
Personalized diagnoses for inconsistent user requirements

ALEXANDER FELFERNIG AND MONIKA SCHUBERT
Institute for Software Technology, Graz University of Technology, Graz, Austria

(RECEIVED May 25, 2010; ACCEPTED October 29, 2010)

Abstract

Knowledge-based configurators are supporting configuration tasks for complex products such as telecommunication sys-
tems, computers, or financial services. Product configurations have to fulfill the requirements articulated by the user and the
constraints contained in the configuration knowledge base. If the user requirements are inconsistent with the constraints in
the configuration knowledge base, users have to be supported in finding out a way from the no solution could be found
dilemma. In this paper we introduce a new algorithm (PERSDIAG) that allows the determination of personalized diagnoses
for inconsistent user requirements in knowledge-based configuration scenarios. We present the results of an empirical study
that show the advantages of our approach in terms of prediction quality and efficiency.

Keywords: Configuration; Model-Based Diagnosis; Personalization

1. INTRODUCTION

On an informal level, configuration can be defined as a spe-
cial case of design activity, where the artifact being config-
ured is assembled from instances of a fixed set of well-defined
component types which can be composed conforming to a set
of constraints (Sabin & Weigel, 1998). Configuration systems
typically exploit two different types of knowledge sources: the
explicit knowledge about the user requirements and deep con-
figuration knowledge about the underlying product. Configura-
tion knowledge is represented in the form of a product structure
and different types of constraints (Felfernig et al., 2003) such as
compatibility constraints (which component types can or can-
not be combined with each other), requirements constraints
(how user requirements are related to the underlying product
properties), or resource constraints (how many and which
components have to be provided such that needed and provided
resources are balanced).

Interacting with a knowledge-based configurator typically
means to specify a set of requirements, to adapt inconsistent re-
quirements, and to evaluate alternative configurations (solu-
tions). In this paper we focus on a situation where the configura-
tor is not able to find a solution. In such a situation it is very
difficult for users to find a set of changes to the specified set of

requirements such that a configuration can be found (Felfernig
et al., 2004). In order to better support users, we introduce PERS-

DIAG, which is an algorithm for the personalized diagnosis of in-
consistent user requirements. PERSDIAG improves the perfor-
mance of diagnosis calculation and the precision of diagnosis
predictions.

State-of-the-art approaches to the determination of mini-
mal diagnoses for inconsistent user requirements are focusing
on minimal-cardinality diagnoses (Felfernig et al., 2004) or
on the precalculation of all possible diagnoses (McSherry,
2004). In the context of recommender systems (Burke,
2000; Felfernig et al., 2007), the complement of such a diag-
nosis is often denoted as maximally successful subquery
(Godfrey, 1997; McSherry, 2004, 2005). Such a query con-
sists of those elements that are not part of a corresponding
minimal diagnosis. In the context of constraint-based systems
(Tsang, 1993) diagnoses are also interpreted as a specific type
of explanation (O’Sullivan et al., 2007).

Especially in interactive settings the calculation of all pos-
sible diagnoses is infeasible due unacceptable runtimes (Fel-
fernig et al., 2009). Furthermore, it cannot be guaranteed that
minimal-cardinality diagnoses lead the most interesting ex-
planations for a user (O’Sullivan et al., 2007; Felfernig
et al., 2009). The work of (O’Sullivan et al., 2007) is a first
step toward the tailoring of the presented set of diagnoses
in the sense that so-called representative explanations are de-
termined. These explanations fulfill the criteria that each ele-
ment part of a diagnosis is also contained in at least one of
the diagnoses presented to the user. The work presented in

Reprint requests to: Alexander Felfernig, Institute for Software Technol-
ogy, Graz University of Technology, Inffeldgasse 16b, A-8010 Graz, Austria.
E-mail: alexander.felfernig@ist.tugraz.at

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2011), 25, 175–183.
Cambridge University Press 2011 0890-0604/11 $25.00
doi:10.1017/S0890060410000612

175

https://doi.org/10.1017/S0890060410000612 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000612

Felfernig et al. (2009) takes one further step toward this direc-
tion by introducing personalization concepts that allow to de-
termine personalized repair actions for inconsistent require-
ments in knowledge-based recommendation (Burke, 2000)
where, in contrast to knowledge-based configuration scenar-
ios, a fixed and predefined set of candidate products exists.

On the basis of related work in the field, we introduce a
new algorithm for the personalized diagnosis of inconsistent
user requirements that is especially tailored to knowledge-
based configuration scenarios. The algorithm (PERSDIAG) per-
forms a best-first search for diagnoses acceptable for the user
where the decision on which nodes to expand during search is
based on criteria often used in recommender systems devel-
opment (Felfernig et al., 2007). The major contribution of
this paper is to show how standard model-based diagnosis
(MBD) approaches (Reiter, 1987; DeKleer et al., 1992) can
be extended with intelligent personalization concepts that im-
prove the prediction quality of diagnosis selection and reduce
the diagnosis calculation time when searching for the top-
most-n relevant diagnoses.

The remainder of this paper is organized as follows. In Sec-
tion 2 we introduce a working example that will be used for
illustration purposes throughout the paper. In Section 3 we
discuss a basic approach to identify inconsistent user require-
ments (Felfernig et al., 2004) that is based on the concepts of
MBD (Reiter, 1987; DeKleer et al., 1992). In Section 4 we
present an algorithm (PERSDIAG) for the personalized identi-
fication of minimal sets of inconsistent user requirements.
The results of empirical and performance evaluations are pre-
sented in Section 5. In Section 6, we discuss related and future
work. We conclude the paper with Section 7.

