
J. Fluid Mech. (2020), vol. 905, A5. © The Author(s), 2020.
Published by Cambridge University Press

905 A5-1

doi:10.1017/jfm.2020.732

Richtmyer–Meshkov instability on a
dual-mode interface

Xisheng Luo1, Lili Liu1, Yu Liang1, Juchun Ding1,† and Chih-yung Wen2

1Advanced Propulsion Laboratory, Department of Modern Mechanics,
University of Science and Technology of China, Hefei 230026, PR China

2Department of Mechanical Engineering and Interdisciplinary Division of Aeronautical and Aviation
Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, PR China

(Received 23 February 2020; revised 24 July 2020; accepted 2 September 2020)

We report the first shock-tube experiments on dual-mode Richtmyer–Meshkov instability
(RMI). An extended soap-film technique is adopted to generate a dual-mode gaseous
interface such that its initial wavenumber (k0) and phase of the fundamental waves are
well controlled. By extracting interfacial contours from the distinct schlieren images, a
Fourier analysis is performed from linear to weakly nonlinear stages and the growth of
each basic wave is obtained. A noticeable difference between the growth of each basic
mode and the corresponding single-mode RMI is observed, which suggests evident mode
coupling effects in the dual-mode RMI. For dual-mode interfaces with in-phase k0 and
k0/2 waves, the mode coupling suppresses (promotes) the growth of the k0 (k0/2) mode,
while for interfaces with anti-phase k0 and k0/2 modes, the growth of the k0 (k0/2) mode
is weakly influenced (evidently inhibited). However, for the combination of k0 and k0/3
waves, the mode coupling has a negligible influence on the growth of each basic wave.
The modal theory of Haan (Phys. Fluids B, vol. 3, 1991, pp. 2349–2355), originally
for multi-mode Rayleigh–Taylor instability, is reformulated for the dual-mode RMI, and
it is found that this model overestimates the present experimental results for ignoring
the nonlinear saturation. This model is then modified by accounting for both the mode
coupling and nonlinear saturation, which well predicts the experimental results not only
for the growth of the basic waves but also for the growth of second harmonics.

Key words: shock waves

1. Introduction

Richtmyer–Meshkov instability (RMI) (Richtmyer 1960; Meshkov 1969) develops when
a corrugated interface between two different fluids is subjected to a shock wave. After the
shock impact, perturbations that are inherent on the initial interface grow continuously
with time and eventually a flow transition to turbulent mixing is induced. In recent decades,
the RMI has become a subject of active research due to its crucial role in natural and
engineering situations, e.g. the instability growth is favourable for supersonic combustion
(Yang, Kubota & Zukoski 1993) but unfavourable for inertial confinement fusion (ICF)
(Lindl et al. 2014).

† Email address for correspondence: djc@ustc.edu.cn
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A typical but simple RMI is the one on a single-mode interface, which has been
extensively studied due to its fundamental significance. Under the assumption of
incompressible and inviscid flow, an impulsive model for the early-stage perturbation
development was first derived through a linear stability analysis (Richtmyer 1960). Since
then, several linear models considering more effects such as compressibility (Wouchuk
2001), three-dimensionality (Luo, Wang & Si 2013) and density ratio (Meyer & Blewett
1972) were proposed to give a better prediction. As the perturbation amplitude grows to
a magnitude comparable to the wavelength, nonlinearity becomes pronounced and the
symmetry of the interface is broken. To predict the nonlinear growth, numerous high-order
models based on the perturbation expansion method (Vandenboomgaerde, Gauthier &
Mügler 2002; Zhang, Deng & Guo 2018) and potential models based on the bubble
dynamics theory (Sadot et al. 1998; Sohn 2003; Zhang & Guo 2016) were developed.
Recently, these models have been thoroughly examined by a series of high-fidelity
experiments (Liu et al. 2018).

However, in real applications, a material interface usually presents multi-mode or
random perturbations. In addition to the common flow regimes presented in the
single-mode RMI, the multi-mode case includes mode coupling effects such as harmonic
generation and bubble merger, and thus possesses much more complex phenomena and
mechanisms (Rikanati, Alon & Shvarts 1998; Niederhaus & Jacobs 2003; Sohn 2008;
Leinov et al. 2009; Di Stefano et al. 2015; McFarland et al. 2015; Mohaghar et al.
2017). In general, the evolution of the multi-mode RMI can be divided into three stages:
the linear stage, the mode competition stage and the bubble merger stage. At the linear
stage, each basic mode develops independently as that of an isolated mode. At the early
nonlinear stage, the basic modes start to interact with each other, and to create new
modes with higher or lower wavenumbers, i.e. harmonic generation, and reversely the
newly generated modes provide a feedback on the growth of each basic mode. At late
nonlinear stages, bubble merger occurs, which corresponds to the process that a large
bubble overtakes a small one and finally the two bubbles merge into a larger bubble (Sadot
2017).

