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Abstract

A fundamental task for propositional logic is to compute models of propositional formulas.

Programs developed for this task are called satisfiability solvers. We show that transition

systems introduced by Nieuwenhuis, Oliveras, and Tinelli to model and analyze satisfiability

solvers can be adapted for solvers developed for two other propositional formalisms: logic

programming under the answer-set semantics, and the logic PC(ID). We show that in each case

the task of computing models can be seen as “satisfiability modulo answer-set programming,”

where the goal is to find a model of a theory that also is an answer set of a certain

program. The unifying perspective we develop shows, in particular, that solvers clasp and

minisat(id) are closely related despite being developed for different formalisms, one for

answer-set programming and the latter for the logic PC(ID).

1 Introduction

A fundamental reasoning task for propositional logic is to compute models of

propositional formulas or determine that no models exist. Programs developed for

this task are commonly called model generators or satisfiability (SAT) solvers. In the

paper, we show that transition systems introduced by Nieuwenhuis et al. (2006) to

model and analyze SAT solvers can be adapted for the analysis and comparison of

solvers developed for other propositional formalisms. The two formalisms we focus

on are logic programming with the answer-set semantics and the logic PC(ID).

Davis–Putnam–Logemann–Loveland (dpll) procedure is a well-known method

that exhaustively explores interpretations to generate models of a propositional

formula. Most modern SAT solvers are based on variations of the dpll procedure.

Usually these variations are specified by pseudocode. Nieuwenhuis et al. (2006)

proposed an alternative approach based on the notion of a transition system that

describes “states of computation” and allowed transitions between them. In this

way, it defines a directed graph such that every execution of the dpll procedure

corresponds to a path in the graph. This abstract way of presenting dpll-based

algorithms simplifies the analysis of their correctness and facilitates studies of their

properties—instead of reasoning about pseudocode constructs, we reason about

properties of a graph. For instance, by proving that the graph corresponding to
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a dpll-based algorithm is finite and acyclic, we show that the algorithm always

terminates.

Answer-set programming (ASP) (Marek and Truszczyński 1999; Niemelä 1999)

is a declarative programming formalism based on the answer-set semantics of logic

programs (Gelfond and Lifschitz 1988). Generating answer sets of propositional

programs is the key step in computation with ASP. The logic FO(ID), introduced by

Denecker (2000), is another formalism for declarative programming and knowledge

representation. As in the case of ASP, most automated reasoning tasks in the logic

FO(ID) reduce to reasoning in its propositional core, the logic PC(ID) (Mariën et al.

2008), where generating models is again the key.

In this paper, we show that both computing answer sets of programs and

computing models of PC(ID) theories can be considered as testing satisfiability

modulo theories (SMTs), where the objective is to find a model of a set of clauses

that is also an answer set of a certain program. We refer to this computational

problem as satisfiability modulo answer-set programming and denote it by SM(ASP).

We identify the propositional formalism capturing SM(ASP)—we use the same

term to refer to it—and show that it is a common generalization of ASP and

PC(ID). We define a simple transition system for SM(ASP) and show that it can

be used as an abstract representation of the solver smodels
1 (Niemelä and Simons

2000), an alternative to a similar characterization of smodels obtained earlier

by Lierler (2011). We then define another more elaborate transition system for

SM(ASP) that captures such features of backtracking search as backjumping and

learning. We use this transition system to obtain abstract characterizations of the

algorithms implemented by the ASP solvers cmodels
2 (Giunchiglia et al. 2004) and

clasp
3 (Gebser et al. 2007), and the PC(ID) solver minisat(id)

4 (Mariën et al. 2008).

Finally, we briefly mention the possibility to regard the introduced transition systems

as proof systems. In that setting, transition systems could be used for comparing

the solvers they represent in terms of the complexity of the corresponding proof

systems.

Our results provide a uniform correctness proof for a broad class of solvers that

can be modeled by the transition system for SM(ASP), clarify essential computational

principles behind ASP and PC(ID) solvers, and offer insights into how they relate

to each other. In particular, our results yield the first abstract representation of

clasp in terms of transition systems (up to now clasp has been typically specified in

pseudocode) and show that at the abstract level, clasp and minisat(id) are strikingly

closely related.

This last point is noteworthy as the two solvers were developed for different

propositional formalisms. minisat(id) was developed specifically for the logic PC(ID),

where there is no concept of an answer set. The semantics is a natural extension of

the notion of a model of a propositional theory to the setting when a theory consists

1 http://www.tcs.hut.fi/Software/smodels/
2 http://www.cs.utexas.edu/users/tag/cmodels
3 http://www.cs.uni-potsdam.de/clasp/
4 http://dtai.cs.kuleuven.be/krr/software/minisatid
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of propositional clauses and definitions. Definitions are written as logic programs

but they are interpreted by the well-founded semantics and not by the answer-set

semantics. There is no indication in the literature that clasp or minisat(id) were

influenced by each other. The two solvers were developed independently and for

differently motivated formalisms. It is then of substantial interest that at the level

of solving they are closely related.

The Appendix to the paper containing proofs of the results is available at

http://arxiv.org/abs/1105.0650 and at the Theory and Practice of Logic

Programming website.

2 Preliminaries

We now review the abstract transition system framework proposed for the dpll

procedure by Nieuwenhuis et al. (2006), and introduce some necessary terminology

concerning logic programs and the logic PC(ID).

