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Abstract

Invasive species are widely recognized as a major threat to global diversity and an important
factor associated with global change. Species distribution models (SDMs) have been widely
applied to determine the range that invasive species could potentially occupy, but most exam-
ples focus on predictive variables at a single spatial scale. In this study, we simultaneously con-
sidered a broad range of variables related to climate, topography, land cover, land use, and
propagule pressure to predict what areas in the southeastern United States are more susceptible
to invasion by 45 invasive terrestrial plant species. Using expert-verified occurrence points from
EDDMapS, we modeled invasion susceptibility at 30-m resolution for each species using a
maximum entropy (MaxEnt) modeling approach. We then analyzed how environmental
predictors affected susceptibility to invasion at different spatial scales. Climatic and land-use
variables, especially minimum temperature of coldest month and distance to developed areas,
were good predictors of landscape susceptibility to invasion. For most of the species tested,
human-disturbed systems such as developed areas and barren lands were more prone to be
invaded than areas that experienced minimal human interference. As expected, we found that
landscape heterogeneity and the presence of corridors for propagule dispersal significantly
increased landscape susceptibility to invasion for most species. However, we also found a num-
ber of species for which the susceptibility to invasion increased in landscapes with large core
areas and/or less-aggregated patches. These exceptions suggest that even though we found the
expected general patterns for susceptibility to invasion among most species, the influence of
landscape composition and configuration on invasion risk is species specific.

Invasive species have a significant effect on the structure and functioning of healthy ecosystems
and also degrade human health and wealth (Py$ek and Richardson 2010; Vitousek et al. 1997).
However, one of the major difficulties in deciding how to manage these species is uncertainty of
future introduction, spread, and impact (Maguire 2004). Thus, predicting distributions of inva-
sive species has become of worldwide interest (Robinson et al. 2017). Species distribution models
(SDMs) are one of the quantitative tools that have been investigated for estimating the ranges
that invasive species could potentially occupy in areas where they are introduced (Hui and
Richardson 2017). SDMs combine species occurrence observations with geospatially referenced
environmental data to predict distributions of species across landscapes and seascapes (Elith and
Leathwick 2009; Elith et al. 2011). Output from SDMs can be used to produce invasion risk maps
that can greatly facilitate invasive species management and diminish the levels of uncertainty
concerning vulnerability of recipient ecosystems to future invasions. An important caveat with
this approach, however, is that SDMs may be less effective in modeling recently introduced inva-
sive species if they are not yet at equilibrium with the environment (i.e., they are still spreading
and, in some cases, exploring available niche space in the introduced range; Welk 2004).

Unfortunately, many studies investigating the utility of SDMs for management of invasive
plants have used climate as the only environmental variable to predict future spread of plant
species (e.g., Bradley 2009; Bradley et al. 2010; Hijmans and Graham 2006; Petitpierre et al.
2017). Climate-based approaches ignore the complexity of historical and environmental factors
such as topography, land use, and land cover that also contribute to a species’ distributional
range and influence the spread of plant species at regional and landscape scales (Ibafiez
et al. 2009b). In some cases, those variables have greater importance than climate in intrare-
gional projections (Kelly et al. 2014). For instance, Pauchard and Alaback (2004) and
Rouget and Richardson (2003) found that, at localized spatial scales, topographic variables such
as elevation, aspect, and slope gradient greatly influenced the establishment and spread of inva-
sive species.
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Management Implications

The southeastern United States experiences widespread chal-
lenges from the spread of invasive exotic plant species.
Conservation and restoration efforts will benefit from the inclusion
of areas at high risk of invasion in their management plans, especially
in “natural” areas with species and ecosystems of conservation con-
cern. However, multiple environmental variables, such as climate,
topography, land cover, land use, and propagule pressure, are known
to contribute to the expansion of species distributional ranges, and
these are rarely considered simultaneously in modeling efforts. The
modeling approach described here allows for the delineation of areas
likely to be invaded by major terrestrial invasive plant species, taking
into account environmental variables across a large geographic
region. Our results suggest that variables at scales from climatic
to local land use can inform predictions of areas likely to be invaded,
but the influence of these variables on invasion risk is species spe-
cific. Therefore, management plans should consider how each indi-
vidual species is affected by (1) the proportion of the landscape
occupied by the different land cover types, (2) the amount of edge
in the landscape, and (3) the degree of aggregation and cohesion
of patch types within the context of larger-scale environmental
drivers.

Human activities are also key to understanding trends in bio-
logical invasions. For example, contemporary and historical
land-use patterns have shaped invasive species distributions
throughout a region over long periods of time (Kuhman et al.
2013; Parks et al. 2005; Vila and Pujadas 2001), and invasive species
establishment has been favored by human-mediated disturbances
that alter the characteristics of a recipient ecosystem (Lake and
Leishman 2004; Wavrek et al. 2017). Despite potential interactions
among different categories of landscape-scale variables, studies
that integrate multiple types of variables (e.g., climate, topography,
land cover, land use, and propagule pressure) in predicting invasive
species distributions are scarce within the literature (Bradie and
Leung 2017; but see, e.g., Cabra-Rivas et al. 2016; Catford et al.
2011; Chytry et al. 2008; Ibafez et al. 2009a; Kelly et al. 2014;
Vetter et al. 2018; Walker et al. 2017). Landscape composition
and configuration are additional variables that have been shown
to play pivotal roles in the establishment and spread of invasive
plant species (e.g., Riitters et al. 2017; Vila and Ibafez 2011;
With 2002). Presence of suitable patches for colonization, dispersal
corridors, and landscape heterogeneity are examples of landscape
features that allow for the spread of invasive exotic species
(Theoharides and Dukes 2007). Vila and Ibafnez (2011) demon-
strated that the presence and abundance of exotic plant
species decreased toward the interior of natural and semi-natural
ecosystem patches, influenced by edge effects and aggregation of
landscape elements. Roadsides, power line rights-of-way, and pipe-
line corridors can also greatly contribute to invasive exotic species
propagation through their effects on landscape configuration and
species dispersal (D’Antonio and Meyerson 2002; Drake et al.
2003; Lazaro-Lobo and Ervin 2019; With 2002). Furthermore, it
has been shown that the landscape context associated with linear
features such as roads is more important to explain biological inva-
sions than consideration of the roads by themselves (Riitters
et al. 2017).

