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Plasma free energy is that part of the total energy that feeds the growth of turbulence.
The most successful free energy formulation in plasma physics is the MHD Energy
Principle – successful because, within magnetohydrodynamics (MHD), the free energy
δW is both exact and self-adjoint (or Hermitian). A corresponding result in Vlasov
theory is the free energy of equilibria neighbouring stable Maxwellian states – again
giving a free energy of Hermitian form for the linearized equations. Since quantum
mechanics is inherently Hermitian, here I speculate that quantum free energy is the
ultimate way to understand classical plasma dynamics.
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1. Introduction
As an early proponent of applying thermodynamics to plasmas, I have been invited

by the editors of the Journal of Plasma Physics to submit a brief paper in which I
would look today for new ways to apply my methods in a modern context.

This is not intended to be a review, either of my own early work or the many
excellent papers on free energy since then. Rather, I would like to recall how I became
involved with free energy, and ask whether this might stimulate new ideas today. The
basic idea is to relate free energy to the Hermicity of Vlasov operators. In § 3.2, I
also report a recent use of free energy to address a problem in astrophysics.

2. Searching for stability
I became interested in free energy as a by-product of searching for methods

to determine plasma stability different from case by case mode analysis. Trained
otherwise, I learned plasma theory on the job when I joined the fusion energy
program at the Oak Ridge National Laboratory, in 1957. I soon learned that instability
was the issue, and began looking for the most general ways to recognize a stable
state.

Alston Householder, then head of mathematics at Oak Ridge, suggested that I look
at the work of the Russian mathematician A. M. Lyapunov, who in the late 1800s
had found exact criteria for the stability of mechanical systems (LaSalle & Lefschetz
1961). In effect, a Lyapunov stability function is a ‘potential well’. The depth of this
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2 T. K. Fowler

potential well is the ‘free energy’, giving the maximum energy in fluctuations from
which one could estimate limits on turbulent diffusion coefficients. Lyapunov’s theory
concerns finite matrices. By 1962, I had submitted a paper extending his theory to
plasma fluids (Fowler 1963).

3. Free energy estimates of transport
My first result applying Lyapunov’s theory to the plasma Vlasov equation soon

led me to the Gibbs free energy. Lyapunov’s criterion states that, writing the
linearized Vlasov equation as ∂f1/∂t = Vf1, stability requires that the operator
V must be transformable to an Hermitian positive-definite operator. In Fowler
(1961), I was able to formulate the known stability of a Maxwellian equilibrium
g = C1 exp(−E/T) as a Lyapunov Hermitian operator, giving, for electrostatic
perturbations, in centimeter-gram-second (cgs) units:

H =Σj

∫
dx dv[1/2Tj( f 2

1j/gj)] +

∫
dx(εo(−∇Φ1)

2/8π), (3.1)

where Σ sums over charge species and εo is a dielectric constant.
I will defer my Lyapunov-based derivation of (3.1) to § 5.1. Here I note that, as was

first shown by Newcomb (see appendix, Bernstein 1958), the first term in (3.1) can
be interpreted as an expansion of the Gibb’s free energy G( f ) in powers of f1= f − g,
giving, to second order in f1:

G( f ) = fE+ Tf ln( f /C1)− T( f − g)
= fE+ Tf [(−E/T)+ f1/g− 1/2( f1/g)2 + · · ·] − Tf1

= 1/2T( f 2
1 /g)+ · · · (3.2)

Here ( f ln f ) is negative entropy, and f and g are normalized to conserve particles so
that the added term T( f − g) integrates to zero.

In Fowler (1968), I used the Gibb’s free energy to obtain exact nonlinear bounds
on kinetic free energy, the free energy being the excess energy in any equilibrium fo
relative to a neighbouring Maxwellian equilibrium. But because g is stable, the excess
energy of nearby equilibria will be small so that the linearized theory in (3.1) gives a
good estimate. The idea is to interpret f = δf + fo≈ fo if the actual fluctuation δf � fo.
The same idea applies to the linearized MHD free energy δW (Bernstein et al. 1958).

