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Bounding walls or immersed surfaces are utilized in many industrial systems as the
primary thermal source to heat a gas–solids mixture. Previous efforts to resolve the
solids’ heat transfer near a boundary involve the extension of unbounded convection
correlations into the near-wall region in conjunction with particle-scale theories
for indirect conduction. Moreover, unbounded drag correlations are utilized in the
near-wall region (without modification) to resolve the force exerted on a solid particle
by the fluid. We rigorously test unbounded correlations and indirect conduction theory
against outputs from direct numerical simulation of laminar flow past a hot plate and
a static, cold particle. Here, local variables are utilized for consistency with unresolved
computational fluid dynamics discrete element methods and lead to new unbounded
correlations that are self-similar to those obtained with free-stream variables. The
new drag correlation with local fluid velocity captures the drag force in both the
unbounded system as well as the near-wall region while the classic, unbounded drag
correlation with free-stream fluid velocity dramatically over-predicts the drag force
in the near-wall region. Similarly, classic, unbounded convection correlations are
found to under-predict the heat transfer occurring in the near-wall region. Inclusion
of indirect conduction, in addition to unbounded convection, performs markedly
better. To account for boundary effects, a new Nusselt correlation is developed for
the heat transfer in excess of local, unbounded convection. The excess wall Nusselt
number depends solely on the dimensionless particle–wall separation distance and
asymptotically decays to zero for large particle–wall separation distances, seaming
together the unbounded and near-wall regions.

Key words: multiphase flow, granular media

1. Introduction

The design and operation of various industrial processes is highly dependent upon
the transport of momentum and thermal energy within a gas–solids flow. In many
systems, domain walls or immersed surfaces are utilized as the primary energy source
to heat a particle-laden mixture (Syamlal & Gidaspow 1985; Kuipers, Prins & Van
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Swaaij 1992; Nijemeisland & Dixon 2004; Chaudhuri, Muzzio & Tomassone 2006;
Patil et al. 2006; Cong et al. 2007; Shi, Vargas & McCarthy 2008; Martinek & Ma
2014; Morris et al. 2015, 2016; Yohannes et al. 2016; Ansart et al. 2017; Bongo
Njeng et al. 2018). Under such conditions, the drag and heat transfer occurring near
a wall will be of primary significance. Despite prevalent use of such flows in industry,
fundamental explorations on wall-to-particle heat transfer or near-wall particle drag
have not been emphasized in the literature. While a variety of drag and convection
correlations have been reported for unbounded gas–solids flows (no walls) (Ranz
& Marshall 1952; Whitaker 1972; Haider & Levenspiel 1989; Feng & Michaelides
2000; Richter & Nikrityuk 2012), they inherently do not account for boundary effects.
By and large, these unbounded correlations are applied as is to the near-wall region,
where their validity is expected to deteriorate. On many occasions, direct numerical
simulation (DNS) has been employed to probe the drag and heat transfer occurring
within an unbounded gas–solids system (Feng & Michaelides 2000, 2008, 2009; Dan
& Wachs 2010; Deen et al. 2012, 2014; Richter & Nikrityuk 2012; Tavassoli et al.
2013; Tavassoli, Peters & Kuipers 2015; Kruggel-Emden et al. 2016; Kravets &
Kruggel-Emden 2017). However, works to date which account for boundary effects
are far less inclusive (Nijemeisland & Dixon 2004; Radl, Municchi & Goniva 2016;
Municchi & Radl 2017).

The heat transfer occurring between a particle and a wall is comprised of convective,
conductive and radiative mechanisms. For the case of moderate system temperatures
(T<700 K), radiation is often neglected since it is not a significant contribution to the
overall heat transfer (Wen & Chang 1967; Flamant & Menigault 1987). Under these
circumstances, the relevant heat transfer mechanisms may be simplified to convection
and conduction only. Typically, correlations for unbounded systems (Ranz & Marshall
1952; Whitaker 1972; Feng & Michaelides 2000; Richter & Nikrityuk 2012)
are utilized without modification to approximate fluid–particle heat transfer in the
near-wall region. To account for wall–particle heat transfer, which has been believed
to be mostly conductive, particle-scale theories have been developed and employed.
Specifically, the conduction occurring between a particle and wall is made up of two
contributions: (i) direct conduction through the particle–wall contact area (Cooper,
Mikic & Yovanovich 1969; Batchelor & O’Brien 1977) and (ii) indirect conduction
between a particle and wall separated by a thin layer of fluid (Rong & Horio 1999). In
many practical cases, indirect conduction tends to dominate over direct conduction –
i.e. when the ratio of thermal resistances associated with direct and indirect conduction
is much greater than unity, or β = RpkgĥPFW(0)/2kpRc� 1 (Lattanzi & Hrenya 2017),
where Rp is the particle radius, kg is the gas thermal conductivity, ĥPFW(0) is the
solution to the indirect conduction integral at a particle–wall separation distance of
zero, Rc is the radius of contact between the particle and wall and kp is the particle
thermal conductivity. While particle-scale theories for indirect conduction (Delvosalle
& Vanderschuren 1985; Cheng, Yu & Zulli 1999; Rong & Horio 1999; Vargas &
McCarthy 2002) have been applied to a wide variety of systems (Zhou, Flamant &
Gauthier 2004; Di Maio, Di Renzo & Trevisan 2009; Zhou, Yu & Zulli 2009; Morris
et al. 2015, 2016; Lattanzi & Hrenya 2016), the theories themselves have only been
validated for static systems (Mishra et al. 2019). Most commonly, indirect conduction
theory assumes that each particle is surrounded by a static-fluid lens (RLens), as
denoted by the dashed line in figure 1. When the fluid lens overlaps with the wall,
one-dimensional conduction is assumed to occur through the fluid lens. Therefore,
the fluid lens thickness is the key length scale that establishes distances over which
particle–wall conduction will occur. For dynamic systems, indirect conduction theory
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FIGURE 1. An illustration of the static-fluid lens (dashed line) theory employed by indirect
conduction theory (left particle). The heat transfer occurring between a particle and wall
when the lens overlaps with a wall – i.e. the particle–wall separation distance (δ) is less
than the fluid lens thickness (RLens − Rp) (right particle).

has been shown to be most sensitive to the fluid lens thickness parameter, which is
traditionally set according to the particle size (RLens ∝ Rp) (Lattanzi & Hrenya 2017).
The state of the art for modelling heat transfer to a particle in the near-wall region
still involves the use of unbounded heat transfer correlations in conjunction with
particle-scale theories for indirect conduction (Morris et al. 2015). For gas–solids
flows at moderate temperatures (dominated by convection and indirect conduction),
further work is required to assess the accuracy of these approximations in the
near-wall region.

In the present work, uniform flow of a fluid past a hot plate and a static,
cold particle was simulated by a hybrid lattice Boltzmann–random walk particle
tracking (LBM-RWPT) DNS code (Wang et al. 2009; Metzger, Rahli & Yin 2013;
Lattanzi, Yin & Hrenya 2019a,b) to examine the heat and momentum transfer to a
spherical particle in the near-wall region. The presence of a hot wall in this work
allowed boundary effects on particle drag force and wall-to-particle heat transfer to
be quantified. Particle drag forces and heat rates obtained from LBM-RWPT are
compared to predictions made from unbounded correlations (Ranz & Marshall 1952;
Haider & Levenspiel 1989) coupled with indirect conduction (Rong & Horio 1999)
closures commonly employed within the discrete element method (DEM) framework.
Use of an unbounded drag correlation with a free-stream fluid velocity was found
to over-predict the drag force in the near-wall region since the effect of the slow
moving fluid adjacent to the wall is not accounted for. To capture effects resulting
from the particle’s local environment, a local Reynolds number was utilized to
develop a local, unbounded drag correlation. The drag correlation with local Reynolds
number was observed to capture the drag force in the near-wall region as well as
in the limit of an unbounded system (i.e. large particle–wall separation distances; δ).
Similarly, unbounded convection correlations were found to under-predict the heat
transfer to a particle in the near-wall region since they do not account for the
presence of the wall. By contrast, the combination of unbounded convection and
indirect conduction considerably improves agreement with LBM-RWPT. Specifically,
indirect conduction theory is observed to capture the main physics associated with
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heat transfer enhancement in the near-wall region. However, further heat transfer
enhancement is observed in LBM-RWPT at particle–wall separation distances (δ) that
are not captured by indirect conduction theory. Namely, indirect conduction theory
sets the fluid lens thickness according to geometric arguments based upon the particle
size (RLens = 1.4Rp) (Vargas & McCarthy 2002; Morris et al. 2015, 2016; Lattanzi
& Hrenya 2017) and predicts near-wall heat transfer will only occur when the fluid
lens intersects the wall (δ 6 0.4Rp). However, setting the fluid lens thickness in this
manner neglects the thermal length scale associated with the fluid near the wall
(boundary layer thickness). An excess wall Nusselt number was developed to account
for such near-wall heat transfer enhancement. Superposition of the local, unbounded
convection correlation and excess wall correlation is observed to accurately capture
the DNS data while the excess wall correlation asymptotically decays to zero in the
limit of large particle–wall separation.

2. Background: indirect conduction theory
To account for the indirect conduction occurring between a particle and wall,

we employ the theory proposed by Rong and Horio (Rong & Horio 1999; Morris
et al. 2015). In this theory, particles are assumed to be surrounded by a static-fluid
lens (dashed line in figure 1). When the lens overlaps with the wall, one-dimensional
conduction through the fluid lens is assumed to occur between the particle and wall.
Motivation for describing the fluid lens as ‘static’ is guided by the effect of no-slip
boundary conditions on the particle and wall. As the separation distance (δ) between
the particle and wall becomes small, the fluid velocities between the particle and wall
are dramatically reduced from the free-stream velocity. The rate of heat transfer due
to indirect conduction is found by integrating Fourier’s law over the area of overlap
between the fluid lens and wall (Morris et al. 2015)

Q̇PFW ≡ hPFW[Tw − Tp] =

∫ rout

rin

2πkgr
Max(l, s)

(Tw − Tp) dr,

rin=

{
rs =

√
R2

p − (s− Rp − δ)2 δ 6 s,
0 δ > s,

rout=


√

R2
p − (Rp + δ)2 δ >

√
R2

Lens − R2
p − Rp,

Rp δ 6
√

R2
Lens − R2

p − Rp,


(2.1)

where Q̇PFW is the rate of heat transfer due to indirect conduction between the
wall and particle, hPFW is the particle–fluid–wall heat transfer coefficient, Tw is
the wall temperature, Tp is the particle temperature, r is the radial position of the
fluid lens overlap, l(r) is the conduction distance at a radial position of r, s is the
minimum conduction distance, δ is the particle–wall separation distance and RLens
is the fluid lens radius. To evaluate the integral in (2.1), a fluid lens radius (RLens)
and minimum conduction distance (s) must be specified. An upper bound for RLens is
generally determined from geometric arguments and is given by RLens=

√
2Rp≈1.41Rp.