Although there have been considerable efforts to predict the
spread of invasive species throughout different regions of the world
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(e.g., Catford et al. 2011; Crossman and Bass 2008; Ibaiiez et al.
2009a; Mainali et al. 2015), we were unable to find any studies that
developed a fine-resolution, but broadscale SDM assessing invasive
plant species in the southeastern United States. Further, no studies
in this region have deployed multiple methods to assess model
adequacy or evaluated the landscape characteristics of the resulting
risk maps. In this study, we considered variables related to climate,
topography, land cover, land use, and propagule pressure to predict
what areas in the southeastern United States are more susceptible
to invasion by major terrestrial invasive plant species. We hypoth-
esized that environmental variables disproportionately contribute
to predict susceptibility to invasion and that variables related to
landscape composition and configuration influence invasion risk.
Furthermore, the resulting risk maps were used to evaluate the
relationship between invasion risk and landscape characteristics
of random points distributed throughout the region.

The study area corresponded to the shaded region shown in
Figure 1. We selected this region because it covers all of the states
in the U.S. Forest Service (USFS) Region 8 (Southern Region), with
two exceptions. West Virginia was added to increase the coverage
of Appalachian forest, which is present in parts of seven states
within USFS Region 8. Western Texas was excluded from our study
area, because it includes a diversity of ecosystem types not found
throughout the remaining USFS Region 8 states. The vast area of
the southeastern United States represented in the present work is
greatly affected by human activities such as agriculture, silvicul-
ture, and urbanization and has a wide variety of climatic and
topographic conditions.

We used the Web-based mapping system EDDMapS (Early
Detection and Distribution Mapping System) to obtain the occur-
rence points of 45 major invasive plant species causing negative
effects in the study area (Table 1), which is an area of primary con-
cern with regard to the spread of invasive exotic plant species
(Oswalt and Oswalt 2011). The species data were collected between
2007 and 2018 and were downloaded in February 2018. We
selected only verified and positive observations of those invasive
species, which included locations where the species have been
found, treated, and/or eradicated.

The occurrence points of the invasive species analyzed were
spatially aggregated, which indicates the possible presence of spa-
tial autocorrelation in the sample data. If spatial aggregation of
occurrence records implies spatial autocorrelation in the data,
the assumption of independence between records will be violated,
leading to inflated Type I error rates, problems with the signifi-
cance of test statistics, and diminished predictive performance
(Dormann et al. 2007; Fielding and Bell 1997; Legendre 1993).
Thus, to avoid spatial autocorrelation and following what other
authors have done in large-scale studies (e.g., Catford et al.
2011), we randomly selected occurrence points that were separated
by at least 10 km.

Since its launching by the Center for Invasive Species and
Ecosystem Health at the University of Georgia in 2005,
EDDMapS has recorded more than 3.3 million invasive species
observations made by different individuals, institutions, and envi-
ronmental organizations such as universities, herbaria, the U. S.
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Figure 1. Study area. Continuous lines delimitate U.S. states. The shaded area indicates the region selected for the project.

Forest Service (USFS), the U.S. Department of Agriculture
(USDA), and the Nature Conservancy (EDDMap$S 2018). Also,
EDDMapS indicates which records have been verified by experts,
making it a robust and reliable data set (EDDMapS$ 2018). Data
within the EDDMapS$ application represent a mix of occurrence
points drawn from experimental or systematically designed obser-
vational studies, along with data that were collected more oppor-
tunistically in easily accessed areas. This could influence the model
results such that they reflect sampling effort rather than habitat
selection by the species of interest (Phillips et al. 2009). With this
in mind, we partially controlled for potential biases associated with
a disproportionate number of occurrence points clustered within a
few discrete locations (usually near roads and populated areas)
when we reduced spatial autocorrelation by using thinned occur-
rence points. Also, there were many occurrence points within for-
ests and other land covers far from developed areas, suggesting
adequate representation of occurrence data across a range of land
use/land cover types.

We compiled a broad representation of geospatially explicit envi-
ronmental variables related to climate, topography, land cover,
land use, and propagule pressure that are likely to influence land-
scape susceptibility to invasion. We downloaded 19 grid-based bio-
climatic variables from the Worldclim database (Fick and Hijmans
2017), which includes the average for the years 1970 to 2000 at
30-arc second (~ 1 km?) resolution. Based on the importance of
climate extremes in explaining spatial patterns (Zimmermann
etal. 2009), we then selected what we perceived to be the three most
biologically relevant bioclimatic variables that could potentially
affect the establishment and spread of invasive species throughout
the southeastern United States (minimum temperature of coldest
month, maximum temperature of warmest month, and precipita-
tion of driest quarter). Because the southeastern United States is a
relatively humid area, we excluded precipitation of wettest quarter
to reduce the number of variables that refer to similar environmen-
tal conditions. Minimum temperature of coldest month and
maximum temperature of warmest month described the availabil-
ity of thermal energy and the species thermal tolerance, whereas
precipitation of driest quarter described the lowest water
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availability that the species can tolerate (Ficetola et al. 2007).
We resampled the bioclimatic maps to a grid of 30-m resolution
using the bilinear resample technique, which calculates the value
of each pixel by averaging (weighted for distance) the values of
the four nearest pixels (ESRI 2018). This resampling method is
more accurate and less computationally intensive than other
resample techniques and has been broadly implemented in eco-
logical studies (Arif and Akbar 2005; Chapman et al. 2005).

We obtained land cover and percent tree canopy cover data
from the National Land Cover Database (NLCD) 2011 (Homer
et al. 2015), a data set created by the Multi-Resolution Land
Characteristics Consortium. This raster layer has a spatial resolu-
tion of 30 m and includes categorical classification of vegetation
types, developed areas, land use, barren areas, and open water.
The percent tree canopy cover layer was developed from multi-
spectral Landsat imagery and other available ground information
(Homer et al. 2015).