Two weaknesses in the theory were uncertainty in the dielectric constant representing
a coupling of electrostatic energy to non-resonant kinetic effects; and the necessity,
for magnetically confined plasmas, to limit the spatial integration volume to a
loosely specified local volume of interest with a thickness that could be interpreted
as an unknown correlation length (Fowler 1968). Brizard et al. (1991) showed
that gyrokinetic theory automatically introduces a dielectric constant which, when
extremized, gives the tokamak hierarchy of unstable modes from MHD to drift
waves.

3.1. Transport by two-stream instability
An obvious test case concerns the free energy due to two-stream instability between
streaming electrons and stationary ions, represented by an electron distribution with
foe = N exp[−(E − upz)/Te], to be compared with a Maxwellian g = C1 exp(−E/T)
where T is a free parameter. Adjusting T=Te to minimize the free energy gives a free
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energy per electron approximately equal to the total electron energy 1/2meu2 (Fowler
1968, Krall & Trivelpiece 1973). Then the diffusion coefficient spreading momentum
of the electron stream is bounded by D<p2

e/τ where pe=meu and τ is the appropriate
correlation time. If ions stream through stationary electrons, the result is the same as
seen in the reference frame of the ions.

That (1/τ) can also be bounded, as the rate of change of the free energy, was shown
in Fowler (1964), giving (1/τ) < 1/2d(ln H)/dt ≈ ωpe(H∗/mev

2
e )

1/2 where H∗ is the
free energy per electron. Thus, not surprisingly, the two-stream momentum diffusion
coefficient is bounded by D< p2

eγ for growth constant γ <ωpe, similar to results from
quasi-linear theory (Kadomtsev 1965).

3.2. Free energy estimates of synchrotron radiation in astrophysical jets
I used my free energy method to estimate transport in a recent paper on properties
of an astrophysical jet modelled as a magnetically collimated ‘screw-pinch’ carrying
current (Colgate et al. 2015). These jets are observed by the synchrotron radiation
they emit as a consequence of electron acceleration, taken here to be due to MHD
kink modes in the pinch. The energy source is fluctuations in the magnetic field.
It is observed in laboratory experiments that these fluctuations correlate to give (in
cgs units) an electric acceleration E= c−1

〈v1xB1〉 where 〈· · · 〉 indicates a symmetric
‘mean-field’ average (Rusbridge, Gee & Browning 1997).

For this purpose I took the free energy to be the magnetic energy with constant
magnetic helicity K =

∫
dx(A · B) serving as the entropy (similar to Taylor’s theory

of magnetic relaxation in reversed field pinches (Taylor 1986)). Here A is the vector
potential giving a magnetic field B = ∇ × A. Consider a cylindrical jet in the z
direction, giving as the free energy 1E for a jet of length L:

1E= E− λoK/(8π)= (1/4)L
∫ R1

0
r dr B · (B− λoA), (3.3)

where λo is a constant value of λ = (4πjz/cBz) for current density jz. Variation on
R1 was used to show that 1E is positive only for perturbations localized to the main
current channel of the jet.

Taylor’s prescription says that 1E = 0 if jz(r) relaxes so that λ = λo all across
the channel. However, for a jet growing in length, relaxation is not abrupt. Rather,
relaxation proceeds more and more slowly as λ(r) flattens but never stops for the
duration of the jet. Thus one can approximate the coefficient Dr that spreads the
current radially across a channel of radius R simply as Dr = R2/t for a duration t.
By Ohm’s law Ez=−c−1vrBφ with vr=D/R=R/t. Then the voltage drop along a jet
of length L is given by 1V = t(dL/dt)Ez = t(0.01c)(R/ct)Bφ = 0.01V using the total
voltage V ≈ RBφ and dL/dt = 0.01c derived in Colgate et al. (2015). Thus only 1 %
of the jet power is utilized in accelerating both ions and electrons, or 0.5 % into the
electrons. Then the synchrotron power should be only 0.5 % of the total jet power
(‘luminosity’), in reasonable agreement with observations (Krolik 1999).

