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1. Introduction

This paper concerns finite peaking and boundary interpolation problems for complex-
valued polynomials. The main results are about univalent polynomials.

Let Δ = {z ∈ C : |z| < 1}. The following theorem is proven in [1, p. 101, Theorem 9].

Theorem 1.1. Let Z be a finite set of n elements in ∂Δ. Then there is a polynomial
P of degree n such that �P (z) > 0 for z ∈ Δ − Z and �P (z) = 0 for z ∈ Z.

Using Theorem 1.1 and a suitable Möbius transformation implies that there is a rational
function R of degree n such that |R(z)| < 1 for z ∈ Δ − Z and |R(z)| = 1 for z ∈ Z.
Theorem 2.1 shows that R may be replaced by a polynomial of degree n. Theorem 2.2
asserts that there is a polynomial P of degree n such that |P (z)| > 1 for z ∈ Δ − Z and
|P (z)| = 1 for z ∈ Z.

Our next result gives general information about finite boundary interpolation by
univalent polynomials.

Theorem 1.2. Suppose that Φ is a Jordan domain and ∂Φ is a curve belonging to C2.
Let {z1, z2, . . . , zn} be distinct points on ∂Φ and let {w1, w2, . . . , wn} be distinct points in
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C. Then there is a polynomial P which is univalent in a neighbourhood of Φ and satisfies
P (zk) = wk for k = 1, 2, . . . , n.

Our proof of Theorem 1.2 shows that there are infinitely many polynomials P which
provide the stated interpolation.

Interior interpolation by univalent functions is quite different. For functions f ana-
lytic and univalent in Δ, interpolation is possible when n = 1 if f satisfies the growth
theorem [5, p. 33]. For general n, the numbers {z1, z2, . . . , zn} in Δ and the numbers
{f(z1), f(z2), . . . , f(zn)} are restricted by the Goluzin inequalities [5, p. 128].

The following result was proved in [3, p. 568].

Theorem 1.3. For k = 1, 2, . . . , n let zk = eiθk and wk = eiϕk where θ1 < θ2 < · · · <
θn < θ1 + 2π and ϕ1 < ϕ2 < · · · < ϕn < ϕ1 + 2π. Then there is a polynomial P which
is univalent in Δ and satisfies |P (z)| < 1 for |z| ≤ 1 and z �= zk (k = 1, 2, . . . , n), and
P (zk) = wk for k = 1, 2, . . . , n.

Theorem 3.1 generalizes Theorem 1.3 for univalent polynomials mapping a Jordan
domain into another Jordan domain. Theorem 3.2 treats the more general situation in
which the points {wk} for the interpolation P (zk) = wk (k = 1, 2, . . . , n) may repeat and
have any order on the boundary of the Jordan domain.

The references [2, 7, 8, 11, 13] also concern finite boundary interpolation and peaking
by analytic functions whose domain or range is an open disk or an open half-plane.

The results in §2 rely in part on facts about self-inversive polynomials, that is polyno-
mials p of degree n such that p(z) = znp(1/z). This relates to the material contained in
§4.4 and Chapter 7 of [12].

2. Peaking on Δ and on C − Δ

Theorem 2.1. Let Z be any finite subset of ∂Δ of n elements. There is a polynomial
P of degree n such that |P (z)| = 1 for z ∈ Z and |P (z)| < 1 for z ∈ Δ − Z.

Proof. Let Z = {z1, z2, . . . , zn} and for k = 1, 2, . . . , n let zk = eiθk where 0 ≤ θk < 2π.
For θ real let T (θ) = Πn

k=1[1 − cos(θ − θk)]. If U and V are trigonometric polynomi-
als then so is the product UV and deg(UV ) = degU + deg V. Since 1 − cos(θ − θk) is a
trigonometric polynomial of degree 1, this implies that T is a trigonometric polynomial
of degree n. Also, T (θk) = 0 for k = 1, 2, . . . , n and T (θk) > 0 for 0 ≤ θk < 2π and θ �= θk

(k = 1, 2, . . . , n).
Let M ≥ maxT and for θ real let S(θ) = M − T (θ). Then S is a nonnegative trigono-

metric polynomial of degree n. By the Fejér lemma [12, p. 150, Thm 4.3.5], there is a
polynomial Q of degree n such that |Q(eiθ)|2 = S(θ) for θ real. See also [9, p. 77, prob-
lem 40]. Let P = Q/

√
M . Then P is a polynomial of degree n, |P (z)| = 1 for z ∈ Z and

|P (z)| < 1 for z ∈ ∂Δ − Z. The maximum modulus theorem implies that |P (z)| < 1 for
|z| < 1. �

Theorem 2.2. Let Z be any finite subset of ∂Δ of n elements. There is a polynomial
P of degree n such that |P (z)| = 1 for z ∈ Z and |P (z)| > 1 for z ∈ Δ − Z.
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Proof. Let Z = {z1, z2, . . . , zn} and let T denote the trigonometric polynomial defined
in the proof of Theorem 2.1. For θ real let S(θ) = T (θ) + 1. Then S is a nonnegative
trigonometric polynomial of degree n. Hence there is a polynomial P of degree n such
that |P (eiθ)|2 = S(θ) for θ real. We have |P (eiθk)| = 1 for k = 1, 2, . . . , n and |P (eiθ)| > 1
for 0 ≤ θ < 2π and θ �= θk (k = 1, 2, . . . , n). Suppose that P has no zeros in Δ. Then the
minimum modulus theorem implies that |P (z)| > 1 for z ∈ Δ. Hence, in this case, the
proof is complete.

Now suppose that P has at least one zero in Δ. We claim that P (0) �= 0. Other-
wise, Q(z) = P (z)/z defines a polynomial of degree n− 1 and then |Q(eiθ)|2 defines a
trigonometric polynomial of degree at most n− 1. This trigonometric polynomial has
a minimum at n values of θ in [0, 2π). This is impossible. This verifies our claim and
hence P has the form P (z) = b(z − ζ1)(z − ζ2) · · · (z − ζ�)(z − σ1)(z − σ2) · · · (z − σm)
where b �= 0, � ≥ 1, m ≥ 0, 0 < |ζk| < 1 for k = 1, 2, . . . , �, |σk| > 1 for k = 1, 2, . . . ,m
and �+m = n. The case m = 0 corresponds to the factors (z − σk) not being present in
the product. If |z| = 1 and ζ ∈ C then |z − ζ| = |1 − ζz|. Hence the polynomial R(z) =
b(1 − ζ1z)(1 − ζ2z) · · · (1 − ζ�z)(z − σ1)(z − σ2) · · · (z − σm) satisfies |R(eiθ)| = |P (eiθ)|
for θ real. Since R has no zeros in Δ, the minimum modulus theorem implies that R
satisfies the conclusions about P stated in the theorem. �

Theorems 2.1 and 2.2 do not hold for a polynomial of degree less than n. To see
this, suppose that n > 1 and P is a polynomial of degree m where 0 < m < n. Then
U(θ) = |P (eiθ)|2 for θ real defines a trigonometric polynomial of degree at most m. Hence
there are at most m values of θ in [0, 2π) where U has a relative maximum and at most
m values of θ where U has a relative minimum.

We ask the question of describing all domains Ω such that for every positive integer
n and for every set {z1, z2, . . . , zn} of distinct numbers on ∂Δ there exists a polynomial
P of degree n such that P (zk) ∈ ∂Ω for k = 1, 2, . . . , n and P (z) ∈ Ω for |z| ≤ 1 and
z �= zk(k = 1, 2, . . . , n). An open half-plane, an open disk, and the exterior of an open
disk are such domains.

3. Boundary interpolation by univalent polynomials

Let n be a positive integer. An arc w = λ(t), a ≤ t ≤ b belongs to Cn provided that λ
has n derivatives, λ(n) is continuous, and λ′(t) �= 0. When Φ is a Jordan domain, the
assumptions that ∂Φ ∈ Cn and λ(n) satisfies a Lipschitz condition together imply that
each conformal mapping of Δ onto Φ has an extension to Δ which has a continuous nth

derivative [10, p. 49].
Let Λ be the Jordan curve w = λ(t), a ≤ t ≤ b, and let Φ denote the interior of Λ. Let

F denote a conformal mapping of Δ onto Φ. Then F extends to a homeomorphism of
Δ onto Φ, and F gives a homeomorphism of ∂Δ onto Λ. We say that Λ is in conformal
order provided that the mapping from [θ0, θ0 + 2π) to [a, b) given by θ → w → t where
w = F (eiθ) and t = λ−1(w) and where F (eiθ0) = λ(a) = λ(b), is strictly increasing. When
Λ is rectifiable this is equivalent to each point in Φ has index 1 with respect to Λ.