2. WORKING EXAMPLE: COMPUTER
CONFIGURATION

We will use computer configuration as a working example
throughout this paper. The task of identifying a configuration
for a given set of user requirements can be defined as follows
(see Definition 1). This definition is based on the definition
given in Felfernig et al. (2004) and, in contrast to the compo-
nent-port based representation of a configuration problem
(Felfernig et al., 2004), it relies on the definition of a con-
straint satisfaction problem (CSP; Tsang, 1993).

DEFINITION 1 (configuration task). A configuration task
can be defined as a CSP (V, D, C), where V¼ {v1, v2, . . . , vn}
is a set of finite domain variables and D¼ {dom(v1), dom(v2),
. . . , dom(vn)} represents the domain of each variable vi. Here,
C¼CKB < CR is a set of all constraints, which can be divided
into the configuration knowledge base (KB) CKB ¼ {c1, c2,
. . . , cm} and the set of specific user requirements (R) CR ¼

{cmþ1, cmþ2, . . . , cp}. B

A simple example for a configuration task (V, D, C) is V¼
{cpu, graphic, ram, motherboard, harddisk, price}, where
cpu is the type of central processing unit, graphic represents
the graphics card, ram represents the main memory specified

in gigabytes, motherboard represents the type of mother-
board, harddisk is the harddisk capacity in gigabytes, and
price represents the overall price of the computer. These vari-
ables fully describe the potential set of requirements that can
be specified by the user. The respective variable domains
are D ¼ {dom(cpu) ¼ {CPUA, CPUB}, dom(graphic) ¼
{GCA, GCB, GCC, GCD}, dom(ram) ¼ {1, 2, 3, 4}, dom
(motherboard) ¼ {MBX, MBY, MBZ, MBW}, dom
(harddisk) ¼ {200..700}, dom(price) ¼ {300..600}}. Note
that for reasons of simplicity we do not explicitly discuss pric-
ing constraints; the reader can assume that for each relevant
variable value there is a corresponding specified price and
that there is a set of constraints responsible for calculating
the overall price of the configuration. The set of possible com-
binations of variable instantiations is restricted by the con-
straints in the configuration knowledge base CKB ¼ {c1, c2,
c3, c4, c5, c6}. In our working example these are simplified
technical and sales constraints:

† c1: cpu ¼ CPUA) graphic = GCA
† c2: cpu ¼ CPUB) ram . 1
† c3: motherboard ¼ MBY) ram . 1
† c4: harddisk ¼ 700) motherboard ¼ MBW
† c5: motherboard¼MBX) graphic¼ GCB _ graphic
¼ GCD

† c6: motherboard ¼ MBX) ram ¼ 1 _ cpu = CPUA

For the purposes of our simple example, we assume that the
following requirements have been specified by the user (CR

¼ {c7, c8, c9, c10, c11, c12}):

† c7: cpu ¼ CPUA
† c8: graphic ¼ GCA
† c9: ram � 2
† c10: motherboard ¼ MBX
† c11: price � 350
† c12: harddisk � 200

Based on this example of a configuration task, we can intro-
duce a definition of a concrete configuration, that is, a solu-
tion for a configuration task.

DEFINITION 2 (configuration). A configuration for a given
configuration task (V, D, C) is an instantiation I¼ {v1 ¼ i1, v2

¼ i2, . . . , vn ¼ in} of each variable vj where ij [dom(vj). A
configuration is consistent if the assignments in I are consistent
with the constraints in C. Furthermore, a configuration is com-
plete if all thevariables inVare instantiated.Finally, aconfigura-
tion is valid, if it is both consistent and complete. B

In our working example, we assume that users already in-
teracted with the computer configurator and created several
configurations (CONFIGS ¼ {conf1, conf2, conf3, conf4,
conf5, conf6, conf7}). These configurations are stored in a
corresponding table (see Table 1). We will exploit this infor-
mation for the determination of personalized diagnoses in
Section 4.

A. Felferning and M. Schubert176

https://doi.org/10.1017/S0890060410000612 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000612

3. CALCULATING MINIMAL CARDINALITY
DIAGNOSES

For the example configuration task specified in Section 2 we are
not able to find a valid solution, for example, the processor type
CPUA is incompatiblewith the graphic card GCA (a simple sales
constraint). Therefore, we want to identify the minimal set of re-
quirements (ci [CR) that have to be relaxed in order to find a
solution. For identifying such minimal sets, we exploit the con-
cepts of MBD (Reiter, 1987; DeKleer et al., 1992). MBD starts
with a system description, which in our case encompasses the
configuration knowledge base CKB that describes the set of pos-
sible product configurations. If the actual behavior of the system
conflicts with its intended behavior (a corresponding configura-
tion can be identified), the task of a diagnosis component is to
determine those elements (in our case the elements are require-
ments in CR) which, when assumed to be functioning abnor-
mally, sufficiently explain the discrepancy between the actual
and the intended behavior of the system. A diagnosis is a mini-
mal set of faulty components (in ourcase requirements) that need
to be relaxed in order to be able to identify a configuration.

On a more technical level, minimal diagnoses for faulty user
requirements can be identified as follows. Let us assume the ex-
istence of a set CKB ¼ {c1, c2, . . . , cm} of configuration con-
straints and a set CR¼{cmþ1, cmþ2, . . . , cp} of user requirements
(represented as constraints) inconsistent with CKB, that is, no so-
lution can be found for the constraints in CR < CKB. In such a
situation, state-of-the-art configurators (Sinz & Haag, 2007) cal-
culate a set of minimal diagnoses DIAGS¼ {diag1, diag2, . . . ,
diagk}, where 8diagi [DIAGS : CKB < (CR 2 diagi) is consis-
tent. A corresponding User Requirements Diagnosis Problem
(UR Diagnosis Problem) can be defined as follows:

DEFINITION 3 (UR diagnosis problem). A UR diagnosis
problem is defined as a tuple (CKB, CR) where CKB represents
the constraints of the configuration knowledge base and CR is
a set of user requirements. B