Abstract DPLL. Most state-of-the-art SAT solvers are based on variations of the

dpll procedure (Davis et al. 1962). Nieuwenhuis et al. (2006) described dpll by

means of a transition system that can be viewed as an abstract representation

of the underlying dpll computation. In this section, we review the abstract dpll

in the form convenient for our purposes, following the presentation proposed by

Lierler (2011).

For a set A of atoms, a record relative to A is an ordered set M of literals over

A, some possibly annotated by Δ, which marks them as decision literals. A state

relative to A is either a distinguished state FailState or a record relative to A. For

instance, the states relative to a singleton set {a} are

FailState, ∅, a, ¬a, aΔ, ¬aΔ, a ¬a, aΔ ¬a,
a ¬aΔ, aΔ ¬aΔ, ¬a a, ¬aΔ a, ¬a aΔ, ¬aΔ aΔ.

Frequently, we consider M as a set of literals, ignoring both the annotations and

the order among its elements. If neither a literal l nor its dual, written l, occurs in

M, then l is unassigned by M. We say that M is inconsistent if both an atom a and

its negation ¬a occur in it. For instance, states bΔ ¬b and b a ¬b are inconsistent.

If C is a disjunction (conjunction) of literals then by C we understand the

conjunction (disjunction) of the duals of the literals occurring in C . In some

situations, we will identify disjunctions and conjunctions of literals with the sets

of these literals.

In this paper, a clause is a nonempty disjunction of literals and a CNF formula is

a conjunction (alternatively, a set) of clauses. Each CNF formula F determines its

DPLL graph dpF . The set of nodes of dpF consists of the states relative to the set

of atoms occurring in F . The edges of the graph dpF are specified by four transition
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rules:

Unit Propagate: M =⇒ M l if C ∨ l ∈ F and C ⊆M

Decide: M =⇒ M lΔ if l is unassigned by M

Fail : M =⇒ FailState if

{
M is inconsistent, and

M contains no decision literals

Backtrack : P lΔ Q =⇒ P l if

{
P lΔ Q is inconsistent, and

Q contains no decision literals.

A node (state) in the graph is terminal if no edge originates in it. The following

proposition gathers key properties of the graph dpF .

Proposition 1

For any CNF formula F ,

(a) graph dpF is finite and acyclic,

(b) any terminal state of dpF other than FailState is a model of F ,

(c) FailState is reachable from ∅ in dpF if and only if F is unsatisfiable.

Thus, to decide the satisfiability of a CNF formula F , it is enough to find a path

leading from node ∅ to a terminal node M. If M = FailState, F is unsatisfiable.

Otherwise, F is satisfiable and M is a model of F .

For instance, let F = {a ∨ b,¬a ∨ c}. Below we show a path in dpF with every

edge annotated by the name of the transition rule that gives rise to this edge in the

graph:

∅ Decide
=⇒ aΔ

Unit Propagate
=⇒ aΔ c

Decide
=⇒ aΔ c bΔ.

The state aΔ c bΔ is terminal. Thus, Proposition 1(b) asserts that F is satisfiable and

{a, c, b} is a model of F .

Logic Programs. A (propositional) logic program is a finite set of rules of the form

a0 ← a1, . . . , al , not al+1, . . . , not am, not not am+1, . . . , not not an, (1)

where a0 is an atom or ⊥ and each ai, 1 � i � n, is an atom.5 If a0 is an atom then a

rule (1) is weakly normal. If, in addition, n = m then it is normal. Programs consisting

of weakly normal (normal, respectively) rules only are called weakly normal (normal,

respectively). If Π is a program, by At(Π), we denote the set of atoms that occur

in Π.

The expression a0 is the head of the rule. If a0 = ⊥, we say that the head of the

rule is empty and we often omit ⊥ from the notation. In such case, we require that

n > 0. We call a rule with the empty head a constraint. We write Head(Π) for the

set of nonempty heads of rules in a program Π.

We call the expression a1, . . . , al , not al+1, . . . , not am, not not am+1, . . . , not not an in

a rule (1) the body of the rule and often view it as the set of all elements that occur

5 In the paper, we do not use the term literal for expressions a, not a, and not not a. We reserve the
term literal exclusively for propositional literals a and ¬a.
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in it. If a is an atom, we set s(a) = s(not not a) = a, and s(not a) = ¬a, and we define

s(B) = {s(l) | l ∈ B}. More directly,

s(B) = {a1, . . . , al ,¬al+1, . . . ,¬am, am+1, . . . , an}.

We also frequently identify the body B of (1) with the conjunction of elements

in s(B):

a1 ∧ · · · ∧ al ∧ ¬al+1 ∧ · · · ∧ ¬am ∧ am+1 ∧ · · · ∧ an.

By Bodies(Π, a) we denote the set of the bodies of all rules of Π with the head a

(including the empty body). If B is the body of (1), we write Bpos for the positive

part of the body, that is, Bpos = {a1, . . . al}.
We often interpret a rule (1) as a propositional clause

a0 ∨ ¬a1 ∨ . . . ∨ ¬al ∨ al+1 ∨ . . . ∨ am ∨ ¬am+1 ∨ . . . ∨ ¬an (2)

(in the case when the rule is a constraint, a0 is absent in (2)). Given a program Π,

we write Πcl for the set of clauses (2) corresponding to all rules in Π.

