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SUMMARY
This paper presents a comprehensive analysis of time and
action operational costs on an objective function developed
by Bechar et al. (A. Bechar, J. Meyer and Y. Edan, “An
objective function to evaluate performance of human–robot
collaboration in target recognition tasks,” IEEE Trans. Syst.
Man Cybern. Part C 39(6), 611–620 (2009)) for collaborative
target recognition systems. Different task types, system
reaction types, and environments were evaluated. Results
reveal two types of task and system reactions – one focused
on minimizing false alarms, and the second on detecting a
target when one is presented. In addition, the analysis reveals
a new property of the objective function based on a specific
ratio between the weight differences that generalizes the
model’s objective function and facilitates its analysis. Results
indicate that human decision time strongly influences system
performance.

KEYWORDS: Operational level; Human–robot collabora-
tion; Objective function; Performance analysis; Operational
cost; Target recognition.

1. Introduction
Current robotic systems have limited recognition perform-
ance in real-world environments that are unknown,1 un-
structured, and continuously changing.2 Sensory limitations3

further reduce performance. Complexity in target recognition
tasks is further increased when dealing with natural objects,
such as in medical and agricultural environments, due to the
object’s high degree of variability in shape, texture, color,
size, orientation, and position.

Humans’ acute perception capabilities enable them to deal
with a broad scope of vague and unstructured definitions.4

Moreover, humans have superior recognition capabilities
and can easily adapt to changing environmental and object
conditions.5 However, a human operator is not consistent,
tends to fatigue, and is subject to distraction.6 By taking
advantage of human perception skills and the accuracy and
consistency of the autonomous system, an integrated system
can be simplified, resulting in improved performance.7

Several cooperative systems have been developed.
Sheridan8 divides automation into 10 levels, from fully
autonomous, with no human intervention to fully manual.
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Scholtz9 describes five roles that a human can take when
interacting with a robot: supervisor, operator, mechanic,
peer, and bystander. Howard10 focused on role allocation
in human–robot collaboration for space missions. Bechar
et al.11 defined four human–robot collaboration levels for
target recognition tasks in unstructured environments using
an objective function developed to determine the expected
value of task performance, given the parameters of the
system, the task, and the environment.12

In target recognition, the general task is to detect the
objects and distinguish between the required objects (targets)
and non-target objects. The ability to discriminate between
target and non-target is limited by the distance between
the means of the two distributions, defined as variable d′,
which is also defined as sensitivity.13 When d′ = 0, the
two distributions completely overlap and are impossible
to be distinguished. As the value of d′ increases, they
become easier to be distinguished. The location of the
threshold is often defined in terms of the cut-off point
or the likelihood ratio between the target and non-target
probability distributions as measured at the threshold position
and denoted as β. Discrimination analysis is commonly
performed using the Receiver Operating Characteristic
(ROC) curve14 (e.g., sensor fusion for land mine detection;3

discriminating disease cases from normal cases in medical
applications;15 and comparing diagnostic tests.16 In an ROC
curve, each detector or diagnostic represents a single curve
on the hit-FA space where the sensitivity influences the
convexity of the curve.

Common performance measures for evaluating target
recognition include6,17 probability of target recognition
(hit), probability of non-target recognition (false alarm),
and recognition time.18 However, the performance measure
values are task-dependent.19 For example, systems for land
mine detection tasks are designed to prioritize detecting
targets, while systems for medical-oriented tasks prioritize
minimization of false alarms. This can be implemented by
assigning different weights to the performance measures
according to the task characteristics using an objective
function.19 Alternatively, the Pareto optimal sets20 can be
used when the solution consists of different objective values
that cannot be compared.

This paper is based on Bechar’s model12 for human–robot
collaboration in a target recognition system. Previous
analyses2,12,19 were limited, since they excluded operational
costs and critical parts regarding misses and correct
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rejections. This paper presents in-depth analyses expanded
to include operational costs, which are critical for
implementation in real-world environments. In addition,
the behavior of different types of systems in different
environments and different tasks was extensively analyzed.

