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Solomonoff Prediction and Occam’s Razor
Tom F. Sterkenburg*y

Algorithmic information theory gives an idealized notion of compressibility that is often
presented as an objective measure of simplicity. It is suggested at times that Solomonoff
prediction, or algorithmic information theory in a predictive setting, can deliver an ar-
gument to justify Occam’s razor. This article explicates the relevant argument and, by
converting it into a Bayesian framework, reveals why it has no such justificatory force.
The supposed simplicity concept is better perceived as a specific inductive assumption,
the assumption of effectiveness. It is this assumption that is the characterizing element of
Solomonoff prediction and wherein its philosophical interest lies.
1. Introduction. Occam’s razor is the principle in science that tells us to
prefer the simplest available hypothesis that fits the data. As a pragmatic
principle, it might strike one as obvious, but it is often interpreted in a stron-
ger fashion. As an epistemic principle, Occam’s razor comes with a promise
that a preference for simpler hypotheses is somehow more likely to lead us
to the truth. This raises the difficult question of how to ground such a prom-
ise, thus, to justify the epistemic principle. Still before this is the nontrivial
problem of how to actually measure simplicity.

Algorithmic information theory, also known as Kolmogorov complexity
after Kolmogorov ð1965Þ, is sometimes believed to offer us a general and
objective measure of simplicity. The idea is that a data object, like the spec-
ification of a hypothesis, is simpler as it is more compressible, meaning that
we can capture it in a shorter description. With the aid of the theory of com-
putability, this idea can be made formally precise, culminating in the defi-
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nition of a data object’s Kolmogorov complexity as the length of its shortest
description. In the standard textbook on the subject, we read: “This gives an
objective and absolute definition of ‘simplicity’ as ‘low Kolmogorov com-
plexity.’ Consequently, one obtains an objective and absolute version of the
classic maxim of William of Ockham” ðLi and Vitányi 2008, 260Þ.

But this is not all. The first variant of Kolmogorov complexity to appear
in the literature, by the hand of Solomonoff ð1960, 1964Þ, was part of a the-
ory of prediction. Solomonoff ’s central achievement was the definition of
an idealized method of prediction that employs this complexity measure
to give greater probability to simpler extrapolations of past data. Moreover,
Solomonoff ð1978Þ was able to formally prove that this prediction method
is reliable in the sense that it will generally lead us to the truth.

Here emerges an argument that is suggested in many writings on the sub-
ject. The argument concludes from ð1Þ the definition of a type of predictor
with a preference for simplicity and ð2Þ a proof that predictors of this type
are reliable that ðper Occam’s razorÞ a preference for simplicity will gener-
ally lead us to the truth. Thus, remarkably, it is an argument to justify Occam’s
razor.

In this article, I consider this argument in detail. The conclusion will be
that it does not succeed. I reach this conclusion by employing a specific rep-
resentation theorem to translate the argument in terms of Bayesian predic-
tion. This translation reveals that the apparent simplicity bias is better un-
derstood as a particular inductive assumption, which by a basic property
of Bayesian prediction methods entails reliability under that very same as-
sumption—leaving the conclusion of the argument without justificatory
force.

The main positive contribution of this article is the observation that—
rather than simplicity—it is the assumption or constraint of effectiveness
that is the central element of Solomonoff’s theory of prediction. This can
serve as the starting point for a more careful philosophical appraisal of
Solomonoff ’s theory. While numerous substantial claims about the theory’s
philosophical merits have been advanced from the angle of theoretical com-
puter science, attention in the philosophical literature has so far been largely
restricted to the occasional mention in overview works. This is unfortunate.
Not only can the theory be seen as the progenitor tomultiple successful mod-
ern approaches in statistics and machine learning, including universal pre-
diction or prediction with expert advice ðsee Cesa-Bianchi and Lugosi 2006Þ
and the principle of minimum description length ðMDL; see Rissanen 1989;
Grünwald 2007Þ; the theory itself originated as a branch of a major philosoph-
ical project—namely, Carnap’s early program of inductive logic, pursued with
tools from information theory and computability theory. In this capacity the
theory brings together a diverse range of motifs from the philosophy of induc-
tion, which in turn connect the theory to several other approaches: among
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those we find formal learning theory ðsee Kelly 1996Þ, which likewise puts
effectiveness center stage, and the project ofmeta-induction ðSchurz 2008Þ,
the philosophical counterpart to prediction with expert advice. The broader
aim of the current article is to convey this to the reader.

The plan is as follows. I start in section 2 with covering some essential
preliminaries on sequential prediction and effectiveness. In section 3, I pre-
sent the details of the argument to justify Occam’s razor. Section 4 introduces
Bayesian prediction. Section 5, which forms the philosophical heart of the
article, is devoted to a representation theorem that bridges Solomonoff’s pre-
dictors and Bayesian prediction. In section 6, I employ this representation
theorem to translate the argument in terms of Bayesian prediction, thereby
revealing the hidden assumptions and showing why the argument fails to
deliver a justification of Occam’s razor. I conclude in section 7.1

2. Setting the Stage. Here, I introduce the minimal amount of terminol-
ogy and notation that we need in this article. Section 2.1 covers sequential
prediction; section 2.2 covers computability and effectiveness.

2.1. Sequential Prediction. We consider sequential prediction of bi-
nary digits ðbitsÞ, elements of the set B ≔ f0, 1g. Having witnessed a finite
sequence j of bits, we are to make a probability forecast, based on j only, of
what bit comes next; then this bit is revealed, and the procedure is repeated.
Dawid ð1984Þ names it the prequential approach, for sequential prediction
in a probabilistic fashion.