This version of the language of logic programs is a special case of programs with

nested expressions (Lifschitz et al. 1999). It is essential for our approach as it yields

an alternative definition of the logic PC(ID), which facilitates connecting it to ASP.

We assume that the reader is familiar with the definition of an answer set of a logic

program and refer to the paper by Lifschitz et al. (1999) for details.

Well-Founded Semantics and the Logic PC(ID). Let M be a set of (propositional)

literals. By M, we understand the set of the duals of the literals in M. A set U

of atoms occurring in a program Π is unfounded on a consistent set M of literals

with respect to Π if for every a ∈ U and every B ∈ Bodies(Π, a), M ∩ s(B) �= ∅, or

U ∩Bpos �= ∅. For every program Π and every consistent set M of literals, the union

of sets that are unfounded on M with respect to Π is also unfounded on M with

respect to Π. Thus, under the assumptions above, there exists the greatest unfounded

set on M with respect to Π. We denote this set by GUS(M,Π).

For every weakly normal program Π, we define an operator WΠ on a set M of

literals as follows:

WΠ(M) =

{
M ∪ {a | a← B ∈ Π and s(B) ⊆M} ∪ GUS(M,Π) if M is consistent

At(Π) ∪ At(Π) otherwise.

By W
fix
Π (M), we denote a fixpoint of the operator WΠ over a set M of literals. One

can show that it always exists since WΠ is not only monotone but also increasing (for

any set M of literals, M ⊆WΠ(M)). The least fixpoint of WΠ, Wfix
Π (∅), is consistent

and yields the well-founded model of Π, which, in general, is three-valued. It is also

written as lfp(WΠ). These definitions and properties were initially introduced for

normal programs only (Van Gelder et al. 1991). They extend to programs in our

syntax in a straightforward way, no changes in statements or arguments are needed

(Lee 2005).

Let Π be a program and A be a set of atoms. An atom a is open with respect to

Π and A if a ∈ A \Head(Π). We denote the set of atoms that are open with respect

to Π and A by OΠ
A . By ΠA, we denote the logic program Π extended with the rules
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a← not not a for each atom a ∈ OΠ
A . For instance, let Π be a program

a← b, not c

b.
(3)

Then, Π{c} is

c← not not c

a← b, not c

b.

We are ready to introduce the logic PC(ID) (Denecker 2000). A PC(ID) theory is

a pair (F,Π), where F is a set of clauses and Π is a weakly normal logic program.

For a PC(ID) theory (F,Π), by Πo we denote ΠAt(F∪Π) and by OΠ we denote OΠ
At(F∪Π)

(where At(F ∪Π) stands for the set of atoms that occur in F and Π). Moreover, for

a set M of literals and a set A of atoms, by MA we denote the set of those literals

in M whose atoms occur in A. A set M of literals is complete over the set At of

atoms if every atom in At occurs (possibly negated) in M and no other atoms occur

in M.

Definition 1

Let (F,Π) be a PC(ID) theory. A consistent and complete (over At(F ∪Π)) set M

of literals is called a model of (F,Π) if

(i) M is a model of F , and

(ii) M = W
fix
Πo (MOΠ

).

For instance, let F be a clause b ∨ ¬c and Π be program (3). The PC(ID) theory

(F,Π) has two models {b,¬c, a} and {b, c, ¬a}. We note that although sets {¬b,¬c, a}
and {¬b,¬c,¬a} satisfy the condition (i), that is, are models of F , they do not satisfy

the condition (ii) and therefore are not models of (F,Π).

The introduced definition of a PC(ID) theory differs from the original one (De-

necker 2000). Specifically, for us, the second component of a PC(ID) theory is a

weakly normal program rather than a set of normal programs (definitions). Still, the

two formalisms are closely related.

Proposition 2

For a PC(ID) theory (F,Π) such that Π is a normal program, M is a model

of (F,Π) if and only if M is a model of (F, {Π}) according to the definition by

Denecker (2000).

As the restriction to a single program in PC(ID) theories is not essential (Mariën

et al. 2008), Proposition 2 shows that our definition of the logic PC(ID) can be

regarded as a slight generalization of the original one (more general programs can

appear as definitions in PC(ID) theories).

3 Satisfiability Modulo ASP: A unifying framework for ASP and PC(ID) solvers

For a theory T , the SMT problem is following: given a formula F , determine

whether F is T -satisfiable, that is, whether there exists a model of F that is also a
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model of T . We refer the reader to the paper by Nieuwenhuis et al. (2006) for an

introduction to SMT. Typically, a theory T that defines a specific SMT problem is a

first-order formula. The SMT problem that we consider here is different. The theory

T is a logic program under the (slightly modified) answer-set semantics. We show

that the resulting version of the SMT problem can be regarded as a joint extension

of ASP and PC(ID).

We start by describing the modification of the answer-set semantics that we have

in mind.

Definition 2

Given a logic program Π, a set X of atoms is an input answer set of Π if X is an

answer set of Π ∪ (X \Head(Π)).

Informally, the atoms of X that cannot possibly be defined by Π as they do not

belong to Head(Π) serve as “input” to Π. A set X is an input answer set of Π

if it is an answer set of the program Π extended with these “input” atoms from

X. Input answer sets are related to stable models of a propositional logic program

module (Oikarinen and Janhunen 2006).

For instance, let us consider program (3). Then, sets {b, c}, {a, b} are input answer

sets of the program whereas set {a, b, c} is not.

There are two important cases when input answer sets of a program are closely

related to answer sets of the program.