2. Model Description

2.1. Operational levels
The previous model19 includes four operational levels based
on Sheridan’s8 scale of “action selection and automation
of decision” from fully manual to autonomous operation.
(1) H: The HO detects and marks the desired targets
single-handedly. (2) HR: The HO marks targets, aided by
recommendations from the robot, i.e., some objects are
automatically marked by a robot recognition algorithm; the
HO must approve the correctly recognized targets and mark
targets that the robot missed. (3) HOR: The HO supervises
the robot. Objects are identified automatically by the robot’s
recognition algorithm and marked. The human assignment
is to cancel false detections and to mark targets that were
missed by the robot. (4) R: Fully autonomous, all targets are
marked by the robot’s recognition algorithm.

The model was developed in order to evaluate the
performance of human–robot system in task operation, which
requires target recognition operation.

2.2. System objective function
The objective function19 considers four major parameter
groups – human, robot, environment, and task. The objective
function (VIs, Eq. (1)) includes five parts, one for each of the
four possible outcomes: hit (H), false alarm (FA), miss (M),
correct rejection (CR), and the fifth for the operational costs:

VIs = VH − VM − VFA + VCR − VT. (1)

Equations (2) through (5) illustrate the explicit part of
each possible outcome:

VH = N × PS × pH × WH, (2)

VM = N × PS × pM × WM, (3)

VFA = N × (1 − PS) × pFA × WFA, (4)

VCR = N × (1 − PS) × pCR × WCR. (5)

All these equations are composed similarly, where N
is the number of objects in the analyzed image and
PS is the probability for an object to be a target, and
therefore (1 − PS) is the non-target probability. These
parameters characterize the environmental conditions. The
third parameter, px , symbolizes the probability of the system
for one of the possible outcomes, where index x can be H,
M, FA, or CR. This parameter considers the human and
robot characteristics. The last parameter, Wx , symbolizes the
weight’s value for each possible outcome. The value of each
weight depends on the task.

Operational costs include the time (Vt) and action (Vc)
costs as illustrated in Eq. (6).

VT = tS × Wt︸ ︷︷ ︸
Vt

+
Wa︷ ︸︸ ︷

(N × PS × pH +N × (1 − PS) × pFA) WC︸ ︷︷ ︸
Vc

.

(6)
The time cost (Vt) is composed of tS, which is the system

time required to analyze an image, and Wt, which is the cost
of one time unit. The action cost (Vc) is influenced only by
the number of hit or false alarm outcomes (noted as Wa),
since there is an actual action of the robotic system for these
outcomes. Wc is the cost of one object recognition operation.

The system time, tS, consists of the human operator (HO)
time to confirm the robot hits (tHrh), the HO time to hit
additional targets (tHh), the HO time to correct the robot false
alarms (tFArh), the HO time to mark false alarms (tFAh), the
HO time lost when a robot hit is missed (tMrh), the HO time
invested when the robot missing a target (tMh), the HO time
to correctly reject a robot false alarm (tCRrh), the HO correct
rejection time (tCRh), and the robot time to process the image
and perform hits or false alarms (tr). Equation (7) explicitly
illustrates ts.

tS = N × PS × pHr × pHrh × tHrh + N × PS × (1 − pHr)
×pHh × tHh + +N × (1 − PS) × pFAr × pFArh × tFArh

+N× (1 − PS) × (1 − pFAr) × pFAh × tFAh + N × PS

×pHr × (1 − pHrh) × tMrh + N × PS × (1 − pHr)
×(1 − pHh) × tMh + N × (1 − PS) × pFAr

×(1 − pFArh) × tCRrh + N × (1 − PS) × (1 − pFAr)
×(1 − pFAh) × tCRh + tr

(7)
Each of the human time variables represents a

superposition of a decision time, td, and a motoric time, tm,
in accordance with the collaboration level.

