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We derive the two-dimensional counter-differential rotation equilibria of two-component
plasmas, composed of both ion and electron (e−) clouds with finite temperatures, for
the first time. In the equilibrium found in this study, as the density of the e− cloud is
always larger than that of the ion cloud, the entire system is a type of non-neutral plasma.
Consequently, a bell-shaped negative potential well is formed in the two-component
plasma. The self-electric field is also non-uniform along the r-axis. Moreover, the radii
of the ion and e− plasmas are different. Nonetheless, the pure ion as well as e− plasmas
exhibit corresponding rigid rotations around the plasma axis with different fluid velocities,
as in a two-fluid plasma. Furthermore, the e− plasma rotates in the same direction as
that of E × B, whereas the ion plasma counter-rotates overall. This counter-rotation is
attributed to the contribution of the diamagnetic drift of the ion plasma because of its
finite pressure.
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1. Introduction

In modern plasma physics research, the two-fluid plasma model (Shumlak et al. 2011)
is popular for analysing phenomena for which conventional hydorodynamic models,
for example single-fluid equations and magnetohydrodynamics (generally abbreviated as
MHD), are unsuitable. The two-fluid plasma equations permit a high degree of freedom
in determining not only the spatiotemporal evolutions (Zhu, Francisquez & Rogers 2017;
Morel et al. 2021) but also the equilibrium profiles (Ishida, Steinhauer & Peng 2010; Kanki
& Nagata 2019; Ito & Nakajima 2021) of the density nσ , pressure pσ and mean velocity
vσ of the ion and electron fluids (hereafter, called plasma); subscript σ denotes either i
or e because the equations comprise two sets of Euler equations as well as Maxwell’s
equations. However, a fundamental question arises on the assumption (De Jonghe &
Keppens 2020; Mironov 2021; Zhang et al. 2021) that the ion and electron plasmas are
electrically neutral, although it is not required by the two-fluid plasma model.

Non-neutral plasma physics (Kabantsev et al. 2014; Danielson et al. 2015) provides a
novel insight into this question. Non-neutral plasmas are defined as exotic plasmas because
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they originally include only one charged particle species, for example either pure electrons
(e−) or pure ions (i+). Such non-neutral plasmas have been extensively investigated
(Kabantsev et al. 2001; Romé et al. 2019; Espinoza-Lozano, Calderón & Velazquez 2020)
following the experimental verification of their robust rotation equilibrium (Davidson
et al. 1991) with the confinement of the pure e− plasma in a linear trap (Malmberg &
Driscoll 1980). Pure i+ plasmas (Dimonte 1981; Bollinger, Wineland & Dubin 1994;
Dubin 2020; Viray, Miller & Raithel 2020) have also been studied. Several techniques
developed in such experiments have been applied to produce antimatter, and CPT (charge,
parity, and time reversal symmetry) sensitivity tests have been performed recently (Higaki
et al. 2017; Fajans & Surko 2020). Moreover, toroidal e− plasmas confined to magnetic
surfaces without an externally applied electric field have been investigated (Berkery et al.
2007; Himura et al. 2010; Yoshida et al. 2012; Khamaru, Ganesh & Sengupta 2021), and
magnetized electron–positron plasmas are being developed (Gilbert et al. 2001; Stoneking
et al. 2020). In most recent studies, both i+ and e− plasmas have been used simultaneously
as seed plasmas to explore the unverified physics of the equilibrium and stability of
two-fluid plasmas in which ni is never equal to ne (Himura 2016; Akaike & Himura 2018,
2019; Yamada et al. 2018; Kato et al. 2019).