4. Existence theorem for Lyapunov functions
It was the nonlinear thermodynamic approach in § 3 that caused me and others

to characterize the free energy problem as a search for better entropy functions
conserved by the nonlinear Vlasov equation – for example, one displaying Landau
damping (which is actually reversible, as in plasma echoes). In this paper I suggest
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4 T. K. Fowler

sticking with linear theory and search instead for new ways to transform the Vlasov
operator V to Hermitian form.

That linearized plasma dynamics can always be put in Hermitian form can be seen
as follows (Fowler 1963, 1968). Let a fluid be represented by a vector Ψ that changes
in time via a Markovian operator T , giving:

T(t+∆)= T(∆)T(t) (4.1a)
Ψ (t+∆)= T(∆)Ψ (t). (4.1b)

Then, there always exists a function L of the form (Fowler 1968):

L=
∫
∞

t
dt′[Ψ (t′),C∗Ψ (t′)] =

(
Ψ (t),

[∫
∞

0
dsH

]
Ψ (t)

)
(4.2)

H = [T+(s)C∗T(s)]. (4.3)

Here C∗ is any positive-definite Hermitian normalization and T+ is the Hermitian
conjugate, giving an Hermitian form for H.

The operator H can yield a Lyapunov stability function L if also the time integration
yields a finite result, true if H itself is an Hermitian positive-definite operator. The
formal solution of the Vlasov equation is T = exp Vt, from which:

L=
(
Ψ (t),

[∫
∞

0
ds(exp V+sC∗ exp Vs)

]
Ψ (t)

)
. (4.4)

5. Factoring the Vlasov operator: two examples
Lyapunov theory says that V must be transformable to Hermitian form if solutions

of ∂f /∂t = Vf are stable. In Fowler (1961, 1963), I used known matrix properties
stating that V can be transformed to an Hermitian operator if V itself is factorable,
giving a product V = AH where H is Hermitian and A is anti-Hermitian.

5.1. Factoring in classical theory
Factorability can be illustrated for Maxwellian distributions with constant density,
giving (3.1) as follows. Write V for electrostatic perturbations as:

Vf1 = v∂f1/∂x+ (e/m)(−∂Φ1/∂x)∂fo/∂v (5.1a)

Φf1 = e
∫

dx′ dv′[(f1(x′, v′)/|x− x′|] (5.1b)

V = [−(2v∂/∂x)(∂fo/∂E)][(−1/2(∂fo/∂E)−1
+ 1/2eΦ] = AH (5.1c)

A= [−(2v∂/∂x)(∂fo/∂E)]; H = [−1/2(∂fo/∂E)−1
+ 1/2eΦ], (5.1d,e)

where E = 1/2mv2. The operator V is a combination of differential and integral
operators, the potential in (5.1b) being an integral operator. In (5.1c), we have used
∂fo/∂x = 0 to factor out, first, v∂/∂x, then (∂fo/∂E), giving an anti-Hermitian factor
A and Hermitian H, (∂fo/∂E)−1 being a scalar Hermitian operator, and Φ being an
Hermitian integral operator. It is straightforward to add magnetic interactions using
the vector potential (Fowler 1962). Potentials rather than fields are to be preferred, in
anticipation of always casting dynamics as the motion of interacting particles, in § 6.
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For a stable Maxwellian fo = C1 exp(−E/T), the matrix element ( f1, Hf1) =∫
dx dv( f ∗1 Hf1) gives the free energy in (3.1). To see this, note that the kinetic

term ∝T/2 is correct for one dimension, while integrating the electric field energy
by parts gives

∫
dx dvef1(1/2φ1) = 1/2

∫
dx en1φ1 =

∫
dx(1/8π)(−∂E1/∂x)φ1 =∫

dx(1/8π)(−∂φ1/∂x)2. In addition to Maxwellians, stability follows also for any fo

that is a monotonic-decreasing function of the energy E, again corresponding to a
nonlinear entropy of the form G( f ), any such G being a constant of the motion for
the Liouville equation (Kruskal & Oberman 1958).

While the linearized Vlasov equation can be sufficient to calculate the finite
free energy of equilibria close to a stable state, to my knowledge there is still no
systematic analytic procedure to factor the linearized classical Vlasov operator into
Hermitian and anti-Hermitian parts, even though Lyapunov theory in § 4 says that
this is always possible.