The system objective function12 evaluates the gains,
rewards, costs, and penalties of the operational costs and the
recognition performance measures, assigned with monetary
value units (i.e., $, £, or €). To adapt the objective
function to a variety of tasks, systems, and environments, the
objective function was defined as a weighted superposition
of the performance measures. The task is defined by
the goal to be accomplished (i.e., maximize hits; minimize
false alarms; minimize misses; minimize execution
time or combinations: e.g., maximize hits and minimize
false alarms; minimize execution time and false alarms);
the system is the physical means to operate the task and
has specific characteristics such as operating time and costs;
the environment is characterized by its targets and other
objects (i.e., non-targets). Different weights of the first four
performance measure parts (VH, VM, VFA, and VCR) represent
different tasks; however, different weights of the cost part
(VT) represent different systems and target probabilities, and
the number of objects represents different environments. For
the same task and environment, systems with different costs
will have different performances.

For example, in medical tasks, the hit and false alarm
probabilities are more important than the recognition time;
therefore, there is a high reward for a hit, high penalty for a
FA, and a low cost of time unit is assigned. In the detecting
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Table I. Summary of the variable parameters analyzed in the research.

Parameter Description Range Step

WFA2H Ratio between the value of false alarm and hit 0.1,1,10 –
WCR2M Ratio between the value of correct rejection and miss 0.1,1,10 –
WM2H Ratio between the value of miss and hit 0.1,1,10 –
d′

r The robot sensitivity 0.5–3 0.5
d′

h The human sensitivity 0.5–3 0.5
PS Target probability 0.1–0.9 0.1

land mines task, the goal is a high hit rate, while the false
alarm rate and recognition times are usually less important;
hence, the reward for a hit will be high and the cost of each
time unit and penalty for a false alarm will be relatively
low. In a melon-harvesting task, the goal is a high hit rate;
however, false alarms are not favored, since this will lower
performance; hence, both rewards for hits and penalties for
false alarms are high.

In real-time systems, recognition time is critical and hence
the cost of each time unit will be high. In off-line activation
of expensive systems, the cost of each time unit will be low;
however, the cost of each action will be high.

An example for different environments is given in the cases
of a melon-harvesting robot performing at the beginning of
the season when there is a low number of objects with low
target probabilities as opposed to the peak season, which will
be characterized by high number of objects and high target
probability.

2.3. Signal detection theory
A previously developed and modified Signal Detection
Theory (SDT)11,12,19 for two detectors (human and computer)
was used to simplify the analysis. The performance of the
first detector (robot) is determined by its sensitivity, d′

r, and its
criterion, d ′

r . The second detector (human) uses its sensitivity,
d′

h, and two criteria – one for objects already marked by the
robot, d ′

rh, and another for objects unmarked by the robot, d ′
h.

3. Methodology

3.1. Overview
This work focused on in-depth evaluation of different tasks,
systems, and environments. A comprehensive numerical
analysis was conducted by examining the influence of
human, robot, environment, and task parameters on
collaborative systems.

A numerical analysis of the objective function was
conducted on a PC with Matlab 7.1TM. The focus was
determination of the best operational level for various
systems, tasks, and environments, and investigating the
operational costs. In addition, a sensitivity analysis of
different parameters was conducted.

3.2. Best operational-level analysis
The influence of different human and robot sensitivity
combinations (d′

h and d′
r) and different target probabilities

(PS) on the best operational level of various systems and
tasks was analyzed.

Tasks that prioritize detection will set a high value for
the hit weight (WH). In contrast, tasks oriented to minimize

false alarms will have a high value for the false alarm weight
(WFA). In addition, there are costs associated with system
operational time and action. By setting different values for
the objective function weights (WH, WFA, WCR, and WM)
different tasks can be analyzed. To simulate different tasks,
three ratio parameters between the objective function weights
were set: the ratio between false alarm and hit weights,
WFA2H; the ratio between correct rejection and miss weights,
WCR2M; and the ratio between miss and hit, WM2H. To create
a drastic difference between the objective function weights,
the values for these ratios were set as 0.1, 1, and 10. The
value of hit weight, WH, was set to 50, and all the other
weights were determined according to the ratios. The values
of different parameters of the simulation were extracted from
a preliminary experiment performed by Bechar and Edan.2

The probability for target (PS) ranged from 0.1 to 0.9. The
human sensitivity, d′

h, and the robot sensitivity, d′
r, ranged

from 0.5 to 3. The operational cost weights were constant
where the cost for one system action was set to Wc = 2 and
the cost for one time unit was set to Wt = 2000 hr−1. The
number of objects in each environment was set to N = 1000.
The decision time for all human time parameters was set to
td = 5 s/object, and the human motoric time was set to tm = 2
s/(recognized object). The robot time was set to tr = 0.01
s/object. In addition, all analyses were performed for optimal
likelihood ratios. The optimal likelihood ratios, d ′

r, d
′
h, and

d ′
rh, were determined in the range between the logarithm of

−4 and the logarithm of 4, in order to cover the available hit
and false alarm probabilities. The simulation variables are
summarized in Table I.