A two-fluid plasma with ni �= ne inherently results in a self-electric potential φs.
Therefore, if the plasma is magnetically confined, it is not static but dynamic. The
two-fluid plasma needs to keep rotating if it is in equilibrium. Davidson (Davidson 2001)
derived a two-dimensional (2-D) differential rotation equilibrium under the assumption
that the i+ and e− plasmas constituting the two-component plasma had zero temperature
(Ti = Te = 0 eV), and were cylindrically confined by a linear trap in a uniform axial
magnetic field Bz, where Bz was assumed to be considerably larger than the self-magnetic
field of the i+ and e− plasmas (Davidson 2001). In this case, the i+ and e− plasmas are
independently rigid-rotated in the same direction but with different angular velocities
ωri and ωre, respectively, which is unlike the differential rotation observed in the Sun
(Balbus et al. 2009). In modern terms, the differential rotation equilibrium of the i+ and
e− plasmas can be described as a two-fluid plasma (Davidson & Uhm 1978) because vi
and ve are different. The solutions for ωri and ωre for the cold plasma case are expressed
as ω±

ri = −(ωci/2){1 ± (1 − 2ω2
pi(1 − 1/f )/ω2

ci)
1/2} and ω±

re = (ωce/2){1 ± (1 − 2ω2
pe(1 −

f )/ω2
ce)

1/2}, where ωpσ and ωcσ are the plasma and cyclotron frequencies of the i+ and e−

plasmas, respectively. Here, f is used as an indicator of the degree of non-neutrality of the
two-component plasma: f ≡ ni0/ne0, where ni0 and ne0 are the densities of the i+ and e−

plasmas, respectively. However, to the best of our knowledge, the 2-D differential rotation
equilibrium of a two-fluid plasma with finite temperature has not yet been derived. In
the case of finite temperature, diamagnetic drift because of the pressure gradient (Bellan
2008), whose direction depends on the polarity of the charge of the plasma species, unlike
the E × B drift, occurs in two-fluid plasmas. In this study, we theoretically show that the
2-D differential rotation equilibrium continues to exist even in a two-fluid plasma with
finite temperature, for the first time. Similar to the case of a single-component plasma
with finite temperature (Davidson & Krall 1969), ni(r) and ne(r) develop corresponding
bell-shaped profiles at rotational equilibrium. In addition, the plasma radii rσ of the i+
and e− plasmas do not coincide but are different. Consequently, the radial component
(Er) of −∇φs increases nonlinearly. Nevertheless, both i+ and e− plasmas continue to
exhibit corresponding rigid rotations. More notably, unlike the cold plasma case, the i+
plasma counter-rotates around the plasma axis in the opposite direction of the e− plasma,
which rotates in the direction of −∇φs × B for the case where f < 1, i.e. ni0 < ne0.
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This counter-differential rotation equilibrium is attributed to the contribution of the
diamagnetic drift of the i+ plasma (Bellan 2008).

2. Derivation of the counter-differential rotation equilibria

Figure 1 depicts a solution of the counter-differential rotation equilibria. An infinitely
long lithium-ion (Li+) plasma column contains an infinitely long e− plasma confined
radially through Bz = B0ẑ, where ẑ is the unit vector. The origin of the cylindrical
coordinate system (r, θ , z) is located at the midplane of the coaxial plasmas, and the z-axis
is selected to be parallel to Bz. Both Li+ and e− plasmas have corresponding thermal
equilibria and finite pressure pσ (r). The fluid velocity vσ is assumed to be non-relativistic.
Moreover, the plasma current e(nivi − neve) is insufficient to change Bz because of the low
ni and ne. One of the possible states likely to exist is the rigid-rotation equilibrium of the
two-fluid plasma in which both pure Li+ and e− plasmas can be independently relaxed into
their corresponding thermal equilibria. Thus, the ωrσ values are constant. In this case, the
counter differential rotation equilibrium can be derived as follows.