Two complementary types of models have been developed to evaluate the growth of the
multi-mode RMI: modal models applicable to the early nonlinear stage when the harmonic
generation is significant, and statistical-mechanics bubble merger models suitable for
the late-time growth. Specifically, modal models consider the interface perturbation as
a superposition of various Fourier modes. As has been found by Haan (1991), the
neighbouring modes could create a local large structure, which suffers a great kinematic
drag and, consequently, the nonlinear saturation occurs at individual mode amplitude
much lower than the single-mode counterpart. Later, the validity range of this model
was extended by Ofer et al. (1996), and the difference between cases with and without
mode generation was analysed. Also, based on a simplified perturbation expansion,
Vandenboomgaerde et al. (2002) derived an analytical solution for the weakly nonlinear
growth of multi-mode RMI. As another type, the bubble merger models treat the distorted
interface as an ensemble of bubbles arranged along a line, and each bubble rises at an
asymptotic velocity proportional to its wavelength as suggested by potential flow theory
(Hecht, Alon & Shvarts 1994; Goncharov 2002). Hence, large bubbles expand faster
and gradually merge the neighbouring small ones, generating new larger bubbles, i.e. an
inverse cascade in wavenumber space. Based on the bubble merger model and given a
specified merging rate, a scaling law was derived by Alon et al. (1995) for the growth of
the mixing zone width at late stages. Nowadays, measuring the constants of the scaling
law is still an active research topic (Thornber et al. 2017; Reese et al. 2018; Thornber et al.
2010). Owing to the substantial lack of experimental results, direct validations of these
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theories for the multi-mode RMI going from the linear to nonlinear regimes are scarce but
very desirable.

The main difficulty for performing an experimental study on the multi-mode RMI,
especially in a shock-tube circumstance, lies in creating an idealized initial interface,
because the RMI is extremely sensitive to the initial condition of the interface. In the
past few decades, numerous techniques and methods have been developed to generate a
controllable material interface. Generally, the interfaces formed can be divided into two
categories: discontinuous interface (Mariani et al. 2008) and diffuse interface (Jacobs &
Krivets 2005; Balakumar et al. 2012). It has been demonstrated that existing techniques
introduce inevitably some imperfections on the initial interface, such as a diffusion
layer, undesired perturbations and three-dimensionality, and thus greatly contaminate
the development of instability. To overcome these problems, recently, a novel soap-film
technique to form sharp interfaces with an idealized single-mode shape has been
developed (Liu et al. 2018), and the results showed a substantial elimination of these
interfacial defects. Further, we performed experiments on quasi-single-mode interfaces
formed by the same soap-film technique (Liang et al. 2019). It was found that the
fundamental mode dominates the initial quasi-single-mode interface and, consequently,
the effect of high-order modes on the amplitude growth can be ignored in the linear stage.
In the nonlinear stage, high-order modes start to play a role such that all the nonlinear
models suitable for single-mode RMI deviate. By considering the effects of high-order
modes, the nonlinear model of Zhang & Guo (2016) is modified to predict the growth of
the quasi-single-mode interface in the weakly nonlinear stage. It was concluded that more
high-order modes are needed to match the experiment as the deviation of the interface
shape from the single-mode one is more pronounced. However, for a multi-mode interface
without a dominant mode, e.g. an interface with two modes of equivalent amplitude, mode
coupling exists from the very beginning of the interface evolution, so that all the linear and
nonlinear models need re-examination, which motivates the present work.

In this work, the soap-film technique (Liu et al. 2018) will be extended to generate
a dual-mode interface with equivalent amplitudes and precisely controlled phases for
the fundamental modes such that the dual-mode RMI can be carefully examined.
Four dual-mode air/SF6 interfaces with different wave compositions and relative phases
between the fundamental waves are realized, and their interactions with a planar shock
are captured by high-speed schlieren photography. The perfect initial conditions created
as well as the negligible influence of the soap film enable us to obtain high-fidelity
experimental results of the dual-mode RMI, which facilitates a reliable extraction of the
interfacial contours. The growth of each basic mode is then obtained by a Fourier analysis
of the interfacial morphologies. It is expected that a noticeable difference will be observed
between the growth of each basic mode and the corresponding single-mode RMI induced
by mode coupling effects in a dual-mode RMI. A modal model for the dual-mode RMI
will be modified by accounting for both the mode coupling and the nonlinear saturation,
and will be validated by comparison with the experimental results.

2. Experimental methods

The experiments are conducted in a horizontal shock tube consisting of a driver
section, a driven section, a transformation channel and a test section with a rectangular
cross-section (140 mm × 7 mm). This tube has been widely used in shock dynamics
and shock-interface interaction studies (Ding et al. 2017). As shown in figure 1(a), two
transparent devices with an inner height of 7.0 mm and a width of 140.0 mm are first made
using acrylic plate (3.0 mm thick). A groove (1.0 mm in thickness and 0.5 mm in width)
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FIGURE 1. Schematics of experimental method and set-up: (a) the test section, (b) the
soap-film technique and (c) the schlieren photography adopted in the experiment.
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FIGURE 2. Schematics of the four initial interface configurations studied in the present work
(not drawn to scale). Here h0 is the initial total width of the interface.

with a desired dual-mode shape is then manufactured on the internal side of each plate
by a high-precision engraving machine. Then two thin filaments (0.75 mm in thickness
and 0.5 mm in width) with the same dual-mode profile are mounted into the grooves
of the upper and lower plates, respectively, to produce desired constraints. Note that the
protrusion height of each filament into the tube is less than 0.3 mm, so that the filaments
have a negligible influence on the flow field.