Let {w1, w2, . . . , wn} be distinct points on a Jordan curve Λ. Let F be described as
above and for each k let F (zk) = wk where |zk| = 1. We say that {w1, w2, . . . , wn} is in
conformal order on Λ provided that zk = eiθk and θ1 < θ2 < · · · < θn < θ1 + 2π.
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Proof of Theorem 1.2. Suppose the curve Λ = ∂Φ is given by z = λ(t), a ≤ t ≤ b,
where λ′ and λ′′ exist and are continuous and λ′(t) �= 0, and that this parametrization
gives Λ in conformal order. We may assume that zk = λ(tk) for k = 1, 2, . . . , n where
a ≤ t1 < t2 < t3 < · · · < tn < b. We now construct small ε-perturbations Λ′ = Λ′(ε) of
the curve Λ in the direction of the outward pointing normal and show that they are also
Jordan curves, and, for sufficiently small ε, are disjoint from Λ.

For each positive real number ε, let the curve Λ′ = Λ′(ε) be defined by w = μ(t) =
λ(t) − εiλ′(t), a ≤ t ≤ b. Let t0 ∈ [a, b] and let λ′(t0) = eiθ|λ′(t0)| where θ is real. Since
λ′(t0) �= 0 and λ′ is continuous there is a neighbourhood of t0, say N , such that
�[e−iθλ′(t)] ≥ 1

2 |λ′(t0)| for t ∈ N. Let M = max |λ′′(t)|. For t ∈ N and ε small, we
have �[e−iθμ′(t)] = �[e−iθλ′(t)] − ε�[ie−iθλ′′(t)] ≥ 1

2 |λ′(t0)| − εM ≥ 1
3 |λ′(t0)|. Hence, if

t1, t2 ∈ N, t1 < t2 and ε is small, then �[e−iθ(μ(t2) − μ(t1))] =
∫ t2

t1
�[e−iθμ′(t)] dt ≥

1
3 |λ′(t0)|(t2 − t1). This implies that μ(t2) �= μ(t1). Hence, for each t there is a neigh-
bourhood of t such that μ is injective in that neighbourhood for all small ε.

We claim that μ is injective on [a, b) for all small ε. Suppose this is false. Then there are
sequences {εn}, {tn}, and {t′n} such that εn > 0, εn → 0, μ(tn) = μ(t′n) and tn �= t′n for
every n. By considering subsequences of {tn} and {t′n}, we may assume that t0 = lim tn
and t′0 = lim t′n exist. Since μ(t′n) = μ(tn), this is the same as λ(t′n) − εniλ

′(t′n) = λ(tn) −
εniλ

′(tn), which yields λ(t′0) = λ(t0). By re-parametrizing the curve as follows:

λ1(t) =

{
λ(t) if a+ δ ≤ t ≤ b

λ(t+ a− b) if b ≤ t ≤ b+ δ,

for some small δ > 0, we may assume that {t0, t′0} is distinct from the endpoints of the
interval on which λ is defined. Note that this does not change any of the properties
required of the curve. Because Λ is simple this implies t′0 = t0. The previous argument
gives a neighbourhood of t0, say N , such that μ is injective in N for all small ε. This
contradicts μ(t′n) = μ(tn) where t′n �= tn when n is large.

Because of the smoothness conditions on λ, we have that limt→a+ λ′(t) = limt→b− λ
′(t),

and so Λ′ is closed. We have shown that Λ′ is a Jordan curve for all small ε. Let Φ′ denote
the interior of Λ′. Also, μ′(t) = λ′(t) − εiλ′′(t) shows that μ′ is continuous. Let m =
min |λ′(t)| and M = max |λ′′(t)|. Then |μ′(t)| ≥ m− εM > 0 for all small ε. Therefore,
the curve Λ′ belongs to C1 for all small ε.

We claim that Λ′ ∩ Λ = ∅ for all small ε. Suppose this is false. Then there are sequences
{εn}, {tn}, and {t′n} such that εn > 0, εn → 0, μ(t′n) = λ(tn) for every n, and t0 = lim tn
and t′0 = lim t′n exist. Since μ(t′n) = λ(tn) is the same as λ(t′n) − εniλ

′(t′n) = λ(tn) this
yields λ(t′0) = λ(t0). As before, by a re-parametrization, we may assume that {t0, t′0} �=
{a, b}. Because Λ is simple we obtain t′0 = t0. We continue our argument assuming that
t0 = 0. By a translation and a rotation and a re-parametrization, we also may assume
that λ(t) = t+ if(t) for t in a neighbourhood of 0, where the real-valued function f sat-
isfies f(0) = 0, f ′(0) = 0, and f ′′ is continuous at 0. Then μ(t) = t+ εf ′(t) + i[f(t) − ε].
In order to obtain a contradiction, we again consider the equality μ(s) = λ(t). We know
it holds at least for the values t = tn and s = t′n mentioned above. We wish to anal-
yse the local behaviour of f near t = 0 starting from this equality, which is equivalent
to s+ εf ′(s) = t and f(s) − ε = f(t), which implies f(s) − ε = f [s+ εf ′(s)]. We have
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f(s) = bs2 + o(s2) and f ′(s) = 2bs+ o(s) as s→ 0, where b = 1
2f