Sources and Predictors. A probabilistic source represents a random
bit generating process. It is a function that returns for every finite se-
1. This article concerns the justification of Occam’s razor in the approach to predictive
inference on the basis of algorithmic information theory, the approach invented by Solo-
monoff. It is important to note that I make no claims here about other approaches to sta-
tistical inference in the field ðlike the Kolmogorov structure function; see Vitányi 2005Þ
and that my observations certainly have no direct bearing on approaches that are for large
part only inspired by algorithmic information theory, like the MDL principle. While
Rissanen ð1989Þ acknowledges that his “main source of inspiration in developing the
MDL principle for general statistical problems has been the theory of algorithmic com-
plexity [algorithmic information theory],” he is quick to add that “the role of the algorith-
mic complexity theory is inspirational, only, for almost everything about it, such as the
idea of a model and even the very notion of complexity, must be altered to make the ideas
practicable” ð10Þ. Two relevant ways in which the theory is fundamentally different are
that the notion of complexity in the MDL approach pertains to hypothesis classes or mod-
els ðso that the resulting simplicity bias is akin to that in the Bayes factor method; see
Kass and Raftery 1995Þ, rather than to data sequences or single hypotheses as in Solo-
monoff ’s theory ðGrünwald 2007, 31Þ, and that effectiveness plays no fundamental part,
whereas this is the key ingredient in Solomonoff ’s theory.
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quence of outcomes the probability that this sequence is generated. Hence,
it is a function S :B*→ ½0, 1� on the set B* ≔ [t∈ℕB

t of all finite outcome se-
quences such that, first, the initial probability equals 1 ðso SðeÞ 5 1 for the
empty sequence eÞ, and, second, it fulfills a condition of compatibility: for
all sequences j, the summed probability of both 1-bit extensions of j equals
the probability of j ðso Sðj0Þ 1 Sðj1Þ 5 SðjÞÞ.

A basic example of a probabilistic source is the Bernoulli source with
parameter p, which corresponds to the process of repeatedly generating a
bit with the same probability p of outcome 1. The special case of the Ber-
noulli source corresponding to the process of repeatedly generating a bit
with both outcomes having equal probability is given by SðjÞ ≔ 22jjj,
where FjF denotes the length of sequence j. Another example is a deter-
ministic source that just generates ðsayÞ the real number p in binary: it is
defined by SðjÞ 5 1 for all those j that are initial segments of the binary
development of p, and SðjÞ 5 0 for all other sequences.

A prediction method, or simply predictor, is a function that returns for
every finite sequence of outcomes a specific prediction. A prediction can
be a single element 0 or 1, but we take it more generally as a probability
distribution over both possibilities. Thus, a predictor is a function P :
B* →PB, with PB the class of all probability distributions over 0 and 1.

As an example, analogous to the Bernoulli source, one can define a pre-
dictor that always returns the probability distribution assigning probability
p to outcome 1. Another example is the “maximum likelihood” predictor
that returns for sequence j the probability distribution that assigns to out-
come 1 the relative frequency of 1’s in j.

As suggested by the Bernoulli example, a probabilistic source deter-
mines in a straightforward way a predictor, and vice versa. So, importantly,
we can treat predictors and probabilistic sources as formally interchange-
able objects. In all of what follows, I use the term “probabilistic source” in
an interpretation-neutral way, to simply refer to a function with the above
formal properties. That way, it makes sense to define a probabilistic source
and then interpret it as a predictor. Whenever I intend the interpretation of a
probabilistic source as giving the objective probabilities or chances in a ran-
dom process, I make this more explicit by talking about a data-generating
probabilistic source.2
2. For clarity of presentation, I have taken some amount of liberty in simplifying notions
and notation. Perhaps the most significant technical aspect that I ignore in the main text
is that the notion of a probabilistic source is actually understood in a somewhat weaker
sense. Namely, only the inequalities SðeÞ ≤ 1 and Sðj0Þ 1 Sðj1Þ ≤ SðjÞ for all j are re-
quired of a source S: such a source is called a semimeasure in the algorithmic infor-
mation theory literature ðas opposed to a measure that satisfies the equalitiesÞ. Also
see n. 10.
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Risk of a Predictor. To evaluate the anticipated performance of a predic-
tor, we need a notion of expected prediction error. We take the expec-
tation according to some presupposed actual data-generating probabilistic
source S*.

For the specification of prediction error, we have the choice of various
functions of the error ðor lossÞ of a prediction with respect to an actual out-
come. Let us fix as our loss function the customary function in the area, the
logarithmic loss; from this loss function we then obtain a specific measure
RtðS*, PÞ of expected prediction error, or simply risk, of predictor P for the
tth prediction.3 By summing the risks over all instances t ∈ ℕ, we have a
specification of the total risk RðS*, PÞ ≔ otRtðS*, PÞ.

2.2. Computability and Effectiveness. This subsection introduces the
basic notions from the theory of computability that we require in our setting
of sequential prediction.4

Turing Machines and Computability. A Turing machine represents a par-
ticular algorithm, or computer program. We need not be concerned here with
the formal definition: think of a Turing machineM as a black box that, when
presented with a bit sequence r for input, starts calculating and either halts
at some point ðproducing a bit sequence j for output: we write MðrÞ 5 jÞ
or goes on calculating forever.

The generally accepted Church-Turing Thesis states that every possible
algorithm corresponds to some Turing machine. If a Turing machine repre-
sents a particular computer program, a universal Turing machine represents
a general-purpose computer. A machine of this kind is called universal be-
cause it can emulate every other Turing machine. The reason that we can
define such a machine is that it is possible to enumerate a list fMigi∈ℕ of
all Turing machines in a calculable way, meaning that there is an algorithm
that given an index j reconstructs the jth Turing machine from this list. A
universal machine U implements such an algorithm: given as input the
concatenation of a code sequence h ji forMj and a sequence r, it will recon-
3. The logarithmic loss of a prediction giving probability p to actual outcome b is 2 log2 p.
For the agreeable properties of the logarithmic loss function in “pure inference,” see Ber-
nardo and Smith ð1994, 69–81Þ and Merhav and Feder ð1998, 2127–28Þ. The resulting
risk function is the Kullback-Leibler divergence, or relative entropy, that has an interpre-
tation as the quantity of information lost when estimating with the one source rather than
the other. Nothing in our discussion hinges on this interpretation, and indeed not much
hinges on the particular risk function: the relevant theorems 1 and 2 below ðat least for
sources that are measuresÞ continue to hold for other standard risk functions, like the
mean squared error. See Solomonoff ð1978, 426–27Þ and Li and Vitányi ð2008, 352–55Þ.
4. For a much fuller treatment of the theory of computability in the context of algorith-
mic information theory, see Nies ð2009Þ and Downey and Hirschfeldt ð2010Þ.
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structMj and calculateMjðrÞ. In symbols, Uðh i i rÞ 5 MiðrÞ for all i ∈ ℕ,
r ∈ B*.