As a small rectangular frame wetted by soap solution (78 % distilled water, 2 % sodium
oleate and 20 % glycerine by mass) is pulled along the filaments, a dual-mode soap film is
immediately generated (figure 1b). Subsequently, the longer device with a soap film on its
boundary is inserted gently into the test section and later the shorter one is also inserted
until a perfect contact between the two devices is attained. To form an air/SF6 interface,
gaseous SF6 is injected continuously into the test section through a lower hole and the air
is exhausted from an upper hole (figure 1c). In this way, a sharp air/SF6 interface with
a desired dual-mode shape is produced. In each experimental run, a gas concentration
detector is placed at the exit of the upper hole to measure the volume fraction of O2 in
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Case λ1 a01 λ2 a02 φ h0 A+ MF vi �v vf vt

1 20.0 1.00 40.0 1.00 0 3.13 0.64 0.95 414.3 76.5 308.4 195.6
2 20.0 1.00 40.0 1.00 π 3.13 0.61 0.92 413.1 77.4 305.3 206.0
3 20.0 1.00 60.0 1.00 0 4.00 0.62 0.93 415.7 78.1 307.2 202.3
4 20.0 1.00 60.0 1.00 π 3.08 0.61 0.92 414.3 79.5 303.3 207.6

TABLE 1. Initial parameters of four dual-mode cases: λ1 (λ2) is the wavelength of the first
(second) fundamental mode; a01 (a02) is the initial amplitude of the first (second) fundamental
mode; φ is the relative phase between two fundamental modes; h0 is the initial total width of
the interface; A+ is the post-shock Atwood number; MF denotes the mass fraction of SF6; vi is
the incident shock velocity; �v is the interface jump velocity by the shock impact; and vf and vt
are the velocities of reflected shock and transmitted shock, respectively. The units for length and
velocity are mm and m s−1, respectively.

the gas mixture flowing from the upper hole. Once the volume fraction of O2 is less than
4 %, the gas mixture in the test section is regarded as high-concentration SF6. To facilitate
the interface formation, a short flat part on each side of the perturbed interface is adopted
(shown in figure 2) and its effect on the interface evolution is limited (Luo et al. 2019).

In a Cartesian coordinate system, a dual-mode interface can be parametrized as
y = a1 cos(k1x + φ) + a2 cos(k2x), where a and k denote the initial amplitude and
wavenumber of the fundamental mode, respectively, subscripts 1 and 2 refer to the first
and second fundamental modes, respectively, and φ is the relative phase between the
two modes. To illustrate the influences of the initial wavenumber and relative phase, four
different dual-mode interfaces are designed in this work and they are expressed as

case 1: y = a01 cos(k0x) + a02 cos(k0x/2), x ∈ [−60, 60] mm,

case 2: y = a01 cos(k0x + π) + a02 cos(k0x/2), x ∈ [0, 120] mm,

case 3: y = a01 cos(k0x) + a02 cos(k0x/3), x ∈ [−60, 60] mm,

case 4: y = a01 cos(k0x + π) + a02 cos(k0x/3), x ∈ [0, 120] mm,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

where k0 = 2π/20 mm−1 = 314.16 m−1 is adopted for the present experiments.
The experimental configurations for the four dual-mode interfaces impacted by a planar

shock are schematically shown in figure 2 (not drawn to scale). To obtain a symmetric
evolution of the interface, the initial dual-mode interface is set to be symmetric along
the centreline of the test section, which explains the variation of the x range in equations
(2.1) for different dual-mode interfaces. Detailed parameters corresponding to the initial
conditions for each case are listed in table 1: λ1 and λ2 are the wavelengths of two
fundamental modes, respectively; a01 and a02 are the corresponding initial amplitudes;
h0 is the initial total width of the interface; A+ = (ρ+

2 − ρ+
1 )/(ρ+

2 + ρ+
1 ) is the post-shock

Atwood number, with ρ+
2 and ρ+

1 being the post-shock densities of SF6 and air on the right
and left sides of the interface, respectively; and MF denotes the mass fraction of SF6 on
the right side of the interface. Note that the mass fraction of SF6 is estimated according
to one-dimensional gas dynamics theory, with the measured speeds of the incident shock
propagating in pure air on the left side of the interface and the transmitted shock moving
in the gas mixture on the right side.

The main reasons for the gas pollution are given below. First, the air on the right side
of the interface cannot be completely exhausted from the test section, as indicated by

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

73
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.732


905 A5-6 X. Luo, L. Liu, Y. Liang, J. Ding and C.-Y. Wen

the volume fraction of O2 (monitored by the gas concentration detector), which is always
higher than 2 %. Second, air molecules on the left side of the interface could pass across
the soap film and then contaminate the SF6 on the other side. Despite the gas pollution,
a high concentration of SF6 is achieved in each experimental run and the difference in
SF6 mass fraction among cases 1–4 is within 3.4 %. The initial amplitude-to-wavelength
ratio (a01/λ1 and a02/λ2) for each basic wave is less than 0.1, which satisfies the small
perturbation assumption (Chapman & Jacobs 2006). Since nonlinear behaviour (i.e. mode
coupling) of the RMI is mainly related to the amplitude-over-wavelength ratio rather
than to dimensional quantities such as amplitude and wavelength, only one value for
k0 (a0) is adopted in the present experiments. If we adopt other values for k0 (a0)
but maintain the same initial amplitude-over-wavelength ratio for each basic mode, the
normalized results would remain the same. The incident shock Mach number measured
by two piezoelectric transducers is 1.21 ± 0.01. The flow field is monitored by high-speed
schlieren photography. The frame rate of the high-speed video camera (FASTCAM SA5,
Photron Ltd) is set as 50 000 frames per second, with a shutter time of 1 μs. The
spatial resolution of the schlieren images is 0.28 mm pixel−1. The ambient pressure and
temperature are 101.3 ± 0.1 kPa and 295.0 ± 2.0 K, respectively.