Because each plasma rotates as a rigid body around the z-axis, the θ component of
vσ (vθσ ) is proportional to r and therefore, vσθ = ωrσ r. The term ∇pσ is equivalent to
kBTσ∇nσ because Tσ is spatially uniform at thermal equilibrium. Hence, the equation of
steady-state motion for both plasmas can be expressed as mσnσ (vσ · ∇)vσ = nσqσ (vσ ×
Bz − ∇φs)− kBTσ∇nσ , where mσ and qσ represent the mass number and elementary
charge of each species, respectively. Solving this equation for nσ (r),

nσ (r) = nσ0 exp
(

− ψσ

kBTσ

)
, (σ = i, e), (2.1)

where
ψσ(r) ≡ qσφs(r)− 1

2 mσ r2(sgn(qσ )ωcσωrσ + ω2
rσ ). (2.2)

The coefficient nσ0 on the right-hand side of (2.1) represents the value of nσ on the z-axis,
where r = 0. In addition, ψσ are the corresponding effective potential energies (Davidson
2001) of the singly ionized ions and e− plasmas. Substituting them in Poisson’s equation,
the rotation equilibrium equation with finite Tσ can be expressed as

1
r

d
dr

(
r

d
dr
φs

)
=

∑
σ=i,e

−qσ
ε0

nσ0 exp
(

− ψσ

kBTσ

)
. (2.3)

To numerically determine the solutions of (2.3), we apply the measured values in
the beam experiment upgrade (BX-U) linear trap experiments (Himura 2016; Akaike &
Himura 2018, 2019; Yamada et al. 2018; Kato et al. 2019), as examples for the calculation.
The boundary condition of φs is the same as that of the BX-U as well, as listed in table 1.
Although the value of B0 is variable, it is fixed to 0.13 T in the presented calculation.
Lithium (Li+) is employed as the singly ionized ion. The value of ni0 can be varied in
the 1011–1012 m−3 range, whereas ne0 is in the 1012–1013 m−3 range. For Tσ , we assume
Ti = Te = 2 eV because the confinement time is considerably greater than the binary
collision time. This observation implies two-fluid rotational equilibrium. To determine
solutions within the ni and ne ranges in table 1, the coefficients of ni0 and ne0 are set
to 1 × 1011 and 5 × 1012 m−3, respectively. Thus, ni0/ne0 = 0.02. Under these conditions,
the Gauss–Seidel method was employed to solve (2.3). Values of ωri and ωre are also
computational parameters. First, we obtain φs(r) from (2.2) and (2.3) by substituting
independent values into ωri and ωre one by one. Then, the obtained φs(r) is utilized
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FIGURE 1. Illustration of the differential rigid-rotation equilibrium of a two-component
(two-fluid) plasma model with finite Tσ . To find solutions in the realistic case of laboratory
plasmas, we refer to the beam experiment upgrade (BX-U) linear trap experiment (Himura 2016;
Akaike & Himura 2018, 2019; Yamada et al. 2018; Kato et al. 2019), where Li+ and e− plasmas
constitute the two-component plasma.

Axial magnetic field Bz ≤0.13 T
Vacuum pressure p0 (5 − 10)× 10−10 Torr
Pure ion plasma Mass of Li+ ion 6.941 u

Anode temperature ≈1300 K
Acceleration voltage >3 V
ni 1010 - 1012 m−3

Pure e− plasma Cathode temperature ≈1300 K
Acceleration voltage 5–15 V
ne 1011–1013 m−3

Confinement time Pure e− plasma >18 s
Pure ion plasma ∼1–10 s
Two-fluid plasma 10 µs − 1 s

Collision timea e− − e− 0.1–0.9 ms
ion - ion 0.1–1.3 s
e− - ion 0.1–0.9 ms
ion - e− 0.15–1.4 s

Ion skin depth >102 m
Boundary condition: φs = 0 V at r = 5 cm

aAll the collision times are calculated using the values of ni and ne listed above.
TABLE 1. Nominal parameters of the BX-U machine and assumed boundary condition for φs in

this calculation.

to calculate the corresponding nσ (r) from (2.1). Using these numerical schemes, we
systematically find self-consistent sets of solutions of ψs, ni and ne that satisfy (2.1)–(2.3)
simultaneously even with finite Ti and Te, as shown below.