Namely, the maximum fluid lens radius is set such that the upper bound of integration
in (2.1) (rout) does not exceed the particle radius at the point of solid body contact
(δ = 0) – i.e. the conduction distance (l) remains well defined. The fluid lens radius
utilized in this work matches that commonly employed in other works (RLens= 1.4Rp)
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(Vargas & McCarthy 2002; Morris et al. 2015, 2016; Lattanzi & Hrenya 2016, 2017).
The minimum conduction distance (s) in (2.1) acts as a lower bound for the
conduction distance (l). The minimum conduction distance can be physically
interpreted as corresponding to either the size of surface asperities (roughness)
or the mean free path of the gas (perfectly smooth). For the former case, large-scale
asperities on the surface of a particle or wall will result in finite separation distances
even at contact. For the latter case, as the particle and wall tend to solid body contact
(δ = 0), the conduction distance (l(r)) becomes small with respect to the mean free
path of the gas and rarefaction effects become non-negligible. By setting the minimum
conduction distance to the mean free path of the gas (air at standard temperature and
pressure; 2.75 × 10−8 m), the integration in (2.1) avoids conduction lengths where
rarefaction effects are significant. Here, the particle and wall will be assumed to
be perfectly smooth and the range of separation distances (δ) considered will be
significantly larger than the mean free path of the gas. Therefore, the lower bound
of integration in (2.1) (rin) will always be 0 in the present work (i.e. particle–wall
contact will not be considered). The integral in (2.1) may be non-dimensionalized
and directly evaluated (Lattanzi & Hrenya 2017)

ĥPFW = 2π

[
(1+ δ̂) ln

[∣∣∣∣∣
√

1− r̂2
out − (1+ δ̂)

δ̂

∣∣∣∣∣
]
+

√
1− r̂2

out − 1

]
,

r̂out =

{√
Ĉ2 − (1+ δ̂)2 δ̂ >

√
Ĉ2 − 1− 1,

1 δ̂ 6
√

Ĉ2 − 1− 1,


(2.2)

where ˆ denotes normalization by the particle radius, and Ĉ = RLens/Rp = 1.4 is the
fluid lens proportionality constant. The rate of heat transfer at a given dimensionless
separation distance (δ̂ = δ/Rp) then becomes Q̇PFW = kgRpĥPFW(δ̂)[Tw − Tp].

3. Numerical techniques
3.1. Lattice Boltzmann method

The DNS framework is a hybrid scheme based on two coupled methods. The first is
the lattice Boltzmann method (LBM), which is utilized to resolve the fluid phase – i.e.
solve the Navier–Stokes (NS) equations. The LBM scheme employed here matches
that developed by Ladd and co-workers (Ladd 1994a,b; Ladd & Verberg 2001).
Due to a foundation in statistical mechanics, LBM discretizes the continuous
Boltzmann equation rather than the NS equations. Since the Boltzmann equation
governs the evolution of the molecular velocity distribution, LBM utilizes discrete
velocity distributions (population densities) as opposed to the hydrodynamic variables.
The discrete velocity distributions are updated in this work according to the classic
streaming and collision process

ni(r+ ci1t, 1t)≡ n∗i (r, t)= ni(r, t)+Ωi(n(r, t)), (3.1)

where ni is the discrete velocity distribution associated with molecular velocity ci,
1t is the LBM time step, Ωi is the collision operator (function of all the velocity
distributions at a node n(r, t)) and n∗i is the post-collision distribution function
(expanded about the local equilibrium; neq). The hydrodynamic quantities are given
by the moments of the velocity distribution functions

ρ =
∑

i

ni, j≡ ρu=
∑

i

nici, Π =
∑

i

nicici, (3.2a−c)
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where ρ is the density, j is the momentum, u is the macroscopic velocity and Π is
the fluid stress tensor. The update scheme given in (3.1) may ultimately be shown to
recover the incompressible Navier–Stokes equations in the low Mach limit with the
following closures for the shear (η) and bulk (ηb) viscosities (Ladd & Verberg 2001)

η=−ρc2
s

[
1
λ
+

1
2

]
, ηb =−

2ρc2
s

3

[
1
λb
+

1
2

]
, (3.3a,b)

where c2
s = 1/3 is the square of the speed of sound, and λ and λb are eigenvalues

of the collision matrix. Here, λ corresponds to the relaxation of the off-diagonal
portion of the non-equilibrium stress tensor while λb corresponds to the relaxation
of the diagonal portion of the non-equilibrium stress tensor. Coupling between the
fluid phase and solid particles is completed by imposing a no-slip boundary condition
at the particle surface. The net force and torque applied to a particle by the fluid
is given by surface integration of the interphase momentum transfer (resulting from
the no-slip boundary condition). The force and torque due to interphase momentum
transfer and particle collisions may be utilized to find the new particle velocity and
position (solid body mechanics). However, the particle in this work is held static and
at finite particle–wall separation distances (no particle collisions occur).

3.2. Random walk particle tracking
The second method within the DNS framework is random walk particle tracking
(RWPT). RWPT is employed here to solve the advection–diffusion equation for
thermal energy (Gardiner 1986; Salamon, Fernandez-Garcia & Gomez-Hernandez
2006; Wang et al. 2009; Metzger et al. 2013; Lattanzi et al. 2019a,b),

∂T
∂t
+∇ · (uT)= α1(T), (3.4)

where T is the thermal temperature and α is the thermal diffusivity. Similar to LBM,
RWPT does not directly involve the continuum equation ((3.4) for RWPT), but instead
RWPT monitors the positions of many tracers as they undergo displacement. The
movement of each tracer depends upon the local velocity field obtained via LBM as
well as random fluctuations. An explicit time integration scheme is utilized within the
present work to update the position of each tracer

r(t+1t)= r(t)+ u(r, t)1t+ ξ(t)
√

2α1t, (3.5)

where r is the position of a tracer, u is the velocity at the tracer position before
the step (found via trilinear interpolation of the LBM velocity field), ξ is a random
vector whose entries are sampled from a Gaussian distribution with zero mean
and unit variance, α is the thermal diffusivity of the gas, 1t is the random walk
time step. The thermal temperature in RWPT is proportional to the local tracer
concentration. In the present work, we impose a temperature gradient (1T = T1− T0)
by utilizing two tracer types. Tracers labelled as type ‘1’ correspond to the higher
temperature (T1) while tracers labelled as type ‘0’ correspond to the lower temperature
(T0). Alternatively, the temperature field may be resolved by a single tracer type;
however, this would require dynamically re-allocating tracer arrays as the tracers are
generated and eliminated at respective constant-temperature boundaries. By utilizing
two tracer types, the tracer count remains constant and we only require a conversion

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

45
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.45


Near-wall transport 889 A6-7

of tracer type to recover the Dirichlet boundary condition. The local temperature and
dimensionless temperature are given as

T(r, t)= T1
C1(r, t)

Ct
+ T0

C0(r, t)
Ct

, (3.6)

θ(r, t)≡
T(r, t)− T0

T1 − T0
=

C1(r, t)
Ct

, (3.7)

where C1 is the concentration of type 1 tracers, C0 is the concentration of type
0 tracers, Ct = C1 + C0 is the total concentration of tracers, a constant throughout
the domain, and θ is the dimensionless temperature. For θ = 0, the system is at a
temperature of T0 and for θ = 1 the system is at a temperature of T1. The minimum
temperature (T0) and maximum temperature (T1) here will correspond to the particle
temperature and wall temperature, respectively (discussed in § 4). For the case of
mass transfer, additional tracer types may be introduced to track the concentrations
of multiple species, thereby solving a system of advection–diffusion equations.

The RWPT method presented above is often applied to advection dominated
transport, since it does not suffer from numerical dispersion. It can be used to simulate
both heat transfer and mass transfer that do not actively affect fluid flow. Our method
has been applied to both freely evolving multiphase flows (Metzger et al. 2013)
and static multiphase systems with conjugate heat transfer (Lattanzi et al. 2019b).
While the flow and heat transfer presented in this study may be readily simulated with
classic computational methods that employ immersed boundaries or body-fit grids,
future work that examines moderately dense particle packings or freely evolving
particle suspensions with inter- and intraparticle temperature gradients are expected
to benefit from the simple manner in which RWPT addresses these challenges.

4. Systems simulated
Uniform flow past a hot wall and a static, cold particle was considered; see

figure 2. Due to the presence of the hot wall, the steady-state fluid flow will
be characterized by the development of a hydrodynamic and thermal boundary
layer near the bottom plate. The centre of the particle was located 5 particle
diameters (Dp) away from the leading edge of the plate (L= 5Dp) in all simulations,
while the particle–wall separation distance (δ) and the particle Reynolds number
(RePart ≡ |Uf − Us|Dp/ν = U∞Dp/ν) were varied. A range of RePart ∈ [1 10] was
selected since it is representative of values present in applications concerned with
wall-to-particle heat transfer (Morris et al. 2016; Yohannes et al. 2016; Ansart et al.
2017) but also allowed for a straightforward assessment of the drag and Nusselt
number corrections that are necessary in the near-wall region. The range for δ was
chosen such that the particle resides completely within the boundary layers as well
as completely outside the boundary layers and is given by δ/Rp ∈ [0.07 12]. Since the
distance from the leading edge (L) was fixed, the resulting plate Reynolds number
(RePlate ≡ U∞L/ν = 5RePart; RePlate ∈ [5 50]) will lie in the intermediate regime and
the flow will be laminar (RePlate < O(106)) (White 2005). The particle diameter and
fluid Prandtl number (Pr= ν/α) were fixed and set to 600 µm and 0.7, respectively.
The particle diameter was resolved by 15 LBM nodes (Dp/1xLBM = 15) and a
tracer concentration of 1.0 (Ct = 1.0) was used in all simulations. The selection of
these resolutions will be discussed below in the Grid Convergence section (§ 5). A
complete overview of the simulation conditions is given in tables 1–2 while the fluid
and particle properties are contained within table 3.
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No-slip: u = 0
Constant temp: œ = 1

No-slip: u = 0
Constant temp: œ = 0

Outflow: ™u/™n = -0, ™œ/™n = 0

Free-slip: uy = †xy = †zy = 0
Adiabatic: ™œ/™n = 0

Inflow: ux = U∞
Constant temp: œ = 0.2

x

z
y

∂
L = 5Dp

FIGURE 2. The geometry and boundary conditions utilized to simulate uniform flow past a
hot plate (bottom wall in red) and a static, cold particle (blue sphere). The particle–wall
separation distance (δ) is the distance between the bottom of the particle and the wall
(varied) while L is the distance from the leading edge to the centre of the particle (fixed).

Nodes (x× y× z) 200× 240× 120
Dp/1xLBM 15
Ct 1.0
L/Dp 5

TABLE 1. LBM-RWPT geometry and mesh.