Since in the present experiments the incident shock is weak, the post-shock flow can be
assumed to be laminar and incompressible. Thus, the thickness of the boundary layer at
the wall of the shock tube in the post-shock flow (δ∗) can be estimated by

δ∗ = 1.72
√

μx

ρ�v
. (2.2)

Here, x = 100 mm is adopted, which corresponds to the maximum distance travelled
by the interface during the experimental time. The viscosity coefficient and density of
pure air (SF6) under the experimental temperature and pressure are μ = 1.83 × 10−5 Pa s
(1.60 × 10−5 Pa s) and ρ = 1.204 kg m−3 (6.143 kg m−3), respectively. The velocity of
the post-shock flow is �v = 80.0 m s−1 calculated by one-dimensional gas dynamics
theory. According to (2.2), the maximum thickness of the boundary layer is calculated
to be approximately 0.22 mm in the air flow (0.09 mm in the SF6 flow), which is much
smaller than the inner height of the test section (7.0 mm). It indicates a negligible influence
of the boundary layer on the interface development. This is confirmed by experimental
observation (figure 3) that the interfacial morphologies at late stages when the boundary
layer has become relatively thicker are as clear and distinct as those at early stages when
the boundary layer just starts developing.

Note that compressibility effect on the post-shock flow should be considered when the
incident shock has a Mach number higher than 1.4. The laminar post-shock flow in the
present experiment is supported by the following analysis. Generally, there are two types
of flows: steady-state flow and time-dependent flow. According to Dimotakis (2000), for
steady-state flows, mixing transition (i.e. rapid mixing at atomic scale) occurs when the
Reynolds number exceeds a critical value (1–2 × 104). For time-dependent flows such as
the RMI problem, Zhou et al. (2003, 2019) found that two conditions must be met to
achieve the mixing transition: (i) the flow Reynolds number is greater than a critical value,
and (ii) sufficient evolution time is needed to allow the formation of an inertial range
whose upper bound of wavenumber is significantly larger than the lower bound. In this
work, we only focus on the instability development from early to weakly nonlinear stages
when the flow is still laminar.
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FIGURE 3. Schlieren pictures illustrating the dual-mode interface evolution for cases 1–4.
Numbers denote the time in μs, and t = 0 is defined as the moment when the incident shock
arrives at the mean position of the initial interface. IS, incident shock; II, initial interface; SI,
shocked interface; TS, transmitted shock. Arrows in the last row indicate the tilt of the spike
during the evolution.

3. Results and discussion

3.1. Interface morphology
The dynamic evolution of the interface and the waves for all cases is clearly captured by
the high-speed video camera. As shown in figure 3, the interfacial morphologies obtained
are much more distinct than those of previous experiments (Sadot et al. 1998; Mariani
et al. 2008), which greatly facilitates the measurement of perturbation amplitudes and the
extraction of interface contours.

Here, we take case 2 (the anti-phase interface, φ = π) as an example to detail the
evolution process. This anti-phase interface has a large spike at the centre and a small
one located on each side. The time origin in this work is defined as the moment when
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the incident shock arrives at the mean position of the initial interface. At the beginning
(−8.1 μs), the initial interface (II) looks rather thick because in the schlieren image the
interface is covered by the two dual-mode filaments (0.5 mm in width), which are mounted,
respectively, on the upper and lower observation windows. When the incident shock (IS)
passes across the interface, the incident shock bifurcates into a downstream-propagating
transmitted shock (TS, which is slightly deformed due to the imprint by the dual-mode
interface) and an upstream-moving reflected shock (RS, which soon exits the visualization
window). Subsequently, the shocked interface (SI) leaves its original location, and a clean
density interface with a perfect dual-mode shape can be observed (171.9 μs). We note that
both the transmitted shock and the shocked interface look rather thin and clear as expected.
This demonstrates the good feasibility and reliability of the current experimental methods.
As time proceeds, the transmitted shock recovers to a planar shape while the shocked
interface undergoes sustained deformation due to the deposition of baroclinic vorticity,
causing a continuous increment in perturbation amplitude. At late stages, a finger-like
spike and bubble structures arise due to the increasing nonlinearity, and later each spike
rolls up with a pair of vortices formed at its neck (611.9 μs). In this anti-phase case, all
the bubbles initially possess the same shape and size, and then develop symmetrically
during the experimental time. Also, the spikes with two different initial sizes present a
symmetric evolution. After 611.9 μs, the large spike rolls up evidently similar to that of
the single-mode RMI, while the development of the small spike is largely suppressed and
no roll-up structures appear.

Different from the anti-phase case (case 2), the in-phase interface (case 1) initially
has a large bubble at the centre and a small one located on each side. It is observed
that after the shock impact, the large bubble experiences a much faster growth than the
small ones, i.e. the absolute growth rate of the larger bubble is higher than that of the
smaller one. This provides strong evidence for the prediction from the potential flow theory
(Goncharov 2002), i.e. the growth rate of a bubble at late stages is proportional to its lateral
dimension. As time proceeds, the large bubble gradually invades the adjacent small ones
and, consequently, the spikes develop with an apparent inclination to the large bubble.
Such an inclination emerges at 309.7 μs and becomes noticeable at 629.7 μs. Also, the
roll-up of the spikes is evident on the large bubble side, while the one on the small bubble
side is too small to be discerned. These results indicate that the initial size and distribution
of bubbles at a dual-mode interface (closely related to the phase difference between two
basic modes) significantly affect the bubble growth and further the spike evolution.

As shown in cases 3 and 4, for the k0–k0/3 wave compositions, some of the spikes
develop symmetrically while the others develop asymmetrically. Hence, the evolving
interfacial morphologies for these cases are far more distorted than the k0–k0/2 situation.
This suggests a crucial influence of the basic wave compositions on the development of
dual-mode RMI. Also, a noticeable discrepancy between cases 3 and 4 for the interface
structure evolution is observed, which reveals again a strong influence of the phase
difference between two basic modes on the dual-mode RMI. As indicated by the arrows in
the last row of figure 3, the spikes are inclined to the large bubble, and roll up only on the
large bubble side, which is similar to that in case 1.