3.3. Operational costs analysis
This analysis aims to investigate the influence of operational
costs on each operational level and on the system’s overall
performance. A comprehensive analysis of both operational
cost parts – time and action – was conducted. The model’s
operational cost (VT) consists of costs associated with time
(Vt) and operation (Vc). The operational cost as a function of
time, Vt, is affected by a number of decisions that the system
(robot and human) has to make, how fast these decisions are
made, and the cost per time unit of system operation. The
operational cost as a function of operation, Vc, is affected by
the cost per one operation of the robotic arm (action) and the
number of times an action is required. Since the robotic arm
moves only when there are hits and false alarms, this cost is
only present when these outcomes occur.

4. Best Operational-Level Analysis
The numerical analysis focused on the influence of different
human and robot sensitivity combinations (d′

h and d′
r) and
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Fig. 1. The influence of human and robot sensitivities on the system’s performance for each operational level – an example.

different target probabilities (PS) on the best operational
level of different systems and tasks. System performance for
different human and robot sensitivity combinations is shown
in Fig. 1. Each surface represents one of the system’s possible
collaboration levels. This figure illustrates the influence of
the sensitivities on the objective function score (z-axis) and
the highest score for each sensitivity combination, which
is composed of the largest surface created from the surface
intersections of different operational levels (its perimeter is
marked with a dashed line). Furthermore, each intersection
in this area represents a shift between the operational levels
to maintain optimal performance.

4.1. Best operational level – definition
The best operational level is defined as the operational level
that, under specific task parameters, achieves the highest
objective function score (VIs). Analysis was conducted using

a 2-D graph that illustrates the best operational level map
(Fig. 2), where each operational level is represented by a
different pattern. In the case presented, the HR, HOR, and R
levels are the best levels in different areas of the sensitivity
space. This example indicates that for the same task the best
operational level can change. Different task, human, robot,
or environment parameters will result in different operation
level maps.

4.2. Best operational level – results
Due to the multitude of results, the preliminary objective was
to determine a common system “behavior” (the reaction to
different parameters) between the different tasks analyzed.
After investigating all the operational level maps that were
produced by the analysis,21 it was found that the maps could
be classified into two main types of tasks based on the
influence of the target probability on the best operational level

Fig. 2. Example of the system’s best operational level maps for different target probabilities in a Type 1 task.
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Fig. 3. Example of the system’s operational level maps for different target probabilities in a Type 2 task. System Properties Analysis.

maps; the objective function mathematical model appears to
have an inherent symmetry with respect to the weight pairs
and ratios. Although the threshold setting and the weight
pairs and ratios are continuous variables, at a specific value
(of the weight pairs and ratios), the system’s reaction to the
task changes from one type to another. It was found that
the two types had opposite tendencies as a function of the
target probability, i.e., the tendency of changes in the best
operational level maps as a function of the target probability
was opposite for the two types. The first type, denoted
herein as ‘Type 1,’ consists of reaction to tasks focused on
minimizing false alarms. This goal can be reached by setting
proportionately greater rewards for correct rejections and/or
greater penalties for false alarms. The second type denoted
herein as ‘Type 2,’ consists of reaction to tasks focused on
detecting targets when one is presented. This goal can be
achieved by setting proportionately higher rewards for hits
and/or higher penalties for misses.

4.2.1. Type 1: High priority to minimizing false alarms.
Results indicated that as the target probability, PS , increases,
the area in which best performance is achieved by the R level,
in the best operational level map, decreases. Furthermore,
results indicated that the HR is the best level only when the
human sensitivity, d′

h, is greater than the robot sensitivity, d′
r.