RePart RePlate δ/Rp

1 5 0.07, 0.1, 0.2, 0.5, 1, 2, 4, 7, 10, 12
2 10 0.07, 0.1, 0.2, 0.5, 1, 2, 4, 7, 10, 12
4 20 0.07, 0.1, 0.2, 0.5, 1, 2, 4, 7, 10, 12
6 30 0.07, 0.1, 0.2, 0.5, 1, 2, 4, 7, 10
8 40 0.07, 0.1, 0.2, 0.5, 1, 2, 4, 7, 10
10 50 0.07, 0.1, 0.2, 0.5, 1, 2, 4, 7, 10

TABLE 2. Simulation conditions.

To impose the required boundary conditions given in figure 2, a variety of methods
were employed. The hydrodynamic boundary conditions were imposed in the LBM
framework. Namely, the no-slip and uniform inflow boundary conditions were
achieved via the bounce-back method (Ladd & Verberg 2001). The free-slip and
outflow boundary conditions were completed by way of the anti-bounce-back method
(Jansen & Krafczyk 2011) and extrapolation (Yang 2013; Kruggel-Emden et al. 2016),
respectively. The thermal boundary conditions were imposed in the RWPT framework.
Specifically, the constant-temperature boundary at the inflow (θ = 0.2) and bottom
wall (θ = 1) was achieved by a two-step process. First, all tracers that cross the
boundary are specularly reflected back into the domain. Second, a number is sampled
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Fluid properties
ν 1.570× 10−5 m2 s−2

α 2.230× 10−5 m2 s−2

kg 2.264× 10−2 W m−1 K−1

Pr 0.70

Particle properties
Dp 600 µm

TABLE 3. Hydrodynamic and thermal properties.

from U(0, 1). If the sampled value is less than or equal to θ , the reflected tracer
type is set to 1; else, the tracer type is set to 0. The inlet fluid temperature boundary
condition (θ = 0.2) is chosen such that it is less than the wall temperature (θ = 1)
but greater than the particle temperature (θ = 0). By setting the inlet temperature
boundary condition in this manner a thermal gradient between the particle and fluid
will be sustained at large particle–wall separation distance (δ) and the particle heat
transfer will approach the Nusselt correlation for unbounded spheres. By contrast, as
the particle approaches the wall (δ→ 0), the inlet temperature is of less significance
since the fluid near the wall will be dictated by the wall temperature. Therefore,
the effect of the flow on wall–particle heat transfer can be directly evaluated. The
constant particle temperature (θ = 0) is achieved by setting all tracers that enter
the particle to type 0. The adiabatic boundary is imposed by specularly reflecting
tracers back into the domain (no alteration of type). The thermal outflow boundary is
achieved by a semi-reflecting barrier (Lattanzi et al. 2019a). If a tracer reaches the
outflow plane, the probability of being specularly reflected back into the domain (P∗)
is calculated as in Lattanzi et al. (2019a). A number is then sampled from U(0, 1).
If the value is less than P∗, the tracer is specularly reflected back into the domain;
otherwise, the tracer is re-seeded at the inflow plane and its type is set according to
the temperature boundary condition at the inflow plane (θ = 0.2).

Since the particle–wall separation distance (δ) will become small in the present
work, some further comments on the bottom wall boundary condition (constant
temperature) and its interaction with the particle are in order. As discussed in
Lattanzi et al. (2019a,b), the impenetrable boundary is valid if the velocity in the
direction normal to the wall tends to zero, which will occur for a no-slip boundary
(i.e. the bottom wall here). The basis for the specular reflection treatment is that it
recovers the diffusive heat flux emanating from the wall while confining operations to
only tracers that cross the boundary during a time step. A subtle, but key, distinction
must be made about the difference in which stochastic and discretization methods
quantify fluxes. Discretization methods commonly employ low-order polynomial
approximation of the continuum equation (3.4) on a grid. Thus, for the fluxes to be
well approximated, gradients in the solution variable must be sufficiently resolved by
a fine grid. By contrast, the flux in a stochastic method (random walk) is obtained
from many tracer trajectories (1r in (3.5)) that are not confined to any grid. For the
case of a particle and wall separated by a small distance, properly capturing the heat
flux with a discretization method would require that the temperature field be resolved
between the particle and wall to a high degree of accuracy. For the same system, a
stochastic method would require that the trajectories and number of tracers emanating
from the wall be statistically meaningful. The wall heat flux and its interaction
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with the particle was strictly enforced in a sequential manner here. Specifically, a
tracer identified as crossing the bottom wall was treated as noted in the previous
paragraph and then subsequently checked for entry into the particle. This treatment
ensures that, even for small separation distances, the number of tracers crossing the
particle surface (flux) is properly counted. Additionally, as noted in Lattanzi et al.
(2019b), the random walk time step may be set independent of the LBM time step
but should not exceed it. The random walk time step allows for control of the tracer
displacement (1r). For small separation distances, the tracer displacement between
the particle and wall will be strongly governed by diffusion. The random walk time
step was set to ensure that the diffusive displacement remained small with respect
to the particle–wall separation distance δ/

√
2α1t= 4.0 – i.e. 99.98 % of tracers will

sample a diffusive displacement that is less than δ and 68 % will sample a diffusive
displacement that is less that δ/4. Thus, the particle heat flux is resolved with many
tracer trajectories but without the requirement that many tracers reside between the
particle and wall; as will be shown in § 5, the addition of tracers acts to suppress the
random fluctuations but has little effect on the mean flux.

5. Grid convergence
To gauge the effect of resolution on the present simulations, the LBM grid size

(Dp/1xLBM) and tracer concentration (Ct) were varied for a system with fixed
particle Reynolds number (RePart = 10) and two separation distances (δ̂ = 0.07, 0.5).
The conditions were selected since they are expected to be a good representation
of the grid insensitivity requirements. Namely, the largest Reynolds number was
considered as well as separation distances that place the particle near the edge of the
hydrodynamic boundary layer and very close to the wall. Results from LBM-RWPT
were also compared to the commercial COMSOL software which employs a body-fit
unstructured grid.

When utilizing the link bounce-back method in LBM, the particle boundary nodes
are placed half-way along links that connect internal and external nodes; thereby
achieving a discrete representation for the spherical surface. The location of the
boundary nodes (link midpoints) can be motivated by work completed on Poiseuille
flow where the bounce-back method was shown to recover the no-slip boundary
condition at the half-way position between two nodes if the channel was aligned
with the LBM lattice (Ginzbourg & Adler 1994). However, for channels at arbitrary
angles, the no-slip boundary condition does not lie exactly at the midpoint between
two nodes and is a function of the inclination angle and fluid viscosity (Ginzbourg
& Adler 1994). For a curved surface superimposed on a rectangular grid (particle
on LBM lattice), a variety of plane angles will be present and the boundary nodes
(link midpoints) will not always align with the curved solid surface. To account for
the misalignment of boundary nodes and a curved solid surface, interpolation (Chun
& Ladd 2007) or multireflective (Ginzburg & dHumières 2003) treatments may be
employed. Alternatively, since the hydrodynamic diameter of a sphere represented by
the link bounce-back method is a function of particle size and viscosity, the effect of
misalignment may be accounted for by introducing a hydrodynamic or effective radius
that is displaced by 1H outward in the radial direction from the link midpoints, and
1H is obtained from calibration simulations (Ladd & Verberg 2001). We did not
apply a hydrodynamic calibration during the grid convergence study but provide a
discussion on its effects below. In our simulations, we hold the LBM viscosity fixed
(νLBM

∼= 1/50).
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FIGURE 3. The drag coefficient (a) and lift coefficient (b) obtained with the free-stream
velocity.

The drag (CD) and lift (CL) coefficients

CD,∞ =
8FD

πρD2
pU2
∞

, (5.1)

CL,∞ =
8FL

πρD2
pU2
∞

(5.2)

were computed with the free-stream velocity (U∞) and plotted as a function of grid
size; see figure 3. For Dp/1xLBM > 15, the drag and lift coefficients become nearly
constant and exhibit a nearly constant over-prediction of the drag force by ∼7 % and
lift force by ∼5 % when compared to COMSOL (black markers in figure 3), which
is consistent with boundary displacement. Non-monotonic trends in the computed
drag and lift force are a result of changes to the boundary displacement with particle
size, which become nearly constant for higher resolutions (Ladd & Verberg 2001), as
well as the location of the particle with respect to the underlying grid at a specified
separation distance. At a fixed resolution of Dp/1xLBM = 15, the tracer concentration
was varied to assess its impact on the heat flux (q′′); see figure 4. The heat fluxes
are plotted with 95 % confidence intervals that correspond to the stochastic (temporal)
fluctuations at steady state. The mean heat flux is observed to be nearly constant
while the fluctuations (confidence intervals) decrease as Ct is increased. RWPT is in
very good agreement with COMSOL for both separation distances and captures the
heat flux to within ∼1 %. We note that the advective portion of the tracer flux in
RWPT employs a fluid velocity that is interpolated. Therefore, velocity fluctuations in
the near-surface region, arising from the numerically rough particle, will be attenuated.
Additionally, the Prandtl number in this study is less than unity, making the diffusive
portion of the tracer flux more significant. Thus, the fluid velocity fluctuations arising
from a numerically rough particle do not have a primary effect on the tracer heat
flux due to interpolation of the tracer velocity and the considered Prandtl number,
which is why we observe better agreement between RWPT and COMSOL. From
these results, a resolution of Dp/1xLBM = 15 and Ct = 1.0 was chosen.
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FIGURE 4. The heat flux obtained from LBM-RWPT.

As the particle resolution increases, the links will become a better approximation
of the physical surface of the particle; however, the effect of the lattice viscosity
will not be removed. The error between the present LBM simulations and COMSOL
are ∼5–7 % for drag and lift, with LBM yielding an over-prediction. To gauge the
effect of boundary displacement, a calibrated hydrodynamic radius (1H = 0.25) was
utilized for a simulation at the chosen resolution (Dp/1xLBM = 15; Ct = 1.0) and a
separation distance of δ̂ = 0.5. The resulting drag/lift forces are observed to decrease
by ∼5 % and the heat flux increases by ∼3 %; where it is noted that the heat flux in
RWPT is always computed with the physical particle size (Rp = 7.5). The reduction
in drag/lift force, due to the use of a calibrated radius, would largely account for
the observed discrepancy between LBM and COMSOL. We have conducted further
uncalibrated LBM simulations and obtain similar convergence properties for pressure
driven flow with and without walls. Additionally, other studies in the literature show
very similar behaviour when a calibration is not employed with the link bounce-back
method (Kruggel-Emden et al. 2016). The application of 1H will shift the link
midpoints (no-slip boundary; Rp = 7.25) inward from the physical particle surface
(Rp = 7.5). However, the shift of the effective no-slip boundary may lead to regions
near the physical particle surface (where RWPT counts the flux) that have finite fluid
velocities in the direction normal to the surface. The fluid velocities will contribute
to non-physical enhancement of the heat flux due to advective transport of the tracers.
In an effort to keep the no-slip boundary location consistent with RWPT, it was
chosen to not apply a hydrodynamic calibration in the present work.