We calculated Euclidean distance to the nearest pasture/culti-
vated area from the occurrence records using ArcGIS 10.5.1
(ESRI2018). The same was applied to calculate the nearest distance
to developed areas, a surrogate for propagule pressure. We down-
loaded road maps from 2017 from the Geography Division of the
U.S. Census Bureau (USCB 2017) and calculated Euclidean dis-
tance to the nearest road. Distance to rivers has also been consid-
ered as a source of propagules in several instances (Catford et al.
2011; Chytry et al. 2008). We obtained maps related to linear
hydrography from the USCB (2017) and then calculated the
Euclidian distance to rivers using ArcGIS 10.5.1 (ESRI 2018).
We also downloaded digital elevation data at 100-m spatial reso-
lution from 2013 from the U.S. Geological Survey (USGS 2017)
and resampled to a grid of 30-m pixel size using the bilinear resam-
ple technique. Other topographic variables such as aspect and slope
were derived from the elevation grid using ArcGIS 10.5.1
(ESRI 2018).

We retained noncorrelated environmental variables to predict
the distribution of each invasive species in the study area. We
excluded distance to roads in model development, because it
was highly correlated with distance to developed areas
(Pearson’s r = 0.86; sensu Catford et al. 2011). The exclusion of dis-
tance to roads further reduced possible effects of sampling bias.
After removing distance to roads, the highest Pearson’s r value
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Table 1. Relative contribution (permutation importance) of the environmental variables to develop the maximum entropy (MaxEnt) models, percent of the study area that is at risk for species invasions (invasion risk > 10 percentile training
presence Cloglog threshold), and evaluation of model performance with the area under the receiver operator characteristic curve (AUC) and the true skill statistic (TSS).?

Permutation importance of environmental variables AUC TSS % of
the
study
Min. Temp. Max. Temp. Precip. Dist. Dist. area at
Coldest Warmest Driest Developed Pasture & Land risk of
Growth form Scientific name Month Month Quarter areas Crops Dist. Rivers  Elevation Aspect Slope Canopy Cover Mean SD Mean SD invasion
Graminoid Arundo donax L. 9.7 2.7 4.0 65.5 1.8 13 0.9 0.1 0.0 11.9 2.1 0.93 0.02 0.78 0.00 12.0
Imperata cylindrica (L.) P. 65.8 10.6 5.0 4.8 0.2 0.3 4.0 0.6 0.6 4.9 3.4 0.92 0.01 0.79 0.00 10.8
Beauv.
Microstegium vimineum (Trin.) A. 10.8 46.6 0.6 224 1.4 39 5.7 0.3 0.4 6.1 1.9 0.89 0.02 0.65 0.00 253
Camus
Miscanthus sinensis Andersson 4.6 65.2 2.9 12.1 0.4 2.2 3.2 2.1 0.9 4.5 1.9 0.95 0.02 0.82 0.02 6.5
Panicum repens L. 80.6 5.1 1.7 1.6 2.7 0.2 3.4 0.5 0.0 3.2 0.9 0.94 0.01 0.80 0.01 8.7
Phragmites australis (Cav.) Trin. 19.3 21 2.2 13.1 4.9 4.1 17.5 0.7 0.5 28.2 7.3 0.94 0.03 0.83 0.01 5.6
ex Steud. ssp. australis
Schedonorus arundinaceus 46.9 0.1 5.2 26.8 0.7 2.7 0.9 3.0 5.0 6.3 2.5 0.85 0.07 0.65 0.04 22.4
(Schreb.) Dumort.
Sorghum halepense (L.) Pers. 5.8 4.9 10.7 54.9 (OI5] 18 8.4 0.2 0.4 9.1 33 0.87 0.02 0.60 0.01 29.7
Forb/herb Alliaria petiolata (M. Bieb.) 1.0 79.9 1.8 9.8 0.4 1.0 4.4 0.3 0.1 0.3 1.1 0.96 0.01 0.82 0.00 8.4
Cavara & Grande
Carduus nutans L. 115 2.2 11.1 16.3 1.1 0.8 29.0 0.9 0.3 13.1 13.8 0.88 0.04 0.64 0.02 25.6
Colocasia esculenta (L.) Schott 77.4 0.3 4.5 35 25 1.6 0.3 0.2 0.0 4.8 4.8 0.92 0.02 0.73 0.00 16.8
Dipsacus fullonum L. 26.1 234 1.2 343 0.0 0.1 4.1 0.1 0.1 9.5 1.1 0.98 0.00 0.89 0.01 0.7
Lespedeza bicolor Turcz. 27.0 38.1 4.8 2.7 6.9 0.7 10.0 1.0 0.6 5.1 3.1 0.85 0.06 0.64 0.02 24.9
Lespedeza cuneata (Dum. 21.7 7.3 13.4 30.0 6.6 15 9.0 11 0.6 6.2 2.6 0.86 0.03 0.59 0.01 il
Cours.) G. Don
Polygonum cuspidatum Siebold 10.0 52.1 0.2 26.1 0.3 2.6 2.4 0.1 0.3 4.2 1.8 0.95 0.01 0.83 0.00 6.4
& Zucc.
Vinca minor L. 19.8 43.2 4.6 17.8 1.6 0.4 5.7 1.5 1.4 2.1 2.1 0.89 0.04 0.71 0.01 17.9
Shrub Elaeagnus angustifolia L. 215 343 1.6 11.8 0.2 0.7 255 0.3 85 17.0 8.5 0.86 0.09 0.63 0.04 235
Elaeagnus umbellata Thunb. 11.5 44.4 2.7 29.3 0.9 15 5.8 0.2 0.2 1.9 17 0.92 0.02 0.73 0.01 16.6
Lantana camara L. 83.1 16 2.6 6.2 0.7 0.2 0.2 0.2 0.9 1.8 23 0.94 0.01 0.80 0.01 10.0
Ligustrum japonicum Thunb. &3 0.1 11.8 28.4 3.8 0.8 11.1 0.8 0.1 23 1.6 0.90 0.05 0.69 0.01 211
Ligustrum lucidum W.T. Aiton 52.8 0.6 73 25.7 1.8 0.3 4.4 0.2 0.1 25 3.8 0.92 0.02 0.74 0.01 16.4
Ligustrum sinense Lour. 26.7 0.5 9.0 50.0 3.4 1.7 29 0.1 0.0 4.2 1.5 0.85 0.02 0.54 0.00 36.0
Ligustrum vulgare L. 4.1 8.6 8.1 24.3 7.4 2.2 28.7 0.1 6.5 0.6 O15) 0.92 0.04 0.73 0.02 15.5
Lonicera maackii (Rupr.) Herder 28.6 15.7 2.0 13.8 4.6 2.1 12.2 1.9 0.8 7.9 10.4 0.88 0.05 0.69 0.02 20.5
Nandina domestica Thunb. 29.9 0.6 12.0 36.6 6.0 0.6 1.6 1) 0.5 55 4.9 0.87 0.03 0.59 0.01 30.7
Phyllostachys aurea Carriére ex 24.7 0.2 5.7 55.6 1.8 13 1.2 0.6 0.1 6.1 2.8 0.92 0.02 0.73 0.01 17.1
A. Riviére & C. Riviere
Rosa multiflora Thunb. 6.7 46.0 7.0 27.9 0.4 83 4.5 0.3 0.4 1.0 2.6 0.89 0.02 0.63 0.00 26.8
Sesbania punicea (Cav.) Benth. 71.0 0.7 B2 6.3 18 0.7 3.1 0.5 0.1 8.5 21 0.94 0.02 0.78 0.00 10.9
Tree Ailanthus altissima (Mill.) 9.2 12.6 4.8 533 3.2 0.9 5.4 12 0.7 37 5.0 0.90 0.02 0.68 0.00 223
Swingle
Albizia julibrissin Durazz. 8.1 0.5 6.5 69.7 4.6 0.9 0.5 0.2 13 7.0 0.6 0.85 0.02 0.63 0.00 26.7
Broussonetia papyrifera (L.) 35.2 1.4 10.4 8519 0.4 23 2.1 1.0 0.2 8.6 2.6 0.92 0.03 0.77 0.01 131
L’Hér. ex Vent.
Cinnamomum camphora (L.) J. 86.3 14 2.7 13 0.2 0.1 2.7 11 0.1 3.5 0.7 0.96 0.01 0.84 0.01 4.8
Presl|
Melaleuca quinquenervia (Cav.) 94.8 0.5 0.8 0.7 2.3 0.1 0.2 0.3 0.0 0.1 0.4 0.98 0.00 0.88 0.01 2.0

