed framework is presented. Experimental results show that the predic-
tion accuracy and stability of the proposed approach performs better compared with single
models and existing combination models, which indicates the validity and usability of the
proposed method.

Performance of the prediction model by fusing multiple models will be influenced
by the single models involved to a certain extent. As the quantity and performance of
the involved models increase, the performance of the proposed framework could also be
improved further. The proposed method is validated by experimental analysis, and the mod-
els for components are selected by simple variance analysis. In future work, the principle
of each single model will be theoretically analysed, and then, the fusion-based method with
better performance will be presented by optimising the procedure of model selection and
parameter setting based on rigorous theoretical analysis.
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