It should be considered that when the target probability, PS ,
is high, the HOR level is preferable in most of the sensitivity
space. However, when robot sensitivity is greater than human
sensitivity, the best level is R. The H level (human performs
solely) was never the best operational level (Fig. 2).

4.2.2. Type 2: High priority to target recognition. As
opposed to Type 1, in Type 2 an increase in the target
probability, PS , increases the area of the R level in the best
operational level map. Moreover, for high and intermediate
target probabilities, the R level was found to be the best level
when the sensitivity of the robot was greater than that of the
human. The HR was found to be the best operational level

only when the target probability was low, and the human
sensitivity was greater than the robot sensitivity. For very
low target probability (PS = 0.1), the HR level is the best
operational level in more cases than the HOR level, although
as target probability increases, the HOR level performs better
in more cases than the HR level (Fig. 3). Similar to the
findings in Type 1, in the system’s reaction to Type 2 tasks,
the manual mode (H) was never the best level.

Analysis of the objective function model for the best
operational level (see Table I) reveals symmetry between
hits and false alarms ratio, WFA2H, and between correct
rejection and miss ratio, WCR2M (i.e., the same operational
level map was generated when WFA2H = X, WCR2M = Y
and WFA2H = Y, WCR2M = X, where X and Y are the ratio
values independent of the type). This implies that systems in
different tasks with identical weight ratios can have identical
best operational level maps. In order to examine these
findings a further analysis of the objective function score
was conducted. The objective function score was analyzed by
analyzing contour graphs in the human and robot sensitivity
space for different target probabilities (Fig. 4).

While there is uniformity in the best operational level
maps of systems with different ratios, their objective function
scores are different. The difference is derived from the way
these systems achieve their task goal – minimizing false
alarms for Type 1 and recognizing targets for Type 2. In
Type 1 tasks, while some of the systems achieve the task goal
of minimizing false alarms by giving a large penalty for false
alarms, other systems achieve it by giving a large reward for
correct rejections. In Type 2 tasks, while some of the systems
achieve the task goal of recognizing targets by giving a large
reward for a hit, other systems achieve it by giving a large
penalty for a miss.

Examples of these results are presented in Figs. 4 and 5:
The objective function score maps of two systems in Type 1
tasks show identical operational level maps as presented in
Fig. 2.
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Fig. 4. Example of a Type 1 objective function graph where the system’s goal is achieved by giving high penalty for FA proportionally to
CR.

Actually, these findings indicate that there is symmetry
between hit weight (WH) and miss weight (WM), and
symmetry between correct rejection weight (WCR)
and false alarm weight (WFA). This yields that if we
set WH = X1, WM = X2, WCR = Y1, WFA = Y2, (X1 �= X2,

Y1 �= Y2), then the same best operational level maps
will appear for WH = X2, WM = X1, WCR = Y1, WFA =
Y2, WH = X2, WM = X1, WCR = Y2, WFA = Y1, WH = X1,

WM = X2, WCR = Y2, WFA = Y1. Note that each set

represents a different system. An example of the last finding
is presented in Table II.

These results led to further analysis, aimed at testing the
shift in the best operational level maps, which occurs in
the transition between symmetrical weights. This revealed
that for all the analyzed systems the same best operational
level map was received, i.e., the symmetry attribute depends
on the difference between the weights. In fact, this further
analysis extended the symmetry attribute, and it was found

Fig. 5. Example of a Type 1 objective function graph where the system’s goal is achieved by giving high reward for CR proportionally to
FA.
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Table II. Examples of different systems with the same best
operational level maps.

WH WM WCR WFA

20 5 10 7
5 20 10 7

20 5 7 10
5 20 7 10

that the type (1 or 2) depends upon the ratio between �1 =
WCR − WFA and �2 = WH − WM.. If �1/�2 > 1, the system
reaction is classified as Type 1. If �1/�2 < 1, the system
reaction is classified as Type 2. In cases where �1/�2 = 1,
the system reaction can be considered as Type 1 or Type
2. This can be assumed as a new property of the objective
function. These findings are presented in Fig. 6.