The Church-Turing Thesis is therefore equivalent to the statement that
everything that is calculable is calculable by a universal Turing machine.
I reserve the term computable for the formal property of being calculable
by a universal Turing machine. Then a more economical formulation of
the Church-Turing Thesis reads: everything that is calculable is computable.

Effectiveness. LetD stand for an arbitrary but countable set of elements.
If D is not B*, I still simply writeMðdÞ and speak of machineM with input
d ∈D, where it is actually more proper to writeMðh d iÞ and speak ofMwith
input some code sequence h d i ∈ B* for d. This is possible because the el-
ements of a countable set D can always be encoded by finite bit sequences.

Call a function f :D→D0computable if there exists a Turing machine
M that represents it: MðdÞ 5 f ðdÞ for all d ∈ D. This definition applies to
integer- and rational-valued functions. A real-valued function f :D→ℝ
we call computable if some Turing machine can approximate its values up
to an arbitrary level of precision: there is some computable rational-valued
function g :D � ℕ→ℚ such that the difference j f ðdÞ 2 gðd, kÞj < 1=k
for all k ∈ ℕ. A somewhat weaker requirement than full computability is
semicomputability. Call a function f semicomputable ðfrom belowÞ if some
universal machine can compute ever-closer lower approximations to its val-
ues ðwithout revealing how closeÞ. That is, for such f there exists a comput-
able g :D � ℕ→ℚ with the property that for all d ∈ D and all s ∈ ℕ we
have that gðd, sÞ ≤ gðd, s 1 1Þ and lims→∞ gðd, sÞ 5 f ðdÞ.

I will treat semicomputability as the minimal level of calculability and
from this point on use the term effective for any function that satisfies it.
Note that, since they are functions on bit sequences, we can directly apply
this requirement to probabilistic sources and, hence, predictors.

Indeed, one might consider it a most basic requirement on what would
still count as a predictor that it provides probability assessments that are
at least in principle approximable by our means of calculation. With the
Church-Turing Thesis, this means that the class of possible predictors
should be restricted to the effective ones as defined above. This is a philo-
sophical point that I return to in section 7.

Conversely, we accept that any effective predictor does represent a possi-
ble method of prediction. We must do so, if we are to grant that Solomonoff’s
predictor below indeed represents a method of prediction, or the argument is
discredited from the start.

3. The Argument to Justify Occam’s Razor. Li and Vitányi ð2008Þ
write, “It is widely believed that the better a theory compresses the data con-
cerning some phenomenon under investigation, the better we have learned
and generalized, and the better the theory predicts unknown data, following
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the Occam’s razor paradigm about simplicity. This belief is vindicated in
practice but apparently has not been rigorously proved before. . . . We . . .
show that compression is almost always the best strategy . . . in prediction
methods in the style of R.J. Solomonoff ” ð347–48Þ. The general form of
the argument that we can distill from these words is as follows. First, we iden-
tify a class Q of predictors that have a distinctive preference for simplicity
ðpredictors “following the Occam’s razor paradigm”Þ. Here I mean “distinc-
tive,” to convey that predictors outside Q do not possess such a simplicity
bias. Second, we prove that these predictors are reliable ð“almost always the
best strategy”Þ.5 Taken together, the two steps establish a connection be-
tween two seemingly distinct properties of a predictor: a preference for sim-
plicity, on the one hand, and a general reliability, on the other. More precisely,
the two steps together yield the statement that if a predictor possesses a sim-
plicity bias, then it is reliable. Equivalently, predictors that possess a simplic-
ity bias are reliable.

In short, the argument is as follows:

1. Predictors in class Q possess a distinctive simplicity bias.
2. Predictors in class Q are reliable.
∴ Predictors that possess a simplicity bias are reliable.

Occam’s razor, in our setting of sequential prediction, is the principle that a
predictor should possess a simplicity bias. The conclusion of the above ar-
gument provides an epistemic justification for the principle of Occam’s ra-
zor, so stated. A predictor should possess a simplicity bias because if it
does, it is reliable.6

We now need to make precise the two steps of the argument, including
the relevant notions of simplicity and reliability. I discuss the explication of
step 1 in section 3.1 and that of step 2 in section 3.2. I revisit the complete
argument in section 3.3.

3.1. Step 1: The Predictor. A monotonemachine is a particular kind of
Turing machine that can be seen to execute an “online” operation: in the
course of processing a continuous stream of input bits, it produces a poten-
tially infinite stream of output bits. Formally, such a machineM has the prop-
erty that for any extension r0 of any input sequence r ðwe write r ≼ r0Þ, ifM
5. This phrasing suggests a weaker property than reliability ði.e., convergence to the truthÞ,
namely, optimality ðconvergence to predictions that are at least as good as those of any
other prediction methodÞ. However, the proof that is referred to is about reliability.

6. Note that the proposed justification only asserts that a simplicity bias is sufficient for
reliability. One might feel that a true justification should also include the necessity of a
simplicity bias for reliability: only the predictors inQ are reliable. It is possible to revise
the argument to yield the stronger statement. However, for ease of presentation I here
stick to the former argument.
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yields an output on r0 at all, it yields an output Mðr0Þ that is also an exten-
sion of MðrÞ ðso MðrÞ ≼Mðr0ÞÞ. The monotone machine model suffers no
loss of generality in what can be computed: every function calculable by a
standard Turing machine is calculable by some monotone machine. The
reason why this machine model is central to the theory is that the monoto-
nicity property allows us to directly infer from each monotone machine a
particular probabilistic source.We now proceed to do so for a universalmono-
tone machine.