Since in the current experiments the shape of the initial interface can be precisely
controlled and also the gas concentration on each side of the interface varies slightly
from run to run, the experimental results have a good repeatability, especially for the
evolution of intermediate- and larger-scale structures. Note that small-scale structures are
not observable in the present experiments due to the limitation of the schlieren imaging
technique and the limited spatial resolution of the high-speed camera. In this work,
we only focus on the growth of intermediate- and large-scale structures from linear to
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weakly nonlinear stages, and thus the corresponding analysis is reliable. A detailed study
on the developments of small-scale structures requires the application of more advanced
imaging techniques, such as planar laser-induced fluorescence, which is ongoing in our
group.

3.2. Growth of perturbation amplitude and mixing width
Clear interfacial morphologies obtained in the schlieren images demonstrate that the initial
interfacial imperfections in previous experiments such as short-wavelength perturbations,
diffusion layer and three-dimensionality are largely eliminated by the novel soap-film
technique in this study. Therefore, the present experimental results are of high fidelity
and, we believe, they are of great use for validating the existing theories and algorithms
and also for analysing the mode coupling effect (Ofer et al. 1996; Vandenboomgaerde et al.
2002).

Clear interface contours can be extracted from the schlieren images by a digital image
processing procedure including four steps. First, the original schlieren images in RGB
colour pattern are converted to those in greyscale pattern. Next, the initial schlieren
image prior to the shock arrival is subtracted from the shocked images such that the
background noise (e.g. the dual-mode filaments) can be removed. Afterwards, the profiles
of the shocked interfaces are recovered through efficient matrix operations and appropriate
image intensification. Finally, the coordinates of these interface contours are extracted by
identifying regions of the largest greyscale gradient. After this, the amplitude growth of
each basic wave can be obtained by performing a serial Fourier analysis of the extracted
interfacial contours (insets in figure 6). Because the Fourier decomposition is applicable
only to single-valued functions, here only the temporal variation of amplitude prior to
the emergence of roll-up (t < 370 μs, corresponding to the early nonlinear stage) can be
obtained.

The variations of the dimensionless perturbation amplitudes of the basic modes
versus dimensionless time are shown in figure 4. The amplitude is normalized as
α = (a − a∗)/a0, and the time is scaled as τ = vlin(t − t∗)/a0, where vlin = k�v A+a+

0
is the linear growth rate calculated by the impulsive model (Richtmyer 1960). Here, t∗
stands for the characteristic time of the startup phase according to Lombardini & Pullin
(2009), a∗ is the corresponding amplitude at t∗ and a+

0 is the interface amplitude just after
the shock impact. In this work, the post-shock amplitude, a+

0 , cannot be measured directly
from experiment due to the limited temporal resolution of the high-speed camera and thus
is estimated by a+

0 = a0(1 − �v/vi). The error bars in figure 4 represent one pixel size of
the schlieren images, which blurs the interface profile. For comparison, the amplitude
variations with time for the corresponding single-mode RMI predicted by theoretical
models are shown in figure 4. The theoretical models adopted are the impulsive model
(Richtmyer 1960) and the nonlinear model of Zhang & Guo (2016) (ZG model), and both
have been examined by elaborate experimental results (Liu et al. 2018) from linear to
nonlinear stages.

Overall, it can be seen in figure 4(a) that, for case 1, the experimental result of the k0
wave is lower than the prediction of the ZG model for the corresponding single-mode
RMI, while the amplitude of the k0/2 wave is higher than the model prediction. This
discrepancy between the experimental result and the model prediction indicates that the
mode coupling suppresses the development of the k0 wave but promotes the growth of
the k0/2 wave. However, for case 2 with a relative phase of π between the two basic
modes, the mode coupling has a negligible influence on the development of the k0 mode,
but evidently inhibits the growth of the k0/2 mode. The significant difference between

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

73
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.732


905 A5-10 X. Luo, L. Liu, Y. Liang, J. Ding and C.-Y. Wen

τ

α

0 0.8 1.6 2.4 3.2 4.0

0.5

1.0

1.5

2.0

2.5

3.0

k0/2-Case 2

k0/2-Case 1
k0-Case 1

k0-Case 2
k0/3-Case 3
k0-Case 3
k0/3-Case 4
k0-Case 4

ZG m
odel

ZG m
odel

Im
pu

lsi
ve

 th
eo

ry

Im
pu

lsi
ve

 th
eo

ry

τ
0 0.4 0.8 1.2 1.6

0.4

0.8

1.2

1.6(a) (b)

FIGURE 4. Comparison of the dimensionless amplitudes of the two fundamental modes in the
four dual-mode cases from linear to nonlinear stages (a) and only for the linear stage (b). The
impulsive model (Richtmyer 1960) and the ZG model (Zhang & Guo 2016) are represented by
dashed and solid lines, respectively.

cases 1 and 2 indicates that the relative phase between the two fundamental modes greatly
influences the mode coupling, and further affects the growth of each basic mode. This
result is in qualitative agreement with the previous findings (Miles et al. 2004; Pandian,
Stellingwerf & Abarzhi 2017). Differently, for dual-mode interfaces composed of k0 and
k0/3 waves (cases 3 and 4), each basic wave shows nearly the same growth as that of the
corresponding single-mode RMI. This indicates a negligible mode coupling effect for the
k0–k0/3 cases. The present finding suggests that for dual- or multi-mode RMI, the effect
of mode coupling on the growth of each basic mode at the early nonlinear stage depends
heavily on the initial wave compositions.

