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In this article we consider a two-person red-and-black game with lower limit. More
precisely, assume each player holds an integral amount of chips. At each stage, each
player can bet an integral amount between a fixed positive integer � and his possession
x if x ≥ �; otherwise, he bets all of his own fortune. He might win his opponent’s
stakes with a probability that is a function of the ratio of his bet to the sum of both
players’ bets and is called a win probability function. The goal of each player is to
maximize the probability of winning the entire fortune of his opponent by gambling
repeatedly with suitably chosen stakes. We will give some suitable conditions on the
win probability function such that it is a Nash equilibrium for the subfair player to
play boldly and for the superfair player to play timidly.

1. INTRODUCTION

One of most interesting examples in Dubins and Savage [4] is the famous red-
and-black gambling problem. In a discrete version of red-and-black game, a player
beginning with a positive integral fortune of x units can stake any positive integer
amount a ≤ x. His fortune becomes x + a if he wins with a fixed probability w
(0 < w < 1) and x − a if he loses with probability 1 − w. The player seeks to maxi-
mize the probability of reaching a prespecified goal M by gambling repeatedly with
suitably chosen stakes. Dubins and Savage [4] showed that in the subfair case (i.e.,
w ≤ 1/2), an optimal strategy is a bold play, which corresponds to always betting the
entire fortune or just enough to reach the goal, whichever is smaller. This seems intu-
itively reasonable in that a shorter game seems to give a better chance to the subfair
player since he will surely lose in the long run. In the superfair case (i.e., w ≥ 1/2),
Ross [8] proved that it is optimal for the player to bet timidly—that is, always to stake
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1 unit of his current fortune at each stage. Intuitively, if the player is superfair, to
prolong the game is better for him.

The discrete version of red-and-black game has been extended in several ways.
One of the extensions is a two-person red-and-black game that was introduced by
Secchi [9]. Then Pontiggia [6] proposed two different formulations of two-person
red-and-black models, in which two players hold a positive integer fortune and they
both aim to win the entire fortune of his opponent. At each stage, each player’s
win probability is not fixed but depends on both players’ bets. She showed that,
in each model, a bold strategy is optimal for subfair player while the superfair
player plays timidly, and a timid strategy is optimal for superfair player while the
subfair player plays boldly; we usually say that it is a Nash equilibrium for the sub-
fair player to play boldly and for the superfair player to play timidly. Chen and
Hsiau [2] extended Pontiggia’s results to a two-person red-and-black game with
bet-dependent win probability functions. They showed that if the subfair player’s
win probability function f is convex and satisfies that f (0) = 0, f (s) ≤ s, and
f (s)f (t) ≤ f (st) for all 0 ≤ t ≤ s ≤ 1, then it is a Nash equilibrium for the sub-
fair player to play boldly and for the superfair player to play timidly. Recently,
Chen and Hsiau [3] also gave two new models of a two-person red-and-black game.
One is called a bet-exchangeable game, in which at each stage there is a positive
probability that two players exchange their bets. The other one is called a stage-
dependent game, in which the win probability functions are stage-dependent. In
each model, they showed that under some suitable conditions, it is a Nash equi-
librium for the subfair player to play boldly and for the superfair player to play
timidly.

Pontiggia [6] also introduced an N-person model, called a proportional N-person
red-and-black game, and proposed a conjecture about it. For this, Chen and Hsiau [2]
gave a counterexample of the conjecture and Chen [1] showed that the conjecture
is true in a proportional three-person red-and-black game with suitable weights of
players. In [7], Pontiggia proposed an N-person nonconstant sum game, for which
she gave some suitable conditions on the winning probability function to ensure that
it is a Nash equilibrium for each player to play boldly.

In this article we consider a two-person red-and-black game with a lower limit.
More precisely, assume each player holds an integral amount of chips. At each stage,
each player is allowed to bet an amount between a given number � and his own current
fortune x if x ≥ �; otherwise, he bets all of his own current fortune.

Denote the two players by I and II. Let M ≥ 2 be the total amount of chips in the
system and let S = {0, 1, . . . , M} be the state space of fortune of each player in the
game. If player I has x chips, let

AI(x) =

⎧⎪⎨
⎪⎩

{x} if x ∈ {1, 2, . . . , � − 1}
{�, � + 1, . . . , x} if x ∈ {�, . . . , M − 1}
{0} if x ∈ {0, M}
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be the action set for player I and let

AII(x) =

⎧⎪⎨
⎪⎩

{M − x} if x ∈ {M − � + 1, M − � + 2, . . . , M − 1}
{�, � + 1, . . . , M − x} if x ∈ {1, . . . , M − �}
{0} if x ∈ {0, M}

be that for player II.Assume that each player chooses his action without any knowledge
of the action chosen by the other. The goal of each player is to maximize his probability
of taking all the chips (i.e., reaching M).