6. Results
6.1. Boundary layer considerations

In the present work, a hydrodynamic and thermal boundary layer develops near the
bottom wall. From boundary layer theory, the ratio of the wall thermal boundary
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 =

 U
x/

U
∞

0

FIGURE 5. The dimensionless streamwise velocity (Ûx) profile for RePart = 10 and a
separation distance of δ/Rp = 0.5 (a) and δ/Rp = 10.0 (b). The black sphere indicates
the location of the particle.
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FIGURE 6. The dimensionless temperature (θ) profile for RePart = 10 and a separation
distance of δ/Rp= 0.5 (a) and δ/Rp= 10.0 (b). The black sphere indicates the location of
the particle.

layer thickness (δT) to the wall hydrodynamic boundary layer thickness (δH) is found
to scale as δT/δH =Pr−1/3 (White 2005; Schlichting & Gersten 2017). For the Prandtl
number considered in this work (0.7), the thermal boundary layer thickness will be
larger than the hydrodynamic boundary layer thickness by approximately 12 %. The
extent to which the particle interacts with the thermal boundary layer depends upon
the separation distance (δ); see figures 5–6 for velocity and temperature profiles,
respectively. For the case of a small separation distance (figures 5a–6a), the particle
is within the boundary layers and will interact with the wall to a great degree. By
contrast, for large separation distances (figures 5b–6b), the particle is outside the
boundary layers and will have a small interaction with the wall.

When considering the task of developing correlations from highly resolved methods
for use in unresolved computational fluid dynamics discrete element methods (CFD-
DEM), the definition adopted for the driving force becomes significant. The driving
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forces utilized to develop drag and convection correlations in unbounded systems, such
as Ranz & Marshall (1952), Whitaker (1972), Haider & Levenspiel (1989), Feng &
Michaelides (2000) and Richter & Nikrityuk (2012), are the difference between the
free-stream fluid velocity and particle velocity (1U = U∞ − Up) and the difference
between the free-stream fluid temperature and particle temperature (1T = T∞ − Tp),
respectively. In the present work, we show that utilizing the classic definition for the
thermal driving force inherently neglects the effect of the wall temperature (Tw) and
makes the resulting h values specific to the thermal boundary condition. By contrast,
the local field surrounding the particle (fluid temperature TLoc; fluid velocity ULoc) is
a function of all system boundary conditions. Accordingly, our analysis indicates that
the use of local mean variables in the present work allows results to be extended to
other systems and is a natural choice for spatially varying flows.

Local mean variables may be approximated by the integral of a point variable
(Tf ; Uf ), with respect to a weighting function (g(r)), over the fluid volume
surrounding the particle (Ωy) (Deen et al. 2012; Capecelatro & Desjardins 2013;
Tavassoli et al. 2013),

TLoc =

∫∫∫
g(|ry − rp|)Tf (ry) dΩy∫∫∫

g(|ry − rp|) dΩy

,

ULoc =

∫∫∫
g(|ry − rp|)Uf (ry) dΩy∫∫∫

g(|ry − rp|) dΩy

,

g(r)= exp
(
−

r
Rp

)
,

r
Rp
∈ [0 5],



(6.1)

where Tf (ry) is the fluid temperature, Uf (ry) is the fluid velocity, g(r) is the
integration kernel, rp is the location of the particle centre and Ωy is the fluid
volume within a sphere of radius 5Rp whose centre coincides with rp. The fluid
volume (Ωy) is contained within r/Rp ∈ [1 5] while the compact support (Ω) of g(r)
is contained within r/Rp ∈ [0 5]. When deriving the volume-averaged equations of
motion, Anderson & Jackson (1967) note that local mean variables (6.1) are not
uniquely determined unless there is a sufficient separation of scales between the
particle–particle spacing and variations in the macroscopic system; which makes
results insensitive to the chosen integration kernel (g(r)) and its characteristic width
(σ1/2). Deen et al. (2012) utilized the weighting function given here to approximate
the local fluid temperature in DNS simulations of flow through a stationary array of
spheres and suggests that a kernel support of radius 5Rp or greater leads to constant
heat transfer coefficients. Additionally, the form of g(r) given here displays properties
that are consistent with the assumptions commonly employed when deriving the
volume-averaged equations of motion for a gas–solids mixture (Anderson & Jackson
1967; Jackson 1997; Capecelatro & Desjardins 2013). Namely, for r > 0, g(r)
monotonically decreases, is differentiable for all degrees of freedom (C∞), and has
a characteristic width of σ1/2; which physically corresponds to the radial coordinate
at which the normalized integral of g(r) is equal to one half (Anderson & Jackson
1967) (see (A 1)). Direct computation of local variables, by applying (6.1) to DNS
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FIGURE 7. (a) Comparison between unbounded Nusselt numbers when the free-stream
(Nu∞) or local fluid temperature (NuLoc) was utilized. (b) Comparison between the
unbounded drag coefficients when the free-stream (CD,∞) or local fluid velocity (CD,Loc)
was utilized.

point data, raises the question of whether or not results are sensitive to the integration
kernel parameters. The effect of kernel width (σ1/2) and compact support (Ω) are
discussed in detail in appendix A for the case of unbounded flow past a cold, static
sphere. Local variables computed from DNS point data are shown to depend upon the
kernel width but are insensitive to the kernel support, so long that the kernel support
is large enough that the truncated tails of g(r) do not contribute significantly to the
integral (see (A 4)). Therefore, correlations derived with local mean variables will
be specific to the kernel width employed (σ1/2). Similarly, in unresolved CFD-DEM
methods, the size of the fluid grid will dictate the filtering length scale for interphase
transport as well as the magnitude of resolved and unresolved fluid stresses. For
volume filtered approaches like those given by Capecelatro & Desjardins (2013),
the filter length scale is directly set by the Gaussian kernel width. The integration
kernel employed here has a σ1/2 ≈ 2.5Rp, which is similar to the grid size commonly
employed in classic CFD-DEM as well as the mollification kernel employed by
Capecelatro & Desjardins (2013), a normalized integral on Ω of ≈0.90, and yields
results very similar to the Gaussian kernel employed by Capecelatro & Desjardins
(2013) (see figure 22 versus 24 in appendix A for comparison). Here, we define
1TLoc = TLoc − Tp as the thermal driving force for convection (h = q′′/1TLoc), and
1ULoc=ULoc−Up as the hydrodynamic driving force for drag (CD= 8FD/πρD2

pU2
Loc).

Physically speaking, as δ becomes large with respect to the wall boundary layer
thicknesses (figures 5b–6b), the boundary effects on particle heat and momentum
transfer will become negligible. In the limit of δ→∞, the resulting drag coefficient
(CD) and Nusselt number (Nu = hDp/kg) should converge to those obtained for an
unbounded system (Ranz & Marshall 1952; Whitaker 1972; Haider & Levenspiel
1989; Feng & Michaelides 2000; Richter & Nikrityuk 2012). However, use of a
local variable (TLoc; ULoc) will prevent CD and Nu from converging to the classic
unbounded correlations even in the limit of δ → ∞. To illustrate this concept,
simulations of unbounded, uniform flow past a sphere were completed; see figure 7.
The disagreement between quantities computed with local variables (CD,Loc;NuLoc) and
existing correlations for unbounded systems that utilize U∞ and T∞ can be attributed
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to a reduction in driving force based on local variables (1TLoc < 1T; ULoc < U∞).
Similarly, unresolved CFD-DEM frameworks experience the same phenomena, where
fluid disturbances due to the presence of the particle (interphase drag and heat transfer)
yield interpolated fluid quantities that differ from the undisturbed (free-stream) values.
When examining two-way coupled point-particle methods, it was observed that
the undisturbed fluid velocity can be of greater significance than using the most
appropriate drag force model (Mehrabadi et al. 2018). Efforts to improve unresolved
CFD-DEM drag have been focused on velocity correction schemes that are derived
in the Stokes limit (Horwitz & Mani 2016; Ireland & Desjardins 2017; Horwitz
& Mani 2018) or the Oseen approximation (Balachandar, Liu & Lakhote 2019). By
contrast, the correlations obtained here employ local variables for consistency with the
driving forces available to an unresolved CFD-DEM simulation that utilizes the same
kernel width employed here. Specifically, the Nusselt numbers obtained here with
1T = T∞ − Tp (Nu∞) agree with classic, unbounded convection correlations while
the Nusselt numbers obtained with 1TLoc= TLoc− Tp (NuLoc) are larger. Similarly, the
drag coefficients obtained with ULoc (CD,Loc) are larger than the correlation of Haider
& Levenspiel (1989) while the drag coefficients obtained with U∞ (CD,∞) agree with
Haider & Levenspiel (1989). Shifts in the abscissa of figure 7 when computing local
quantities (CD,Loc; NuLoc) are a result of also converting RePart to a local quantity
(RePart,Loc = ULocDp/ν). Figure 7 shows that local variables lead to self-similar shifts
in the Nusselt number and drag coefficient data, which implies that the functional
forms for the unbounded correlations still hold but with different scaling. Therefore,
the unbounded correlations of Richter & Nikrityuk (2012) and Haider & Levenspiel
(1989) are re-fit to the NuLoc and CD,Loc data to obtain

NuLoc,UB ≡
hLoc,UBDp

kg
= 3.4+ 0.03Re0.4

Part,Loc + 0.18Re0.7
Part,Loc, (6.2)

CD,Loc,UB ≡
8FD

πρD2
pU2

Loc
=

38.5
RePart,Loc

(1 + 0.11Re0.70
Part,Loc), (6.3)

where NuLoc,UB is the local, unbounded Nusselt number, CD,Loc,UB is the local,
unbounded drag coefficient and RePart,Loc is the local particle Reynolds number.
Since the correlations obtained in (6.2)–(6.3) employ local variables, they are
more consistent with modified correlations that account for particle disturbances
(Municchi, Goniva & Radl 2016; Ireland & Desjardins 2017). Modified drag
correlations are obtained from filtering the solution for Stokes flow past a sphere
with respect to an integration kernel. For the case of a modified Nusselt correlation,
the thermal temperature must also be filtered. In appendix B we give the modified
drag correlations arising from the local fluid velocities of Ireland & Desjardins
(2017) and Municchi et al. (2016). In appendix C we show that the hydrodynamic
disturbances in appendix B may be utilized to obtain thermal disturbances but the
thermal disturbances will correspond to a sphere undergoing steady diffusion in the
radial direction. Additionally, in appendix C we also consider filtering the asymptotic
solution of Acrivos & Taylor (1962) to estimate the effect of finite Reynolds numbers
on the thermal disturbances. This case is referred to as ‘thermal Stokes filtered’
and contains an ‘inner’ and ‘outer’ solution that correspond to the near-surface
region of the particle and the far field, respectively. The modified drag laws of
Ireland & Desjardins (2017) and Municchi et al. (2016) agree with the correlation
developed here (6.3) at lower Reynolds numbers but tend to predict larger CD as the
Reynolds number increases; see figure 8. The same effect was reported in figure 7 of
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FIGURE 8. Comparison between filtered drag correlations with the same kernel attributes
as that employed here over (a) the simulation conditions and (b) outside the simulation
conditions.