Based on the definition of the UR diagnosis problem, a UR
diagnosis can be defined as follows:

DEFINITION 4 (UR diagnosis). A UR diagnosis for (CKB,
CR) is a set of constraints diag # CR such that CKB < (CR 2

diag) is consistent. A diagnosis diag is minimal if there does

not exist a diagnosis diag0 , diag such that CKB < (CR 2

diag0) is consistent. B

Following the basic principles of MBD (Reiter, 1987;
DeKleer et al., 1992), the calculation of diagnoses is based
on the identification and resolution of conflict sets. A conflict
set in the user requirements CR can be defined as follows:

DEFINITION 5 (conflict set). A conflict set is defined as a
subset CS # CR such that CS < CKB is inconsistent. CS is
minimal if and only if there does not exist a conflict set CS0

with CS0 , CS. B

In our simple working example, the user requirements CR ¼

{c7, . . . , c12} are inconsistent with the constraints in the con-
figuration knowledge base CKB ¼ {c1, . . . , c6}, that is, there
does not exist a configuration (solution) that completely fulfills
the requirements in CR. The minimal conflict sets are CS1 ¼

{c7, c8}, CS2 ¼ {c8, c10}, and CS3 ¼ {c7, c9, c10}, because
each of these conflict sets is inconsistent with the configuration
knowledge base and there do not exist conflict sets CS1

0, CS2
0,

and CS3
0 with CS1

0 , CS1, CS2
0 ,CS2, and CS3

0 ,CS3.
In MBD (Reiter, 1987; DeKleer et al., 1992) the standard

algorithm for determining minimal diagnoses is the hitting
set-directed acyclic graph (HSDAG) as described in Reiter
(1987). User requirements diagnoses diagi [DIAGS can
be calculated by resolving conflicts in the set of requirements
CR. Because of its minimality property, one conflict can be
resolved by deleting exactly one of the elements from the con-
flict set. After deleting at least one element from each iden-
tified conflict set we are able to present a diagnosis. The
HSDAG algorithm employs breadth-first search where the
resolution of all minimal conflict sets leads to the identifica-
tion of all minimal diagnoses. In our working example the di-
agnoses derived from the conflict sets CS1, CS2, and CS3 are
DIAGS ¼ {{c7, c8}, {c7, c10}, {c8, c9}, {c8, c10}}.

The construction of such a HSDAG is exemplified in Fig-
ure 1. The HSDAG algorithm assumes the existence of a
component that is able to detect minimal conflict sets. Our
implementation is based on a version of the QUICKXPLAIN

Table 1. User interaction data from configuration sessions
(configuration log)

CPU Graphic RAM Motherboard Hard Disk Price

conf1 CPUA GCB 1 MBX 200 350
conf2 CPUB GCA 3 MBY 500 400
conf3 CPUA GCD 1 MBX 200 450
conf4 CPUA GCC 3 MBZ 650 550
conf5 CPUB GCB 3 MBW 700 600
conf6 CPUA GCC 2 MBY 200 300
conf7 CPUB GCC 4 MBY 300 550

Fig. 1. Hitting set directed acyclic graph (Reiter, 1987) for the working
example. The first identified diagnosis is diag1 ¼ {c7, c8}. The algorithm
returns minimal diagnoses with increasing cardinality, that is, diag1 ¼

{c7, c8} is a minimal cardinality diagnosis. The complete set of minimal
diagnoses is DIAGS ¼ {{c7, c8}, {c7, c10}, {c8, c9}, {c8, c10}}.

Personalized diagnoses for inconsistent requirements 177

https://doi.org/10.1017/S0890060410000612 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000612

conflict detection algorithm introduced by Junker (2004).
Following a breadth-first search regime with the goal of identi-
fying a minimal diagnosis, we have to resolve the conflict set
CS1 by checking whether c7 or c8 already represent a diagnosis.
Both alternatives to resolve the conflict do not lead to a diagno-
sis since (CR 2 {c7}) < CKB as well as (CR 2 {c8}) < CKB are
still inconsistent. We now can switch to the next level of the
search tree because breadth-first search inspects all nodes at
level n of the search tree first and then extends the search to
level n þ 1. Let us assume that the next conflict set returned
by QUICKXPLAIN is CS2 ¼ {c8, c10}. Now, (CR 2 ({c7} <
{c8})) < CKB does not trigger further conflicts, which means
that diag1 ¼ {c7, c8} has been identified as the first minimal
cardinality diagnosis. Further details on the standard HSDAG
algorithm can be found in Reiter (1987).

A major question to be answered is whether minimal car-
dinality diagnoses are leading to configurations of relevance,
that is, have a high probability of being selected by the user.
We will provide answers in the following sections.

4. CALCULATING PERSONALIZED DIAGNOSES

As the number of possible diagnoses can become large, and
presenting such a large number of alternatives to the user is in-
appropriate, we want to systematically reduce the number of al-
ternatives with the goal to identify relevant diagnoses for the
user and keep the diagnosis evaluation process as simple as pos-
sible. A simple heuristic to identify such diagnoses has already
been presented in Section 3, where diagnoses have been ranked
to conform to their cardinality; in our working example {c7, c8}
has been identified as first minimal cardinality diagnosis. An
alternative to this breadth-first search-based approach is to
exploit recommendation techniques (Felfernig et al., 2007)
for the identification of relevant diagnoses, that is, diagnoses
that have a higher probability of being accepted by the user.
In the following we will show how basic recommendation ap-
proaches can be exploited for the prediction of diagnoses that
are relevant to the user. First, we will show how we can deter-
mine diagnoses leading to configurations that are similar to the
original set of user requirements (similarity-based diagnosis se-
lection). Second, we will introduce a utility-based approach that
uses preference data for guiding the HSDAG construction (util-
ity-based diagnosis selection).