All analyses were conducted with optimal βs presented in
Eq. 8.

β∗

A︷ ︸︸ ︷
= (1 − PS)

PS

×

B︷ ︸︸ ︷(
WCR − WFA

WH − WM

)
(8)

The optimal β includes two parts (Eq. (8)22): the ratio
between the a priori probabilities (noted as A) and the ratio
between the weights (�1/�2, noted as B). Analysis of the
objective function and Eq. (8) revealed that the value of

optimal β is determined by the system type (i.e., �1/�2)
and the target probability (PS). Parameter PS depends on
the environment and cannot be controlled by the system’s
designers. Thus, this parameter has not been considered as a
parameter that defines the system reaction type, but it does
affect the system performance. On the other hand, the ratio
between the weights (�1/�2) depends on the system reaction
and the tasks and can be controlled by the system designers.

5. Operational Cost Analysis
The operational cost analyses were conducted for systems
reacting to Type 1 and Type 2 tasks where the weight ratios
were set to �1/�2 = 10 and �1/�2 = 0.1, respectively.

5.1. System time (ts) analysis
The system time is affected by the target probability (PS),
and the human and robot sensitivities (d′

r and d′
h), thresholds

(d ′
s), and reaction times (see Section 2.2, Eq. (7)). The robot’s

reaction time was considered negligible (since it depends on
computer hardware and algorithm complexity). The robot
time is considered to be deterministic. On the other hand, the
human decision time, td , depends on many variables, such as
the operator’s skills and fatigue and image complexity, and
therefore is considered variable.

The analysis focused on the effects of each of the
parameters influencing ts, which were described above:
PS, d′

r, d′
h, and td. Type 1 analysis is presented in Fig. 7. These

Fig. 6. Example of the symmetry property. On the left graphs, �1/�2 > 1 (i.e., Type 1). On the right graphs, �1/�2 < 1 (i.e., Type 2).
Different ratios will produce different best operational level maps.
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Fig. 7. Time cost analysis of Type 1. The effect of different sensitivities and target probabilities on system time.

graphs demonstrate the effect of target probability and human
and robot sensitivities on each of the operational levels. As
explained previously, robot time is treated as a constant and
therefore level R is not presented. Each surface represents a
different target probability, x- and y-axes represent the robot
and human sensitivities, respectively, and the z-axis is the
system time (ts).

In the H operational level, the “hit” and “false alarm”
outcomes are associated with longer reaction times than miss
and correct rejection, since these outcomes also involve a
motoric motion. Results show that for level H, as target
probability and human sensitivity increase, ts becomes
higher. These results are supposedly counter-logical, as
one would expect that as human sensitivity rises, his/her
discerning ability improves, causing decision-making time to
shorten, and therefore system time to diminish. Actually, as
human sensitivity improves, the probability of recognizing
a target (probability for hit) rises, which leads to a larger
number of longer reactions, and therefore the total time the
system operates is longer.

The difference between the HR and the HOR operational
levels in the model’s objective function manifests itself by
the ts value. Thus, the graphs of these operational levels are
different. In the HR level, the robot first marks objects it
considers being targets and then the human decides whether
these objects are targets. Thus, similar to the H level, hit
and false alarm outcomes are associated with longer reaction
times than miss and correct rejection. Therefore, the HR level
behaves similarly to the H operational level. In the HOR level,
the robot first marks all recognized targets; then the human
marks objects the robot has missed, and rejects wrong entries
of the robot. Thus, in the HOR operational level, contrary to
the H and HR levels, miss and correct rejection outcomes

are associated with longer reaction times than hit and false
alarm. Consequently, the HOR level has opposite trends than
the H and HR levels.

The results for Type 2 are presented in Fig. 8. Similar to the
results of Type 1, as target probability increases, the value of
ts increases in the H and HR levels. However, contrary to the
results of Type 1, as human and robot sensitivities increase,
ts decreases in these operational levels. This result is derived
from the difference between Type 1 and Type 2. In Type 1,
an increase in the system’s (human and robot) sensitivity
mostly influences the number of hits, which increase as well
and therefore ts increases. However, in Type 2, an increase
in the system’s sensitivity mostly influences the number of
false alarms, which decrease, thus ts decreases.