Proposition 3

For a logic program Π and a set X of atoms:

(a) X ⊆ Head(Π) and X is an input answer set of Π if and only if X is an answer

set of Π.

(b) If (X \Head(Π)) ∩ At(Π) = ∅, then X is an input answer set of Π if and only

if X ∩Head(Π) is an answer set of Π.

We now introduce a propositional formalism that we call satisfiability modulo ASP

and denote by SM(ASP). Later in the paper we show that SM(ASP) can be viewed

as a common generalization of both ASP and PC(ID). Theories of SM(ASP) are

pairs [F,Π], where F is a set of clauses and Π is a program. In the definition below

and in the remainder of the paper, for a set M of literals we write M+ to denote

the set of atoms (nonnegated literals) in M. For instance, {a,¬b}+ = {a}.

Definition 3

For an SM(ASP) theory [F,Π], a consistent and complete (over At(F ∪Π)) set M

of literals is a model of [F,Π] if M is a model of F and M+ is an input answer set

of Π.

For instance, let F be a clause b∨¬c and Π be program (3). The SM(ASP) theory

[F,Π] has two models {b,¬c, a} and {b, c,¬a}.
The problem of finding models of pairs [F,Π] can be regarded as an SMT problem

in which, given a formula F and a program Π, the goal is to find a model of F that

is (its representation by the set of its true atoms, to be precise) an input answer set

of Π. This observation motivated our choice of the name for the formalism.
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As for PC(ID) theories, also for an SM(ASP) theory [F,Π] we write Πo for the

program ΠAt(Π∪F). We have the following simple observation.

Proposition 4

A set M of literals is a model of an SM(ASP) theory [F,Π] if and only if M is a

model of an SM(ASP) theory [F,Πo].

It is evident that a set M of literals is a model of F if and only if M is a

model of [F, ∅]. Thus, SM(ASP) allows us to express the propositional satisfiability

problem. We now show that the SM(ASP) formalism captures ASP. Let Π be a

program. We say that a set F of clauses is Π-safe if

1. F |= ¬a, for every a ∈ OΠ
At(Π), and

2. for every answer set X of Π there is a model M of F such that X = M+∩Head(Π).

Proposition 5

Let Π be a program. For every Π-safe set F of clauses, a set X of atoms is an

answer set of Π if and only if X = M+ ∩ At(Π), for some model M of [F,Π].

This result shows that for an appropriately chosen theory F , answer sets of a

program Π can be derived in a direct way from models of an SM(ASP) theory

[F,Π]. There are several possible choices for F that satisfy the requirement of Π-

safety. One of them is the Clark’s completion of Π (Clark 1978). We recall that the

completion of a program Π consists of clauses in Πcl and of the formulas that can

be written as

¬a ∨
∨

B∈Bodies(Π,a)

B (4)

for every atom a in Π that is not a fact (that is, the set Bodies(Π, a) contains no

empty body). Formulas (4) can be clausified in a straightforward way by applying

distributivity. The set of all the resulting clauses and of those in Πcl forms the

clausified completion of Π, which we will denote by Comp(Π).

The theory Comp(Π) does not involve any new atoms but it can be exponentially

larger than the completion formula before clausification. We can avoid the expo-

nential blow-up by introducing new atoms. Namely, for each body B of a rule in

Π with |B| > 1, we introduce a fresh atom fB . If |B| = 1, then we define fB = s(l),

where l is the only element of B. By ED-Comp(Π), we denote the set of the following

clauses:

1. all clauses in Πcl ,

2. all clauses ¬a ∨
∨

B∈Bodies(Π,a) fB , for every a ∈ At(Π) such that a is not a fact in

Π and |Bodies(Π, a)| > 1,

3. all clauses ¬a ∨ s(l), where a ∈ At(Π), Bodies(Π, a) = {B} and l ∈ B,

4. all clauses ¬a, where |Bodies(Π, a)| = 0,

5. all clauses obtained by clausifying in the obvious way formulas fB ↔ B, where

B ∈ Bodies(Π, a), for some atom a that is not a fact in Π and |Bodies(Π, a)| > 1.

Clearly, the restrictions of models of the theory ED-Comp(Π) to the original

set of atoms are precisely the models of Comp(Π) (and of the completion of
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Π). However, the size of ED-Comp(Π) is linear in the size of Π. The theory

ED-Comp(Π) has long been used in answer-set computation. Answer-set solvers,

such as cmodels (Giunchiglia et al. 2004) and clasp (Gebser et al. 2007), start their

computation by transforming the given program Π into ED-Comp(Π).

For instance, let Π be program (3). The completion of Π is the formula

(a ∨ ¬b ∨ c) ∧ b ∧ ¬c ∧ (¬a ∨ (b ∧ ¬c)),

its clausified completion Comp(Π) is the formula

(a ∨ ¬b ∨ c) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬c) ∧ b ∧ ¬c,

and finally, ED-Comp(Π) is the formula

(a ∨ ¬b ∨ c) ∧ (¬a ∨ fb∧¬c) ∧ (fb∧¬c ∨ ¬b ∨ c)∧
(¬fb∧¬c ∨ b) ∧ (¬fb∧¬c ∨ ¬c) ∧ b ∧ ¬c.

We now have the following corollary from Proposition 5.