S.F. Blake

(Continued)
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Table 1. (Continued)

Permutation importance of environmental variables AUC TSS % of
the
study
Min. Temp. Max. Temp. Precip. Dist. Dist. area at
Coldest Warmest Driest Developed Pasture & Land risk of
Growth form Scientific name Month Month Quarter areas Crops Dist. Rivers  Elevation Aspect Slope  Canopy Cover Mean Sb Mean SD invasion
Melia azedarach L. 49.0 4.3 23 33.9 0.3 1.6 0.2 0.3 0.2 7.2 0.7 0.88 0.01 0.67 0.01 23.7
Paulownia tomentosa (Thunb.) 11.8 443 0.4 16.7 7.1 0.4 5.2 1.2 25 5.8 4.6 0.89 0.03 0.66 0.01 232
Siebold & Zucc. ex Steud.
Pyrus calleryana Decne. 10.8 1.0 15.7 334 13 0.6 6.0 0.8 1.0 23.6 519 0.91 0.02 0.70 0.01 20.4
Triadica sebifera (L.) Small 67.9 0.9 34 15.0 0.2 0.5 0.1 0.0 0.0 5] 6.7 0.89 0.01 0.71 0.00 18.8
Vine Celastrus orbiculatus Thunb. 5.1 72.5 0.1 13.6 0.5 13 1.9 0.1 0.4 85 1.0 0.94 0.02 0.76 0.01 13.6
Dioscorea oppositifolia L. 8.8 34.9 0.6 7.5 55 14.3 16.0 3.6 0.3 1.8 6.8 0.94 0.03 0.82 0.02 6.6
Hedera helix L. 8.6 6.6 4.1 64.5 2.6 14 3.8 0.2 0.3 6.1 17 0.90 0.02 0.68 0.01 219
Lonicera japonica Thunb. 9.8 2.1 9.0 63.3 3.0 2.2 2.8 0.3 0.1 5.0 2.5 0.82 0.02 0.46 0.01 45.1
Lygodium japonicum (Thunb.) 713 6.6 4.1 6.9 1.7 0.7 0.5 0.2 0.1 5.9 2.1 0.91 0.01 0.74 0.00 15.9
Sw.
Pueraria montana (Lour.) Merr. 0.6 11.7 11.9 63.5 2.1 1.0 1.7 0.3 13 3.7 2.1 0.82 0.02 0.43 0.01 46.7
var. lobata (Willd.) Maesen &
S.M. Almeida ex Sanjappa &
Predeep
Wisteria floribunda (Willd.) DC. 4.7 32.7 0.1 28.1 15.6 0.2 1.0 0.1 3.8 6.5 72 0.85 0.07 0.59 0.10 22.7
Wisteria sinensis (Sims) DC. 37.1 3.6 8.8 37.0 3.0 0.3 13 0.2 11 4.9 2.7 0.89 0.03 0.66 0.01 24.0

2Higher values of both AUC and TSS indicate better performance of a model, with maximum value of +1 for each.
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was 0.45. We tested correlation between quantitative variables by
extracting the information from background points randomly dis-
tributed throughout the study area and separated by at least 10 km
to avoid spatial autocorrelation.

We modeled the susceptibility of the 30-m resolution grid to be
invaded by each invasive species using a maximum entropy
(MaxEnt) modeling approach. MaxEnt is a robust technique for
invasive species modeling and has been reported to be among
the best distribution models in several occasions (Duan et al.
2014; Elith et al. 2006; Tognelli et al. 2009). Furthermore, this
machine-learning method provides good predictive power across
different sample sizes (West et al. 2016; Wisz et al. 2008). We
included in the MaxEnt models a broad set of environmental var-
iables related to climate (minimum temperature of coldest month,
maximum temperature of warmest month, and precipitation of
driest quarter), topography (elevation, aspect, and slope), land
cover, canopy, land use, and propagule pressure (distance to the
nearest developed area, distance to the nearest pasture/cultivated
area, and distance to rivers).