′′(0). Whenever we con-
sider a fixed but sufficiently small ε, we will arrive at a contradiction. The equalities
above give −ε+ bs2 + o(s2) = bs2 + 4b2εs2[1 + bε] + o(s2). This implies ϕ(s) = 0 where
ϕ(s) = ε+ 4b2εs2[1 + bε] + o(s2). If b ≥ 0 then ϕ(s) > 0 for all small s. This gives a con-
tradiction when ε = εn, s = t′n and n is large. Now consider the case b < 0. Then for small
ε > 0 we have 1 + bε > 0. Again we get the contradiction that ϕ(s) > 0 where ε = εn,
s = t′n and n is large. This completes the proof that Λ′ ∩ Λ = ∅ for all small ε.

By the last result, we see that either Λ′ ⊂ Φ for all small ε or Λ′ ⊂ C − Φ for all small
ε. For any t0 the vector −εiλ′(t0) is in the direction of an outer normal to Φ at z0 = λ(t0).
Because Λ belongs to C2 and is simple, it follows that w = λ(t0) − εiλ′(t0) belongs to
C − Φ for all small ε. Therefore, Λ′ ⊂ C − Φ for all small ε.

Let ζ ∈ Φ. Then∫
Λ′

1
w − ζ

dw =
∫ b

a

μ′(t)
μ(t) − ζ

dt =
∫ b

a

λ′(t) − εiλ′′(t)
λ(t) − εiλ′(t) − ζ

dt.

For all small ε > 0, w = μ(t) ∈ C − Φ and Φ is open. Hence, there is a constant d > 0
such that |μ(t) − ζ| ≥ d for all t and for all small ε. This implies that the limit of the
last integral exists as ε→ 0+. That limit equals

∫ b

a
(λ′(t)/(λ(t) − ζ)) dt, which is the same

as
∫
Λ
(1/(z − ζ)) dz. Since (1/2πi)

∫
Λ
(1/(z − ζ)) dz = 1 and (1/2πi)

∫
Λ′(1/(w − ζ)) dw is

an integer for all small ε, we conclude that (1/2πi)
∫
Λ′(1/(w − ζ)) dw = 1 for all small ε.

Therefore, ζ ∈ Φ′. We have shown that Φ ⊂ Φ′. Because Λ′ ∩ Λ = ∅ this yields Φ ⊂ Φ′.
Henceforth, we let ε be a fixed positive real number such that the various properties

of Φ′ described above are valid. In what follows, we observe that the doubly connected
domain bounded by the curves Λ and Λ′(ε) is the union of disjoint line segments and,
using this fact, we construct a new smooth Jordan curve Λ′′ inscribed in this domain.
Part of its boundary will consist of circular arcs. Later on, it will be important to con-
sider the conformal map onto the interior domain of this new curve. The part of the
boundary consisting of circular arcs will allow us to use Schwarz reflection to extend
the mapping analytically to a larger domain precisely around the points related to our
interpolation.

Let z ∈ Λ. We will obtain closed disks D such that D ∩ Φ = z. We do this by making
a translation and rotation of Φ so that z = 0 and a subarc of Λ containing 0 is given by
y = g(x), −c ≤ x ≤ c, where c > 0 and the function g satisfies g(0) = 0, g′(0) = 0 and g′′

is continuous at 0. Also, the orientation of this subarc corresponds to decreasing values
of x. For r > 0 let D(r) denote the closed disk with centre (0, r) and radius r. Then
h(x) = r −√

r2 − x2, −r ≤ x ≤ r, gives the lower semicircle on ∂D(r). Hence h(x) =
(1/2r)x2 +O(x4) as x→ 0. Also g(x) = bx2 + o(x2) as x→ 0, where b = 1

2g
′′(0). Thus,

if 1/2r > b then h(x) > g(x) for all small x �= 0. Therefore, there is a real number d such
that 0 < d < c and the closed disk D(r) does not meet the subarc of Λ given by y = g(x),
−d ≤ x ≤ d, except at 0, for all small r > 0. Because Λ is simple and the subarc has the
stated orientation, this implies that D(r) ∩ Λ = ∅ and then D(r) ∩ Φ = ∅ for all small
r. Hence, for each k there is a closed disk Dk such that Dk ∩ Φ = zk, Dk ⊂ Φ′ and the
collection {D1,D2, . . . , Dn} is pairwise disjoint.