3. Possible ωre and ωri with which counter-differential rigid-rotation equilibria exist

Figure 2 shows the dependency of ωrσ on ni0/ne0, where ωrσ is normalized by the
cyclotron frequency ωcσ . For the three cases where ni0/ne0 = 0.02, 0.5 and 0.9, the
possible ranges of ωre and ωri in which rigid-rotation equilibria of the two-fluid plasma
exist are denoted by the six solid-line sections, where the red and blue colours represent
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FIGURE 2. Dependency of ωrσ on ni0/ne0. Here ωrσ is normalized by the corresponding
cyclotron frequency ωcσ . The dashed (red) curve shows the possible solutions (ω+

ri and ω−
ri )

for a two-component plasma with Ti = Te = 0 eV, whereas the dashed (blue) lines indicate the
possible solutions (ω+

re and ω−
re) for a two-component plasma with Ti = Te = 0. Te = 0 eV. The

values of ne0 are set to 5 × 1012 m−3. As can be observed, for a two-component plasma with
finite Tσ , the possible ranges ofωσ are limited. These are denoted by the corresponding solid-line
sections, where the blue colour represents e− plasma and the red represents Li+ plasma.

ωre and ωri, respectively.1 For the reader’s understanding, it should be noted that the
value of ωrσ of a single-component plasma such as pure e− plasma must be either ω+

rσ
(fast mode) or ω−

rσ (slow mode) if Tσ is zero. For Tσ �= 0, ωrσ of a single-component
plasma can take any value between ω+

rσ and ω−
rσ . However, for two-fluid plasmas with

finite Tσ , the possible ranges of both ωre and ωri are limited. This is noticeable for ωri,
as depicted in figure 2. The sign of ωre is always positive. On the other hand, the sign
of ωri is always negative, contrary to the case of one-component pure ion plasmas. The
different signs of ωre and ωri physically imply that the Li+ and e− plasmas rigid-rotate
in opposite directions. As previously mentioned, Bz is along the positive direction of the
z-axis, whereas Er(= −∇rφs) is from the plasma edge toward the plasma axis, inward. This
can be deduced from the fact that ne0 > ni0. Overall, it is recognized that the e− plasma
rotates in the direction of Er × Bz, whereas the Li+ plasma counter-rotates in the opposite
direction of Er × Bz. Because ωri �= ωre, this can be considered as the counter-differential
rotation equilibrium of two-fluid plasmas. As example solutions, we present extraordinary
cases. When ωre/ωce takes a minimum value of 1.6 × 10−4, ωri/ωci can take any value
in the −0.97 < ωri/ωci < −0.05 range. Such arbitrariness is provided by the fact that
changes in the profiles of nσ (r) and φs(r) occur self-consistently to satisfy (2.1)–(2.3).

4. The finite temperature effect

The counter-rotation of Li+ plasma at rigid-rotor equilibrium is attributed to the finite
pσ . Figure 3 shows the radial profiles of the azimuthal components of E × B (≡ vφ =
(1/B0) dφs/dr) and the diamagnetic (≡ vdσ = −(kBTσ /nσqσB0) dnσ /dr) drift terms along
with vσ . These are calculated from a typical set of equilibrium solutions of φs(r) and
nσ (r), as depicted in figure 4. Figure 3 shows that the sign of vφ is positive along the
entire r-axis. However, |vφ| is one order of magnitude smaller than the absolute value of

1If ne0 is smaller, the range of f where real solutions of ω±
ri exist extends beyond f ∼ 2, correspondingly. Finally,

ni(0) approaches the Brillouin density of a pure ion plasma as f approaches infinity by decreasing ne0.
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FIGURE 3. Radial profiles of the azimuthal components of vφ (black dashed curves), vdσ (red
dotted curves for Li+ plasma and blue for e− plasma) and vσ (two solid red and blue lines)
for a typical set of equilibrium solutions obtained for the case where ωri = −3.3 × 105 and
ωre = 3.6 × 106 rad s−1. Both Li+ and e− exhibit counter-differential rigid-rotation equilibrium.