Corollary 1

For a logic program Π and a set X of atoms, the following conditions are equivalent:

(a) X is an answer set of Π,

(b) X = M+ for some model M of the SM(ASP) theory [{¬a | a ∈ OΠ
At(Π)},Π],

(c) X = M+ for some model M of the SM(ASP) theory [Comp(Π),Π],

(d) X = M+∩At(Π) for some model M of the SM(ASP) theory [ED-Comp(Π),Π].

It is in this sense that ASP can be regarded as a fragment of SM(ASP). Answer

sets of a program Π can be described in terms of models of SM(ASP) theories.

Moreover, answer-set computation can be reduced in a straightforward way to the

task of computing models of SM(ASP) theories.

Remark 1

Corollary 1 specifies three ways to describe answer sets of a program in terms

of models of SM(ASP) theories. This offers an interesting view into answer-set

generation. The CNF formulas appearing in the SM(ASP) theories in the conditions

(b)–(d) make explicit some of the “propositional satisfiability inferences” that may

be used when computing answer sets. The condition (b) shows that when computing

answer sets of a program, atoms not occurring as heads can be inferred as false. The

theory in condition (c) makes it clear that a much broader class of inferences can

be used, namely, those that are based on the clauses of the completion. The theory

in condition (d) describes still additional inferences, as now, thanks to new atoms,

we can explicitly infer whether bodies of rules must evaluate to true or false. In

each case, some inferences needed for generating answer sets are still not captured

by the respective CNF theory and require a reference to the program Π. We note

that it is possible to express these “answer-set specific” inferences in terms of clauses

corresponding to loop formulas (Lin and Zhao 2004; Lee 2005). We do not consider

this possibility in this paper.

Next, we show that SM(ASP) encompasses the logic PC(ID). The well-founded

model M of a program Π is total if it assigns all atoms occurring in Π. For a
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PC(ID) theory (F,Π), a program Π is total on a model M of F if Wfix
Πo (MOΠ

) is total.

A program Π is total if Π is total on every model M of F . The PC(ID) theories

(F,Π), where Π is total form an important class of total PC(ID) theories.

There is a tight relation between models of a total PC(ID) theory (F,Π) and

models of an SM(ASP) theory [F,Π].

Proposition 6

For a total PC(ID) theory (F,Π) and a set M of literals over the set At(F ∪Π) of

atoms, the following conditions are equivalent:

(a) M is a model of (F,Π),

(b) M is a model of the SM(ASP) theory [F,Π],

(c) M is a model of the SM(ASP) theory [Comp(ΠAt(Π)) ∪ F,Π],

(d) for some model M ′ of the SM(ASP) theory [ED-Comp(ΠAt(Π)) ∪ F,Π], M =

M ′ ∩ At(F ∩Π).

The conditions (b)–(d) state that the logic PC(ID) restricted to total theories can

be regarded as a fragment of the SM(ASP) formalism. The comments made in

Remark 1 pertain also to generation of models in the logic PC(ID).

We now characterize models of SM(ASP) theories, and computations that lead to

them, in terms of transition systems. Later we discuss implications this characteri-

zation has for ASP and PC(ID) solvers.

We define the transition graph sm(asp)F,Π for an SM(ASP) theory [F,Π] as

follows. The set of nodes of the graph sm(asp)F,Π consists of the states relative to

At(F ∪Π). There are five transition rules that characterize the edges of sm(asp)F,Π.

The transition rules Unit Propagate, Decide, Fail , Backtrack of the graph dpF∪Πcl ,

and the transition rule

Unfounded : M =⇒ M ¬a if a ∈ U for a set U unfounded on M w.r.t. Πo.

The graph sm(asp)F,Π can be used for deciding whether an SM(ASP) theory [F,Π]

has a model.

Proposition 7

For any SM(ASP) theory [F,Π],

(a) graph sm(asp)F,Π is finite and acyclic,

(b) for any terminal state M of sm(asp)F,Π other than FailState, M is a model

of [F,Π],

(c) FailState is reachable from ∅ in sm(asp)F,Π if and only if [F,Π] has no models.

Proposition 7 shows that algorithms that correctly find a path in the graph

sm(asp)F,Π from ∅ to a terminal node can be regarded as SM(ASP) solvers. It also

provides a proof of correctness for every SM(ASP) solver that can be shown to

work in this way.

One of the ways in which SM(ASP) encompasses ASP (specifically, Corollary 1(c))

is closely related to the way the answer-set solver smodels works. We recall that

to represent smodels Lierler (2011) proposed a graph smΠ. We note that the rule
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Unfounded above is closely related to the transition rule with the same name used in

the definition of smΠ (Lierler 2011). In fact, if Π = Πo then these rules are identical.

Lierler (2011) observed that smodels as it is implemented never follows certain

edges in the graph smΠ, and called such edges singular. Lierler (2011) denoted by

sm
−
Π the graph obtained by removing from smΠ all its singular edges and showed

that sm
−
Π is still sufficient to serve as an abstract model of a class of ASP solvers,

including smodels. The concept of a singular edge extends literally to the case of

the graph sm(asp)F,Π. An edge M =⇒ M ′ in the graph sm(asp)F,Π is singular if:

1. the only transition rule justifying this edge is Unfounded , and

2. some edge M =⇒ M ′′ can be justified by a transition rule other than Unfounded

or Decide.

We define sm(asp)
−
F,Π as the graph obtained by removing all singular edges from

sm(asp)F,Π. Proposition 8 below can be seen as an extension of Proposition 4 given

by Lierler (2011) to nontight programs.