For ε > 0 and t ∈ [a, b) let L(t) = L(t, ε) denote the closed line segment {ζ : ζ = λ(t) −
xiλ′(t), 0 ≤ x ≤ ε}. Then for all small ε, L(s) ∩ L(t) = ∅ for s �= t. This can be shown
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using an argument similar to that used to prove Λ′ ∩ Λ = ∅ for all small ε. We also see
that Φ′ − Φ =

⋃
a≤t<bL(t).

For each k let βk denote the closed semicircle on ∂Dk having the midpoint zk and
oriented clockwise. Let qk and rk denote the endpoints of βk with qk, zk, rk in clockwise
order. Then qk ∈ L(tk) for some tk. Let pk denote the endpoint of L(tk) which is on
Λ′. Let αk denote the closed line segment from pk to qk. We have rk = L(t′k) for some
t′k. Let sk denote the endpoint of L(t′k) on Λ′. Let γk denote the closed line segment
from rk to sk. For k = 1, 2, . . . , n− 1 let δk denote the subarc of Λ′ from sk to pk+1

with the same orientation as Λ′. Let δn denote the subarc of Λ′ from sn to p1 with the
same orientation as Λ′. Let Λ′′ denote the curve obtained by successively joining the arcs
α1, β1, γ1, δ1, α2, β2, γ2, δ2, . . . , αn, βn, γn, and δn. Then Λ′′ is a Jordan curve in conformal
order. Let Φ′′ denote the interior of Λ′′. Then Φ ⊂ Φ′′ and Φ ∩ Λ′′ = {z1, z2, . . . , zn}.

For each k let ηk denote a closed semicircle of radius r having the midpoint wk and
a counterclockwise order. We can choose the radius r small enough that η1, η2, . . . , ηn

are pairwise disjoint. Let w′
k and w′′

k denote the endpoints of ηk with w′
k, wk, w

′′
k in

counterclockwise order. There is a simple arc ν1 from w′′
1 to w′

2 which does not meet⋃n
k=1ηk except for its endpoints. There is a simple arc ν2 from w′′

2 to w′
3 which does not

meet
⋃n

k=1ηk

⋃
ν1 except for its endpoints. There is a simple arc ν3 from w′′

3 to w′
4 which

does not meet (
⋃n

k=1ηk)
⋃

(
⋃2

j=1νj) except for its endpoints. We continue in this way
ending with a simple arc νn−1 from w′′

n−1 to w′
n which does not meet (

⋃n
k=1ηk)

⋃
(
⋃n−2

j=1 νj)
except for its endpoints. Let Θ denote the curve obtained by successively joining the arcs
η1, ν1, η2, ν2, . . . , ηn−1, νn−1, ηn. This is a simple arc. There are such arcs ν1, ν2, . . . , νn−1

which are as smooth as we like and where νk joins smoothly at w′′
k and at w′

k+1. In
particular, there are such arcs for which Θ ∈ C2. The arc Θ starts at w′

1 and ends at
w′′

n. Let Θ be given by w = ξ(t), a ≤ t ≤ b, where ξ′ and ξ′′ exist and are continuous and
ξ′(t) �= 0. For ε > 0 let the curve Θ′ be defined by w = ψ(t) = ξ(t) + iεξ′(t), a ≤ t ≤ b.
By arguments given earlier about Λ′, we see that for all small ε the curve Θ′ is simple
and Θ′ ∩ Θ = ∅. Henceforth, we let ε be a fixed positive real number for which these
properties of Θ′ are valid. Let ψ1 = ψ(a) and ψ2 = ψ(b). Let L1 denote the closed line
segment from ψ1 to w′

1, let L2 denote the closed line segment from w′′
n to ψ2, and let Θ′′

denote the opposite arc of Θ′. Let Γ denote the curve obtained by successively joining Θ,
L2, Θ′′, and L1. Then Γ is a Jordan curve. Let Ω denote the interior of Γ. Because the
vector iεξ′(t) is in the direction of an inner normal to Ω at ξ(t) for a < t < b, we see that
the points w1, w2, . . . , wn are in conformal order on Γ.

Let F denote a conformal mapping of Δ onto Φ′′. Then F extends to a homeomorphism
of Δ onto Φ′′. For each k let F (σk) = zk where |σk| = 1. Since {z1, z2, . . . , zn} is in
conformal order on Φ′′ we have σk = eiθk and θ1 < θ2 < · · · < θn < θ1 + 2π.

Let G denote a conformal mapping of Δ onto Ω. Then G extends to a homeomorphism
of Δ onto Ω. For each k let G(τk) = wk where |τk| = 1. Since {w1, w2, . . . , wn} is in
conformal order on Γ, we have τk = eiϕk and ϕ1 < ϕ2 < · · · < ϕn < ϕ1 + 2π.