Ireland & Desjardins (2017) where their filtered fluid velocity (based on Stokes
flow) led to over-predictions for the residual drag force at Reynolds numbers of
O(1) but was highly accurate for Reynolds numbers up to O(10−1). At higher
Reynolds numbers, the local velocity will be under-predicted by the filtering of
Stokes flow and the filtered drag correlation will be shifted upward too far, leading
to the over-prediction of the drag coefficient. Therefore, the departure of (6.3)
from the modified correlations of Ireland & Desjardins (2017) and Municchi et al.
(2016) at higher Reynolds numbers has a physical basis. Additionally, the modified
Nusselt correlations of Ireland & Desjardins (2017) and Municchi et al. (2016)
show reasonable agreement with the correlation developed here (6.2) as the particle
Reynolds number tends to zero but yield significantly larger Nu values at finite
Reynolds numbers; see figure 9. The larger disagreement between (6.2) and the
Nusselt correlations of Ireland & Desjardins (2017) and Municchi et al. (2016) can
be attributed to under-predictions in both the disturbed fluid velocity and the disturbed
fluid temperature at elevated Reynolds numbers.

In the opposite limit of separation distance (δ→0), a choice must be made in terms
of the definition for Ωy appearing in (6.1). Since the radius of Ωy is 5Rp (significantly
larger than the particle), a subset of Ωy will overlap with the wall (Ωw). For this
case, the volume of Ωy overlap with the wall (Ωw) as well as the fluid volume (Ωf )
was incorporated into the volume integration performed in (6.1) (Ωy = Ωf+w) and
the variables within Ωw were set to the boundary condition values (θ = 1; u = 0).
An alternative approach for handling the near-wall region that involves mirroring the
integration kernel across the wall was utilized by Capecelatro & Desjardins (2013) to
obtain a Neumann boundary condition. By contrast, we employ a Dirichlet boundary
condition here. If the integration kernel is mirrored across the bottom wall in the
present work, then the variable to be averaged (Tf ;Uf ) must still be specified within
the wall volume. Setting variables within the wall volume to their boundary condition
quantities (Tw; Uw) results in a treatment that is quite similar to the one proposed
here (integration in (6.1) over Ωf+w). However, the mirroring of the kernel across
a Dirichlet boundary may lead to drastic changes in the local mean variable as the
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FIGURE 9. Comparison between filtered Nusselt correlations with the same kernel
attributes as that employed here over (a) the simulation conditions and (b) outside the
simulation conditions.

integration kernel begins to intersect the wall – i.e. the original kernel will average the
temperature around the particle but the mirrored kernel will solely average the wall
temperature. The choice to employ (6.1) with an integration over Ωf+w was motivated
by the interpolation techniques employed within CFD-DEM (Garg et al. 2012),
to which our correlations are to be applied. In CFD-DEM, the fluid velocity and
temperature are found by interpolation of the CFD numerical grid to the centre
of the particle. For a numerical cell adjacent to a wall, the fluid variables will be
interpolated between the known wall nodes (Tw; Uw) and the solution values at the
adjacent nodes within the domain. By including Ωw into the calculation of local
variables, the resulting values smoothly approach the boundary condition values
as the separation distance decreases and are consistent with quadratic interpolation
techniques in CFD-DEM; see figure 10 for the effect on TLoc.

6.2. Near-wall drag
The primary drag force on the particle acts in the streamwise direction (positive
x-direction) and was extracted from each simulation at steady state; see figure 11.
As the dimensionless separation distance (δ̂ = δ/Rp) decreases, the particle begins
to interact with the slower moving fluid contained within the wall hydrodynamic
boundary layer and the drag force decreases. Additionally, the drag reduction in the
near-wall region occurs at smaller separation distances for increasing Reynolds number
due to compression of the wall hydrodynamic boundary layer. The drag coefficient is
computed from the drag force with the free-stream fluid velocity (U∞;CD,∞) as well
as the local fluid velocity (ULoc;CD,Loc); see figure 12. Use of the free-stream velocity
results in drag coefficients that decrease in the near-wall region, due to the reduced
drag forces in the near-wall region. By contrast, use of the local fluid velocity results
in the exact opposite behaviour since the local fluid velocity also reduces as the
particle becomes closer to the wall. To gauge the drag reduction in the near-wall
region, with respect to an unbounded system, the drag coefficients (CD,∞ and CD,Loc)
are normalized by the unbounded correlations (see Haider & Levenspiel (1989)
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FIGURE 10. The local, dimensionless fluid temperature (θLoc) found via integration over
Ωy that includes the wall volume (Ωf+w) (solid lines) as well as just the fluid volume
(Ωf ) (dashed lines) versus the dimensionless distance between the particle centre and the
wall (δ̂+ 1). Note, for δ̂+ 1> 5, Ωy does not intersect the wall (Ωw= 0→Ωy=Ωf ). The
wall temperature (θw) is included for reference.
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FIGURE 11. The simulated drag force for each particle–wall separation distance and
Reynolds number.
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FIGURE 12. The drag coefficient computed with U∞ (a) and ULoc (b).
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FIGURE 13. The normalized drag coefficient computed with U∞ (a) and ULoc (b).

and (6.3), respectively); see figure 13. Normalized drag coefficients (ĈD) that employ
the free-stream velocity are a function of δ and decrease in the near-wall region
(figure 13a). By contrast, use of the local fluid velocity yields normalized drag
coefficients that are nearly unity for all separation distances – i.e. the drag force for
a particle in the near-wall region is well approximated by an unbounded particle with
the same average environment (figure 13b). Local maxima in the data of figure 13(b)
correspond to particles near the edge of the wall hydrodynamic boundary layer and
persist at separation distances where the averaging volume does not intersect the
wall. The bumps are a product of volume averaging (6.1) into the boundary layer
and can be attenuated by reducing the kernel width in (6.1), thereby confining the
averaging to more localized regions about the particle. Despite small mismatches,
equation (6.3) (unbounded correlation modified for local velocity field) yields very
reasonable predictions in both the near-wall region as well as far from the boundary.
By contrast, use of the Haider & Levenspiel (1989) correlation with the free-stream
fluid velocity will lead to large over-predictions in the near-wall region and the
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Eq. (6.5)

FIGURE 14. Normalized drag coefficients (computed with U∞) compared to (6.5)

errors will become more significant as the separation distance is reduced (figure 13a).
Therefore, the local variable treatment may permit simple modifications to classic
correlations in order to account for wall proximity, rather than redevelopment.

Since the shift to local variables is a new concept and previous works have by
and large been completed with free-stream variables, we also consider the task of
constructing a compression of the data that were normalized with free-stream variables
(figure 13a). From the physical arguments given in the Boundary Layer Considerations
section (§ 6.1), there is an expectation that the drag reduction is due to the interaction
of the particle with the slower moving fluid in the wall boundary layer and that
the drag coefficient will asymptotically approach the unbounded correlation for large
particle–wall separation distances. Therefore, the ratio of the separation distance to
the hydrodynamic boundary layer (δ̂H = δ/δH) is expected to be a crucial length scale,
where δH may be approximated from boundary layer theory as (White 2005)

δH ≈ 5.0
x

Re1/2
Plate

. (6.4)

Plotting the normalized drag coefficient with free-stream fluid velocity against
δ̂H shows that the data roughly compress on a single curve; see figure 14. The
compressed data show a shape that is consistent with the analytical solution for flow
past the leading edge of a plate (Jessee 2015). More specifically, an adjusted form of
the solution in Jessee (2015) is observed to replicate the data well and asymptotically
approaches unity as δ̂H→∞ (the physically correct limit)

ĈD,∞(δ̂H)= 0.4+
0.6(π

2

)2
− 1

[
π

2

(
tan−1(δ̂H)+

0.7δ̂H

(0.7δ̂H)2 + 1

)
+

0.7

(0.7δ̂H)2 + 1
− 1

]
.

(6.5)
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FIGURE 15. The lift coefficients computed with U∞ (a) and ULoc (b).

It must be mentioned that the 0.4 and 0.6 constants in (6.5) govern the drag reduction
at particle–wall contact (ĈD,∞(0)= 0.4) and in the limit of large separation distance
(ĈD,∞(∞)= 0.4+ 0.6) and are expected to be a function of Rp/δH . The robustness of
(6.5) (wall function for the normalized drag coefficient with free-stream fluid velocity)
and (6.3) (new, unbounded drag correlation with local fluid velocity) will be tested in
the Model Assessment section (§ 7) by conducting simulations at larger leading-edge
lengths and thus larger hydrodynamic boundary layer thicknesses (i.e. different Rp/δH).

6.3. Near-wall lift
For uniform, unbounded flows at the Reynolds numbers considered here (RePart< 210),
the lift force on a sphere is essentially zero due to the axisymmetric velocity field
(Bagchi, Ha & Balachandar 2000). By contrast, shear and vortex flows have been
shown to generate considerable lift forces (Bagchi & Balachandar 2002). Segre and
Silberberg showed that particles in Poiseuille flows tend to move away from walls
and reach an equilibrium separation distance (Segre & Silberberg 1962a,b). For
asymptotically small Reynolds numbers, Saffman and Mcloughlin derived closed
forms for the lift force (Saffman 1965; McLaughlin 1993). For a stationary sphere in
a linear shear flow, the lift force will always act towards the side with higher fluid
velocity (Kurose & Komori 1999). Due to the shearing within the hydrodynamic
boundary layer, it is expected that significant lift forces will be present here and that
they will act in the positive y-direction (towards the faster moving free-stream fluid).
The lift coefficients in figure 15 show that the lift forces in the present simulations are
of substantial magnitude and that they will act to push particles away from the wall
(force is in the vertical y-direction, positive CL), which is consistent with Kurose &
Komori (1999). Use of the free-stream velocity leads to lift coefficients that increase
with increasing separation distance but reach a maximum at some critical separation
distance (δcrit), after which the lift coefficients decrease. Use of the local fluid velocity
leads to trends that are loosely similar to those obtained with the free-stream fluid
velocity but the maxima are shifted closer to the wall and δcrit does not increase
to the same degree with decreasing Reynolds number. The maxima in the lift force
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FIGURE 16. Lift coefficients computed with U∞ when the separation distance is
normalized by the hydrodynamic boundary layer thickness.

are expected to correspond to particles near the edge of the boundary layer where
the product of shear stress and fluid velocity is greatest. Plotting the lift coefficients
against δ̂H shows that the maxima in CL,∞ do indeed correspond to δ̂H

∼= 1.0; see
figure 16. While interesting, the task of developing a near-wall correlation for the lift
force is beyond the scope of the present work and is not attempted here.