The HOR graph behaves similarly to the graph of Type
1 except that the surfaces of PS = 0.1 (black surface) and
PS = 0.9 (gray surface) are opposite. This result reflects the
opposite tendencies of the two types as a function of the
target probability.

5.2. Human decision time (td) analysis
In order to investigate the influence of human decision time,
td, on system performance, its value was varied from 2 to
14 s. Type 1 analysis for the best operational level maps as a
function of PS, td, d′

h and d′
r is presented in Fig. 9.

For low target probabilities (PS = 0.1), a change in
decision time is critical and for values equal and above td = 8
s the best operational level is always R level. In contrast, for
medium (0.5) or high (0.9) target probabilities, a change in
decision time has only low influence on the best operational
level maps. In order to compare the influences of the td and
PS , further analysis was performed, which examined these
parameters together (Fig. 10).
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Fig. 8. Time cost analysis of Type 2. The effect of different sensitivities and target probabilities on system time.

Fig. 9. Type 1 results for analysis of best operational level maps for different td and PS . Columns are for different td and rows for different
PS . Each map is represented in the sensitivity space where the x-axis is d′

r and the y-axis is d′
h. For instance, the upper left graph presents the

best operational level of Type 1 system reaction as a function of robot (x-axis) and human (y-axis) sensitivities where td = 2 and PS = 0.1.
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Fig. 10. Decision time analysis of Type 1. Effect of td and PS on VT (left graph) and VIs (right graph).

The effect of PS and td on the objective function score
(VIs, right graph) and on the operational costs (VT, left graph,
values are absolute) are shown in the figure. Results show
that the effect of decision time, td, on VT is larger than the
effect on PS , i.e., an increase in this parameter leads to a
sharper increase in operational costs. In contrast, PS is the
parameter that has a larger effect on the total score, VIs. Thus,
td’s level of influence on the system’s overall performance
depends upon the ratio VT/VIs. As this ratio increases, td is
relatively more effective than PS . For both graphs td has an
identical effect on levels H, HR, and HOR. Type 2 results are
presented in Figs. 11 and 12.

For low (0.1) and medium (0.5) target probabilities, a
change in decision time has a greater influence on the best
operational level maps. As td increases, the R level is more
preferable.

Similar to the results of Type 1, while td has a larger effect
than PS on VT, the target probability has a larger influence
than td on the total score, VIs. Thus, td’s effect is independent
of task type.

5.3. Object recognition weight (Wc) Analysis
The cost associated with object recognition, Wc, depends,
among other things, on the type of assignments the system
has to perform and the robotic system’s complexity. In order
to examine the effect of Wc, this parameter received variable
values, ranging from 2 to 18. Type 1 analysis of the best
operational level maps for different values of Wc and different
target probabilities is presented in Fig. 13.

Changes in Wc have little influence on the best operational
level maps for all target probabilities. Similar to the time cost
analysis, for a further examination of Wc, its influence was

Fig. 11. Type 2 results for analysis of best operational level maps for different td and PS . Columns are for different td and rows for different
PS . Each map is represented in the sensitivity space where the x-axis is d′

r and the y-axis is d′
h.
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Fig. 12. Decision time analysis of Type 2. Effect of td and Ps on VT (left graph) and VIs (right graph).

compared with the influence of PS on the operational costs
and on the total objective function score (Fig. 14).

Increase of Wc has little influence on the operational costs
(Fig. 14, left) and total system performance (Fig. 14, right)
for all models’ operational levels. However, a combination
of high PS and high Wc increases the operational costs dra-
matically. Greater target probability increases Wa (number of
hits and false alarms), which is the factor that is multiplied
by Wc. Hence, the combination of high PS and high Wc has
a great influence on the operational costs (Fig. 14, left). Wc’s
analysis for “Type 2” is presented in Figs. 15 and 16.

These results correspond to those of Type 1. Changes in Wc

have only a slight effect on the best operational level maps for
all the target probabilities. These findings match the results
of Type 1. Thus, the influence of Wc is independent of the
type.