There is a function H which is analytic and univalent in Δ such that |H(σ)| ≤ 1 for
|σ| ≤ 1 and H(σk) = τk for k = 1, 2, . . . , n [3, p. 559]. Let I = G ◦H ◦ F−1. Then I is
analytic and univalent in Φ′′ and maps Φ′′ onto Ω, with I(zk) = wk for k = 1, 2, . . . , n.
For each k, I maps a subarc of βk containing zk in its interior continuously and injectively
onto a subarc of ηk containing wk in its interior. By the reflection principle, I extends

https://doi.org/10.1017/S0013091521000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000031


Peaking and interpolation by complex polynomials 135

analytically to a neighbourhood of zk. Because of how the reflection takes place, there is a
neighbourhood of zk, say Nk, such that I is analytic and univalent in Ψ = Φ′′⋃(

⋃n
k=1Nk).

Moreover, for small Nk, Ψ is simply connected.
Below and in the proof of Theorem 3.1, we make use of the following fact: If the

functions fn are analytic on an open set Ψ, fn → f uniformly on compact subsets of Ψ,
and f is univalent in Ψ, then for each fixed compact subset Σ of Ψ there is an integer
N such that fn is univalent in Σ for all n ≥ N. To see this, for each function g analytic
in Ψ let Dg denote the difference quotient of g, that is, for z ∈ Ψ and w ∈ Ψ, we have
Dg(z, w) = (g(z) − g(w))/(z − w) if w �= z and Dg(z, z) = g′(z). Then Dg is analytic in
Ψ × Ψ. If g is univalent in Ψ, then Dg does not vanish. Let Σ be any compact subset
of Ψ. We claim that Dfn

→ Df uniformly on Σ × Σ. It suffices to show that for each
(z0, w0) ∈ Σ × Σ, there is uniform convergence on C ×D, where C and D are open disks
in Ψ with C centred at z0 and D centred at w0. This follows from the Heine–Borel
Theorem, where the collection {C ×D} is the open covering of the compact set Σ × Σ.
We first consider the case w0 = z0. Let C be an open disk in Ψ centred at z0 with C ⊂ Ψ.
Let E be a closed disk in Ψ centred at z0 and having radius greater than the radius of
C. Suppose that (z, w) ∈ C × C. If w �= z then Cauchy’s formula yields

Dfn
(z, w) =

1
2πi

∫
∂E

fn(ζ)
(ζ − z)(ζ − w)

dζ.

This equality also holds when w = z. This implies that

Dfn
(z, w) → 1

2πi

∫
∂E

f(ζ)
(ζ − z)(ζ − w)

dζ

uniformly on C × C. The last integral equalsDf (z, w).Next, we consider the case w0 �= z0.
Let C be an open disk in Ψ centred at z0 and let D be an open disk in Ψ centred at
w0 with C ⊂ Ψ, D ⊂ Ψ, and C ∩D = φ. Then there is a positive constant c such that
|z − w| > c for (z, w) ∈ C ×D. Therefore,

fn(z) − fn(w)
z − w

→ f(z) − f(w)
z − w

uniformly on C ×D. The number d = min |Df (z, w)| where (z, w) varies in Σ × Σ is
positive. Thus the uniform convergence Dfn

→ Df on Σ × Σ implies that there is an
integer N such that |Dfn

(z, w)| ≥ d/2 for z ∈ Σ, w ∈ Σ and n ≥ N. Therefore, fn is
univalent in Σ for n ≥ N .

By Runge’s theorem, there is a sequence of polynomials {Pm} such that Pm → I
uniformly on each compact subset of Ψ. Hence Pm → I on Σ, the closure of some neigh-
bourhood of Φ. This implies that there is a sequence of polynomials {Qm} such that
Qm → I uniformly on Σ and Qm(zk) = I(zk) for m = 1, 2, 3, . . . and k = 1, 2, . . . , n [4, p.
121]. Since Qm → I uniformly on the compact set Σ and I is analytic and univalent on
the open set Ψ ⊃ Σ, it follows that Qm is univalent in Σ for all large m. Therefore, for
all large m, Qm satisfies all the requirements for P stated in the theorem. �

Theorem 3.1. Suppose that Φ and Ω are Jordan domains, and the curves Λ = ∂Φ
and Γ = ∂Ω belong to C2 and are in conformal order. Let z1, z2, . . . , zn be distinct points
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on Λ in conformal order and let w1, w2, . . . , wn be distinct points on Γ in conformal order.
Then there is a polynomial P which is univalent in a neighbourhood of Φ and satisfies
P (zk) = wk for k = 1, 2, . . . , n and P (Φ − ∪n

k=1{zk}) ⊂ Ω.