Let f be a function from [0, 1] to [0, 1] with f (0) = 0 and f (s) ≤ s. Suppose at
stage m, player I has xm chips and bets am ∈ AI(xm) chips, whereas player II bets
bm ∈ AII(xm) chips. The law of motion for player I is defined by

xm+1 =

⎧⎪⎪⎨
⎪⎪⎩

xm + bm with probability f

(
am

am + bm

)

xm − am with probability 1 − f

(
am

am + bm

)
,

for 1 ≤ xm ≤ M − 1, and by xm+1 = xm with probability 1 for xm = 0 or xm = M.
This means that once one of the players reaches M, the state of neither player can
change. For convenience, we call this game an �-lower-limit game.

Since f (s) ≤ s, we see that

E[xm+1|xm] = (xm + bm)f

(
am

am + bm

)
+ (xm − am)

(
1 − f

(
am

am + bm

))

= xm + (am + bm)f

(
am

am + bm

)
− am

≤ xm

for 1 ≤ xm ≤ M − 1 and that E[xm+1|xm] = xm if xm = 0 or xm = M. Therefore, the
process, {xm}m≥1, of the fortune of player I is a supermartingale. This means that the
game is subfair (or unfavorable) to player I and superfair (or favorable) to player II.
Notice that if f (s) = s, then E[xm+1 | xm] = xm, that is, if f (s) = s, then the game is
fair to both players.

For an �-lower-limit game, we need to modify a timid strategy as the strategy
in which the gambler, whose current fortune is x, always stakes min{�, x} at each
stage. A bold strategy is, as usual, that a player always stakes his entire fortune at
each stage of the game. For convenience, the profile (bold, timid) will denote that
player I always plays boldly and player II always plays timidly. If a bold strategy is
optimal for player I while player II plays timidly and a timid strategy is optimal for
player II while player I plays boldly, then we say that the profile (bold, timid) is a
Nash equilibrium.

Note that if � = 1, this model is just the model proposed by Chen and Hsiau
[2]. In this case, if the win probability function f is convex and satisfies that
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f (s)f (t) ≤ f (st), then the profile (bold, timid) is a Nash equilibrium. However, for
� ≥ 2, a win probability function f satisfying the above two conditions cannot ensure
that the profile (bold, timid) is a Nash equilibrium. For example, if f (s) = sw with
0 < w < 1, then f is convex and satisfies that f (s)f (t) ≤ f (st), but for � ≥ 2, the pro-
file (bold, timid) is not a Nash equilibrium; more precisely, if M = � + 2, w = 3/4,
and player I has � + 1 units, then while player II plays timidly, for player I to bet �

units at first stage and then to play boldly is better than always playing boldly.
The structure of this article is as follows. In Section 2 we give the main result, in

which some suitable conditions on the win probability function are proposed such that
the profile (bold, timid) is a Nash equilibrium for an �-lower-limit game. Moreover,
some related results and several examples are given. Finally, the proof of the main
result is provided in Section 3.

2. MAIN RESULTS

In the following, some suitable conditions on the win probability function are provided
such that the profile (bold, timid) is a Nash equilibrium for an �-lower-limit game.

Theorem 2.1: In an �-lower-limit game, assume that the win probability function f
satisfies that

f (s) = s

s + (1 − s)h(s)
, where h(s) is decreasing and h(s) ≥ 1, (2.1)

f (u)f (v) ≤ f (s)f (t) for all 0 ≤ s ≤ u ≤ v ≤ t ≤ 1 with st = uv. (2.2)

Then the profile (bold, timid) is a Nash equilibrium. If, in addition, h is strictly decreas-
ing and f (u)f (v) < f (s)f (t) for all 0 ≤ s < u ≤ v < t ≤ 1 with st = uv, then the
profile (bold, timid) is the unique Nash equilibrium.

The proof of Theorem 2.1 will be given in Section 3. Note that if f1 and f2 are
two win probability functions, then f1 ◦ f2(0) = f1(0) = 0 and f1 ◦ f2(s) ≤ f2(s) ≤ s,
which implies that f1 ◦ f2 is also a win probability function. This simple observation
induces the following interesting result about how to produce more win probability
functions such that the profile (bold, timid) is a Nash equilibrium for an �-lower-limit
game.