We used a 10-fold cross-validation procedure to test predictive
power of the models and achieve a better model output. This
method separates the occurrence points into equal-sized groups
(folds), and every iteration leaves out one different fold, therefore
using all of the data for validation (Phillips 2017). We retained
the outputs that included the average and standard deviation of
the replicates. Furthermore, we used the Cloglog (complementary
log-log) output format, because it is considered to be the most
appropriate for estimating relative suitability for colonization
(Phillips et al. 2017). For each model, we used 10,000 randomly
generated  pseudo-absence/background  points  distributed
throughout the study area. The other parameters of MaxEnt
remained at default.

We used permutation importance to evaluate the relative con-
tribution of the different environmental variables to the distribu-
tion models. The permutation importance is determined by
randomly permuting the values of each variable among the train-
ing points (both presence and pseudo-absence) and measuring the
resulting decrease in training area under the curve (AUC). A large
decrease indicates that the model depends heavily on that variable.
Therefore, this measure depends only on the final MaxEnt model,
not the path used to obtain it (Donald et al. 2012; Kalle et al. 2013).

Model performance (the discrimination ability of the model or
model’s goodness of fit) was evaluated using the AUC of the
receiver operator characteristic (ROC) plot (Franklin 2009) and
the true skill statistic (TSS). AUC values are provided by the
MaxEnt model output and range from 0 to 1. Higher AUC values
indicate better performance of the model (Peterson et al. 2011).
The TSS considers both sensitivity and specificity. Sensitivity mea-
sures the percentage of correctly classified presences, while speci-
ficity measures the percentage of correctly classified absences
(West et al. 2016), or in the case of this project, pseudo-absences.
The TSS ranges from —1 to 1, with values of 0 or less representing
that the model is no different from random, whereas a value of +1
indicates 100% agreement of the model with the data. Thus, the
TSS was calculated with the values of sensitivity and specificity that
resulted from counting the number of cells with values above or
below the “10 percentile training presence Cloglog threshold” in
both background and sample predictions provided by the
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MaxEnt model output. The TSS was calculated for every replicate
and then averaged by species.

We extrapolated predictions resulting from the MaxEnt models to
provide maps of invasion risk at 30-m resolution for the
southeastern United States. To examine the relationship between
landscape characteristics and susceptibility to invasion at different
spatial scales, we placed random points in the resulting invasion
risk maps and followed the next approach. We separated the ran-
dom points by 10 km to avoid spatial autocorrelation issues, and to
interpret the results clearly, we placed the random points within an
area that included the distributional range of the occurrence points
of each species, plus a buffer of 25 km from the distribution limit.
To assess the landscape characteristics around the random points,
we created two buffers around those points at different distances:
medium (0 to 150 m) and long (0 to 500 m) using the function
gBuffer of the RGEOS package in the program R (R Core Team
2018). We evaluated landscape composition and configuration
using NLCD 2011 (Homer et al. 2015) and within the abovemen-
tioned buffers using the ClassStat function of the SDMTooOLS
package.

Landscape composition refers to the proportion of the land-
scape occupied by the different land cover types, which were
divided into seven categories: (1) forest (evergreen, deciduous,
mixed forests, and forested wetland), (2) shrub/scrublands, (3) her-
baceous wetland, (4) pasture and grassland, (5) cultivated area, (6)
developed area, and (7) barren land (Homer et al. 2015). Landscape
configuration, in contrast to landscape composition, deals with the
spatial arrangement of the different landscape elements that make
up a given mosaic landscape. In this study, we evaluated (1) patch
density (number of patches in the landscape, divided by total land-
scape area), (2) edge density (sum of the lengths of all edge seg-
ments in the landscape, divided by the total landscape area), (3)
landscape shape index (total length of edge in the landscape
divided by the minimum total length of edge possible), (4) propor-
tion of like adjacencies (frequency with which different pairs of
patch types (including like adjacencies between the same patch
type) appear side by side), (5) aggregation index (similar to propor-
tion of like adjacencies, but here each class is weighted by its pro-
portional area in the landscape), (6) patch cohesion index
(measures the physical connectedness of the corresponding patch
type), (7) proportional landscape core (portion of landscape not
affected by edge effect), and (8) land cover heterogeneity (number
of different land cover categories that make up the landscape;
VanDerWal et al. 2019; Figure 2).

We evaluated the relative contribution of the different environ-
mental variables to the distribution models based on the permuta-
tion importance, and we assessed the MaxEnt model adequacy
using AUC and TSS values. The assessment table proposed by
Sofaer et al. (2019) to deliver SDMs and inform decision making
can be found in Supplementary Table S1.

Then, we analyzed the relationship between the susceptibility to
invasion of random points in the 30-m resolution grid by each
invasive species and the compositional and configurational land-
scape metrics obtained from the buffers around those random
points. To evaluate that relationship for landscape composition,
we first categorized the randomly selected locations in high and
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Figure 2. Graphical representation of some of the variables used to calculate landscape composition and configuration metrics at medium (0-150 m) and long (0-500 m) dis-
tances around random points. The number and area occupied by patches of the same land cover were used to calculate heterogeneity and the proportion of the landscape
occupied by the different land cover types, respectively. Adjacency and cohesion are related to the degree of aggregation of patch types, whereas patch edge deals with the

amount of edge in the landscape.

low invasion risk, depending on whether their susceptibility to
invasion was above or below the “10 percentile training presence
Cloglog threshold,” respectively. We then calculated the propor-
tion of each land cover category found in locations with high
and low invasion risk and in their surrounding landscapes at
medium (0 to 150 m) and long (0 to 500 m) distances
(Supplementary Tables S2 and S3). Finally, we divided the propor-
tions from locations with high invasion risk by those from loca-
tions with low invasion risk. Values above and below 1
indicated that the corresponding land cover had a high or low sus-
ceptibility to invasion, respectively. Also, values close to 1 indicated
medium susceptibility to invasion.