Proof. Let Λ′′ denote the Jordan curve defined in the proof of Theorem 1.2, and let
Φ′′ denote the interior of Λ′′. Let Dk denote the same disks described there.

Since the curve Γ belongs to C2, it is given by w = ξ(t), a ≤ t ≤ b, where ξ′ and
ξ′′ exist and are continuous and ξ′(t) �= 0. We may assume that this parametrization
gives Γ in conformal order and we have wk = ξ(tk) for k = 1, 2, . . . , n where a ≤ t1 <
t2 < · · · < tn < b. For each positive real number ε let the curve Γ′ = Γ′(ε) be defined
by w = ψ(t) = ξ(t) + εiξ′(t), a ≤ t ≤ b. Using arguments similar to those given in the
proof of Theorem 1.2, we find that for all small ε, Γ′ is a Jordan curve and belongs to C1.
Letting Ω′ denote the interior of Γ′ we have Ω′ ⊂ Ω. If ε is small, then for each k there is a
closed disk Ek such that wk ∈ ∂Ek, Ek − {wk} ⊂ Ω and the collection {E1, E2, . . . , En}
is pairwise disjoint. Furthermore, there is a Jordan curve Γ′′ containing each wk and
Γ′′ − ⋃n

k=1wk ⊂ Ω − Ω′. Note that Γ′′ is made up of the semicircle on Ek with centre wk,
line segments which connect the end points of this semicircle to points on Γ′, and arcs on
Γ′. Let Ω′′ denote the interior of Γ′′. Then Ω′′ ⊂ Ω and Γ′′ ∩ Γ = {w1, w2, . . . , wn}. Also,
{w1, w2, . . . , wn} is in conformal order on Γ′′.

Let F denote a conformal mapping of Δ onto Φ′′ and let G denote a conformal mapping
of Δ onto Ω′′. Then F extends to a homeomorphism of Δ onto Φ′′ and G extends to a
homeomorphism of Δ onto Ω′′. For each k let F (ζk) = zk where |ζk| = 1 and G(ηk) = wk

where |ηk| = 1. Because {z1, z2, . . . , zn} is in conformal order on Λ and {w1, w2, . . . , wn}
is in conformal order on Γ, we have ζk = eiθk where θ1 < θ2 < · · · < θn < θ1 + 2π and
ηk = eiϕk where ϕ1 < ϕ2 < · · · < ϕn < ϕ1 + 2π.

There is a function H which is analytic and univalent in Δ such that H(ζk) = ηk

for k = 1, 2, . . . , n and |H(ζ)| < 1 for |ζ| ≤ 1 and ζ �= ζk (k = 1, 2, . . . , n) [3, p. 559]. Let
I = G ◦H ◦ F−1. Then I is analytic and univalent in Φ′′, I(Φ′′) = Ω′′, and I(zk) = wk

for k = 1, 2, . . . , n. We have that I is continuous on a subarc of ∂Dk containing zk in its
interior and maps that subarc onto a subarc of ∂Ek containing wk in its interior. The
reflection principle implies that I extends analytically to some neighbourhood of zk. For
each k there is a neighbourhood of zk, say Nk, so that this extension of I is univalent
in Ψ = Φ′′⋃n

k=1Nk and Ψ is simply connected. The univalence of I implies I ′(z) �= 0 for
z ∈ Ψ.

By Runge’s theorem, there is a sequence of polynomials {Pm} such that Pm → I uni-
formly on each compact subset of Ψ. Let Σ denote the closure of a neighbourhood of
Φ with Σ ⊂ Ψ. Then Pm → I uniformly on Σ. Therefore, there is a sequence of polyno-
mials {Qm} such that Qm → I uniformly on Σ, and Qm(zk) = I(zk), Q′

m(zk) = I ′(zk),
and Q′′

m(zk) = I ′′(zk) for k = 1, 2, . . . , n and m = 1, 2, 3, . . . [3, p. 566]. Since Qm → I
uniformly on the compact set Σ and I is analytic and univalent on the open set Ψ ⊃ Σ, it
follows that Qm is univalent in Σ for all large m. Hence Qm is univalent in a neighbour-
hood of Φ for all large m, and so Q′

m(z) �= 0 for every z in that neighbourhood. For each
positive integer m, let Γm = Qm(Λ′′). We have that Γm is a Jordan curve for all large m.