6.4. Near-wall heat transfer

For each LBM-RWPT simulation, the heat rate to the particle (Q̇) and local fluid
temperature (TLoc) was extracted at steady state. The heat rates obtained from
LBM-RWPT (Q̇) are directly compared to unbounded convection correlations (Q̇conv)

and the indirect conduction theory (Q̇PFW) commonly employed in CFD-DEM
methods. First, the unbounded convective correlation of Ranz & Marshall (1952)
with a local fluid temperature (q̇conv = hconvAp1TLoc) is compared to LBM-RWPT; see
figure 17(a). As the particle–wall separation distance becomes small, the heat transfer
coefficient grows rapidly (note logarithmic x-axis) and the unbounded convection
correlation fails to characterize the heat transfer enhancement that occurs in the
near-wall region. This behaviour is expected since the correlation given in Ranz
& Marshall (1952) (unbounded system) does not account for the thermal source
associated with the boundary. Note that the dimensionless heat rate (q̂) does not
decay to unity as the separation distance becomes large. This behaviour is solely
a result of utilizing 1TLoc as the thermal driving force (see NuLoc in figure 7a)
and q̂ would tend to unity if 1T = T∞ − Tp were utilized for the thermal driving
force. Furthermore, q̂ decreases with increasing RePart, and indicates that temperature
gradients around the particle are intensified by increased fluid velocity, which makes
1TLoc→1T .
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FIGURE 17. The heat rate obtained via LBM-RWPT (Q̇) normalized by the correlation
of Ranz & Marshall (1952) (a) and the sum of Ranz & Marshall (1952) and indirect
conduction theory (Rong & Horio 1999) (Q̇conv + Q̇PFW) (b) versus dimensionless
separation distance (δ̂).

Inclusion of the indirect particle-fluid-wall (PFW) conduction mechanism (Rong
& Horio 1999; Lattanzi & Hrenya 2017) into the total heat rate (Q̇conv + Q̇PFW =

hconvAp1TLoc + kgRpĥPFW(δ̂)[Tw − Tp]) is observed to agree markedly better with
LBM-RWPT than the convection correlation alone; see figure 17(b). In contrast to
the unbounded convection correlation, indirect conduction theory accounts for the
effect of a boundary by assuming that one-dimensional conduction occurs through a
stagnant layer of fluid between the particle and wall (RLens). However, heat transfer
enhancement due to the hot wall is still observed at length scales not predicted
by indirect conduction theory (peaks in figure 17b). The length scale for indirect
conduction theory is the fluid lens thickness (RLens − Rp) and is set according to the
particle size (RLens = 1.4Rp) (Lattanzi & Hrenya 2017) – i.e. Q̇PFW only contributes
to the total heat rate when δ̂ < (RLens − Rp)/Rp = 0.4 to the left of the peaks in
figure 17(b).

Physically speaking, heat transfer enhancement due to the boundary should occur at
a length scale associated with the thermal boundary layer thickness (δT) of the plate,
rather than the particle radius; see figure 18. For example, if a particle that is large
with respect to δT is considered (right particle in figure 18), the onset of indirect
conduction (fluid lens just intersects the wall; δ = 0.4Rp) would correspond to a
particle outside the thermal boundary layer. For this case, the inherent assumptions of
indirect conduction theory (static, one-dimensional conduction) are violated since the
hot fluid contained within the thermal boundary layer is advected between the particle
and wall. This scenario may correspond to large particle sizes and/or compression of
the thermal boundary layer with the Reynolds and Prandtl numbers. The advection
of fluid between the particle and the wall acts to reduce the thermal gradients near
the particle surface from those predicted by indirect conduction theory, and thus,
the heat transfer to the particle in this case is over-predicted by indirect conduction
theory. By contrast, if a particle small with respect to δT is considered (left particle
in figure 18), the onset of indirect conduction (fluid lens just intersects the wall;
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FIGURE 18. An illustration of particles (solid black lines) and their fluid lenses (dashed
grey line) overlaid on the scaling of the thermal boundary layer thickness (δT). For
particles small with respect to δT (left particle), the onset of indirect conduction occurs
when the particle is inside the boundary layer. For particles large with respect to δT (right
particle), the onset of indirect conduction occurs when the particle is outside the boundary
layer.

δ = 0.4Rp) corresponds to a particle that is fully immersed in the boundary layer.
Therefore, the heat transfer enhancement occurring when the particle is within the
thermal boundary layer (δ < δT) but not within the fluid lens thickness (δ > 0.4Rp)

cannot be captured by indirect conduction theory – i.e. the particle may reside in
the thermal boundary layer where heat transfer enhancement occurs but the fluid
lens does not intersect with the wall. In this case, the heat transfer to the particle is
under-predicted by indirect conduction theory. Note that the ratio of the particle size
to thermal boundary layer thickness considered in the LBM-RWPT simulations here
is most analogous to the ‘small’ case in figure 18, which is why the combination
of convection and indirect conduction tends to under-predict the overall heat transfer
(figure 17b).

Clearly the presence of the thermal source at the wall leads to thermal gradients
that act to enhance the heat transfer over what would be obtained with a particle
in an unbounded system. To quantify the heat transfer enhancement due to
interaction between the particle and wall thermal boundary conditions, the heat
flux in excess of the local, unbounded convection correlation (6.2) is considered
(q′′w = q′′ − hLoc,UB1TLoc). The thermal driving force for the excess heat flux (q′′w)
is the thermal gradient between the two solid bodies (1Tw = Tw − Tp) and is
utilized to obtain an excess heat transfer coefficient that is associated with the wall
(hw = q′′w/1Tw). The excess wall Nusselt number (Nuw = hwDp/kg) characterizes the
additional heat transfer that a particle in the near-wall region will experience when
compared to a particle in an unbounded system with the same average conditions. As
the separation distance is reduced, large thermal gradients that persist between the
particle and wall, where the fluid velocity is smallest, yield heat fluxes that are much
larger than those experienced by a particle undergoing steady, unbounded convection
and this is why (6.2) with a local fluid temperature is not capable of capturing the
overall heat transfer. While the presence of the hot wall shows significant departure
from an unbounded system, the excess wall Nusselt numbers compress well onto a
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FIGURE 19. The excess wall Nusselt number obtained via LBM-RWPT versus the non-
dimensional separation distance on a logarithmic axis.

single curve (see figure 19) and may be approximated by

Nuw(δ̂)≡
hw(δ̂)Dp

kf
= 1.42 exp (−20.12δ̂)+ 1.54 exp (−2.67δ̂). (6.6)

By making use of (6.2) and (6.6), the total heat flux to the particle then becomes

q′′ = hLoc,UB1TLoc + hw(δ̂)1Tw. (6.7)

Note that Nuw asymptotically decays to zero as δ̂→∞, which is the physically correct
behaviour (Nu→NuLoc,UB). The under-shoot of the data at δ̂ ≈ 4.0 again corresponds
to averaging effects near the edge of the boundary layer and are more pronounced
with increasing RePart, due to the reduction in hydrodynamic and thermal length scales
as the system becomes more advection dominated. While not considered here, it is
expected that the exponential relaxation rates in (6.6) will display a dependence upon
the Prandtl number. As the thermal boundary layers (wall and particle) compress with
increasing Prandtl number, the thermal interaction between particle and wall (heat
transfer in excess of convection) will be confined to increasingly smaller length scales,
leading to larger relaxation rates. The robustness of (6.7) will also be tested in § 7 by
modifying the leading-edge length and thermal boundary conditions.

Due to the restrictions on parameter space, the formal accuracy of indirect
conduction theory for a generic system is outside of the scope of the present work.
However, by identifying the thermal boundary layer thickness as the key length scale,
some general trends may be noted. For particles that are large with respect to δT
(right particle in figure 18), the current indirect conduction theories within DEM
are expected to over-predict the heat transfer to the particle. This can be traced
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Nodes (x× y× z) 250× 240× 120
Dp/1xLBM 15
Ct 0.7
L/Dp 10

TABLE 4. LBM-RWPT geometry and mesh.

θw θ∞ δ/Rp RePart RePlate

1.0 0.2 0.1, 1, 7, 12 10 100
0.8 0.4 0.1, 1, 7, 12 10 100
0.4 0.2 0.1, 1 10 100
0.2 1.0 0.1, 1 10 100

TABLE 5. Simulation conditions.

back to the violation of the static-fluid lens assumption over a length scale of 0.4Rp.
Note that the boundary layer thickness can vary spatially and will compress with
increasing Reynolds and Prandtl numbers. For the case of a particle that is small with
respect to δT (left particle in figure 18), indirect conduction theories are expected to
under-predict the heat transfer to the particle (observed here in figure 17b). In this
case, the particle is well within the boundary layer (where heat transfer enhancement
occurs) at the onset of indirect conduction (δ 6 0.4Rp).

7. Model assessment

Additional simulations were conducted with larger leading-edge lengths and
different thermal boundary conditions to test the robustness of the drag ((6.3)
(unbounded correlation with local fluid velocity) and (6.5) (wall function with
free-stream fluid velocity)) and convection ((6.2) (unbounded Nusselt correlation
with local fluid temperature) and (6.6) (excess wall Nusselt number correlation))
correlations developed here from DNS data; see tables 4–5. Due to the additional
computational demand imposed by larger simulation domains and longer run times,
only RePart = 10 was considered and the tracer concentration was reduced to Ct = 0.7.
It was shown in § 5 that a reduction in tracer concentration does not appreciably
impact the mean heat flux but does increase stochastic fluctuations to a small degree.

The steady-state drag forces at L/Dp= 10 again decreases with decreasing particle–
wall separation distance and the observed trend is quite similar to that obtained with
L/Dp = 5 (figure 11); see figure 20(a). However, the drag reduction at L/Dp = 10 is
observed at larger separation distances than those at L/Dp = 5 due to the growth in
the thickness of the wall hydrodynamic boundary layer with increasing leading-edge
length (δH(x)). The drag force obtained here from DNS simulations was normalized
by the drag force predicted by the correlations (FD,Cor; equation (6.3) (new, unbounded
drag correlation with local fluid velocity) and (6.5) (wall function for the normalized
drag coefficient with free-stream fluid velocity)) in figure 20(b) to assess the accuracy
and robustness of both methods. Both correlations perform reasonably well at very
small and very large separation distances but (6.3) with the local fluid velocity is
observed to better capture the drag occurring at intermediate separation distances that
are near the edge of the wall boundary layer.
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FIGURE 20. The drag force versus non-dimensional separation distance (a) and the drag
force normalized by the unbounded drag correlation with local fluid velocity (6.3) and the
wall function with free-stream fluid velocity (6.5) (b).
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FIGURE 21. The heat flux versus non-dimensional separation distance (a) and the heat
flux normalized by (6.7) (b).