5.2. Quantum plasmas
The difficulty in factoring the classical Vlasov operator concerns the addition of
Hermitian electromagnetic interactions with anti-Hermitian kinetics. By contrast,
quantum kinetics, written as v∂/∂x → h∂2/∂x2, with Planck constant h, is already
Hermitian. Indeed, if one had applied Lyapunov theory to derive a wave equation, an
equation with a Hermitian Hamiltonian operator would have been the natural outcome,
trivially factorable as H times unity. And the formal Lyapunov solution would yield
Feynman path integrals, analogous to (4.4).

An important difference between the classical and quantum versions of Lyapunov
theory is that, despite appearances, the quantum version is already ‘nonlinear’.
In classical Vlasov theory, nonlinear has meant that one writes the ‘state’ f (the
distribution function) as f = fo + f1 for a given fo and then discards f 2

1 in the
dynamics. In quantum theory, dynamics always looks ‘linear’ in the state ψ (wave
function), with ∂ψ/∂t = Hψ . But, since nothing is discarded, the ‘nonlinearity’ has
been hidden in H. An example is multiple-scattering theory, in which H describing
multiple interactions among particles is expanded in powers of a scattering operator
for each particle with kinetic ‘propagators’ between scattering events (Goldberger &
Watson 1964).

6. Semi-classical quantum free energy

My first thoughts about Lyapunov theory as quantum mechanics came from my
observation many years ago that a classical Lyapunov function could be obtained
from classical path integrals resembling Feynman’s quantum path integrals, as in
(4.4). More recently, I learned that John Dawson had similar ideas. Inspired by
Dawson’s suggestion, in his PhD thesis Dean E. Dauger developed a quantum
version of a Particle-In-Cell (PIC) simulation code that showed by several examples
that this was an expeditious way to calculate classical dynamics, as Feynman path
integrals converging on semi-classical paths in the appropriate limits.

I was especially prepared to appreciate what Dauger had accomplished, from my
own PhD thesis applying quantum multiple-scattering theory, also in semi-classical
limits. But on thinking about it, I realized that, like multiple-scattering expansions,
path integrals are beside the point if the goal is to find a better way to calculate free
energy, free energy being the ultimate way to avoid having to know anything about
detailed dynamical solutions.
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6.1. Advantages and disadvantages of a quantum PIC theory
Four important differences between a classical-mechanical and a quantum-mechanical
PIC representation of plasmas are:

(i) The Vlasov equation is six-dimensional (x, v) while the Schrödinger equation is
three-dimensional (x).

(ii) Quantum mechanics is three-dimensional because it represents classical momentum
as a spatial derivative (−ih∂/∂x) (the square being Hermitian).

(iii) The fact that the Schrödinger Hamiltonian H is already Hermitian means that
dynamics is determined by the eigenstates of H.

(iv) Planck’s constant determines spatial scales where dynamics becomes non-
classical.

6.2. Adjusting the Planck constant
Like a quantum wave function, a PIC state is not a fluid: it is a collection of
individual particles probing kinetic effects at the deepest levels. In quantum mechanics,
the classical fluid representation of a single ion as a delta function δ(v− vo) becomes
a ‘wave packet’ in quantum mechanics (Schiff 1949). Quantum PIC cells are wave
packets. At temperatures of interest in fusion research and many other plasma
applications, binding energy to form atoms is irrelevant, so that all dynamics becomes
the dynamics of wave packets, Planck’s constant h serving only to determine spatial
wavelengths inside the PIC wave packet, giving a wavelength λ= h/p for momentum
p. Then nothing is lost at classical scales if we increase h for numerical convenience.
For our purposes, h should be regarded as an adjustable parameter, chosen to be the
largest value that does not change the answer.

The quantum mechanical H is still Hermitian for any fixed value of h. Thus, as
noted in item (iii) above, all dynamics (and the free energy) reduces to a calculation
of eigenstates. Determining the eigenstates determines the dynamics.

6.3. PIC eigenstates states
Constructing eigenstates requires a large sampling of states from which a Hamiltonian
matrix can be constructed and diagonalized to obtain the eigenstates. Since the
Hamiltonian is known, the job of constructing quantum eigenstates can be done once
and for all, given a desired geometry such as a tokamak.