Proposition 8

For every program Π, the graphs sm
−
Π and sm(asp)

−
Comp(Π),Π are equal.

It follows that the graph sm(asp)
−
Comp(Π),Π provides an abstract model of smodels.

We recall though that Comp(Π) can be exponentially larger than the comple-

tion formula before clausification. Using ASP specific propagation rules, such as

Backchain True and All Rules Cancelled (Lierler 2011), allows smodels to avoid

explicit representation of the clausified completion and infer all the necessary

transitions directly on the basis of the program Π.

A similar relationship, in terms of pseudocode representations of smodels and

dpll, is established in the paper by Giunchiglia and Maratea (2005) for tight

programs.

The answer-set solvers cmodels, clasp and the PC(ID) solver minisat(id) cannot

be described in terms of the graph sm(asp) nor its subgraphs. These solvers

implement such advanced features of SAT and SMT solvers as learning (forgetting),

backjumping, and restarts (Nieuwenhuis et al. (2006) give a good overview of these

techniques). In the next section, we extend the graph sm(asp)F,Π with propagation

rules that capture these techniques. In the subsequent section, we discus how this new

graph models solvers cmodels, clasp, and minisat(id). Then, we provide insights

into how they are related.

4 Backjumping and learning for SM(ASP)

Nieuwenhuis et al. (2006, Section 2.4) defined the DPLL System with Learning

graph that can be used to describe most of the modern SAT solvers, which

typically implement such sophisticated techniques as learning and backjumping.

We demonstrate how to extend these findings to capture SM(ASP) framework with

learning and backjumping.

Let [F,Π] be an SM(ASP) theory and let G be a formula over At(F ∪Π). We say

that [F,Π] entails G, written F,Π |= G, if for every model M of [F,Π], M |= G.
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For an SM(ASP) theory [F,Π], an augmented state relative to F and Π is either

a distinguished state FailState or a pair M||Γ, where M is a record relative to the

set of atoms occurring in F and Π, and Γ is a set of clauses over At(F ∪Π) such

that F,Πo |= Γ.

We now define a graph sml(asp)F,Π for an SM(ASP) theory [F,Π]. Its nodes

are the augmented states relative to F and Π. The rules Decide, Unfounded , and

Fail of sm(asp)F,Π are extended to sml(asp)F,Π as follows: M||Γ =⇒ M ′||Γ
(M||Γ =⇒ FailState, respectively) is an edge in sml(asp)F,Π justified by Decide or

Unfounded (Fail, respectively) if and only if M =⇒ M ′ (M =⇒ FailState) is an

edge in sm(asp)F,Π justified by Decide or Unfounded (Fail, respectively). The other

transition rules of sml(asp)F,Π follow:

Unit Propagate Learn: M||Γ =⇒ M l||Γ if

{
C ∨ l ∈ F ∪Πcl ∪ Γ and

C ⊆M

Backjump: P lΔ Q||Γ =⇒ P l′||Γ if

{
P lΔ Q is inconsistent and

F,Πo |= l′ ∨ P

Learn: M||Γ =⇒ M|| C, Γ if

{
every atom in C occurs in F and

F,Πo |= C .

We refer to the transition rules Unit Propagate Learn, Unfounded, Backjump, Decide,

and Fail of the graph sml(asp)F,Π as basic. We say that a node in the graph is

semiterminal if no rule other than Learn is applicable to it. We omit the word

“augmented” before “state” when this is clear from a context.

The graph sml(asp)F,Π can be used for deciding whether an SM(ASP) theory

[F,Π] has a model.

Proposition 9

For any SM(ASP) theory [F,Π],

(a) every path in sml(asp)F,Π contains only finitely many edges justified by basic

transition rules,

(b) for any semiterminal state M||Γ of sml(asp)F,Π reachable from ∅||∅, M is a

model of [F,Π],

(c) FailState is reachable from ∅||∅ in sml(asp)F,Π if and only if [F,Π] has no

models.

On the one hand, part (a) of Proposition 9 asserts that if we construct a path from

∅||∅ so that basic transition rules periodically appear in it then some semiterminal

state is eventually reached. On the other hand, parts (b) and (c) of Proposition 9

assert that as soon as a semiterminal state is reached the problem of deciding

whether [F,Π] has a model is solved. In other words, Proposition 9 shows that the

graph sml(asp)F,Π gives rise to a class of correct algorithms for computing models of

an SM(ASP) theory [F,Π]. It gives a proof of correctness to every SM(ASP) solver

in this class and a proof of termination under the assumption that basic transition

rules periodically appear in a path constructed from ∅||∅.
Nieuwenhuis et al. (2006) proposed the transition rules to model such techniques

as forgetting and restarts. The graph sml(asp)F,Π can easily be extended with such

rules.
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5 Abstract cmodels, clasp, and minisat(id)

We can view a path in the graph sml(asp)F,Π as a description of a process of search

for a model of an SM(ASP) theory [F,Π] by applying transition rules. Therefore,

we can characterize the algorithm of a solver that utilizes the transition rules of

sml(asp)F,Π by describing a strategy for choosing a path in this graph. A strategy

can be based, in particular, on assigning priorities to transition rules of sml(asp)F,Π

so that a solver never applies a rule in a state if a rule with higher priority is

applicable to the same state.