Theorem 2.2: Let f1 and f2 be two win probability functions. Suppose that for each
i = 1, 2, fi satisfies (2.1) and (2.2). Then the profile (bold, timid) is a Nash equilibrium
for an �-lower-limit game with the win probability function f1 ◦ f2.

Proof: If we can prove that f1 ◦ f2 satisfies that (2.1) and (2.2), then by Theorem 2.1,
the profile (bold, timid) is a Nash equilibrium for an �-lower-limit game with the win
probability function f1 ◦ f2.
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Note that

f1 ◦ f2(s) = f2(s)

f2(s) + (1 − f2(s))h1(f2(s))

= s

s + (1 − s)[s(1 − f2(s))/(1 − s)f2(s)]h1(f2(s))

= s

s + (1 − s)h2(s)h1(f2(s))

= s

s + (1 − s)h(s)
,

where h(s) = h2(s)(h1 ◦ f2)(s). Since hi(s) ≥ 1 for all i = 1, 2, it follows that h1 ◦
f2(s) ≥ 1 and so h(s) ≥ 1. Moreover, because h2 is decreasing, it follows that (1/t-1)
h2(t) ≤ (1/s − 1)h2(s) if t ≥ s > 0, which implies that

f2(t) = t

t + (1 − t)h2(t)
≥ s

s + (1 − s)h2(s)
= f2(s)

if t ≥ s > 0. For t ≥ s = 0, it is clear that 0 = f2(s) ≤ f2(t). Therefore, f2 is increas-
ing and so (h1 ◦ f2)(t) ≤ (h1 ◦ f2)(s) since h1 is decreasing. This implies that h(t) =
h2(t)(h1 ◦ f2)(t) ≤ h2(s)(h1 ◦ f2)(s) = h(s) if t ≥ s; that is, h is decreasing. So, f1 ◦ f2
satisfies (2.1).

To prove that f1 ◦ f2 satisfies (2.2), suppose 0 ≤ s ≤ u ≤ v ≤ t ≤ 1 with st = uv.
If f2(t) = 0, then f2(u) = f2(v) = f2(s) = 0 since f2 is increasing. Therefore, [f1 ◦
f2(u)][f1 ◦ f2(v)] = 0 = [f1 ◦ f2(s)][f1 ◦ f2(t)].

If f2(t) > 0, let r = f2(u)f2(v)/f2(t). Then rf2(t) = f2(u)f2(v) ≤ f2(s)f2(t) and
so 0 ≤ r ≤ f2(s). Since f2 is increasing and s ≤ u ≤ v ≤ t, we see that f2(s) ≤
f2(u) ≤ f2(v) ≤ f2(t) and so r ≤ f2(u) ≤ f2(v) ≤ f2(t). Therefore, f1(f2(u))f1(f2(v)) ≤
f1(r)f1(f2(t)). Moreover, f1(r) ≤ f1(f2(s)) since f1 is increasing. This implies that
f1(r)f1(f2(t)) ≤ f1(f2(s))f1(f2(t)) and so f1 ◦ f2 satisfies (2.2). Hence, the proof is
complete. �

Next, we apply Theorems 2.1 and 2.2 to two specified win probability functions,
which are proposed by Pontiggia [6] and Chen and Hsiau [2].

Example 2.1: Let h(s) = w̄/w with 0 < w < 1/2 and w̄ = 1 − w. Then the win
probability function is

f (s) = s

s + (1 − s)(w̄/w)
= sw

sw + (1 − s)w̄
.
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It is clear that h(s) is decreasing and h(s) ≥ 1, so f satisfies (2.1). Moreover, for all
0 ≤ s ≤ u ≤ v ≤ t ≤ 1 with st = uv,

f (s)f (t) − f (u)f (v) =
(

sw

sw + s̄w̄

)(
tw

tw + t̄w̄

)
−

(
uw

uw + ūw̄

)(
vw

vw + v̄w̄

)

= w2w̄(1 − 2w)st(s + t − u − v)

[sw + s̄w̄][tw + t̄w̄][uw + ūw̄][vw + v̄w̄] ,

where ȳ = 1 − y. Since st = uv, we have t(s + t − u − v) = (t − u)(t − v) ≥ 0,
which implies that f (s)f (t) − f (u)f (v) ≥ 0 and so f satisfies (2.2). According to
Theorem 2.1, we see that the profile (bold, timid) is a Nash equilibrium for an �-lower-
limit game with win probability function f (s) = sw/[sw + (1 − s)w̄], 0 < w < 1/2
and w̄ = 1 − w.