4.1. Similarity-based diagnosis selection

The idea of similarity-based diagnosis selection is to prefer
those minimal diagnoses that lead to configurations resembling
the original user requirements. In order to derive such diagno-
ses, we can exploit information contained in already existing
configurations (see, e.g., the configuration log in Table 1). For
each entry in Table 1 we can calculate its similarity with the
user requirements in CR. The similarity values of our working
example calculated on the basis of Eq. (4), simrec(CR, confk),
k ¼ 1..7, are conf1 ¼ 0.45, conf2 ¼ 0.60, conf3 ¼ 0.43, conf4
¼ 0.25, conf5 ¼ 0.30, conf6 ¼ 0.36, conf7 ¼ 0.14. These values

are calculated on the basis of the entries in Table 1 and the pref-
erences of our example user, which are the importance values
w(ci): c7 ¼ 0.08 (8%), c8 ¼ 0.34 (34%), c9 ¼ 0.08 (8%), c10

¼ 0.17 (17%), c11 ¼ 0.08 (8%), c12 ¼ 0.25 (25%).1

The calculation of similarity values is based on three attrib-
ute-level similarity measures (Konstan et al., 1997; Wilson &
Martinez, 1997; McSherry, 2004). These measures calculate
the similarity of a pair of attribute (ai) of configuration confk
and the corresponding user requirement (ci), for example, the
similarity between attribute ram of configuration conf1 and
the user requirement c9 (ram � 2) is 0.33, where we take the
lower bound ram ¼ 2 as basis for similarity calculation. De-
pending on the characteristics of the attribute, one of the three
measures [Eqs. (1)–(3)] is chosen: More-Is-Better (MIB), Less-
Is-Better (LIB) or Nearer-Is-Better (NIB; McSherry, 2004).

For attributes like harddisk size or the ram size, the higher
the value the better it is for the user (MIB). For attributes like
price, the lower the value the more satisfied the user is (LIB).
When the user specifies a certain type of CPU (no intrinsic
value scale), we suppose the most similar is the preferred
one. In those cases, the NIB similarity measure is used.2

MIB : sim ci, aið Þ ¼ val cið Þ � min aið Þ
max aið Þ � min aið Þ

(1)

LIB : sim ci, aið Þ ¼ max aið Þ � val cið Þ
max aið Þ � min aið Þ

(2)

NIB : sim ci, aið Þ ¼ 1 if val cið Þ ¼ val aið Þ
0 else

�
(3)

On the basis of the individual similarity values, Eq. (4) cal-
culates the overall similarity value between the sequence of
user requirements (c) and the sequence of attribute values
of configuration a. In this context w(ci) denotes the impor-
tance of requirement ci for our example user. The importance
values can be directly specified by the user or derived by a
learning algorithm, for example, a genetic algorithm.

simrec c, að Þ ¼
Xn

i¼1
sim ci, aið Þ � w cið Þ (4)

The similarity values provided above will now be exploited for
determining diagnoses in a personalized fashion (see Fig. 2).

For the similarity-based selection of diagnoses we again
assume that the QUICKXPLAIN algorithm (Junker, 2004) re-
turns as first conflict set CS1 ¼ {c7, c8}. Now there are two
possibilities of resolving CS1. If we delete c7 from CS1, the
following configurations CONFIGS ¼ {conf2, conf5, conf7}
are consistent with c7. This means that each of the configura-
tions in CONFIGS is inconsistent with the requirement c7 and

1 Note that our approach does not rely on a specific preference elicitation
method.

2 For a detailed discussion of different types of similarity measures see, for
example, McSherry (2004) and Wilson and Martinez (1997). In Eqs. (1)–(3),
val(ci) denotes the value of user requirement ci, min(ai) denotes the minimal
possible value of configuration attribute ai, and max(ai) denotes the maximal
possible value of attribute ai.

A. Felferning and M. Schubert178

https://doi.org/10.1017/S0890060410000612 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000612

thus a potential candidate configuration for supporting diag-
noses that include c7. If we delete c8 from CS1, then CON-
FIGS ¼ {conf1, conf3, conf4, conf5, conf6, conf7}. The con-
figuration with the highest similarity compared to the
original set of requirements CR ¼ {c7, . . . , c12} is conf2 con-
tained in node (2) of Figure 2. Consequently, node (2) of the
HSDAG is further expanded, which results in the next con-
flict set CS2 ¼ {c8, c10}, because CKB < (CR 2 {c7}) is still
inconsistent. With this expansion we have identified two al-
ternative diagnoses, namely, {c7, c8} and {c7, c10}. The diag-
nosis {c7, c10} will be rated higher because it is consistent
with the configuration conf2, the configuration with the high-
est similarity to the set of requirements, that is, conf2 < CKB

< (CR 2 {c7, c10}) is consistent. Note that in many config-
uration scenarios there exists a ramp-up problem (Burke,
2000) because initially no configuration data are available.
An approach to deal with this situation is to define a threshold
value that specifies an upper similarity limit for configura-
tions to be accepted as similar to the original set of require-
ments. If no such configuration exists, a fallback solution is
to present diagnoses resulting from breadth-first search or
to apply the criteria presented in the following.