Let μk denote the angle of the common ordered tangents to Γ, Γ′′, and Γm at wk.
We introduce a Cartesian coordinate system with origin at wk and with coordinates
(u, v) such that the direction of the positive u axis equals μk; that is, we let u+ iv =
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(w − wk)e−iμk . In some deleted neighbourhood of the origin in this system, the points
on Γ′′ are above the points on Γ.

For w ∈ Γ let κ(w) denote the curvature of Γ at w, for w ∈ Γ′′ let σ(w) denote the
curvature of Γ′′ at w, and for w ∈ Γm let τm(w) denote the curvature of Γm at w. Since
Γ ∈ C2 it follows that κ is continuous on Γ. For w ∈ Γ′′ in a small neighbourhood of wk we
have σ(w) = 1/rk where rk denotes the radius of Ek. Let bk denote the maximum of κ(w)
for points w in Γ and in the closure of that neighbourhood. Since the disks Ek may have
arbitrarily small radii, we may let rk be small enough that 1/rk > bk for k = 1, 2, . . . , n.
From [6, p. 527, Equation (4)], we obtain

τm(w) =
1

|Q′
m(z)|

{
− 1
rk

+ �
(
eiα(z)Q

′′
m(z)

Q′
m(z)

)}

for w ∈ Γm in some neighbourhood of wk, where w = Qm(z) and α(z) denotes the angle
of the directed tangent to Λ′′ at z. Also

σ(w) =
1

|I ′(z)|
{
− 1
rk

+ �
(
eiα(z) I

′′(z)
I ′(z)

)}

for w ∈ Γ′′ in some neighbourhood of wk, where w = I(z). Since Q′
m(zk) = I ′(zk) and

Q′′
m(zk) = I ′′(zk), letting w = wk in these formulas, we obtain τm(wk) = σ(wk) for k =

1, 2, . . . , n and m large.
The functions fm = Qm ◦ I−1 are defined in a small neighbourhood of wk. Since Qm →

I uniformly in a small neighbourhood of zk, we see that fm(w) → w uniformly on a
neighbourhood of wk. Also Q′

m → I ′ and Q′′
m → I ′′ uniformly in a neighbourhood of zk.

Hence the formulas above for τm and σ imply that τm(fm(w)) → σ(w) uniformly for
w ∈ Γ′′ and in some neighbourhood of wk. This implies that there is a neighbourhood
of wk and a constant ck > bk such that τm(w) ≥ ck for large m and for w ∈ Γm in that
neighbourhood.

We have κ(w) ≤ bk for w ∈ Γ near wk, τm(w) ≥ ck for w ∈ Γm near wk, and ck > bk.
This implies that the curve Γm is above the curve Γ in the u-v plane in some deleted
neighbourhood of the origin. Because Γ is continuous and simple, we conclude that there
is a neighbourhood of zk, say N ′

k, such that Qm(z) ∈ Ω for z ∈ Λ′′ ∩N ′
k and z �= zk

and for all large m. Hence Qm(z) ∈ Ω for z ∈ Λ′′ ∩N ′
k and z �= zk for large m and for

k = 1, 2, . . . , n.
Let Λ′′′ = Λ′′ − ⋃n

k=1(Λ
′′ ∪N ′

k). Since Qm → I uniformly on Λ′′′ and I(Λ′′′) is a com-
pact subset of Ω, it follows that Qm(Λ′′′) ⊂ Ω for all large m. Therefore, Qm(Λ′′ −⋃n

k=1{zk}) ⊂ Ω for all large m. This implies that Qm(Φ′′ − ⋃n
k=1{zk}) ⊂ Ω and hence

Qm(Φ − ⋃n
k=1{zk}) ⊂ Ω. We have shown that for all large m, Qm satisfies all the

requirements for P stated in the theorem. �

Our proof shows that there are infinitely many polynomials P which satisfy
Theorem 3.1.

The next theorem treats interpolation and peaking as in Theorem 3.1 but the numbers
w1, w2, . . . , wn are not restricted to being distinct nor in conformal order. The resulting
polynomial P need not be univalent.
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Theorem 3.2. Suppose that Φ and Ω are Jordan domains, and the curves Λ = ∂Φ
and Γ = ∂Ω belong to C2. Let z1, z2, . . . , zn be distinct points on Λ and let w1, w2, . . . , wn

be points on Γ. Then there is a polynomial P such that P (zk) = wk for k = 1, 2, . . . , n
and P (Φ − ∪n

k=1zk) ⊂ Ω.

Proof. Theorem 3.2 is proven using arguments similar to those given for Theorems 1.2
and 3.1. The arguments rely on the analogous result for analytic maps of Δ into Δ given
in [3, p. 560, Prop. 1]. �
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