The steady-state heat fluxes at L/Dp= 10 show significant growth as the separation
distance is reduced and the trends are again similar to the L/Dp = 5 results
(figure 17a); see figure 21(a). The heat fluxes were also normalized by the correlation
predictions (q′′Cor; equation (6.7)) and show strong agreement for all thermal boundary
conditions and separation distances; see figure 21(b). These observations suggest that
the proposed superposition of local, unbounded convection and a wall interaction
may sufficiently capture the heat transfer occurring in systems beyond that utilized to
construct the correlation.
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8. Conclusions
Direct numerical simulation was utilized to examine the effect of a hot boundary on

heat and momentum transfer in a gas–solids mixture. Drag forces obtained via LBM-
RWPT show significant drag reduction in the near-wall region that is not captured by
unbounded drag correlations based on a free-stream fluid velocity. By contrast, the use
of an unbounded drag correlation with local fluid velocity is observed to capture the
data reasonably well for large and small particle–wall separation distances.

The heat rates obtained via LBM-RWPT show that unbounded convection
correlations are not sufficient in the near-wall region but the combination of such
correlations with indirect conduction theory agrees markedly better with DNS results.
Nonetheless, such particle-scale theories still exhibit discrepancies with DNS, which
can be traced to the effect of the thermal length scales; specifically, the length scale
associated with near-wall heat transfer enhancement is proportional to the thermal
boundary layer thickness and not the particle radius, which is the length scale utilized
by indirect conduction theory. The use of an unbounded convection correlation with
local fluid temperature is also observed to under-predict the heat transfer in the
near-wall region due to sustained temperature gradients arising due to the proximity
of the particle and wall thermal boundary conditions. The heat transfer in excess
of the unbounded convection correlation with local fluid temperature is utilized to
define an excess wall Nusselt number that only depends upon separation distance.
Superposition of the local, unbounded Nusselt number and excess wall Nusselt number
defines a new correlation which is valid in the near-wall region but asymptotically
decays to the unbounded convection correlation in the limit of large particle–wall
separation distance.

The volume averaging process utilized here to define local variables is shown to
depend upon the width of the integration kernel. As the kernel width is decreased,
the point variables near the surface of the particle are more heavily weighted by the
filtering process and the resulting local variables depart from the free-stream variables
to a greater extent. Therefore, drag and heat transfer correlations based upon volume-
averaged quantities will undergo shifts away from correlations based upon undisturbed
quantities and the shift will become greater as the kernel width is reduced. The same
phenomenon is also observed in unresolved CFD-DEM simulations when the width of
the mollification kernel is reduced (Ireland & Desjardins 2017).

While not considered here, the particle(s) may translate in space as well as rotate
(angular velocity). Furthermore, the diameter of the particle, Prandtl number and
thermal wall boundary condition may be altered. The impact of each parameter on
particle heat and momentum transfer is not known a priori but will be the subject of
future work.
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Appendix A. Kernel attributes
The computation of local variables (as given in (6.1)) requires that a functional

form for the integration kernel (g(r)) be specified. To maintain consistency with the
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methods utilized to derive the volume-averaged equations of motion, g(r) should
monotonically decrease for r > 0, be differentiable for all degrees of freedom (C∞)
and have a characteristic width of σ1/2. The characteristic width (σ1/2) is defined as
the radial coordinate at which the integral of the normalized kernel (ĝ(r)) is equal to
one half (Anderson & Jackson 1967)

∫
∞

σ1/2

ĝ(r)r2 dr≡

∫
∞

σ1/2

g(r)r2 dr∫
∞

0
g(r)r2 dr

=
1
2
, (A 1)

where ĝ(r) is normalized over the entire space and not just the fluid volume (Ωy),
which is why the lower bound of the integral in the denominator of (A 1) starts at 0.
Two kernels that meet these criteria are the exponential and Gaussian function (utilized
by Deen et al. (2012) and Capecelatro & Desjardins (2013), respectively)

g(r)= exp
(
−a
(

r
Rp

))
, (A 2)

g(r)= exp

(
−

1
2a2

(
r

Rp

)2
)
, (A 3)

where a is a constant that will scale the decay rate of g(r) and allow σ1/2 to be set.
Since the volume integration within a DNS simulation domain must occur at finite
radial distances (r), a compact support must be imposed upon the integration kernel
(g(r) is truncated after some threshold r). The compact support defines the union of
the fluid volume (Ωy) and the particle volume. For the integral in (6.1) to converge,
the compact support must be sufficiently large with respect to the kernel width (σ1/2)
- i.e. the normalized integral on Ω is close to unity∫

ĝ(r) dΩ ≈ 1. (A 4)

For the integration kernels presented in (A 2)–(A 3), the kernel width (σ1/2) and
normalized integral (A 4) are given for varying values of a and compact support (Ω);
see tables 6–7. For a= 1 in (A 2) (σ1/2≈ 2.5Rp), the integration kernel of Deen et al.
(2012) is obtained and the normalized integral (A 4) is greater than 0.90 for Ω > 5Rp
(see table 6). This result is in agreement with the findings of Deen et al. (2012)
where it was reported that an averaging box of radius >5Rp led to convergence of
the local heat transfer coefficients. However, convergence of the integral in (6.1) does
not rectify the ambiguity associated with the inherent length scale of the integration
kernel (σ1/2) – i.e. an integration kernel with σ1/2 = 1.5Rp and Ω = 4Rp could
alternatively be selected and while the volume averaging integral (6.1) has converged,
the resulting local variables (TLoc; ULoc) will differ from the case σ1/2 = 2.5Rp and
Ω = 6Rp (also converged integral). When considering a fluidized bed, Anderson &
Jackson (1967) argue that the dependence upon g(r) and σ1/2 becomes insignificant
when σ1/2 is large with respect to the particle–particle spacing and small with respect
to the variations of the complete system. For dilute particle flows, this criterion would
imply that there is not a unique averaging method since the particle spacing does not
display a separation of scales from the macroscopic system. While dilute flows do not
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a σ1/2/Rp Ω/Rp

∫
ĝ(r) dΩ

0.500 5.0 4.0 0.323
0.500 5.0 5.0 0.456
0.500 5.0 6.0 0.577
1.000 2.5 4.0 0.762
1.000 2.5 5.0 0.875
1.000 2.5 6.0 0.938
1.783 1.5 4.0 0.973
1.783 1.5 5.0 0.993
1.783 1.5 6.0 0.998

TABLE 6. Exponential kernel attributes.

a σ1/2/Rp Ω/Rp

∫
ĝ(r) dΩ

3.250 5.0 5.0 0.500
1.625 2.5 5.0 0.976
0.975 1.5 5.0 0.999

TABLE 7. Gaussian kernel attributes.
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FIGURE 22. Nusselt numbers for unbounded flow past a sphere obtained from local
variables computed with the kernel attributes given in table 6 (exponential kernel,
equation (A 2)). The kernel width (σ1/2) decreases from left to right. The open circle
markers denote a support of Ω = 4Rp while the open diamond markers denote a support
of Ω = 5Rp and the open square markers denote a support of Ω = 6Rp. The solid red line
denotes the free-stream correlation of Richter & Nikrityuk (2012) and the dashed blue line
denotes the filtered correlation given in (C 1).

display a separation of scales in the particle spacing, they will experience a separation
of scales between their local hydrodynamic environment and the macroscopic system
– i.e. two particles in shear flow separated by a distance large enough that they do
not impact each other.

We apply the averaging kernels in (A 2)–(A 3) (tables 6–7) to data obtained from
simulation of uniform flow past a static, cold particle and compare the results to
free-stream correlations (Haider & Levenspiel 1989; Richter & Nikrityuk 2012) (solid
red lines) as well as filtered correlations (Ireland & Desjardins 2017) (dashed blue
lines); see figures 22–25. As the kernel width is reduced, the averaging is more
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FIGURE 23. Drag coefficients for unbounded flow past a sphere obtained from local
variables computed with the kernel attributes given in table 6. The kernel width (σ1/2)
decreases from left to right. The open circle markers denote a support of Ω = 4Rp while
the open diamond markers denote a support of Ω = 5Rp and the open square markers
denote a support of Ω = 6Rp. The solid red line denotes the free-stream correlation of
Haider & Levenspiel (1989) and the dashed blue line denotes the filtered correlation given
in (B 13).
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FIGURE 24. Nusselt numbers for unbounded flow past a sphere obtained from local
variables computed with the kernel attributes given in table 7 (Gaussian kernel,
equation (A 3)). The kernel width (σ1/2) decreases from left to right. The open diamond
markers denote a support of Ω = 5Rp. The solid red line denotes the free-stream
correlation of Richter & Nikrityuk (2012) and the dashed blue line denotes the filtered
correlation given in (C 1).

heavily weighted to the slow, cold fluid near the particle surface and the resulting
Nu and CD values undergo shifts away from the free-stream correlations of Haider
& Levenspiel (1989) and Richter & Nikrityuk (2012). The shifts away from the
free-stream correlations are due to interphase transport that reduce the fluid velocity
and temperature in the vicinity of the particle. Furthermore, the shifted data obtained
with local variables are self-similar to the free-stream correlations and suggests that
the local fluid environment contains sufficient information for correlating the drag
and heat transfer, provided the averaging volume is large with respect to the particle
boundary layer. Note, that for a given σ1/2, the data in each panel of figures 22–23
converge to a trend as the compact support (Ω) of the integration kernel increases
((A 4) becomes satisfied as the upper integration bound tends to ∞). For similar
kernel widths (σ1/2), equations (A 2) and (A 3) yield very comparable results for Nu
and CD; see figures 22 versus 24 and 23 versus 25. For integration kernels of finite
width, an offset will be present between correlations that utilize local variables and
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FIGURE 25. Drag coefficients for unbounded flow past a sphere obtained from local
variables computed with the kernel attributes given in table 7. The kernel width (σ1/2)
decreases from left to right. The open diamond markers denote a support of Ω = 5Rp.
The solid red line denotes the free-stream correlation of Haider & Levenspiel (1989) and
the dashed blue line denotes the filtered correlation given in (B 13).

correlations that utilize free-stream variables and the offset will become larger as σ1/2
decreases. Therefore, a correlation derived with local variables will be specific to
the σ1/2 length scale, assuming Ω is large enough to achieve convergence. Similarly,
the simulation of flows via unresolved CFD-DEM involves a characteristic length
scale associated with the fluid grid size (1x). For methods like those derived by
Capecelatro & Desjardins (2013), the length scale is associated with the mollifier
width (σ1/2 = 3Rp in that work) since the source terms due to interphase transport
are distributed among adjacent nodes according to the mollification kernel. For both
classic CFD-DEM and the strategy of Capecelatro & Desjardins (2013), the length
scale (1x and σ1/2, respectively) is often ≈2− 3Rp. For this reason, we employ (A 2)
with σ1/2= 2.5Rp and Ω = 5Rp; which is an approximately converged integral that has
been previous employed with DNS data (Deen et al. 2012) and whose kernel width
is consistent with unresolved CFD-DEM methods (Capecelatro & Desjardins 2013).