From the point of view of plasma theory, calculating eigenstates in any detail
probably requires a computer effort comparable to dynamical calculations. But from
the point of view of a machine designer, the information in eigenstates separates out
system responses that the designer cannot control from those that can be designed.
Empirical scaling laws are an example.

How to use computers to construct quantum plasma states was a large part of
Dauger’s thesis. What I am suggesting is that this part of Dauger’s work is all we
need to determine the free energy of any system, or any other measure of performance.
Dauger developed a precise way to construct plasma quantum states, efficient enough
to allow him to reconstruct these states after each dynamical time step. I refer the
interested reader to his thesis, available online (Dauger 2001).

To summarize: I propose only to adapt Dauger’s technique to construct quantum
PIC eigenstates. Given the eigenstates, Dauger’s dynamical PIC code integrating
Feynman paths would not be needed. Because the dynamics is Hermitian, the
eigenstates are all we need to know.
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6.4. Scaling laws
Given the eigenstates, any measurable quantity expressible as a quantum mechanical
operator can be calculated. An example is to add to the Hamiltonian an operator
P representing neutral beam injection (or other power sources) and from this
construct steady states giving – (ψ, Hψ)= (ψ, Pψ). The power required is a direct
measurement of energy confinement. Similarly, one can add thermonuclear reactions
giving then conditions for ignition.

My expectation would be that enough calculations of this sort could be done to
develop scaling laws that could be benchmarked against experimental data and PIC
or other simulations, all correct methods giving the same results. If so, physics-based
scaling laws could replace the empirical scaling that has thus far been the only guide
to design machines like the International Thermonuclear Experimental Reactor (ITER).

7. Summary
The conservation of entropy as a constraint in nonlinear Vlasov plasma dynamics

has provided useful guidance in estimating plasma free energy governing plasma
transport processes in various applications, including a new result in astrophysics
discussed in § 3.2.

In this paper, I have traced the deeper reason to be the hidden Hermitian nature
of the classical Vlasov operator linearized around a stable state, while the quantum
counterpart is the exact Schrödinger Hamiltonian operator that is already Hermitian.
From this, I have speculated that it might be profitable to formulate plasma dynamics
as quantum transitions among calculable eigenstates, with Planck’s constant adjusted
to classical scales, as suggested in § 6.2.

The necessary task is the construction of eigenstates as PIC plasma waves, a
method already pioneered in Dean E. Dauger’s PhD thesis cited in § 6. As an example
application, I noted that adding enough neutral beam power to the Hamiltonian to
achieve steady state would be a direct way to calculate energy leakage, in a form
most useful to machine designers.

Thinking quantum mechanically may require less work in the long run, but a
new intuition. One might begin by benchmarking quantum PIC calculations of
the energy to known results from the ‘linear tokamak’ previously used both for
MHD studies (Freidberg 2015) and for drift waves yielding kinetic transport in
tokamaks (Rosenbluth & Rutherford 1981). The possibility of developing scaling
laws, as discussed in § 6.4, might also be tested on linear tokamaks, for which
equilibria are one-dimensional. The free energy would just be the difference in
energy between neighbouring equilibria found to be accessible through eigenstates
containing three-dimensional turbulence; or equivalently, the power required to give
steady state, as in § 6.4. Test cases at zero pressure compared to the field (low β)
could represent external magnetic fields by a scalar potential. Boundary conditions
representing machine walls or a magnetic divertor are likely to be very important,
since joining the hot plasma to its environment is known to play a large role in heat
loss (the tokamak ‘pedestal’, etc.).

Exploring what I am suggesting would take work. But if past experience is a guide,
a more exact method to calculate free energy would be worth the effort – both for new
applications and for magnetic fusion at a time when ever larger experiments require
more and more time to construct and operate.

Or so I have claimed.
In Fowler (1997), I wrote, with reference to PIC simulations as a new way to

conduct ‘pseudo-experiments’ on the computer: ‘It is here that the free energy
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8 T. K. Fowler

principle will come into its own . . . [by] helping . . . to pose the right questions in
the familiar language of thermodynamics’.
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