So suppose we have some universal monotone machine U, and suppose
we feed it random bits for input: we repeatedly present it a 0 or a 1 with
equal probability 0.5. For any sequence r, the probability that we in this
way end up giving the machine a sequence starting with r only depends
on the length FrF: this probability is 22FrF. Having processed r, the ma-
chine will have produced some output sequence. For a sequence j of any
length that starts this output sequence, we can say that input r has served
as an instruction for U to produce j. For this reason we call sequence r a
U-description of j.

We can now ask the question: If we feed machine U random bits, what is
the probability that it will return the sequence j? In other words, if we gen-
erate random bits, what is the probability that we arrive at someU-description
of given j? This probability is given by Solomonoff’s algorithmic probabi-
listic source.
7 Publ
Definition 1 ðSolomonoff 1964Þ. The algorithmic probabilistic source
QU :B* → ½0, 1� via universal monotone Turing machine U is given by
QUðjÞ ≔ or∈DU ,j

22jrj, with DU,j the set of minimal U-descriptions of j, that
is, the set of sequences r such that UðrÞ ≽ j and not Uðr0Þ ≽ j for any
shorter sequence r0 ≺ r.
We see that a sequence j receives greater algorithmic probability QUðjÞ as
it has shorter descriptions r. The accompanying intuition is that j receives
greater algorithmic probability as it is more compressible. If we further ac-
cept this measure of compressibility as a general measure of simplicity of
finite data sequences, then we can say that a sequence receives greater al-
gorithmic probability as it is simpler.

By the formal equivalence of probabilistic sources and predictors ðsec. 2.1Þ,
we can reinterpret an algorithmic probabilistic source as an algorithmic
probability predictor. Given data sequence j, the probability according to
predictor QU of bit b showing next is the conditional probability QUðb jjÞ ≔
QUðjbÞ=QUðjÞ.

Following the above intuition about data compression, the one-bit exten-
sion jbwith the greatest algorithmic probabilityQUðjbÞ among the two pos-
sibilities j0 and j1 is the one that is the more compressible. Consequently,
we see from the above equation that QUðbFjÞ is greatest for the b such that
ished online by Cambridge University Press
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jb is the more compressible. Hence, the algorithmic probability predictor
QU will prefer the bit b that renders the complete sequence jb more com-
pressible. This is, in the words of Ortner and Leitgeb ð2011, 734Þ, “evi-
dently an implementation of Occam’s razor that identifies simplicity with
compressibility.”

The above reasoning applies to the algorithmic probability predictor QU

for any choice of universal Turing machine U. Since there are infinitely
many universal machines, we have an infinite class of algorithmic probabil-
ity predictors.

Let us denoteQ ≔ fQUgU the class of algorithmic probability predictors
via all universal machines U. Thus, we have specified a class of predictors
Q that possess a distinctive simplicity-qua-compressibility bias.

3.2. Step 2: The Reliability of the Predictor. The crucial result is that
under a “mild constraint” on the presupposed actual data-generating source
S*, we can derive a precise constant upper bound on the total risk of the
predictor QU. The “mild constraint” on S* is that it is itself effective. It
can be shown that this property guarantees that we can represent S* in terms
of the behavior of some monotone machine M*, which in turn can be em-
ulated by the universal monotone machine U. Then we can define a weight
WUðS*Þ that is a measure of how easily U can emulate M*, more precisely,
how short the U-codes of M* are. This weight gives the constant bound on
QU’s risk, as defined in section 2.1.
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Theorem 1 ðSolomonoff 1978Þ. For every effective data-generating probabi-
listic source S*, and for every universal monotone machine U, RðS*,QUÞ ≤
2log2 WUðS*Þ.
A direct consequence of the constant bound on the total risk is that the predic-
tions of QU must rapidly converge, with S*-probability 1, to the presupposed
actual probability values given by probabilistic source S*.7 With S*-probability
1, we have that QUðbjX t21Þ →t→∞ S*ðbjX t21Þ.8
e type of convergence of theorem 1, called convergence in mean sum to a constant
utter ð2003Þ, lies between the type of convergence results that are silent about the
f convergence ðlike the merger-of-opinion results of Blackwell and Dubins [1962]
aifman and Snir [1982]Þ and the type of results that provide an explicit bound on
sk for the tth prediction. Convergence in mean sum to a constant is a fairly strong
of convergence: common bounds on the risk for the tth prediction in results of the
d type cannot guarantee a constant bound on the total risk. This warrants speaking
apid” convergence. However, the bound of theorem 1 becomes less surprising if
ealizes that the class of possible effective data-generating sources is only countable
result of effectivenessÞ, whereas convergence results normally presuppose un-

table hypothesis classes ðcf. Solomonoff 1978, 427; Li and Vitányi 2008, 357–58Þ.
rictly speaking, this probability 1 convergence can only hold for ðand theorem 1 is
literature only stated forÞ sources S* that are measures ðsee n. 2Þ. However, the-
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Let us more precisely define a predictor P to be reliable for S* if, with S*-
probability 1, its predictions converge to the actual conditional S*-probability
values. Then, under the “mild constraint” of effectiveness of the actual source,
the predictor QU is reliable. It would motivate the conclusion that QU is re-
liable “in essentially every case.”

3.3. The Complete Argument. Let me restate the full argument:

1. Predictors in classQ possess a distinctive simplicity-qua-compressibility
bias.

2. Predictors in class Q are reliable in essentially every case.
∴ Predictors that possess a simplicity-qua-compressibility bias are reli-

able in essentially every case.

Again, the conclusion of the argument asserts a connection between two
seemingly distinct properties of predictors: a preference for simplicity
and a general reliability. The establishment of this connection between a
simplicity preference and a general reliability justifies the principle that a
predictor should prefer simplicity, the principle of Occam’s razor.

Note, however, that compared to the statement of the argument at the be-
ginning of this section, I have added a minor qualification to both of the
steps. Both qualifications are actually very much related, and spelling them
out will show that the two properties are not so distinct after all. At heart, it
is this fact that makes the conclusion of the argument fail to justify Occam’s
razor. In order to make all of this explicit, I now turn to the framework of
Bayesian prediction.