As for configurational landscape metrics, we used the Spearman
correlation (r) with the function cor.test( ..., method = “spear-
man”) of the program R (R Core Team 2018) to test their effect
on invasion risk of the random locations. Spearman correlation
is a more robust method to evaluate linear relationships than
Pearson correlation, because the latter is greatly influenced by out-
liers and highly skewed variables.

Finally, we calculated the percent of the study area that is at risk
of invasion by each species. For this purpose, we divided the area
with invasion risk higher than the “10 percentile training presence
Cloglog threshold” by the total area and then multiplied the result
by 100 to obtain the percentage. We obtained hotspots for pre-
dicted plant invasions by calculating the mean susceptibility to
invasion across the evaluated species for each cell in the resulting
risk maps.

The results of this study show that large areas of the southeastern
United States are highly susceptible to being invaded by the plant
species evaluated. Some species such as silktree (Albizia julibrissin
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Durazz.), Chinese privet (Ligustrum sinense Lour.), Japanese
honeysuckle (Lonicera japonica Thunb.), and kudzu [Pueraria
montana (Lour.) Merr. var. lobata (Willd.) Maesen & S.M.
Almeida ex Sanjappa & Predeep] are likely to establish (and have
established) throughout the region, whereas others will probably
occupy specific areas (Figure 3). For example, the distribution of
camphor tree [Cinnamomum camphora (L.) J. Presl], cogongrass
[Imperata cylindrica (L.) P. Beauv.], and Japanese climbing fern
[Lygodium japonicum (Thunb.) Sw.] will probably be limited to
coastal areas of the Gulf and East Coasts of the United States. In
contrast, species such as garlic mustard [Alliaria petiolata
(M. Bieb.) Cavara & Grande], Oriental bittersweet (Celastrus
orbiculatus Thunb.), autumn olive (Elaeagnus umbellata
Thunb.), sericea lespedeza [Lespedeza cuneata (Dum. Cours.)
G. Don], and Nepalese browntop [Microstegium vimineum
(Trin.) A. Camus], will establish mainly in interior areas of the
United States. Finally, the future distribution of punk tree
[Melaleuca quinquenervia (Cav.) S.F. Blake] seems to be restricted
to Florida under current climatic conditions.

Furthermore, our models indicate that the species with the
greatest potential to establish across southeastern United States
(25% to 47 % of the area) are A. julibrissin, nodding plumeless
thistle (Carduus nutans L.), L. cuneata, L. sinense, L. japonica,
M. vimineum, sacred bamboo (Nandina domestica Thunb.), kudzu
[P. montana var. lobata], multiflora rose (Rosa multiflora Thunb.),
and Johnsongrass [Sorghum halepense (L.) Pers.] (Table 1). Finally,
hotspots for plant invasions show that landscapes around devel-
oped areas are especially vulnerable to plant invasions
(Figure 4). However, this result could be partially influenced by
sampling bias toward more accessible areas, which could increase
the influence of proximity to developed areas in biological inva-
sions in our study. Some fraction of the data stored in
EDDMapS$ comes from opportunistic observations of invasive spe-
cies occurrences, while other data come from formal scientific
studies. In preparing for these analyses, we thinned the data by
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Figure 3. Invasion risk maps for: (A) Imperata cylindrica, (B) Lonicera japonica, (C) Microstegium vimineum, and (D) Triadica sebifera. The maps show the average output of 10
cross-validated maximum entropy (MaxEnt) model runs. Cloglog (complementary log-log) scale represents an estimate of relative colonization suitability for the species of interest.
Darker shading indicates higher risk of invasion, while lighter shading illustrates the opposite.
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Figure 4. Hotspots for predicted plant invasions. This map represents the average susceptibility to invasion across all the species for each pixel. Cloglog (complementary log-log)
scale represents an estimate of relative colonization suitability for the species of interest. Darker shading indicates higher risk of invasion, while lighter shading illustrates the
opposite.
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randomly selecting occurrence points that were separated by no
less than 10 km. We expected that this would greatly reduce the
impacts of roadside sampling, which is a typical result of opportun-
istic sampling for invasive species occurrence. This effort was
reflected in the resulting models for 40% of our species, which
showed higher affinities for habitat isolated from human activities,
such as forest interiors and herbaceous wetlands.

The high average values of the 10-fold cross-validated AUCs and
TSSs indicate that the MaxEnt models developed in this study
exhibited good performance and thus had the ability to discrimi-
nate between presences and pseudo-absences (background) of our
target species (Table 1). However, AUC and TSS values both
declined substantially as the number of observations per species
increased (Pearson r values: —0.44 and —0.51 for AUC and TSS,
respectively). Because all species had the same number of
pseudo-absence points (10,000), this relationship between model
performance metrics and number of observations likely reflects
an effect of the ratio of presence to pseudo-absence points. As
noted in the “Introduction,” another concern with SDMs is that
they may be less effective in modeling recently introduced invasive
species, that is, species that are not yet at equilibrium with their
new ranges. Most of the species in this study were introduced to
the United States during the 1800s or early 1900s (only two with
less than ~100 years since introduction), with some exceptional
introductions in the 1700s (EDDMapS 2018). To assess the poten-
tial impact of recency of introduction on these models, we devel-
oped additional linear regression models between time since
introduction and model adequacy for both AUC and TSS. We
did not find any significant statistical correlation between time
since introduction and AUC (P = 0.66; adjusted R-squared = 0)
or TSS (P =0.52; adjusted R-squared = 0).

As expected, variables related to temperature were important in
predicting the susceptibility of the 30-m resolution grid to be
invaded by invasive plant species in the southeastern United
States (Table 1). Plants are adapted to withstand certain temper-
ature ranges, which vary depending on the species (Sakai et al.
2001). Extreme temperatures, such as minimum temperature of
coldest month and maximum temperature of warmest month,
are likely to restrict the area where a given species can establish
(Zimmermann et al. 2009). Precipitation of the driest quarter
was less important than temperature, which could be due to the
absence of an important hydric deficit period throughout the rel-
atively humid southeastern United States, as well as due to rela-
tively similar hydrological regimes in the driest quarter of the
year across the original distributional ranges of the species.
However, the importance of climatic variables in predicting sus-
ceptibility to invasion could be affected by limiting the study area
to the southeastern United States. Several species evaluated in this
study occupy large areas outside the southeastern United States,
which leads to variation in temperature and precipitation regimes
throughout their distributional ranges. Thus, the results of this
study could differ if the SDMs were developed using all the areas
occupied by such species in the United States (see, e.g., Yates
et al. 2018).