FIGURE 4. Radial profiles of φs(r) and nσ (r) for the set of equilibrium solutions shown in
figure 3. Here ri and re are never equal but are different when the two-component (two-fluid)
plasma is in counter-differential rigid-rotation equilibrium. In addition, the lengths of ri and re
in the two-fluid equilibrium are smaller than those calculated for the pure Li+ and e− plasmas.

vdi, which is negative in the entire plasma, causing counter-rotation. Here, we note that
vφ and vdi change nonlinearly along the r-axis, which can be clearly recognized in the
inset of figure 3. However, vi, composed of vφ and vdi, increases linearly along the r-axis,
resulting in rigid-body rotation.

The same linearization occurs for ve as well, as depicted in figure 3. Counter-differential
rigid-rotation equilibrium is caused by the balance between pσ and φs perpendicular to Bz,
which is qualitatively similar to the study of non-uniform pσ and φs on toroidal magnetic
surfaces (Pedersen & Boozer 2002; Himura et al. 2007).

At counter-differential rotation equilibrium, nσ (r) assumes the corresponding
bell-shaped profile, which is qualitatively the same as that in the cold plasma case.
However, because of finite Tσ , the pressure-gradient terms (kBTσ∇nσ ) play dominant roles
in maintaining the corresponding rotational equilibria, as mentioned above. In figure 4,
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the value of ni(0) is approximately 1.4 × 1011 m−3, which is greater than ni0, whereas
ne(0) ≈ 3.5 × 1012 m−3 is smaller than ne0. The difference between ni and ne indicates
that the two-fluid plasma is electrically non-neutral. Because ni(0) < ne(0), φs becomes
negative at r = 0. However, in addition to the plasma axis, the negative φs extends over
the entire plasma, regardless of ni. The minimum value of φs is at r = 0, which is
approximately −0.7 V in this case. The curvature of φs(r) becomes convex toward the
top, as observable in figure 4.

For nσ (r), their maxima appear at the plasma centre (r = 0) and decrease monotonically,
consistent with φs(r). However, the remarkable result inferred from the profiles of ni(r)
and ne(r) is that ri and re never become equal and always remain different. Defining rσ as
the distance between the plasma centre and the coordinate, where nσ decreases to 1/10 of
nσ (0) (i.e. nσ (rσ )/nσ (0) = 1/10), ri and re are approximately 2.5 and 0.5 cm, respectively,
in the presented case.

The obtained bell-shaped profiles shown in figure 4 may be due to the finite-temperature
effect (Davidson & Krall 1969) to some extent. However, the past study assumed that the
Debye length λwas sufficiently short compared with the plasma radius rp. This assumption
implied that either ne was relatively high or rp was relatively long. Contrary to these, the
present result is obtained from a different parameter regime in which nσ is relatively lower
and Tσ is finite. As a result, λ has the same order as that of rp.

5. On the radii of single-component and two-fluid plasmas

The lengths of rσ reduce when the pure ion as well as e− plasmas with finite
Tσ are in counter-differential rotation equilibrium together. Substituting the values of
nσ (0) in figure 4 in Davidson’s formula2 derived for a single-component plasma,
ri and re are expected to be approximately 6 and 1 cm, respectively. Here, rσ ≈
−{√kBTσ /mσ /ωpσ } ln [(2(ωrσωcσ − ω2

rσ )/ω
2
pσ )− 1]. This discrepancy is caused by the

increase in ψi of the two-fluid plasma. When a single-component ion plasma is in
rotational equilibrium, φs is estimated to be of the order of er2

i ni0/ε0. In addition, ni0
must always be smaller than the Brillouin density (Davidson 2001) such that ω−

ri ≈
−ω2

pi/2ωci, in the case where ω−
ri 	 ωci. Substituting these in (2.2), we estimate ψ0

i of
the single-component ion plasma as

ψ0
i = eφs − 1

2
mir2{ωciω

−
ri −(ω−

ri )
2} ≈ 5

4
e2ni0

ε0
r2

i . (5.1)

Here, we used the following relationship: mir2
i ω

2
pi = e2r2

i ni0/ε0. However, in the case of a
two-component plasma with 0 < ni0 < ne0, φs ≈ er2

i ne(0)/ε0 and ω−
ri ≈ (ne0/ni0)ω

2
pi/2ωci.