It is also interesting to compare their behaviours in the linear stage, as shown in
figure 4(b). Although the error bars in figure 4(b) are quite noticeable due to the limited
spatial resolution of the high-speed camera, the experimental data before τ = 0.7 for the
four dual-mode cases collapse quite well. A linear fitting of the experimental data for the
four cases before τ = 0.7 shows a dimensionless growth rate of 0.94 ± 0.04, which agrees
reasonably with the prediction of impulsive theory (1.0). This indicates a very weak mode
coupling effect at the linear stage of the present dual-mode RMI.

Temporal variations of the overall mixing width (defined in figure 2) of the dual-mode
interface for the four cases are given in figure 5. As suggested by Thornber et al. (2017), the
mixing width here is normalized as (h − h∗)/λ̄ and the time is scaled as vlin

h (t − t∗)/λ̄, with
h∗ being the corresponding mixing width at the time t∗. In the above, vlin

h = k�v A+h+
0

is the linear growth rate of mixing width, with h+
0 being the interface width just after

the shock passage and calculated by h+
0 = h0(1 − �v/vi). Finally, λ̄ denotes the weighted

average wavelength, and for its definition the reader is referred to the work of Thornber
et al. (2017). It is seen in figure 5 that normalized data for the four cases collapse quite
well. This suggests a negligible influence of the phases and the wave compositions of a
dual-mode interface on the growth of mixing width at early and weakly nonlinear stages.

3.3. Modal model for dual-mode RMI
For the evolution of a multi-mode interface, a modal model with second-order accuracy
has been proposed to quantify the mode competition effect (Haan 1991). This modal model
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FIGURE 5. Normalized variations of the mixing width of the interface with dimensionless time
for the four dual-mode cases. Here h∗ is the corresponding mixing width at the time t∗ and
vlin

h = k�v A+h+
0 is the linear growth rate of mixing width, with h+

0 being the interface width just
after the shock passage; and λ̄ denotes the weighted average wavelength according to Thornber
et al. (2017).

and its extended type (Ofer et al. 1996) have achieved a wide range of validation in the
multi-mode Rayleigh–Taylor (RT) instability (Rollin & Andrews 2013; Martinez et al.
2015), but its application in RMI is still scarce. In this work, through analysing the growth
of each individual mode from linear to weakly nonlinear stages in our experiment, we
expect to construct a modal model for the dual-mode RMI.

Under the assumption of incompressible, inviscid and irrotational flow, Haan (1991)
derived a second-order modal model for the multi-mode RT instability, which can be
written as

ak(t) = alin
k (t) + 1

2 kA

(∑
k′

alin
k′ (t)alin

k+k′(t) − 1
2

∑
k′<k

alin
k′ (t)alin

k−k′(t)

)
. (3.1)

Here, alin
k (t) is the time-dependent amplitude of mode k at the linear stage and can be

calculated by the impulsive theory (Richtmyer 1960). The second term on the right-hand
side of (3.1) represents the generation of mode k from both shorter-wavelength (k + k′)
and longer-wavelength (k − k′) modes. Note that the modal model is applicable only to
the instability growth from linear to weakly nonlinear stages.

Applying this model to a dual-mode RT instability with basic k and k/2 modes, the
growth of the basic modes and the generated second harmonics can be written as

ak/2(t) = alin
k/2(t) + 1

4 kAalin
k/2(t)a

lin
k (t),

ak(t) = alin
k (t) − 1

4 kAalin
k/2(t)a

lin
k/2(t),

a3k/2(t) = − 3
8 kAalin

k/2(t)a
lin
k (t),

a2k(t) = − 1
2 kAalin

k (t)alin
k (t).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.2)
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Taking the second derivatives of equations (3.2) with time, we get

d2ak/2(t)
dt2

= 1
2

a0k/2gkA + 1
4

kA
[

alin
k/2(t)a0kgkA + 1

2
alin

k (t)a0k/2gkA +
√

2a0ka0k/2gkA
]

,

d2ak(t)
dt2

= a0kgkA − 1
2

kA
(

1
2

alin
k/2(t)gkA + 1

2
a2

0k/2gkA
)

,

d2a3k/2(t)
dt2

= −3
8

kA
(

alin
k/2(t)a0kgkA +

√
2a0k/2a0kgkA + 1

2
alin

k (t)a0k/2gkA
)

,

d2a2k(t)
dt2

= −kA(alin
k (t)a0kgkA + a2

0kgkA).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

Replacing the constant acceleration g in equations (3.3) with an impulsive acceleration
δt�v (the shock-induced acceleration) and then integrating (3.3) with time, a modal model
for the dual-mode RMI is obtained and expressed as

vk/2 = vlin
k/2 + 1

2 kA+(
√

2vlin
k/2a+

k + 3
2v

lin
k/2v

lin
k t),

vk = vlin
k − 1

2 kA+(vlin
k/2a+

k/2 + vlin
k/2v

lin
k/2t),

v3k/2 = − 3
8 kA+[2vlin

k/2v
lin
k t + vlin

k/2a+
k + (1 +

√
2)vlin

k a+
k/2],

v2k = −kA+(vlin
k vlin

k t + 2vlin
k a+

k ).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.4)