Distance to developed areas was the other main factor, along
with temperature, that most contributed to invasion susceptibility.
Developed areas are an important source of propagules and
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provide suitable habitat for many invasive exotic species, which
are often planted in those areas for soil stabilization (Brown and
Sawyer 2012) and ornamental and aesthetic purposes (Sdumel
and Kowarik 2010). However, the possible effects of sampling bias
toward more accessible areas such as roadsides could have
increased the influence of distance to developed areas on our
SDMs (Fournier et al. 2019). Distance to rivers has also been con-
sidered as a source of propagules in several occasions (Catford et al.
2011; Chytry et al. 2008); however, it was insignificant for most of
the species evaluated. The same applies for distance to pastures and
cultivated areas, where invasive exotic species are frequently
planted to support improved cattle forage opportunities (Booth
etal. 2003) or are established from seed or propagule contaminants
in hay or other supplemental feeds (e.g., Conn et al. 2010) or dis-
persed by the cattle themselves (Mullahey et al. 1998).

Canopy cover had a medium contribution to predict the models
for most of the species, but it had a major role for some, including
European common reed [Phragmites australis (Cav.) Trin. ex
Steud. ssp. australis], C. nutans, Russian olive (Elaeagnus angusti-
folia L.), and Callery pear (Pyrus calleryana Decne.). Canopy cover
and tree biomass have been considered one of the main factors that
affect the distribution of exotic species in some parts of the study
area (AL-L and GNE, personal observation; lannone et al. 2016).
Finally, even though other studies have shown that topographic
variables influence the establishment and spread of invasive species
(e.g., Pauchard and Alaback 2004; Rouget and Richardson 2003),
they were insignificant to predict the susceptibility to invasion in
our study area, with the exception of altitude, which had a secon-
dary role. Most of the parts of southeastern United States have a
relatively low topographic relief, which lowers the effect of slope
and aspect on many species distributions.

The results of this study suggest, as expected, that human-
disturbed systems are more prone to invasion than areas that expe-
rience minimal human interference. This pattern was consistent
throughout the different spatial scales considered in this study.
Developed areas were the land cover most vulnerable to exotic
plant invasion (Table 2; Supplementary Table S4). Developed areas
are land covers with some degree of impervious surfaces and
include roadsides; parks; and residential, industrial, and urban
areas (Homer et al. 2015). Developed areas are usually subjected
to periodic disturbances that generate opportunities for plant col-
onization and establishment. Roadsides have been proven to be
important habitat and/or corridors for exotic plant species globally
(Lazaro-Lobo and Ervin 2019). Barren lands, or areas where veg-
etation generally accounts for less than 15% of total cover (Homer
et al. 2015), also had a high risk of invasion. Invasive species are
successful colonizers of areas deprived of vegetation because of
their broad ecological tolerances and ability to withstand harsh
environments where other species cannot become established.
The remaining land cover types had generally moderate or low
invasion risk. Although our results suggest that current distribu-
tions of only a few species of different growth forms are correlated
with grasslands and pastures (e.g., S. halepense, tall fescue
[Schedonorus arundinaceus (Schreb.) Dumort.], C. nutans,
E. angustifolia, and P. calleryana), we believe that alterations of
the ecological processes that sustain these herbaceous ecological
systems, such as fire regimes or herbivory pressure, especially in
the absence of monitoring efforts, would allow for the invasion
of other exotic species, as has been shown by many previous studies.
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Table 2. Number of species with high, medium, and low susceptibility of invasion for each land cover type and spatial scale (location of evaluated points, medium
distance, and long distance).?

Location Medium distance (0-150 m) Long distance (0-500 m)

High Medium Low High Medium Low High Medium Low
Forest 6 24 15 2 29 14 0 34 11
Shrub/scrubland 6 16 23 6 21 18 6 19 20
Herbaceous wetland 12 5 28 10 2 33 9 0 36
Pasture/grassland 7 14 24 7 23 15 6 27 12
Cultivated area 0 0 45 0 2 43 1 4 40
Developed area 45 0 0 45 0 0 45 0 0
Barren land 29 7 9 28 10 7 24 19 2

2The susceptibility of each land cover category to be invaded by each species was obtained by dividing the proportion of the corresponding land cover category found in locations with high
invasion risk by that from locations with low invasion risk (see Supplementary Tables S2-S4 for details). Values above 1.25, between 0.75 and 1.25, and below 0.75 were considered as high,
medium, and low susceptibility of invasion.

Table 3. Number of species with positive, neutral, or negative Spearman correlations (based on P-value < 0.001) between susceptibility to invasion of randomly
selected locations and landscape configuration variables at medium (0-150 m) and long (0-500 m) distances from those locations (see Supplementary Table S5
for details).

Medium distance (0-150 m) Long distance (0-500 m)

Positive Neutral Negative Positive Neutral Negative
Edge effects Patch density 36 8 1 30 11 4
Edge density 36 8 1 31 10 4
Landscape shape index 34 10 1 30 11 4
Proportional landscape core 1 8 36 4 10 31
Aggregation and cohesion Proportion of like adjacencies 28 13 4 19 16 10
Aggregation index 30 12 3 20 15 10
Patch cohesion index 30 13 2 25 12 8
Land cover heterogeneity 32 11 2 26 10 9

Shrub/scrublands include areas with shrubs and young trees in an
early successional stage (Homer et al. 2015). The invasive species
that were predicted to be more likely to occupy this land
cover are L. cylindrica, shrub lespedeza (Lespedeza bicolor Turcz.),
L. japonicum, and Chinese wisteria [Wisteria sinensis (Sims)
DC.]. Cultivated areas demonstrated the lowest risk of invasion.
Those areas are generally actively managed to maximize crop yields,
which may impede the establishment of colonizing plant species.
However, because invasive species readily colonize abandoned fields
(Kulmatiski et al. 2006; Mosher et al. 2009), we believe that those
areas would be prone to invasion once active management ceases.