Appendix B. Filtered drag correlations
B.1. Ireland & Desjardins (2017)

Discrete particles interacting with a continuum fluid phase will experience an
interphase exchange of momentum and thermal energy. The interphase exchange
leads to source terms within unresolved CFD-DEM frameworks that effectively
couple the phases. The source term due to drag will alter the fluid velocity in the
vicinity of the particle, which is subsequently interpolated to calculate the particle
drag force for the next time step. The disturbance to the fluid velocity, caused by the
drag source term, leads to errors in the computed drag force for two-way coupled
frameworks. Ireland & Desjardins (2017) filter the solution for Stokes flow past a
sphere to account for the fluid velocity disturbance introduced by the particle. For
completeness, and to establish a procedure for appendix C, we re-derive the solution
of Ireland & Desjardins (2017) here.

The Stokes velocity field in spherical coordinates is given by (Happel & Brenner
1983)

ur =U∞

[
1−

3
2

(
Rp

r

)
+

1
2

(
Rp

r

)3
]

cos(θ), (B 1)
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uθ =U∞

[
−1+

3
4

(
Rp

r

)
+

1
4

(
Rp

r

)3
]

sin(θ), (B 2)

which may be mapped to Cartesian coordinates via rotation matrices. Sequential
rotations about the φ and θ axes lead to a total rotation matrix of

R =

 cos(θ) − sin(θ) 0
sin(θ) cos(φ) cos(θ) cos(φ) − sin(φ)
sin(θ) sin(φ) cos(θ) sin(φ) cos(φ)

 . (B 3)

Multiplication of R by (B 1)–(B 2) in vector format yields

ux =U∞

[
1−

3
4r̂

(
1+ cos2(θ)

)
−

1
4r̂3
(1− 3 cos2(θ))

]
, (B 4)

uy =U∞

[
sin(θ) cos(θ) cos(φ)

(
−

3
4r̂
+

3
4r̂3

)]
, (B 5)

uz =U∞

[
sin(θ) cos(θ) sin(φ)

(
−

3
4r̂
+

3
4r̂3

)]
, (B 6)

where r̂ = r/Rp. The filtered fluid volume fraction (εg,Loc) is obtained by integrating
the Gaussian kernel over the fluid volume

εg,Loc ≡

√
2/π
a3

∫
∞

1
exp

(
−

1
2a2

r̂2

)
r̂2 dr̂= 1− erf

(
1

a
√

2

)
+

√
2/π
a

exp
(
−

1
2a2

)
.

(B 7)
The phase-averaged Stokes velocity is obtained by applying the Gaussian filter to the
fluid velocity in the x-direction

εg,Locux,Loc =

√
2/π

2a3

∫ π

0

∫
∞

1
exp

(
−

1
2a2

r̂2

)
uxr̂2 sin(θ) dr̂ dθ, (B 8)

where the 2 present in the denominator of (B 8) is a result of having integrated over
φ but not θ . Terms in (B 4) without θ dependence simplify to

U∞

√
2/π
a3

∫
∞

1
exp

(
−

1
2a2

r̂2

) [
r̂2
−

3
4

r̂−
1
4r̂

]
dr̂, (B 9)

while terms with θ dependence (cos2(θ) sin(θ)) are integrated to obtain

U∞

√
2/π
a3

∫
∞

1
exp

(
−

1
2a2

r̂2

) [
−

1
4

r̂+
1
4r̂

]
dr̂. (B 10)

The first term in brackets in (B 9) is exactly εgU∞. Combining r̂ and 1/r̂ terms in
(B 9)–(B 10), we arrive at

U∞

√
2/π
a3

∫
∞

1
exp

(
−

1
2a2

r̂2

)
(−r̂) dr̂=−U∞

√
2/π
a

exp
(
−

1
2a2

)
. (B 11)
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Dividing by the solids’ volume fraction (B 7), we obtain the solution reported by
Ireland & Desjardins (2017)

ux,Loc =

1−

√
2/π
a

exp
(
−

1
2a2

)
1− erf

(
1

a
√

2

)
+

√
2/π
a

exp
(
−

1
2a2

)
U∞, (B 12)

where ux,Loc is the local fluid velocity for Stokes flow around a sphere, and a
is the standard deviation in (A 3). We note that the local fluid velocity is the
difference between the undisturbed fluid velocity (U∞) and the velocity correction ζuf

(equation 36 in Ireland & Desjardins (2017)).
The local fluid velocity given in (B 12) may be utilized to modify existing drag

correlations (Haider & Levenspiel 1989) for use with local (disturbed) fluid velocities
obtained in unresolved CFD-DEM methods. Specifically, equation (B 12) has the
general form ux,Loc=CHU∞ where CH (term in brackets in (B 12)) is a scaling factor
that depends upon the filter width and is less than unity. The drag force is given by
FD=πρD2

pu2CD. Substituting in ux,Loc=CHU∞ for u illustrates that CD must be scaled
by 1/C2

H in order to obtain the same drag force with an undisturbed velocity (U∞).
The drag correlation of Haider & Levenspiel (1989) may be modified as follows

CD =
24

CHRePart,Loc
(1+ 0.18C−0.65

H Re0.65
Part,Loc), (B 13)

where CH is the bracketed term in (B 12) evaluated for a = 1.625 and RePart,Loc =

CHRePart.

B.2. Municchi et al. (2016)
Additionally, Municchi et al. (2016) considered a similar procedure with a top-hat
kernel and obtained

ux,Loc =

[
2f 2
− f − 1

2( f 2 + f + 1)

]
U∞, (B 14)

where f =Ω/Rp is the dimensionless ratio of the filter support to the particle radius
(5 in the present study). The same procedure as described above is utilized to arrive
at a modified drag law but with CH equal to the bracketed term in (B 14).

Appendix C. Filtered heat transfer correlation
When considering heat transfer, the Nusselt correlation must be modified to account

for the disturbed fluid temperature and the disturbed Reynolds number. To obtain a
local fluid temperature, we begin by filtering the analytical solution for radial diffusion
from a sphere. Subsequently, we consider thermal Stokes flow past a sphere (Acrivos
& Taylor 1962). In contrast to the hydrodynamics, a simple solution for this case is
not readily available and the asymptotic method employed by Acrivos & Taylor (1962)
yields ‘inner’ and ‘outer’ solutions that are valid near the particle surface and far away,
respectively.

The rate of interphase heat transfer is given by Q̇ = h(T∞ − Tp), which simplifies
to Q̇ = hT∞ for zero particle temperature. Employing a local fluid temperature
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(TLoc=CTT∞) implies that the Nusselt number should be scaled by 1/CT to conserve
the heat rate. However, the Nusselt number also depends upon the particle Reynolds
number, which also experiences a disturbance. Modifying the Nusselt correlation of
Richter & Nikrityuk (2012) we arrive at

Nu=
1

CT
[1.76+ 0.55C−1/2

H Re1/2
Part,LocPr1/3

+ 0.014C−2/3
H Re2/3

Part,LocPr1/3
], (C 1)

where CT is the thermal analogue of CH and is closed in the following subsections.

C.1. Diffusion filtering
For the case of a cold particle placed in a quiescent bath of hot fluid, the transient
diffusion equation in the radial coordinate governs the evolution of the fluid
temperature. The solution to this problem may be found via combination of variables
(Lattanzi et al. 2019b)

T =
[

1−
1
r̂

erfc
(

r̂− 1
√

4αt

)]
T∞, (C 2)

where α is the thermal diffusivity of the fluid. For long time scales (steady state),
the erfc term will tend to unity and the solution simplifies to 1− 1/r̂. Filtering of a
constant and 1/r̂ term will yield

√
2/π
a3

∫
∞

1
exp

(
−

1
2a2

r̂2

)
r̂2 dr̂= εg,Loc, (C 3)

√
2/π
a3

∫
∞

1
exp

(
−

1
2a2

r̂2

)
r̂ dr̂=

√
2/π
a

exp
(
−

1
2a2

)
. (C 4)

Collecting terms and dividing by εg,Loc we obtain

TLoc =

1−

√
2/π
a

exp
(
−

1
2a2

)
1− erf

(
1

a
√

2

)
+

√
2/π
a

exp
(
−

1
2a2

)
 T∞, (C 5)

which is exactly the solution obtained by Ireland & Desjardins (2017) for the
hydrodynamics (B 12). Therefore, we compute CT in the same manner as CH for
both the Ireland & Desjardins (2017) correlation and the Municchi et al. (2016)
correlation.

C.2. Thermal Stokes filtering
To assess the first-order effects arising from finite fluid flow, we first consider the inner
expansion of Acrivos & Taylor (1962), which holds near the surface of the particle.
The truncated inner solution is given by

TIn =

[
1−

1
r̂
+

(
Pe
4
+

Pe3

16
ln
(

Pe
2

))
T1 +

Pe2

8
ln
(

Pe
2

)(
1−

1
r̂

)]
T∞,

T1 =

(
1−

1
r̂

)
−

(
1−

3
2r̂
+

3
4r̂2
−

1
4r̂3

)
cos(θ).

 (C 6)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

45
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.45


Near-wall transport 889 A6-37

We may again utilize (C 3)–(C 4) to filter the constant and 1/r̂ terms. Due to the
orthogonality of sin(θ) and cos(θ), the second set of terms in T1 will be zero when
the θ direction is integrated, and thus will not contribute to TLoc. Combining terms we
obtain a solution of

TLoc,In =

1−

√
2/π
a

exp
(
−

1
2a2

)
1− erf

(
1

a
√

2

)
+

√
2/π
a

exp
(
−

1
2a2

)


×

[
1+

Pe
4
+

Pe2

8
ln
(

Pe
2

)
+

Pe3

16
ln
(

Pe
2

)]
T∞. (C 7)

Filtering of the inner solution is valid for smaller Péclet numbers (O(10−1)) where the
boundary layer is not confined to a thin region near the particle surface. By contrast,
filtering of the outer solution is valid for larger Péclet numbers (O(101)) since the
near-surface region will not contribute significantly to the integral. The outer solution
to first order is given by

TOut =

[
1−

2
Pe r̂

exp
(

Pe r̂
4
(cos(θ)− 1)

)]
T∞. (C 8)

The outer solution is numerically filtered and thus no closed form solution is given
for TLoc,Out. For the case of thermal Stokes filtering, we consider a local velocity (CH)
given by (B 12) with a local temperature (CT) given by (C 7) for Pe< 1 and numerical
integration of (C 8) for Pe> 10.
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