Figure 6 shows a comparison between the predictions of equations (3.4) and the present
experimental results for the growth of each basic wave in cases 1 and 2. It is seen that the
modal model for the dual-mode RMI can roughly assess the amplitude variation tendency
of each basic mode in experiments. Specifically, for case 1, the mode coupling suppresses
the growth of the k0 wave but promotes the k0/2 wave, and for case 2, the mode coupling
has a negligible influence on the growth of the k0 wave but evidently inhibits the k0/2
wave. These observations can be well explained by the modal model. As indicated in
(3.4), for case 1 with basic k0 and k0/2 modes of positive amplitudes, the self-coupling
of the k0/2 wave (the second term on the right-hand side of the second line of (3.4))
generates a new k0 wave of negative amplitude, and thus suppresses the growth of the
basic k0 mode. Also, the coupling between the k0 and k0/2 modes produces a new k0/2
mode of positive amplitude (the first line of (3.4)), and thus promotes the development of
the basic k0/2 mode. For case 2, where the basic k0 and k0/2 waves possess negative and
positive amplitudes, respectively, the mode coupling produces a new negative k0 mode (a
new positive k/2 mode) as indicated in (3.4), and thus promotes (inhibits) the growth of
the basic k0 (k0/2) wave. For a clear presentation, the amplitude signs of the new generated
waves predicted by (3.4) and their influences on the growth of basic waves for cases 1 and 2
are listed in table 2.

Although equations (3.4) can qualitatively forecast the mode coupling effects in the
dual-mode RMI (i.e. inhibiting or promoting the basic wave growth), they evidently
overestimate the amplitude growth of each basic wave for cases 1 and 2. The primary
reason is that the analytical solution of Haan (1991) employs a linear growth rate for each
basic wave, namely, it ignores the nonlinear saturation on the instability growth. It has been
widely recognized that, during the evolution of RMI, nonlinearity becomes increasingly
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FIGURE 6. Comparison of experimental results with the predictions of modal model (3.4) and
the modified Zhang–Guo (mZG) model for the four cases. ‘CE’ denotes the mode coupling
effect. Insets are the interface contours extracted from schlieren images with numbers in μs.

Cases Basic Basic Generated Generated k0 k0/2
mode k0 mode k0/2 k0 k0/2 growth growth

1 + + − + ↓ ↑
2 − + − − ↑ ↓

TABLE 2. The amplitude signs of the new waves generated by mode coupling predicted by
equations (3.4) for cases 1 and 2. The + (−) indicates a positive (negative) amplitude and the
↓ (↑) denotes the suppression (promotion) of the growth of the basic wave.

stronger and produces a continuous reduction in perturbation growth rate. Recently, a
potential flow model for the nonlinear growth of the bubble and spike of the single-mode
RMI has been developed by Zhang & Guo (2016) (ZG model), which is expressed as

v(t) = v0

1 + âkv0t
, (3.5)
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where

â = 3
4

(1 + A+)(3 + A+)

[3 + A+ + √
2(1 + A+)1/2]

[4(3 + A+) + √
2(9 + A+)(1 + A+)1/2]

[(3 + A+)2 + 2
√

2(3 − A+)(1 + A+)1/2]
. (3.6)

Here, v0 is the linear growth rate and v(t) is the time-dependent perturbation growth rate
considering nonlinear saturation. The ZG model has been thoroughly validated by both
experimental and numerical results (Bai, Deng & Jiang 2018; Liu et al. 2018; Zhang et al.
2018; Liang et al. 2019).

We recognize that a modal model capable of accurately estimating the growth of the
basic waves in the dual-mode RMI should take into account both the mode coupling
effect and the growth rate reduction caused by nonlinearity. With this guideline, a new
modal model for the dual-mode RMI can be constructed. The growth rates of the basic
waves and the second harmonics for the dual-mode RMI considering mode coupling have
been given in (3.4). Here, to account for the nonlinear saturation, we adopt a treatment
similar to that of Zhang & Guo (2016), namely, substitute these growth rates into (3.5)
to replace the original v0 while keeping the other variables and parameters unchanged.
In this way, a modified ZG model (mZG) including both mode coupling and nonlinear
saturation is obtained. The expression of the mZG model is quite long and not shown here
(see appendix A).

Figure 6 shows a comparison of the predictions of the mZG model with the experiments
for the growth of the basic modes. As we can see, the new modal model gives a much better
prediction of the growth of each basic wave for all cases. Also, we can quantify the effect
of mode coupling on the growth of each basic wave by comparing the prediction of the
mZG model for dual-mode RMI with the prediction of the ZG model for single-mode
RMI. As clearly shown by the solid lines (denoted by ‘CE’) in figure 6, the mode coupling
promotes the growth of the k0/2 wave in case 1, inhibits the k0 wave in case 1 and the
k0/2 wave in case 2, and has a negligible effect on the k0 wave in case 2. For cases 3
and 4, the corresponding modal model expressions for the growth of the k0 and k0/3
waves are proved to be equivalent to the single-mode counterparts. As suggested by (3.2)
with a second-order accuracy, the k and k/3 modes generate 2k/3 and 4k/3 modes, and
thus produce negligible influences on the growth of each basic wave. As a result, the
experimental growth of the k0 and k0/3 modes are very close to the single-mode result as
shown in figure 4, and the prediction of the mZG model coincides with the ZG model for
cases 3 and 4 as illustrated in figure 6.