Example 2.2: Let h(s) = (1 − sδ)/(sδ−1 − sδ) for some δ > 1. Then the win proba-
bility function is

f (s) = s

s + (1 − s)h(s)
= s

s + (1 − sδ)/sδ−1
= sδ .

It is easy to check that h(s) ≥ 1. Note that h′(s) = (δs − sδ + 1 − δ)/[sδ(1 − s)2] and
δs − sδ + 1 − δ < 0 for all 0 < s < 1 and δ > 1. Thus, h′(s) < 0 on (0, 1) and so h(s)
is strictly decreasing. Moreover, for all 0 ≤ s ≤ u ≤ v ≤ t ≤ 1 with st = uv, it is clear
that f satisfies (2.2). By Theorem 2.1, we see that the profile (bold, timid) is a Nash
equilibrium for an �-lower-limit game with the win probability function f (s) = sδ ,
δ > 1.

Example 2.3: Let f1(s) = sw/[sw + (1 − s)w̄] and f2(s) = sδ , where 0 < w < 1/2,
w̄ = 1 − w, and δ > 1. From Examples 2.1 and 2.2 and Theorem 2.2, the profile
(bold, timid) is a Nash equilibrium for an �-lower-limit game with win probability
function f1 ◦ f2.

Furthermore, note that

f1 ◦ f2(s) = sδw

sδw + (1 − sδ)w̄
= s

s + (1 − s)h(s)
,

where

h(s) =
(

1 − sδ

sδ−1 − sδ

)(
w̄

w

)
.

It is not difficult to show that h(s) ≥ 1 and

h′(s) =
[
δs − sδ + 1 − δ

sδ(1 − s)2

](
w̄

w

)
.

Since δs − sδ + 1 − δ < 0 for all 0 < s < 1 and δ > 1, this implies that h′(s) < 0 and
so h is strictly decreasing. Moreover, for all 0 ≤ s < u ≤ v < t ≤ 1 with st = uv,
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(f1 ◦ f2(s))(f1 ◦ f2(t)) − (f1 ◦ f2(u))(f1 ◦ f2(v))

= sδtδw2

[sδw + (1 − sδ)w̄][tδw + (1 − tδ)w̄] − uδvδw2

[uδw + (1 − uδ)w̄][vδw + (1 − vδ)w̄]

= w2w̄(1 − 2w)sδtδ(sδ + tδ − uδ − vδ)

[sδw + (1 − sδ)w̄][tδw + (1 − tδ)w̄][uδw + (1 − uδ)w̄][vδw + (1 − vδ)w̄] .

Since 1 − 2w > 0 and tδ(sδ + tδ − uδ − vδ) = (tδ − uδ)(tδ − vδ) > 0 for all 0 < w <

1/2 and 0 ≤ s < u ≤ v < t ≤ 1 with st = uv, it follows that (f1 ◦ f2(s))(f1 ◦ f2(t)) >

(f1 ◦ f2(u))(f1 ◦ f2(v)). By Theorem 2.1, it follows that the profile (bold, timid) is the
unique Nash equilibrium for an �-lower-limit game with win probability function
f1 ◦ f2.

3. PROOF OFTHEOREM 2.1

To prove that the profile (bold, timid) is a Nash equilibrium is to prove that a bold
strategy is optimal for player I while player II plays timidly and a timid strategy is
optimal for player II while player I plays boldly. Therefore, we first prove that if f
satisfies (2.1), then a bold strategy is optimal for player I while player II plays timidly
in an �-lower-limit game.

Theorem 3.1: In an �-lower-limit game, if f satisfies that f (s) = s/[s + (1 − s)h(s)],
where h(s) is decreasing and h(s) ≥ 1, then a bold strategy is optimal for player I
while player II uses a timid strategy.

Proof: Assume player II plays a timid strategy. If player I uses a bold strategy, set

Q(x) = P(player I reaches M with an initial fortune x).