4.2. Utility-based diagnosis selection

The idea of utility-based diagnosis selection is to prefer those
minimal diagnoses, which include requirements of low impor-
tance for the user. Following a utility-based approach (Winter-
feldt & Edwards, 1986) we are summing up the individual im-
portance values (see above) of the requirements part of a
diagnosis in order to generate a corresponding ranking. The
function utility(C # CR) returns a utility score for a specific
set C that is a subset of the user requirements CR [see Eq. (5)].

utility C # CRð Þ ¼ 1X
ci[CwðciÞ

(5)

For the utility-based selection of diagnoses we again assume
that QUICKXPLAIN returns as first conflict set CS1 ¼ {c7, c8}
(see Fig. 3). The importance value for c7 is 0.08, whereas the

importance value for requirement c8 is 0.34 (see above). By ap-
plying Eq. (5) we derive the corresponding utility values, for
example, utility({c7}) ¼ 1/0.08 ¼ 12.5 and utility({c8}) ¼ 1/
0.34 ¼ 2.9. Because resolving the conflict set {c7, c8} by de-
leting c7 has a higher utility [application of Eq. (5)], the search
for a diagnosis is continued with CR 2 c7, which results in the
second conflict set returned by QUICKXPLAIN (CS2 ¼ {c8,
c10}). Again, we sort the utility values for all nodes in the fringe
of the search tree and come to the conclusion that extending the
path {c7, c10} is the best choice (utility({c7, c10}) ¼ 4.0). Be-
cause (CR 2 {c7, c10} < CKB) is consistent, diag1 ¼ {c7, c10}
is the first diagnosis identified (in this case the result is the same
as the one determined by the similarity-based approach).

4.3. Algorithm for calculating personalized diagnoses

The algorithm for calculating best-first minimal diagnoses for
inconsistent user requirements is the following (Algorithm 1,
PERSDIAG). We keep the description of the algorithm on a
level of detail, which has been used in the description of
the HSDAG algorithm (Reiter, 1987). In PERSDIAG, the dif-
ferent paths of the HSDAG are represented as separate ele-
ments in a collection structure H that is initially empty. H
stores all paths of the search tree in a best-first fashion, where
the currently best path (h) is the one with the most promising
(partial) diagnosis. If the theorem prover (TP) call TP((CR 2

h) < CKB) does not detect any further conflicts for the ele-
ments in h (isEmpty(CS)), a diagnosis is returned. The major
role of the TP is to check whether there exists a configuration
for CR, disregarding the already resolved conflict set elements
in h. If the theorem prover call TP((CR 2 h) < CKB) returns a
nonempty conflict set CS, h is expanded to the paths contain-
ing exactly one element of CS each. In case that h is ex-
panded, the original h must of course be removed from H
(delete(h, H)). Afterward, the new elements have to be inserted
into H. This collection (H) is then finally sorted (sort(H, k))
according to the criteria defined in k.3 In this context, k repre-

Fig. 3. Utility-based selection of diagnoses with PERSDIAG.
Fig. 2. Similarity-based selection of diagnoses with PERSDIAG.

3 Note that the HSDAG pruning is implemented by the functionalities of
sort(H, k).

Personalized diagnoses for inconsistent requirements 179

https://doi.org/10.1017/S0890060410000612 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000612

sents the criteria used for selecting the next node to be ex-
panded in the search tree that could be breadth-first, similarity-
based, or utility-based.

Algorithm 1 PERSDIAG(CR, CKB, H, k)
{CR: set of user requirements}
{CKB: the configuration knowledge base}
{H: collection of all paths in the search tree (initially empty)}
{k: node evaluation criteria used by sort(H, k)}
{h: diagnosis returned}
h first(H)
CS TP((CR2 h) < CKB)
if isEmpty(CS) then

return h
else

for all X in CS do
H H < {h < {X}}

end for
H delete(h, H)
H sort(H, k)
PERSDIAG(CR, CKB, H, k)

end if

5. EVALUATION

5.1. Evaluation of prediction quality

To demonstrate the improvements achieved by our approach, we
conducted an empirical study. Configuration data were gathered
on the basis of an online user study conducted at the Graz Uni-
versity of Technology with 415 participants (82.4% male,
17.6% female) conform to the basic structure of Table 1.
Each participant had to define his/her requirements [including
the corresponding importance values—see Eq. (4)] regarding
a predefined set of 12 computer attributes (price, type of central
processing unit, operating system, operating system language,
amount of main memory, screen size, harddisk capacity, type of
DVD drive, Web cam, type of graphic card, amount of graphic
card memory, and type of service). After this requirements
specification phase participants were informed about the fact
that for the specified set of requirements no solution could be
found (the goal was to confront each participant with such a sit-
uation). The system then presented a list of a maximum of 50
alternative configurations (only those repair configurations in-
consistent with the current set of requirements) that have been
calculated by a computer configuration knowledge base built
for the product set offered by a commercial website.4 The order-
ing of the configurations in this list was randomized and the par-
ticipants were enabled to navigate in the list and to order the con-
figurations regarding different criteria such as the price (LIB),
the size of the hard disk (MIB), or the number of fulfilled re-

quirements (MIB). The participants then had the task to select
one out of the presented repair configurations that appeared to
be the most acceptable one for them.

Based on the data collected in the user study we evaluated
the three presented approaches with respect to their capability
of predicting diagnoses that are acceptable for the user. The
first approach is based on the algorithm proposed by Reiter
(1987), where diagnoses are ranked according their cardinal-
ity and diagnoses of the same cardinality are ranked according
to their calculation order (see Section 3). The second approach
identifies personalized diagnoses on the basis of a similarity-
based node expansion strategy in HSDAG construction (see
Section 4). The third approach uses a utility measure to find
relevant diagnoses for the user (see Section 4). Because of
the fact that no solution was made available for the original
set of requirements, for each such set of requirements we could
determine conflicts and a set of corresponding diagnoses that
indicated which of the requirements had to be relaxed in order
to be able to identify a solution (conflicts were induced by ex-
cluding those configurations from the set of possible config-
urations that are consistent with a given set of requirements).
Figure 4 depicts the distribution of diagnoses with respect to
their cardinality. Most of the diagnoses contained about five
elements (diagnoses of cardinality 5), the average number of
diagnoses per set of user requirements was 5.32.