4. Bayesian Prediction. Here, I discuss the definition and interpretation
of Bayesian predictors ðsec. 4.1Þ, their reliability property of consistency
ðsec. 4.2Þ, and the special class of effective Bayesian predictors ðsec. 4.3Þ,
still in the setting of sequential bit prediction.

4.1. Bayesian Predictors. Bayesian prediction sets off with the selec-
tion of a particular class S of probabilistic sources, which serves as our class
of hypotheses. ðI here restrict discussion to hypothesis classes that are count-
able.Þ Next, we define a prior distribution ðor weight functionÞ W : S→
½0, 1� over our hypothesis class. The prior W is to assign a positive weight
to the hypotheses and only the hypotheses in S. An equally valid way of
looking at things is that the definition of a particular prior W induces a hy-
orem 1 and a suitably analogous convergence are straightforwardly obtained for the gen-
eral case of semimeasures.
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pothesis class S, simply defined as the class of hypotheses that receive a
positive prior. In any case, we have W ðSÞ > 0 ⇔ S ∈ S.

Following Howson ð2000Þ and Romeijn ð2004Þ, the prior embodies our
inductive assumption. If induction, in our setting of sequential prediction, is
the procedure of extrapolating a pattern in the past to the future, then the
lesson of the new riddle of induction ðGoodman 1955; also see Stalker
1994Þ is that there is actually always a multitude of candidate patterns.
One can therefore only perform induction relative to a particular pattern
or a hypothesis that represents a pattern that we have seen in the past data
and that we deem projectable in the future. From a Bayesian perspective,
the hypotheses that we give a positive prior represent the potential patterns
in the data that we deem projectable; the other hypotheses, receiving prior 0,
represent the patterns that we exclude from the outset. The great merit of the
Bayesian framework is that it locates our inductive assumption very pre-
cisely, namely, in the prior.

We are now in the position to define a Bayesian prediction method. It is a
prediction method that operates under the inductive assumption of the cor-
responding prior W.
86/6872
Definition 2. TheBayesian predictor P S
W :B* → ½0, 1� via priorW on count-

able hypothesis class S is given by PS
W ðjÞ ≔ oS∈SW ðSÞSðjÞ.
Given data sequence j, the probability according to PS
W of bit b appear-

ing next is the conditional probability PS
W ðbjjÞ 5 P S

W ðjbÞ=P S
W ðjÞ 5 oS∈S

W ðSjjÞSðbjjÞ.

4.2. The Consistency of Bayesian Predictors. To operate under a par-
ticular inductive assumption means to predict well whenever the data
stream under investigation follows a pattern that conforms to this inductive
assumption. More precisely, if a Bayesian predictor operates under a partic-
ular inductive assumption, embodied by a prior over a particular hypothesis
class S, it will predict well whenever some hypothesis S ∈ S fits the data
stream well: whenever the data stream is probable according to some S ∈
S. More precisely still, the predictor will from some point on give a high
probability to each next element of a data stream whenever there is some
S ∈ S that has done and keeps on doing so.

This property is closely related to the property of predicting well when-
ever the data are in fact generated by some source S* ∈ S. If by “predicting
well” we mean converging ðwith probability 1Þ to the true conditional prob-
abilities, then this is again the property of reliability ðsec. 3.2Þ.

We can prove that any Bayesian predictor, operating under the inductive
assumption of S, is reliable under the assumption that the data are indeed
generated by some source S* ∈ S. Indeed, we can derive a result completely
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parallel to theorem 1 on the total risk ðas defined in sec. 2.1Þ of the Bayesian
predictors:9
9. Th
ð1978
Hutte

10. T
descr
a mix
putab
predi
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isÞ. ðS
ening
seen
to the
comp

7 Publ
Theorem 2. For every data-generating probabilistic source S* ∈ S, and
for every prior W on S, RðS*, PS

W Þ ≤ 2log2 W ðS*Þ.
Again, this bound on the total risk of P S
W entails its convergence to S*. For

every actual S* that is indeed a member of the hypothesis class S, the pre-
dictions of the Bayesian predictors P S

W will converge with S*-probability 1
to the actual probability values given by S*. This is called the consistency
property of Bayesian predictors.

4.3. The Effective Bayesian Predictors. Recall that the second step of
the argument for Occam’s razor relied on the “mild assumption” of effec-
tiveness. This is an inductive assumption. In the Bayesian framework, we
can explicitly define the class of predictors that operate under this inductive
assumption.

Let Seff be the class of probabilistic sources that are effective. The induc-
tive assumption of effectiveness is expressed by any prior W that assigns
positive weight to the elements and only the elements of this class. If we
moreover put the constraint of effectiveness on the priorW itself, the result-
ing Bayesian mixture predictor PSeff

W will itself be effective. A predictor of
this kind we call an effective Bayesian mixture predictor, or effective mix-
ture predictor for short.10
Definition 3. The effective Bayesian mixture predictor P eff
W :B*→ ½0, 1� via

effective prior W on Seff is given by P
eff
W ðjÞ ≔ PSeff

W ðjÞ 5 oS∈Seff
W ðSÞSðjÞ.
Let R ≔ fP eff
W gW denote the class of effective mixture predictors via all ef-

fective priors W, that is, the class of all effective mixture predictors.
is “folklore” result ðsee, e.g., Barron 1998Þ could also be attributed to Solomonoff
Þ, as it follows from the exact same proof as the one for theorem 1. See Poland and
r ð2005Þ. Here, too, the qualification of n. 8 applies.

he class of effective sources ðsemicomputable semimeasures; see n. 2Þ was first
ibed by Zvonkin and Levin ð1970Þ, although Solomonoff ð1964Þ already indicated
ture over the class of computable measures. The shortcoming of the class of com-
le measures is that it cannot be computably enumerated; consequently, a mixture
ctor P

Scomp

W cannot be effective. In contrast, the larger class Seff of semicomputable
easures can be enumerated, and the mixture P

Scomp

W is effective ðas long as W
ince for measures, semicomputability already implies full computability, the weak-
to semicomputability necessitates the weakening to semimeasures.Þ This can be
as the motivation for introducing the class of probabilistic sources corresponding
semicomputable semimeasures, rather than the seemingly more natural class of
utable measures.
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5. The Representation Theorem. Theorem 3 below is a representation
theorem that forms the bridge between the algorithmic probability predic-
tors and the effective mixture predictors, and that is the key to defusing
the argument to justify Occam’s razor in section 6. After the statement of
the theorem in section 5.1, I discuss how the theorem illuminates a central
theme surrounding Solomonoff’s algorithmic probabilistic source, namely,
its claim to objectivity. I initiate this discussion in section 5.2 on Solo-
monoff ’s original motivation to define an objective-logical measure func-
tion in the spirit of Carnap and complete it in section 5.3 on the correspon-
dence between the choice of universal machine and the choice of Bayesian
effective prior. Finally, section 5.4 treats the two directions of reading the
theorem, in analogy to the original representation theorem of de Finetti.