The corresponding law of motion at stage m for player I having xm units and playing
boldly is given by

xm+1 =

⎧⎪⎪⎨
⎪⎪⎩

xm + � with probability f

(
xm

xm + �

)

0 with probability 1 − f

(
xm

xm + �

)

if 1 ≤ xm < M − �, by

xm+1 =

⎧⎪⎪⎨
⎪⎪⎩

M with probability f

(
xm

M

)

0 with probability 1 − f

(
xm

M

)

if M − � ≤ xm < M − 1, and by xm+1 = xm with probability 1 if xm = 0 or M.
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From this, it is not difficult to derive the recursive relations:

Q(x) = f

(
x

x + �

)
Q(x + �) if 1 ≤ x < M − � (3.1)

and

Q(x) = f

(
x

M

)
Q(M) if M − � ≤ x < M. (3.2)

Note that Q(0) = 0 and Q(M) = 1. Therefore, Q(x) = f (x/M) if M − � ≤ x < M.
For 1 ≤ x < M − �, there exists a positive integer n such that n� < M − x ≤ n� + �.
Using (3.1) repeatedly yields that

Q(x) = f (rx)Q(x + �) = f (rx)f (rx+�)Q(x + 2�) = · · · =
( n−1∏

i=0

f (rx+i�)

)
Q(x + n�).

Since M − � ≤ x + n� < M, it follows that for 1 ≤ x < M − �,

Q(x) =
( n−1∏

i=0

f (rx+i�)

)
Q(x + n�) =

( n−1∏
i=0

f (rx+i�)

)
f

(
x + n�

M

)
. (3.3)

In order to prove that a bold strategy is optimal for player I while player II plays
timidly, it suffices to show that Q(·) is excessive (see [5, Thm.]) or, equivalently, that
the following two inequalities hold:

f

(
a

a + �

)
Q(x + �) +

(
1 − f

(
a

a + �

))
Q(x − a) ≤ Q(x) (3.4)

for every x ∈ {1, . . . , M − � − 1} and every a ∈ AI;

f

(
a

a + M − x

)
Q(M) +

(
1 − f

(
a

a + M − x

))
Q(x − a) ≤ Q(x) (3.5)

for every x ∈ {M − �, . . . , M − 1} and every a ∈ AI.
To prove (3.4), let rx = x/(x + �). From (3.1), we have Q(x + �) = Q(x)/f (rx)

and so (3.4) becomes

(1 − f (ra))Q(x − a) ≤
(

1 − f (ra)

f (rx)

)
Q(x). (3.6)

If 1 ≤ x < �, then a ∈ AI = {x} and hence (3.4) holds for 1 ≤ x < �. If x ∈
{�, . . . , M − � − 1}, then a ≥ �. This implies that there exists a nonnegative integer m
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such that n� + m� < M − x + a ≤ n� + m� + �. Let g(s) = 1/[s + (1 − s)h(s)].
Then f (s) = sg(s). By (3.3), it follows that

Q(x) =
( n−1∏

i=0

rx+i�

)( n−1∏
i=0

g(rx+i�)

)(
x + n�

M

)
g

(
x + n�

M

)

= x

M

( n−1∏
i=0

g(rx+i�)

)
g

(
x + n�

M

)

and

Q(x − a) = x − a

M

( n+m−1∏
i=0

g(rx−a+i�)

)
g

(
x − a + n� + m�

M

)
.

Therefore, (3.6) becomes

(1 − f (ra))

(
x − a

M

)( n+m−1∏
i=0

g(rx−a+i�)

)
g

(
x − a + n� + m�

M

)

≤
(

1 − f (ra)

f (rx)

)(
x

M

)( n−1∏
i=0

g(rx+i�)

)
g

(
x + n�

M

)
,

which is equivalent to

(x − a)(1 − f (ra))

( n+m−1∏
i=0

g(rx−a+i�)

)
g

(
x − a + n� + m�

M

)

≤ x

(
1 − f (ra)

f (rx)

)( n−1∏
i=0

g(rx+i�)

)
g

(
x + n�

M

)
.

Since h(s) ≥ 1 is decreasing, we have 0 ≤ h(s) − 1 ≤ h(t) − 1 for all 0 ≤ t ≤
s ≤ 1 and this implies that (1 − s)(h(s) − 1) ≤ (1 − t)(h(t) − 1), which is equivalent
to s + (1 − s)h(s) ≤ t + (1 − t)h(t). Therefore, g(s) ≥ g(t) for all 0 ≤ t ≤ s ≤ 1; that
is, g is increasing. Then we deduce that

n−1∏
i=0

g(rx−a+i�) ≤
n−1∏
i=0

g(rx+i�) (3.7)

since rx−a+i� ≤ rx+i� for i ∈ {0, 1, . . . , n − 1} and that

max

{
g

(
x − a + n�

M

)
, g(rx−a+n�)

}
≤ g

(
x + n�

M

)
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since x − a + n� < x + n� and

rx−a+n� = x − a + n�

x − a + n� + �
≤ x + n�

x + n� + �
≤ x + n�

M
.