The soil of herbaceous wetlands is periodically saturated with or
covered with water (Homer et al. 2015), which is a handicap for
some terrestrial invasive species. However, some species can
become established when the substrate is unsaturated and are
capable of surviving subsequent soil inundations for certain peri-
ods of time (King and Grace 2000). In this sense, we found that
species such as torpedo grass (Panicum repens L.), P. australis
ssp. australis, A. petiolata, I. cylindrica, coco yam [Colocasia escu-
lenta (L.) Schott], and M. quinquenervia were likely to colonize
herbaceous wetlands. We found that a high proportion of locations
with high risk of invasion corresponded to forested areas
(Supplementary Table S2). One possible explanation for this find-
ing is that forests are widely spread throughout the southeastern
United States (Homer et al. 2015), and therefore, random points
are more likely to be placed in this land cover. However, this pro-
portion was outnumbered by the number of locations with low risk
of invasion for most of the species (Supplementary Table S3), and
only a few of them, such as M. vimineum, common periwinkle
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(Vinca minor L.), N. domestica, C. camphora, and Japanese wisteria
[Wisteria floribunda (Willd.) DC.], were predicted to invade for-
ests (probably highly managed forests). Previous research shows
that these species are often found invading forests in the
southeastern United States (e.g., DeMeester and Richter 2010;
Oswalt et al. 2007; Trusty et al. 2007).

Furthermore, the vulnerability to invasion of the different land
covers was consistent across the three spatial scales considered in
this study (location and 0 to 150 m and 0 to 500 m from location),
which suggest that the landscape did not have dramatic changes
within a 500-m buffer from the random points. However, this
result could be influenced by the high importance of climatic var-
iables in our study, which were downloaded at an ~1-km? resolu-
tion and resampled using the bilinear resample technique. Thus,
most raster cells included within a buffer of 500 m from the occur-
rence point locations would have similar climatic values, and there-
fore, susceptibility to invasion would remain relatively constant.

Susceptibility to invasion was highly correlated with configura-
tional landscape metrics for most of the species (Table 3).
However, the species I cylindrica, C. esculenta, rattlebox
[Sesbania punicea (Cav.) Benth.], and M. quinquenervia were
not affected by any variable related to landscape configuration
(Supplementary Table S5).

Generally, locations most vulnerable to exotic plant invasion
(especially shrubs and vines) were predicted to be within land-
scapes with high edge or patch density and with low proportion
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of landscape core, as shown by previous research (e.g., Riitters et al.
2017; Vila and Ibafiez 2011). However, some species showed the
opposite pattern in at least one of the spatial scales, such as
Chinese silvergrass (Miscanthus sinensis Andersson), P. repens,
A. petiolata, and C. orbiculatus. This finding suggests that land-
scape heterogeneity benefits most of the major terrestrial invasive
species that affect the southeastern United States (Melbourne et al.
2007), but some of them prefer more homogeneous landscapes.

Landscape metrics that measure the degree of aggregation and
cohesion of patch types (proportion of like adjacencies, aggrega-
tion index, and patch cohesion index) generally had a positive rela-
tionship with susceptibility to invasion, which indicates that the
presence of corridors for the dispersal of propagules highly
influences landscape susceptibility to invasion (Lazaro-Lobo and
Ervin 2019; With 2002). Yet some species, such as M. vimineum,
M. sinensis, P. repens, A. petiolata, Japanese knotweed (Polygonum
cuspidatum Siebold & Zucc.), E. umbellata, lantana (Lantana
camara L.), C. orbiculatus, Chinese yam (Dioscorea oppositifolia
L.), and W. floribunda, prefer landscapes with patches less aggre-
gated and connected, especially at higher spatial scales (0 to 500 m).
Also, landscape metrics related to aggregation and cohesion usu-
ally had a smaller impact on invasion risk than variables related to
the amount of edge in the landscape.

Heterogeneity is a very important factor within a landscape.
Heterogeneous landscapes enhance the biotic community that
inhabits the area (Katayama et al. 2014; Ricketts and Sandercock
2016), but when the heterogeneity is driven by anthropogenic mod-
ifications to the landscape, heterogeneity may increase a commun-
ity’s susceptibility to invasion. In part, this results from human-
assisted dispersal, but it also can result from the creation of available
habitat space for the introduced species to occupy (Melbourne et al.
2007). In our study, susceptibility to invasion was significantly pos-
itively correlated with land cover heterogeneity for the majority of
the species, (especially shrubs, trees, and vines), but there were a con-
siderable number of species of different growth forms that did not
show this pattern, especially at higher spatial scales (0 to 500 m).
Therefore, this finding suggests that the influence of land cover
heterogeneity on invasion risk is species specific.

In summary, our modeling approach allows for the delineation
of areas in the southeastern United States likely to be invaded by
major terrestrial invasive plant species. Conservation and restora-
tion efforts should consider areas at high risk of invasion in their
management plans, especially in “natural” areas with species and
ecosystems of conservation concern. This study shows that
human-disturbed systems such as developed areas and barren
lands are more prone to be invaded than areas that experience min-
imal human interference; however, several invasive species are
likely to colonize other land covers, depending on their individual
ecological niches. We note, however, that for some species, this
result could be partially influenced by sampling bias toward more
accessible areas such as roadsides, which could increase the influ-
ence of proximity to developed areas in biological invasions within
our study area. Another important finding is that even though
landscape heterogeneity and the presence of corridors for propa-
gule dispersal significantly increase landscape susceptibility to
invasion for most of the species evaluated, there were a consider-
able number of species whose ability to invade increased in land-
scapes with large core areas and/or less-aggregated patches.
Therefore, we conclude that even though we found general pat-
terns for susceptibility to invasion, the influence of landscape com-
position and configuration on invasion risk was species specific.
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