5.1. The Theorem. The crucial fact is that definition 3 of the effective
mixture predictor is equivalent to definition 1 of the algorithmic probability
predictor. Recall that Q 5 fQUgU denotes the class of algorithmic proba-
bility predictors via all universal monotone Turing machines U and that
R 5 fP eff

W gW denotes the class of effective mixture predictors via all effec-
tive priors W. Then:
11. I
autho
equiv
prese
mono

86/6872
Theorem 3 ðWood, Sunehag, and Hutter 2013Þ. Q 5 R.
Thus, every algorithmic probability predictor via some U is an effective
mixture predictor via some W and vice versa.11

Among the philosophical fruits of theorem 3 is the light it sheds on the
discussion about the element of subjectivity in the definition of the algorith-
mic probabilistic source. I spell this out in section 5.3; to prepare the ground
I first discuss the origin of Solomonoff’s work in Carnap’s early program of
inductive logic.

5.2. Algorithmic Probability as an Objective Prior. Solomonoff makes
explicit reference to Carnap ð1950Þ when he sets out his aim: “we want cða,
T Þ, the degree of confirmation of the hypothesis that [bit] a will follow,
given the evidence that [bit sequence] T has just occurred. This corresponds
to Carnap’s probability1” ð1964, 2Þ. Solomonoff ’s restriction of scope to
what we have been calling sequential prediction aligns with Carnap’s posi-
tion that “predictive inference is the most important kind of inductive infer-
should note that theorem 3 is established by a fairly simple derivation, and even the
rs themselves consider it only a minor improvement on the well-known asymptotic
alence of the members of Q and R. The claim of this article is that the theorem
nts ðthe sharpest expression of Þ a conceptually very significant fact about Solo-
ff ’s theory.
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ence” ð1950, 568Þ, from which other kinds may be construed as special
cases. Carnap’s “singular predictive inference,”which is “the most important
special case of the predictive inference” ð568Þ, concerns the degree of con-
firmation bestowed on the singular prediction that a new individual c has
propertyM by the evidence that s1 out of s individuals witnessed so far have
this propertyM. If we translate this information into a bit sequence by simply
writing 1 at the ith position for the ith individual having property M ðand 0
otherwiseÞ, then we recover the problem of sequential prediction.12

Solomonoff’s explication of degree of confirmation in our notation is
the conditional algorithmic probability QUðbjjÞ 5 QUðjbÞ=QUðjÞ, analo-
gous to a Carnapian confirmation function c that is defined by cðh, eÞ ≔
mðhjeÞ 5 mðh  &  eÞ=mðeÞ for an underlying regular measure function m
on sentences in a chosen monadic predicate language. To Carnap, the value
mðhÞ that equals the null confirmation c0ðhÞ of h is “the degree of confirma-
tion of h before any factual information is available” ð1950, 308Þ, which he
allows might be called the “initial probability” or the “probability a priori”
of the sentence. Degree of confirmation is a “logical, semantical concept”
ð19Þ, meaning that the value cðh, eÞ is established “merely by a logical anal-
ysis of h and e and their relations” ð20Þ, independent of any empirical fact,
and so the underlying null confirmation c0 also corresponds to “a purely log-
ical function for the argument h” ð308Þ. Thus, c0 is an objective prior dis-
tribution on sentences, where its objectivity derives from its logicality ð43Þ.

Likewise, Solomonoff seeks to assign “a priori probabilities” to sequences
of symbols; although the approach he takes is to “examine the manner in
which these strings might be produced by a universal Turing machine”
ð1964, 3Þ, following an intuition about objectivity deriving from computa-
tion. The resulting explication of the null confirmation is the familiar algo-
rithmic probabilistic source, which is indeed commonly referred to in the lit-
erature as the “universal a priori distribution” on the finite bit sequences.

5.3. The Element of Subjectivity. However, if the algorithmic probabi-
listic source is supposed to function as a “single probability distribution to
use as the prior distribution in each different case” ðLi and Vitányi 2008,
347Þ, then it starts to look problematic that QU is not uniquely defined
ðcf. Solomonoff 1986, 477; Hutter 2007, 44–45Þ.
12. Note that this translation presupposes a ðtemporalÞ ordering of individuals, which is
something Carnap did not presuppose ð1950, 62–64Þ. This is an important deviation: for
Solomonoff, sequences 00001111 and 10101010 are different and should presumably
confer different degrees of confirmation on the next bit being 1; for Carnap both sen-
tences, translated back, express the same fact that four individuals in a sample of eight
have property M.