We use this approach to describe and compare the algorithms implemented in

the solvers cmodels, clasp, and minisat(id). We stress that we talk here about

characterizing and comparing algorithms and not their specific implementations in

the solvers. We refer to these algorithms as abstract cmodels, clasp, and minisat(id),

respectively. Furthermore, we only discuss the abstract minisat(id) for the case of the

total PC(ID) theories whereas the minisat(id) system implements additional totality

check propagation rule to deal with the nontotal theories. Given a program Π,

abstract cmodels and abstract clasp construct first ED-Comp(Π). Afterward, they

search the graph sml(asp)ED-Comp(Π),Π for a path to a semiterminal state. In other

words, both algorithms, while in a node of the graph sml(asp)ED-Comp(Π),Π, progress

by selecting one of the outgoing edges. By Proposition 9 and Corollary 1, each

algorithm is indeed a method to compute answer sets of programs.

However, abstract cmodels selects edges according to the priorities on the

transition rules of the graph that are set as follows:

Backjump,Fail� Unit Propagate� Decide� Unfounded,

while abstract clasp uses a different prioritization:

Backjump,Fail� Unit Propagate� Unfounded� Decide.

The difference between the algorithms boils down to when the rule Unfounded is

used.

We now describe the algorithm behind the PC(ID) solver minisat(id) (Mariën

et al. 2008) for total PC(ID) theories—the abstract minisat(id). Speaking precisely,

minisat(id) assumes that the program Π of the input PC(ID) theory (F,Π) is in

the definitional normal form (Mariën 2009). Therefore, in practice, minisat(id) is

always used with a simple preprocessor that converts programs into the definitional

normal form. We will assume here that this preprocessor is a part of minisat(id).

Under this assumption, given a PC(ID) theory (F,Π), minisat(id) can be described

as constructing the completion ED-Comp(Πo) (the new atoms are introduced by the

preprocessor when it converts Π into the definitional normal form, the completion

part is performed by the minisat(id) proper) and then uses the transitions of the

graph sml(asp)ED-Comp(Πo)∪F,Πo to search for a path to a semiterminal state. In other

words, the graph sml(asp)ED-Comp(Πo)∪F,Πo represents the abstract minisat(id). The

strategy used by the algorithm follows the prioritization:

Backjump,Fail� Unit Propagate� Unfounded� Decide.
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By Propositions 4 and 6, the algorithm indeed computes models of total PC(ID)

theories.

Systems cmodels, clasp, and minisat(id) implement conflict-driven backjumping

and learning. They apply the transition rule Learn only when in a nonsemiterminal

state reached by an application of Backjump. Thus, the rule Learn does not

differentiate the algorithms and so we have not taken it into account when describing

these algorithms.

6 PC(ID) theories as logic programs with constraints

For a clause C = ¬a1 ∨ . . . ∨ ¬al ∨ al+1 ∨ . . . ∨ am, we write Cr to denote the

corresponding rule constraint

← a1, . . . , al , not al+1, . . . , not am.

For a set F of clauses, we define Fr = {Cr | C ∈ F}. Finally, for a PC(ID) theory

(F,Π), we define a logic program π(F,Π) by setting

π(F,Π) = Πo ∪ Fr .

The representation of a PC(ID) theory (F,Π) as π(F,Π) is similar to the translation

of FO(ID) theories into logic programs with variables given by Mariën et al. (2004).

The difference is in the way atoms are “opened.” We do it by means of rules of the

form a← not not a, while Mariën et al. use pairs of rules a← not a∗ and a∗ ← not a.

There is a close relation between models of a PC(ID) theory (F,Π) and answer

sets of a program π(F,Π).

Proposition 10

For a total PC(ID) theory (F,Π) and a consistent and complete (over At(F ∪Π)) set

M of literals, M is a model of (F,Π) if and only if M+ is an answer set of π(F,Π).

A choice rule construct {a} (Niemelä and Simons 2000) of the lparse
6 and gringo

7

languages can be seen as an abbreviation for a rule a← not not a (Ferraris and

Lifschitz 2005). Thus, in view of Proposition 10, any answer-set solver implementing

language of lparse or gringo is also a PC(ID) solver (an input total PC(ID) theory

(F,Π) needs to be translated into π(F,Π)).

The reduction implied by Proposition 10 by itself does not show how to relate

particular solvers. However, we recall that abstract minisat(id) is captured by the

graph sml(asp)ED-Comp(Πo)∪F,Πo . Moreover, we have the following property.

Proposition 11

For a PC(ID) theory (F,Π), we have

sml(asp)ED-Comp(π(F,Π)),π(F,Π) = sml(asp)ED-Comp(Πo)∪F,Πo .

6 http://www.tcs.hut.fi/Software/smodels/
7 http://potassco.sourceforge.net/

https://doi.org/10.1017/S1471068411000214 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000214


Transition systems for model generators—A unifying approach 643

The graph sml(asp)ED-Comp(π(F,Π)),π(F,Π) captures the way clasp works on the program

π(F,Π). In addition, the minisat(id) and clasp algorithms use the same prioritiza-

tion. Thus, Proposition 11 implies that the abstract clasp used as a PC(ID) solver

coincides with the abstract minisat(id).

7 Related work and discussion

Lierler (2011) introduced the graphs sm and gt, and their extensions, sml and gtl,

respectively. The graphs sml and gtl account for the transition rules Backjump

and Learn. The graph sml was used to characterize the computation of such

answer-set solvers implementing learning as smodelscc
8 (Ward and Schlipf 2004)

and sup
9 (Lierler 2011) whereas the graph gtl was used to characterize cmodels.