We were then interested in the prediction accuracy of the
three different diagnosis approaches (cardinality based, simi-
larity based, and utility based). First, we analyzed the dis-
tance between the predicted position of diagnoses leading
to a selected repair proposal and their expected position
(which is 1). We measured this distance in terms of the root
mean square deviation [RMSD; see Eq. (6)], where predicted
position is the ranking determined by the diagnosis approach
and expected position is 1; that is, it is expected that the algo-
rithm correctly predicts the diagnosis. The utility-based diag-
nosis approach has the lowest RMSD, which is 0.97. The
similarity-based approach shows a similar RMSD value (1.03),
and the cardinality-based approach shows the worst perfor-
mance (RMSD¼ 1.64).

RMSD ¼

ffi
1
n

Xn

1
predicted position� expected positionð Þ2

s
(6)

Although RMSD is a good-quality estimate, it provides only
limited information about the precision of the prediction.
Therefore, we analyzed the precision of the three diagnosis
approaches; the precision measure is shown in Eq. (7). The
basic idea is to provide a measure on how often a diagnosis
that leads to the repair configuration selected by the partici-
pant is among the top-n ranked diagnoses. As can be seen in
Table 2, the utility-based approach has the highest prediction
accuracy in terms of precision, followed by the similarity-
based diagnosis approach. The cardinality-based approach
has the worst performance in terms of prediction accuracy.
We were interested whether we could detect a statistically sig-

4 The knowledge base has been implemented for the 50 configurations
extracted from www.dell.at. We chose this simple knowledge base in order
to avoid biases, for example, in terms of presenting only solutions that are
near the original set of requirements.

A. Felferning and M. Schubert180

https://doi.org/10.1017/S0890060410000612 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000612

nificant difference between the three diagnosis approaches in
terms of prediction accuracy. Therefore, we conducted a pair-
wise comparison between the diagnosis approaches on the ba-
sis of a Mann–Whitney U test. We could detect a significant
difference between the prediction accuracy of utility-based di-
agnosis and cardinality-based diagnosis (p ¼ 5.69e29) and
between similarity-based and cardinality-based diagnosis (p
, 2.2e216). There was no significant difference between util-
ity-based and similarity-based diagnosis in terms of prediction
accuracy (p ¼ 0.5952).

precision ¼ correctly predicted diagnosesj j
predicted diagnosesj j (7)

5.2. Performance evaluation

The PERSDIAG algorithm has been implemented on the basis
of the standard hitting set algorithm introduced in Reiter
(1987). The algorithm is NP-hard in the general case (Frie-
drich et al., 1990) but is applicable for interactive configura-
tion settings (see the following evaluation). In our implemen-
tation, the determination of minimal conflict sets is based in
QUICKXPLAIN (Junker, 2004). In the worst case, QUICKXPLAIN

needs O(2k� log(n/k) þ 2k) consistency checks to compute
one minimal conflict set of size k (given an inconsistent con-
straint set of cardinality n).

In order to be able to conduct an in-depth performance
analysis, we based our evaluation on different generated set-

tings characterized by a varying number of conflict sets (1–5
conflict sets of cardinality 1–4) and corresponding diagnoses
(3–22). As configuration engine we used the constraint solver
Choco (choco.emn.fr), the performance evaluation has been
conducted on a standard PC (Intel Core2 Quad QD9400
2.66-GHz CPU with 2 GB of RAM). The solver had to conduct
consistency checks on knowledge bases with n ¼ 100 vari-
ables, t ¼ 100 constraints in CKB, and q ¼ 5..20 user require-
ments (CR) inconsistent with CKB (we did not optimize the
knowledge bases in terms of, for example, variable selection
or value selection). Based on this setting we compared the per-
formance of the best-first based diagnosis approaches (similar-
ity-based and utility-based) with the performance of the stan-
dard breadth-first search approach (cardinality-based) when
calculating the topmost-n relevant diagnoses (for n ¼ 5.10,
see Fig. 5). Best-first based diagnosis clearly outperforms the
breadth-first one because the latter has to determine all diagno-
ses to be able to achieve a comparable prediction quality.

Table 2. Precision of the three diagnosis approaches

top-1 top-2 top-3

Cardinality based 0.51 0.75 0.87
Similarity based 0.70 0.87 0.97
Utility based 0.74 0.89 0.96

Fig. 5. The performance of the cardinality-based (breadth-first) diagnosis
approach compared to personalized approaches for the topmost-n relevant di-
agnoses for typical combinations of #conflict sets and #diagnoses (Felfernig
et al., 2004). Personalized approaches are significantly more efficient
(compared to the cardinality-based approach) and show similar performance
among themselves.

Fig. 4. Overall distribution of diagnoses in empirical study; average number
of diagnoses per set of user requirements ¼ 5.32 (SD ¼ 1.67).

Personalized diagnoses for inconsistent requirements 181

https://doi.org/10.1017/S0890060410000612 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000612

6. RELATED AND FUTURE WORK

6.1. Knowledge-based configuration

Configuration is one of the most successful application areas of
artificial intelligence (Stumptner, 1997). One of the first config-
uration systems was R1/XCON, which has been developed by
John McDermott on the basis of the OPS5 language (McDer-
mott, 1982). A detailed analysis and discussion of the experi-
ences with R1/XCON is provided in Barker et al. (1989). In pro-
ductive use, the system included �31,000 components and
�17,500 rules. R1/XCON was a rule-based system that trig-
gered enormous maintenance problems because of the inter-
mingling of product domain and problem solving knowledge.
Acquisition and maintenance processes for knowledge bases
have been significantly improved by the development of
model-based knowledge representations with a strict separation
of problem solving and domain knowledge (Mittal & Frayman,
1989, 1990). Most of today’s available configuration systems
are based on such a model-based approach: examples of corre-
sponding configuration environments are SAP (Haag, 1998),
SIEMENS (Fleischanderl et al., 1998), and TACTON (Orsvarn,
2005). The diagnosis concepts presented in this paper are focus-
ing on the mentioned model-based knowledge representations
and consequently provide an important contribution to the im-
provement of commercial systems in terms of usability.