Thus, for the counter-differential rotation equilibrium example shown in figures 3 and 4,
ωri ≈ −(ne0/ni0)ω

2
pi/2ωci because ωri = −0.19 × ωci = −1.1 × ω−

ri . Therefore, ψi of the
two-component plasma is derived as

ψi ≈ 5
4

e2ne0

ε0
r2

i = ne0

ni0
ψ0

i (> ψ0
i ). (5.2)

According to (2.1), an increase in ψi causes a rapid decrease in ni as |r| increases, resulting
in a narrower ni(r) as seen in figure 4. In general, for 0 < ni0 < ne0, ri of a two-component

2This formula was derived based on the assumption that the conductor wall was biased to make φs(0) = 0 V and
nσ (0) = nσ0; however, the estimate can be applied when the conductor wall is grounded. In this case, nσ (0) is obtained
using nσ0 exp(−qσ φs(0)/kBTσ ), and the magnitude of the exp(−qσ φs(0)/kBTσ ) term is of the order of unity – therefore,
nσ0 ≈ nσ (0).
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plasma becomes approximately
√

ni0/ne0 times smaller than that of a single-component
ion plasma.

The shorter re is also explained by the increase in ψe. In the equilibrium depicted in
figures 3 and 4, ωre/ωce is ∼ 10−4, which is an order of magnitude greater than the slow
mode: ω−

re/ωce ∼ 10−5. In addition, (1 − ni0/ne0) ≈ 1 in this case. Thus, φs is almost the
same for the pure e− as well as two-component plasma. We compare the two effective
potentials of the two cases. The effective potential of the pure e− plasma isψ0

e . Substituting
these in (2.1) and (2.2), we estimate ψe and ψ0

e as

ψe ≈ ωre

ω−
re

ψ0
e > ψ0

e . (5.3)

Based on these considerations, it is concluded that the two-component plasma becomes
narrower overall.

6. Summary

In summary, the 2-D rigid-rotation equilibria of electrically non-neutral two-component
(two-fluid) plasma with finite Tσ were presented in this study, for the first time.
Furthermore, self-consistent solutions of the differential rigid-rotation equilibria were
determined. However, the possible range of ωσ becomes narrower than that of the
two-component plasma with Tσ = 0. Remarkably, in contrast to the cold plasma case,
the ion plasma is only permitted to counter-rotate because of its diamagnetic drift. In
the future, we intend to investigate the following. In this study, three cases of e− rich
plasmas (ni0/ne0 = 0.02, 0.5, and 0.9) were presented to straightaway show the existence
of counter differential rigid-rotation equilibria. A complete set of possible ranges of ωσ for
different values of ni0/ne0 will be considered. Cases with Ti �= Te will be investigated as
well. Moreover, in the BX-U experiment, there is no constraint that the two-fluid plasma
must rotate rigidly. A more general solution would be to use ωi(r) and ωe(r). In fact, the
axial length of actual plasmas is finite so that three-dimensional computations are suitable
for comparison between experiments and simulations.

Finally, in the case of a small fraction of positive ions in an otherwise pure electron
plasma, the ion resonance instability has been observed to emerge not only theoretically
(Levy, Daugherty & Buneman 1969) but also experimentally (Marksteiner et al. 2008).
Therefore, a stability analysis would be required for the counter differential rigid-rotation
equilibrium with a minimal value of f . Since λ ≈ rσ in the presented parameter regime,
collective plasma effects are not expected to be significant. Perhaps, such an instability
might not grow as much.
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