These graphs are strongly related to our graph sml(asp) but they are not appropriate

for describing the computation behind answer-set solver clasp or PC(ID) solver

minisat(id). The graph sml reflects only propagation steps based on a program

whereas clasp and minisat(id) proceed by considering both the program and a

propositional theory. The graph gtl, on the other hand, does not seem to provide a

way to imitate the behavior of the Unfounded rule in the sml(asp) graph.

Giunchiglia and Maratea (2005) studied the relation between the answer-set

solver smodels and the dpll procedure for the case of tight programs by means

of pseudocode analysis. Giunchiglia et al. (2008) continued this work by comparing

answer-set solvers smodels, dlv
10 (Eiter et al. 1997), and cmodels via pseudocode.

In this paper, we use a different approach to relate solvers that was proposed by

Lierler (2011). That is, we use graphs to represent the algorithms implemented by

solvers and study the structure of these graphs to find how the corresponding solvers

are related. We use this method to state the relation between the answer-set solvers

cmodels, clasp, and the PC(ID) solver minisat(id) designed for different knowledge

representation formalisms.

Gebser and Schaub (2006) introduced a deductive system for describing inferences

involved in computing answer sets by tableaux methods. The abstract framework

presented in this paper can be viewed as a deductive system also, but a very different

one. For instance, we describe backtracking and backjumping by inference rule, while

the Gebser–Schaub system does not. Also, the Gebser–Schaub system does not take

learning into account. Accordingly, the derivations considered in this paper describe

a search process, while derivations in the Gebser–Schaub system do not. Further,

the abstract framework discussed here does not have any inference rule similar to

Cut; this is why its derivations are paths rather than trees.

Mariën (2009) described a MiniSat(ID) transition system to model a computation

behind the PC(ID) solver minisat(id). We recall that we modeled the abstract

minisat(id) with the graph sml(asp). The graphs sml(asp) and MiniSat(ID) are

defined using different sets of nodes and transition rules. For instance, sml(asp)

8 http://www.nku.edu/∼wardj1/Research/smodels cc.html
9 http://www.cs.utexas.edu/users/tag/sup

10 http://www.dbai.tuwien.ac.at/proj/dlv/
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allows states containing inconsistent sets of literals whereas the MiniSat(ID) graph

considers consistent states only. Due to this difference, the MiniSat(ID) graph

requires multiple versions of “backjump” and “fail” transition rules.

We used transition systems to characterize algorithms for computing answer sets

of logic programs and models of PC(ID) theories. These transition systems are also

suitable for formal comparison of the strength or power of reasoning methods given

rules that specify them. An approach to do so was proposed by Mariën (2009), who

introduced the concept of decide-efficiency for such analysis. We outline below how

standard concepts of proof complexity (Cook et al. 1979) can be adapted to the

setting of transition systems.

Let A be an infinite set of atoms. We define a node over A to be a symbol

FailState, or a finite sequence of literals overA with annotations. For a propositional

formalism F over A, a proof procedure PF consists of graphs GT , where T ranges

over all theories in F such that for every theory T (i) GT is composed of nodes

over A and (ii) T is unsatisfiable if and only if there is a path p in GT from the

empty (start) node to the FailState node. We call each such path p a proof. We say

that a proof system S is based on a proof procedure PF if (i) S ⊆ F×R, where

R denotes the set of all finite sequences of nodes over A, and (ii) S(T , p) holds

if and only if p is a proof in the graph GT in PF. Predicate S is indeed a proof

system in the sense of Cook and Reckhow (1979) because (i) S is polynomial-time

computable, and (ii) T is unsatisfiable if and only if there exists a proof p such that

S(T , p) holds.

In this sense, each of the graphs (transition systems) we introduced in this

paper can be regarded as a proof procedure for SM(ASP) (for those involving

the rule Learn , under additional assumptions to ensure the rule can be efficiently

implemented). Thus, transition systems determine proof systems. Consequently, they

can be compared, as well as solvers that they capture, in terms of the complexity of

the corresponding proof systems.

8 Conclusions

In the paper, we proposed a formalism SM(ASP) that can be regarded as a common

generalization of (clausal) propositional logic, ASP, and the logic PC(ID). The

formalism offers an elegant SMTs perspective on the latter two. We present several

characterizations of these formalisms in terms of SM(ASP) theories that differ in

the explicitly identified “satisfiability” component. Next, we proposed transition

systems for SM(ASP) to provide abstract models of SM(ASP) model generators.

The transition systems offer a clear and uniform framework for describing model

generation algorithms in SM(ASP). As SM(ASP) subsumes several propositional

formalisms, such a uniform approach provides a general proof of correctness and

termination that applies to a broad class of model generators designed for these

formalisms. It also allows us to describe in precise mathematical terms relations

between algorithms designed for reasoning with different logics, such as propositional

logic, logic programming under answer-set semantics, and the logic PC(ID); the

latter two studied in detail in the paper. For instance, our results imply that
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at an abstract level of transition systems, clasp and minisat(id) are essentially

identical. Finally, we note that this work gives the first description of clasp in

the abstract framework rather than in pseudocode. Such high-level view on state-

of-the-art solvers in different, yet, related propositional formalisms will further

their understanding, and help port advances in solver technology from one area to

another.
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