7 Published online by Cambridge University Press

https://doi.org/10.1086/687257


SOLOMONOFF PREDICTION AND OCCAM’S RAZOR 473

https://doi.org/10.10
The Subjective Choice of Universal Machine. The fact is that the defini-
tion of the algorithmic probabilistic source retains an element of arbitrari-
ness or subjectivity in the choice of universal machine U. There does exist
an important Invariance Theorem to the effect that the shortest descriptions
via one universal machine U are not more than a fixed constant longer than
the shortest descriptions via anotherU 0. This implies that the probability as-
signments of two algorithmic probability sources via different machines U
and U 0 never differ more than a fixed factor, which in turn implies that any
two different QU and QU 0 converge to the same probability values as data
sequences get longer: Machines QU and QU 0 are asymptotically equivalent.
The Invariance Theorem is generally taken to grant the definition of the al-
gorithmic probability source a certain robustness. Indeed, the formulation
of this theorem, independently by Solomonoff ð1964Þ, Kolmogorov ð1965Þ,
and Chaitin ð1969Þ, is considered to mark the birth of algorithmic informa-
tion theory. In Kolmogorov’s ownwords, “The basis discovery . . . lies in the
fact that the theory of algorithms enables us to limit this arbitrariness [of a
complexity measure that depends on a particular description method] by
the determination of a ‘complexity’ that is almost invariant” ðquoted in
Shiryaev 1989, 921; also see Li and Vitányi 2008, 95–99, 192Þ.

However, the constant factor that binds two different sources can still be
arbitrarily large. And there does not appear to be a principled way to single
out a “most natural” or objective universal machine with which to define the
algorithmic probabilistic source.13

The Shift to the Subjective. Carnap himself ð1945, 1950Þ, when he does
propose as an explicatum of probability1 a confirmation function c* based
on a unique measure function m*, is careful not to make the claim that “c*
is a perfectly adequate explicatum of probability1, let alone that it is the only
adequate one” ð1950, 563Þ, and he indeed already ðin Carnap 1952Þ resorts
to a continuum of confirmation functions cl parametrized by l ∈ ½0,∞�. Un-
deniably, “the selection of a particular value of l to uniquely determine a
measure seems in the grand tradition of subjective theories of probability”
ðSuppes 2002, 198Þ.14

The same can be said of the selection of a particular universal machine U
to uniquely define QU, but acceptance of this circumstance has been slow in
13. Müller ð2010Þ presents an interesting attempt to isolate a machine-invariant version
of algorithmic probability. He concludes that “there is no way to get completely rid of
machine-dependence, neither in the approach of this paper nor in any similar but differ-
ent approach” ð126Þ.
14. Also see Jeffrey ð1973, 302–3Þ, for a brief and lucid evaluation of Carnap’s subjec-
tivism, and Zabell ð2011, 301–5Þ, for a more extensive overview of Carnap’s “shift to
the subjective.”
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the field: “for quite some time I felt that the dependence of [the algorithmic
probabilistic source] on the reference machine was a serious flaw in the con-
cept, and I tried to find some ‘objective’ universal device, free from the ar-
bitrariness of choosing a particular universal machine” ðSolomonoff 2009,
9–10Þ. Nevertheless, in his later writings Solomonoff, too, turned away
from the idea of a single most objective universal machine and came to em-
brace the choice of universal machine as an inevitable and essentially sub-
jective element of prior information in the definition of the algorithmic
probabilistic source ð9–11Þ.

The Subjective Choice of Effective Prior. The subjective element that lies
in the choice of a specific universal machine is analogous to the subjective
element in the choice of a specific effective prior in a Bayesian mixture over
effective hypotheses. Note that the priorsW andW 0 of any two Bayesian pre-
dictors P eff

W and P eff
W 0 give positive weight to each other, which again implies

that their probability assignments do not differ more than these weight fac-
tors, but, again, those weights may be arbitrarily small. Moreover, like uni-
versal machines, some effective priors appear more natural than others, and
some complicated priors would probably look very unnatural, but there does
not appear to be a principled way to single out a most natural or objective
one.

A correspondence between the choice of universal machine and the
choice of Bayesian prior over effective hypotheses has been noted before,
for instance, by Wallace ð2005, 401–4Þ. Theorem 3 tells us that the analogy
between universal monotone machines and effective priors over the effec-
tive probabilistic sources is in fact an exact correspondence.

5.4. Reading the Representation Theorem. De Finetti’s celebrated rep-
resentation theorem ð1937/1964Þ states ðtranslated to our setting of sequen-
tial bit predictionÞ the equivalence of a particular class of predictors, namely,
those that are exchangeable ði.e., that assign the same probability to se-
quences with identical numbers of 0’s and 1’sÞ, and a particular class of
Bayesian mixtures, namely, those densities over the independently and
identically distributed ði.i.d.Þ sources. Theorem 3 likewise states the equiv-
alence of a particular class of predictors, the class of algorithmic probability
predictors, and a particular class of Bayesian mixtures, the effective mix-
tures over the effective sources.

For de Finetti, the significance of his result was that “the nebulous and
unsatisfactory definition of ‘independent events with fixed but unknown
probability,’ ” that is, the notion of an underlying i.i.d. probabilistic source,
could be abandoned for a “simple condition of ‘symmetry’ in relation to our
judgments of probability,” that is, a property of our predictors ð1937/1964,
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142Þ. In the interpretation of Braithwaite ð1957Þ and Hintikka ð1971Þ, talk
of general hypotheses, problematic from a strictly empiricist point of view,
could be abandoned for constraints on methods of prediction. An allied sen-
timent about the dispensability of general hypotheses is expressed byCarnap
ð1950, 570–75Þ and is subsequently embraced by Solomonoff: “I liked [Car-
nap’s confirmation function] that went directly from data to probability dis-
tribution without explicitly considering various theories or ‘explanations’ of
the data” ð1997, 76Þ.

However, one could also reason the other way around ðcf. Romeijn
2004Þ. Namely, a representation theorem that relates a particular class of
Bayesian mixtures and a particular class of predictors, like de Finetti’s the-
orem or theorem 3, shows that this particular class of predictors operates
under a particular inductive assumption. This is the inductive assumption
that is codified in the priors of the Bayesian mixtures in this particular class:
those patterns are assumed projectable that are represented by hypotheses
that receive a nonzero prior. Thus, de Finetti’s representation theorem shows
that the exchangeable predictors operate under the inductive assumption of
an i.i.d. source, and theorem 3 shows that the algorithmic probability predic-
tors operate under the inductive assumption of an effective source. It is es-
sentially this insight that defuses the argument to justify Occam’s razor, as
I show next.