Finally, we examine the developments of the second harmonics in the dual-mode RMI.
The corresponding expressions of the mZG model for the growth of the second harmonics
for dual-mode interfaces with the basic k0 and k0/3 modes can be derived simply by
following the procedure from (3.2) to (3.6) and, therefore, they are not given here for
the sake of brevity. Figure 7 shows a comparison between the experimental results and the
predictions of the mZG model for the growth of the second harmonics. Note that the results
here are normalized using wavelength as the reference length scale rather than amplitude,
because the initial amplitude of each harmonic is zero. At the early stage, the growth
of the second harmonics is rather slow, which indicates a weak nonlinearity. Later, as
nonlinearity becomes strong, the mode coupling acts evidently and causes an increasingly
faster growth of the second harmonics. It is seen that the mZG model reasonably predicts
the generation and growth of the second harmonics from early to weakly nonlinear stages
for all cases, which further demonstrates its validity in the dual-mode RMI. Although
the mZG model can reasonably predict the growth of the second harmonics, there exists
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FIGURE 7. Comparison of experimental results with the predictions of the mZG model for the
growth of the second harmonics for (a) cases 1 and 2 and (b) cases 3 and 4.

an evident deviation between the experimental results and model predictions, especially
at late stages. Two reasons are responsible for this. First, the original model of Haan
(1991), based on which the mZG model is constructed, has only second-order accuracy,
which indicates the ignorance of feedback of higher harmonics to the growth of second
harmonics. Second, the present mZG model is developed by empirically combining the
Haan (1991) model (considering mode coupling) and the ZG model (considering nonlinear
saturation), which lacks accurate theoretical modelling and derivation.

The modal model for dual-mode RMI developed in this work can be incorporated
into the existing multi-mode models to increase their prediction accuracy. Take the
just-saturated model of Groom & Thornber (2020) as an example. The original
just-saturated mode (Dimonte, Frerking & Schneider 1995) assumes that each mode on
a multi-mode interface grows independently at an impulsive growth rate (Richtmyer 1960)
in the early stage and eventually saturates. Thus, short-wavelength modes grow quickly at
the early stage and then are overtaken by longer-wavelength modes. As a result, the whole
instability growth is dominated by the just-saturated mode growing at its impulsive growth
rate. The present study shows that mode coupling is evident at the early stage and should
be taken into account. Extending the present dual-mode model to multi-mode situations
and then incorporating the growth rate of each basic mode considering mode coupling into
the just-saturated mode, a more accurate multi-mode RMI model can be obtained.

4. Conclusions

In this work, the dual-mode RMI is examined in shock-tube experiments for the first
time, emphasizing the mode coupling effects on the growth of the basic modes and
the second harmonics from linear to nonlinear stages. Four well-controlled dual-mode
interfaces with different mode compositions and phases of the basic modes are created
by an extended soap-film technique, and clear interfacial morphologies and wave patterns
during their evolutions after the impact of a planar shock are well captured by high-speed
schlieren photography. The experimental results clearly exhibit the mode competition and
bubble merger processes in the dual-mode RMI. It is observed that the spike or bubble
develops with an inclination to a certain direction depending on the initial shape of the
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dual-mode interface. The size and distribution of the bubbles on the initial dual-mode
interface greatly influence the bubble evolution and further the spike growth.

The amplitude growth of the basic modes and the second harmonics are obtained
by a serial Fourier analysis of the interfacial contours extracted from the high-quality
schlieren images. A noticeable difference between the growth of each basic mode and
the corresponding single-mode RMI is observed, which suggests evident mode coupling
effects in the dual-mode RMI. The relative phase between the two fundamental modes
greatly influences the mode coupling. For dual-mode interfaces consisting of in-phase k0
and k0/2 modes, the mode coupling suppresses the growth of the k0 mode but promotes
the growth of the k0/2 wave. For interfaces with anti-phase k0 and k0/2 modes, the mode
coupling inhibits the growth of the k0/2 wave but produces only a slight influence on the k0
wave. However, for the k0 and k0/3 wave combination, the mode coupling has a negligible
influence on the growth of all basic waves regardless of their relative phase.

The modal theory of Ofer et al. (1996), originally proposed for the multi-mode RT
instability, is reformulated for the dual-mode RMI. It is found that the modal model
is capable of roughly assessing the mode competition effect, but it overestimates the
amplitude growth of all the basic waves by ignoring the growth rate reduction caused
by nonlinearity. A modified modal model accounting for both the mode coupling effect
and the nonlinear saturation is then constructed, which gives a much better prediction
of the present experimental results not only for the growth of the basic waves but also
for the growth of the second harmonics. The mode coupling in the dual-mode RMI with
two basic waves of equivalent amplitudes acts earlier and more evidently than that of the
multi-mode RMI with an initial dominant mode (Liang et al. 2019). The mode coupling
process revealed in the dual-mode RMI would be of great use for understanding and
modelling the multi-mode RMI. Our work is the first experimental study on the dual-mode
RMI in a shock tube, and we believe it is an important step towards the elaborate study on
the multi-mode RMI.
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Appendix A

The mZG model for the growth of each basic model is expressed as

vk/2(t) =
vlin

k/2 + 1
2 kA+

(√
2vlin

k/2a+
k + 3

2v
lin
k/2v

lin
k t
)

1 + âk
(
vlin

k/2 + 1
2 kA+

(√
2vlin

k/2a+
k + 3

2v
lin
k/2v

lin
k t
))

t
, (A 1)
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vk(t) = vlin
k − 1

2 kA+ (vlin
k/2a+

k/2 + vlin
k/2v

lin
k/2t
)

1 + âk
(
vlin

k − 1
2 kA+ (vlin

k/2a+
k/2 + vlin

k/2v
lin
k/2t
))

t
, (A 2)

v3/2k(t) =
− 3

8 kA+
[
2vlin

k/2v
lin
k t + vlin

k/2a+
k + (1 + √

2)vlin
k a+

k/2

]
1 + âk

(
− 3

8 kA+
[
2vlin

k/2v
lin
k t + vlin

k/2a+
k +

(
1 + √

2
)

vlin
k a+

k/2

])
t
, (A 3)

v2k(t) = −kA+ (vlin
k vlin

k t + 2vlin
k a+

k

)
1 + âk

(−kA+ (vlin
k vlin

k t + 2vlin
k a+

k

))
t
, (A 4)

where â is defined in (3.6).
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