6. Conclusions
An investigation of the behavior of the objective function
consisting of all modules (hit, false alarm, miss, correct
rejection, and operational cost) was conducted. Different
types of tasks and systems were evaluated, resulting in two
behavior types based on the natural qualitative bipartition
of model behaviors: Type 1 is focused on minimizing false
alarms and Type 2 is geared toward recognizing targets. These
system reactions and tasks can be quantified in terms of a
simple ratio of differences of model weights. The objective
function has an inherent symmetry with respect to the weight
pairs and ratios; this symmetry was shown analytically. The
symmetry is expressed by the fact that systems reacting to
different tasks have identical best operational level maps.
This finding led to a further investigation, which indicated
that only the ratio �1/�2, where �1 = WCR − WFA and

Fig. 13. Type 1 analysis of the best operational level maps for different Wc and PS . Columns are for different Wc and rows for different PS .
Each map is represented in the sensitivity space where the x-axis is d′

r and the y-axis is d′
h.
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Fig. 14. Effect of Wc and PS on VT (left graph) and VIs (right graph) of Type 1 system reaction.

Fig. 15. Type 2 analysis of the best operational level maps for different Wc and PS . Columns are for different Wc and rows for different PS .
Each map is represented in the sensitivity space where the x-axis is d ′

r and the y-axis is d′
h.

Fig. 16. Effect of Wc and PS on VT (left graph) and VIs (right graph) of Type 2 system reaction.
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�2 = WH − WM, determines the type of the task and the
system reaction. In addition, since the a priori probability
(PS) is a characteristic of the environment and cannot be
controlled by the system’s designers, this parameter has not
been considered as a parameter that defines the type.

The last finding can enable generalization of the results that
were found for specific tasks and systems in this work to any
task and system with the same ratio. Moreover, this finding
can be assumed to be a new property of the objective function
score and assist in the understanding of further analysis.

The human operator decision time was found to be the
most influential parameter on the best operational level map.
Improvement in the human decision time (i.e., shortening this
time) leads to preference of the HR and HOR collaboration
levels over level R. Hence, research should be directed to
methods to reduce human decision time.23,24

The manual level (H) was never the best level for the
optimal cases; this may be the result of high operational
costs and a relatively low recognition rate in the systems
analyzed. This implies that optimal collaboration between
human and robot in target recognition tasks, with similar
conditions, can improve system performance. It appears that
improvement in recognition rate and hence rise in profits
gained by this collaboration, outweighs the rise in operational
cost attributable to adding the robot to the system.

Best operational level results showed opposite tendencies
between the two types found. In system reaction to Type
1 tasks, as target probability increased, the R level was
preferable in most cases. In system reaction to Type 2 tasks,
the trend was reversed: as target probability increased, the
HR and HOR collaboration levels were preferable in most
cases. Type 1 system reaction places great value on not
committing errors, that is to say, they place great importance
on results in situations where no target is present, or target
probability is low. In turn, Type 2 system reaction places great
value on results in which a target is present. Even though
very different tendencies were discovered by the functional
analysis, several important similar tendencies found between
them should be pointed out: in both systems as the probability
of the prominent object (non-target in Type 1 and target
in Type 2) increases, the R level will be preferable in
more cases. It can be assumed that this trend stems from
the reciprocation between operational costs and recognition
profits.

This research provides tools to develop an integrated
human–robot target recognition system. The system can
be designed to fit a specific task and environment. The
work presented here can be applied off-line and even in
the absence of an actual system. For instance, in real-
time systems, recognition time is crucial, the cost of each
time unit will be high, and the system will be allowed
to operate only in the R and HOR collaboration levels.
On the other hand, in detecting land mines, the goal is
a high hit rate, while the false alarm rate and recognition
times are usually less important; the reward for hit will be
high and the cost of each time unit and penalty for false
alarm will be relatively low, and the system designers will
prevent the system from operating in collaboration levels that
will impair the performance such as in the R collaboration
level. Furthermore, this methodology can be used to analyze

on-line system performance and to recommend the best
collaboration and the human performance on-line.25
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