6. Defusing the Argument. Here, I recast ðsec. 6.1Þ and thereby defuse
ðsec. 6.2Þ the argument.

6.1. The Argument Recast. By theorem 3, the following two formula-
tions of step 1 of the argument to justify Occam’s razor are equivalent.

1. Predictors in class Q possess a distinctive simplicity-qua-compressi-
bility bias.

1. Predictors in classR operate under inductive assumption of effective-
ness.

Furthermore, since “in essentially every case” is to mean “under the as-
sumption of effectiveness of the actual data-generating source,” theorem
1 about the bound on the total risk of the algorithmic probability predictors
QU is equivalent to theorem 2 about the consistency of the Bayesian predic-
tors, applied to the class of effective predictors P eff

W . Hence, the following
two formulations of step 2 are equivalent.

2. Predictors in class Q are reliable in essentially every case.
2. Predictors in class R are consistent.
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If we make the property of consistency in step 2 explicit, the two steps of
the argument look as follows.

1. Predictors in classR operate under inductive assumption of effective-
ness.

2. Predictors in class R are reliable under assumption of effectiveness.

Taken together, the two steps yield the conclusion that predictors that oper-
ate under the inductive assumption of effectiveness are reliable under the
assumption of effectiveness.

6.2. The Argument Defused. In the original formulation, we define a
class of predictors with a distinctive simplicity bias that we can subsequently
prove to be reliable “in essentially every case.” This formulation suggests
that we have established a connection between two properties of a predictor
that are quite distinct. We got out a general reliability, whereas we put in a
specific preference for simplicity. This link between a simplicity bias and re-
liability provides an epistemic justification of Occam’s razor, the principle
that a predictor should have a simplicity bias.

The more explicit reformulation shows that the original formulation is
misleading. We got out what we put in, after all. We define a class of pre-
dictors that operate under the inductive assumption of effectiveness, which
we can subsequently prove to be reliable under the very same assumption of
effectiveness.

Indeed, a renewed look at the simplicity bias described in section 3.1 un-
veils the notion of simplicity involved as a peculiar one. The issue of sub-
jectivity ðsec. 5.3Þ concretely means that we can make any finite sequence
arbitrarily “simple” by an apt choice of universal Turing machine, which is
the common objection against the idea that algorithmic information theory
can provide an objective quantification of the simplicity of finite sequences
ðcf. Kelly 2008, 324–25Þ. Then this simplicity notion could only meaning-
fully apply to infinite data streams,with an interpretation of “asymptotic com-
pressibility by some machine,” or, equivalently, “asymptotic goodness-of-fit
of some effective hypothesis.” But this notion as a property of a predictor is
really the expression of a particular inductive assumption ðsec. 4.2Þ, the induc-
tive assumption of effectiveness. The upshot is that this property is certainly
a simplicity notion in the weak sense in which any inductive assumption can
be seen as a specific simplicity stipulation ðif only for the plain reason that
an assumption restricts possibilitiesÞ, but it would require a whole new argu-
ment to make plausible that the particular assumption of effectiveness is
somehow preferred in defining simplicity in this sense or even gives a simplic-
ity notion in a stronger sense. And even if it could be argued that effectiveness
yields such a privileged simplicity notion, it is still not effectiveness ðhence
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not simplicity as suchÞ that drives the connection to reliability: theorem 2 tells
us that, at least for countable hypothesis classes, consistency holds for every
inductive assumption that we formalize in W.

The conclusion is that the argument fails to justify Occam’s razor.

7. Concluding Remarks. The central element of Solomonoff’s theory of
prediction is the constraint or assumption of effectiveness. This is clearly
revealed by theorem 3, which states that Solomonoff’s algorithmic proba-
bility predictors are precisely the Bayesian predictors operating under the
inductive assumption of effectiveness.

The argument to justify Occam’s razor does not work because the sup-
posed connection between a predictor’s simplicity preference and a pre-
dictor’s general reliability, as forged by theorem 1, is really the connection
between a predictor’s operating under a particular inductive assumption
ðeffectiveness, in this caseÞ and a predictor’s reliability under this same as-
sumption. This is an instance of Bayesian consistency that is quite irrespec-
tive of the particular assumption of effectiveness.

If there exists a way to salvage the argument at all, then it would have to
consist in demonstrating anew that effectiveness as an inductive assumption
does lead to a fundamental simplicity notion. Regardless of the feasibility
of such an undertaking, it would tie in with a more general project that cer-
tainly looks significant. This project is the inquiry into the philosophical in-
terest of the assumption of effectiveness, particularly in the setting of se-
quential prediction—which, I submit, makes for the philosophical interest
of Solomonoff’s theory.

Now effectiveness does not appear very interesting in the naive shape of
a constraint on possible data-generating sources, that is, as an assumption
about processes in the world. There seems little ground for promoting the
notion of effectiveness, an eminently epistemological notion that is to an-
swer the epistemological question of what we can possibly calculate, to a
constraint on the world ða positively metaphysical constraintÞ. Nor have de-
cades of debate about “computability in nature” uncovered support for such
a move.15

However, the assumption of effectiveness does look very interesting in a
different shape. Namely, effectiveness seems much more natural as a re-
striction on our own epistemic capabilities. In particular, it seems natural
to say that all methods of prediction we can possibly design must be effec-
tive ðsec. 2.2Þ. If we accept this, then it is possible to prove that the algo-
rithmic probability predictor will come to predict as well as any other pre-
15. See Piccinini (2011) for a recent overview of the debate about “physical” variants of
the Church-Turing Thesis that make assertions about constraints on possible physical
processes in terms of computability.
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dictor. That is, an algorithmic probability predictor would represent the best
we can do. This would render Solomonoff’s predictor an idealized limit
case of predicting at least as good as any member of a specific class of com-
peting predictors ðnamely, the limit case of the class of all predictorsÞ, the
central idea in the machine learning branch of universal prediction and the
philosophical proposal of meta-induction. Indeed, rather than in the tradi-
tion of Carnap, addressing Hume’s problem of the justification of induction
by insisting on an objective starting point, this view of Solomonoff ’s theory
is closer to a pragmatic approach to induction, going back to Reichenbach
ð1935Þ.
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