6.2. MBD

The increasing size and complexity of configuration knowledge
bases motivated the application of MBD (Reiter, 1987; DeKleer
et al., 1992) for testing and debugging purposes (Felfernig et al.,
2004). Similar reasons led to the application of MBD in tech-
nical domains such as hardware designs (Friedrich et al., 1999)
and onboard diagnosis for automotive systems (Sachenbacher
et al., 2000). The work presented in Felfernig et al. (2004) has
a special relationship to the concepts presented in this paper: Fel-
fernig et al. (2004) focus on the application of MBD to the iden-
tification of faults in configuration knowledge bases where test
cases are used to induce conflicts in a given configuration knowl-
edge base. In addition, a first approach to calculate diagnoses for
inconsistent user requirements is presented, which is based on
breadth-first based HSDAG construction. In this paper we
have shown how to apply basic recommendation algorithms
(similaritybasedandutilitybased) to improve thediagnosis algo-
rithms in terms of prediction accuracy and performance.

6.3. Conflict detection

Diagnosis calculation for inconsistent user requirements relies
on minimal conflict sets. Such conflict sets can be determined,
for example, on the basis of QUICKXPLAIN (Junker, 2004),
which is a frequently applied divide and conquer algorithm. Al-
ternative approaches to the identification of conflicts have been
developed in the context of knowledge-based recommendation
(Schubert et al., 2009, 2010). These approaches cannot be ap-

plied in knowledge-based configuration scenarios because,
due to the size and complexity of the underlying products,
knowledge-based configurators typically do not operate on a
predefined set of products. The existence of predefined item
sets is a major precondition for applying the conflict detection
algorithms introduced in Schubert et al. (2009, 2010).

6.4. Diagnosing inconsistent requirements

An approach to suggest personalized repair actions for incon-
sistent requirements in the context of knowledge-based rec-
ommendation tasks has been introduced by Felfernig et al.
(2009). The underlying idea is to apply the concepts of MBD
(Reiter, 1987; DeKleer et al., 1992) to determine change pro-
posals (minimal sets of inconsistent requirements) in the case
of a given predefined list of products. In O’Sullivan et al.
(2007) such minimal sets are denoted as minimal exclusion
sets. In case-based recommendation scenarios (Godfrey,
1997; McSherry, 2004, 2005) the complement of a minimal
exclusion set is denoted as maximally successful subquery.
The concept of representative explanations has been introduced
by (O’Sullivan et al., 2007). Representative explanations fol-
low the idea of generating diversity in sets of diagnoses (mini-
mal exclusion sets). The approach does not explicitly take into
account the preference structure of the current user but rather
tries to determine diagnosis sets that satisfy the requirement
that each element (constraint) part of at least one diagnosis is
also contained in at least one of the diagnoses presented to
the user. Note that the scenario presented in this paper is based
on the assumption of an open configuration approach where the
user is free to specify requirements and the system provides
feedback in the form of explanations in the case of inconsisten-
cies. Alternatively, configurators precalculate still possible
options and dim options that cannot be selected in the current
context. In such a scenario our diagnosis approach could be
used for intentionally exploring trade-offs in the set of user re-
quirements (a kind of specific exploration mode in addition to
the standard mode where still valid options are predetermined).

6.5. Assumption-based truth maintenance based
approaches

The notion of conflict sets used in the context of MBD
(Reiter, 1987; DeKleer et al., 1992) corresponds to the notion
of nogoods in assumption-based truth maintenance ap-
proaches to calculate explanations (Haag, 1998; Sinz &
Haag, 2007). On the basis of the conjunctive normal form
of the set of nogoods we can easily determine the correspond-
ing set of diagnoses by transforming the conjunctive normal
form into a corresponding disjunctive normal form.

6.6. Future work

Future work will include the evaluation of other potential predic-
tion techniques for user requirements diagnoses such as prob-
ability-based prediction or similarity-based prediction using

A. Felferning and M. Schubert182

https://doi.org/10.1017/S0890060410000612 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000612

local search-based learning of attributeweights. Furthermore, we
are interested in developing mechanisms that support the calcu-
lation of preferred diagnoses in the case of complex requirement
structures, for example, structures such as x or y should be ful-
filled. We are also interested in the calculation of personalized
recommendations of repair proposals for inconsistent require-
ments, that is, we want to extend the concepts presented in this
paper with the determination of concrete change proposals (re-
pairs related to diagnoses) for inconsistent user requirements in
knowledge-based configuration scenarios.

7. CONCLUSION

In this paper we introduced an algorithm (PERSDIAG) for the
determination of personalized diagnoses. The algorithm sig-
nificantly improves the prediction quality compared to state
of the art diagnosis approaches. PERSDIAG follows a best-first
search regime and can be parametrized with different kinds of
selection strategies regarding the expansion of the search tree.
We have compared different expansion strategies (cardinality
based, similarity based, and utility based) within the scope of
an empirical study. The results of this study show the advan-
tages of personalized diagnosis calculation compared to ex-
isting breadth-first based search in terms of prediction quality
and efficiency. These results provide a solid basis for improv-
ing existing industrial applications regarding the determina-
tion of diagnoses for inconsistent requirements.

REFERENCES

Barker, V., O’Connor, D., & Soloway, E. (1989). Expert systems forconfiguration
at digital—XCON and beyond. Communications of the ACM 32(3), 298–318.

Burke, R. (2000). Knowledge-based recommender systems. Library and In-
formation Systems 69(32), 180–200.

DeKleer, J., Mackworth, A., & Reiter, R. (1992). Characterizing diagnoses
and systems. AI Journal 56(2–3), 197–222.

Felfernig, A., Friedrich, G., Jannach, D., & Stumptner, M. (2004). Consis-
tency-based diagnosis of configuration knowledge bases. AI Journal
152(2), 213–234.

Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M., & Zanker, M.
(2003). Configuration knowledge representations for semantic web appli-
cations. Artificial Intelligence in Engineering Design, Analysis and
Manufacturing 17(2), 31–50.

Felfernig, A., Friedrich, G., & Schmidt-Thieme, L. (2007). Introduction to
the IEEE intelligent systems special issue: recommender systems. IEEE
Intelligent Systems 22(3), 18–21.

Felfernig, A., Friedrich, G., Schubert, M., Mandl, M., Mairitsch, M., & Teppan,
E. (2009). Plausible repairs for inconsistent requirements. Proc. 21st Int.
Joint Conf. Artificial Intelligence (IJCAI09), pp. 791–796, Pasadena, CA.

Fleischanderl, G., Friedrich, G., Haselboeck, A., Schreiner, H., & Stumptner,
M. (1998). Configuring large systems using generative constraint satis-
faction. IEEE Intelligent Systems 13(4), 59–68.

Friedrich, G., Gottlob, G., & Neijdl, W. (1990). Physical impossibility in-
stead of fault models. Proc. 8th National Conf. Artificial Intelligence
AAAI/IAAI90, pp. 331–336, Boston.

Friedrich, G., Stumptner, M., & Wotawa, F. (1999). Model-based diagnosis
of hardware designs. Artificial Intelligence 111(2), 3–39.

Godfrey, P. (1997). Minimization incooperative response to failingdatabase quer-
ies. International Journal of Cooperative Information Systems 6(2), 95–149.

Haag, A. (1998). Sales configuration in business processes. IEEE Intelligent
Systems 13(4), 78–85.

Junker, U. (2004). QUICKXPLAIN: preferred explanations and relaxations for
over-constrained problems. Proc. 19th National Conf. Artificial Intelli-
gence (AAAI04), pp. 167–172, San Jose, CA.

Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., & Riedl, J.
(1997). Grouplens: applying collaborative filtering to usenet news. Com-
munications of the ACM 40(3), 77–87.

McDermott, J. (1982). R1—a rule-based configurer of computer systems.
Artificial Intelligence 19(1), 39–88.

McSherry, D. (2004). Maximally successful relaxations of unsuccessful
queries. Proc. 15th Conf. Artificial Intelligence and Cognitive Science,
pp. 127–136, Galway, Ireland.

McSherry, D. (2005). Retrieval failure and recovery in recommender sys-
tems. Artificial Intelligence Review 24(3–4), 319–338.

Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction prob-
lems. Proc. 8th National Conf. Artificial Intelligence, IAAI/AAAI90, pp.
25–32, Boston.

Mittal, S., & Frayman, F. (1989). Towards a generic model of configuration
tasks. Proc. 11th Int. Joint Conf. Artificial Intelligence (IJCAI89), pp.
1395–1401, Detroit, MI.

Orsvarn, K. (2005). Tacton configurator—research directions. Proc. IJCAI
2005 Workshop on Configuration, p. 75, Edinburgh, Scotland.

O’Sullivan, B., Papdopoulos, A., Faltings, B., & Pu, P. (2007). Representa-
tive explanations for over-constrained problems. Proc. 22nd National
Conf. Artificial Intelligence (AAAI07), pp. 323–328, Vancouver, Canada.

Reiter, R. (1987). A theory of diagnosis from first principles. AI Journal
23(1), 57–95.

Sabin, D., & Weigel, R. (1998). Product configuration frameworks—a sur-
vey. IEEE Intelligent Systems 13(4), 42–49.

Sachenbacher, M., Struss, P., & Carlen, C. (2000). Prototype for model-based on-
board diagnosis of automotive systems. AI Communications 13(2), 83–97.

Schubert, M., Felfernig, A., & Mandl, M. (2009). Solving over-constrained
problems using network analysis. Proc. Int. Conf. Adaptive and Intelli-
gent Systems, pp. 9–14, Klagenfurt, Austria.

Schubert, M., Felfernig, A., & Mandl, M. (2010). Fastxplain: conflict detec-
tion for constraint-based recommender problems. Proc. 23rd Int. Conf.
Industrial, Engineering and Other Applications of Applied Intelligent
Systems, pp. 621–630, Cordoba, Spain.

Sinz, C., & Haag, A. (2007). Configuration. IEEE Intelligent Systems 22(1),
78–90.

Stumptner, M. (1997). An overview of knowledge-based configuration. AI
Communications 10(2), 111–125.

Tsang, E. (1993). Foundations of Constraint Satisfaction. Reading, MA:
Academic Press.

Wilson, D., & Martinez, T. (1997). Improved heterogeneous distance func-
tions. Journal of Artificial Intelligence Research, 6, 1–34.

Winterfeldt, D., & Edwards, W. (1986). Decision Analysis and Behavioral
Research. Cambridge: Cambridge University Press.

Alexander Felfernig is a Professor of applied software engi-
neering at Graz University of Technology. Alexander is also
Cofounder and Director of ConfigWorks, a company focused
on the development of knowledge-based recommendation
technologies. Prof. Felfernig’s research focuses on intelligent
methods and algorithms supporting the development and
maintenance of complex knowledge bases. Furthermore, he
is interested in the application of AI techniques in the soft-
ware engineering context, for example, the application of de-
cision and recommendation technologies to make software
requirements engineering processes more effective. In 2009
Dr. Felfernig received the Heinz–Zemanek Award from the
Austrian Computer Society for his research.

Monika Schubert is a PhD student in the group of Applied
Software Engineering at Graz University of Technology. Ms.
Schubert received her MS in software engineering and economy
from Graz University of Technology. Her research focuses on
knowledge-based systems, intelligent product configuration,
MBD, and product recommendation. She is also interested in
user interaction with complex knowledge bases.

Personalized diagnoses for inconsistent requirements 183

https://doi.org/10.1017/S0890060410000612 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060410000612