Moreover, since h(s) ≥ 1, it follows that

g(s) = 1

s + (1 − s)h(s)
≤ 1

s + (1 − s)
= 1

and so

g

(
x − a + n� + m�

M

) n+m−1∏
i=n

g(rx−a+i�)

≤ max

{
g

(
x − a + n�

M

)
, g(rx−a+n�)

}

≤ g

(
x + n�

M

)
. (3.8)

Here we have used the convention that
∏j+k

i=j ai = 1 if k < 0.
According to (3.7) and (3.8), it remains to show that

(x − a)(1 − f (ra)) ≤ x

(
1 − f (ra)

f (rx)

)
,

which is equivalent to
a(1 − f (ra))

f (ra)
≥ x(1 − f (rx))

f (rx)
. (3.9)

Since f (s) = s/[s + (1 − s)h(s)], it follows that

h(s) = s(1 − f (s))

(1 − s)f (s)
.

For a ≤ x, we see that ra ≤ rx and so

a(1 − f (ra))

�f (ra)
= ra(1 − f (ra))

(1 − ra)f (ra)
= h(ra) ≥ h(rx) = rx(1 − f (rx))

(1 − rx)f (rx)
= x(1 − f (rx))

�f (rx)

since h(s) is decreasing. This implies that (3.9) holds for x ∈ {�, . . . , M − � − 1} and
hence (3.4) holds.

For x ∈ {M − �, . . . , M − 1}, the proof of (3.5) is similar to that of (3.4) and is
omitted here. �

Remark 3.1: If h is strictly decreasing, then (3.4) and (3.5) are actually an equality if
and only if a = x. This states that in this case, the bold strategy is the unique optimal
strategy for player I while player II plays timidly.
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Next, we prove that if f satisfies (2.2), then a timid strategy is optimal for player
II while player I plays boldly in an �-lower-limit game.

Theorem 3.2: In an �-lower-limit game, if f satisfies f (u)f (v) ≤ f (s)f (t) for all 0 ≤
s ≤ u ≤ v ≤ t ≤ 1 with st = uv, then a timid strategy is optimal for player II while
player I uses a bold strategy.

Proof: Assume that player I plays a bold strategy. If player II uses a timid strategy,
then let

T(x) = P(player II reaches M with an initial fortune M − x).

The corresponding law of motion at stage m for player I with xm units is given by

xm+1 =

⎧⎪⎪⎨
⎪⎪⎩

xm + � with probability f

(
xm

xm + �

)

0 with probability 1 − f

(
xm

xm + �

)

for 1 ≤ xm < M − �, by

xm+1 =

⎧⎪⎪⎨
⎪⎪⎩

M with probability f

(
xm

M

)

0 with probability 1 − f

(
xm

M

)

for M − � ≤ xm ≤ M − 1, and by xm+1 = xm with probability 1 for xm = 0 or M. In this
case of the games, one player reaches the goal and the other goes broke with probability
1; hence, T(x) = 1 − Q(x), where Q(x) is given in the proof of Theorem 3.1.

To prove that a timid strategy is optimal for player II while player I plays boldly,
as earlier it suffices to show that T(·) is excessive—that is, to prove that the following
inequality holds for every x ∈ {1, · · · , M − 1} and every b ∈ AII(x):

f

(
x

x + b

)
T(x + b) +

(
1 − f

(
x

x + b

))
T(0) ≤ T(x).

Since T(x) = 1 − Q(x), the above inequality is equivalent to

Q(x) ≤ f

(
x

x + b

)
Q(x + b) (3.10)

for every x ∈ {1, . . . , M − 1} and every b ∈ AII(x).
For the case M − � ≤ x < M, we have 0 < M − x ≤ � and so b = M − x. Hence,

(3.10) follows by (3.2).
For the case 1 ≤ x < M − �, we have � < M − x ≤ M − 1 and it follows that

either b = � or � < b ≤ M − x. If b = �, then (3.10) holds by (3.1). If � < b ≤ M − x,
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there exists a positive integer n such that n� < b ≤ n� + �. Next, we divide our
discussion into two cases: (i) b = M − x and (ii) � < b < M − x.

(i) If b = M − x, then from (3.3), we have Q(x + b) = Q(M) = 1 and

Q(x) =
( n−1∏

i=0

f (rx+i�)

)
f

(
x + n�

M

)
.

Since f satisfies (2.2) and f (1) ≤ 1, it follows that f (s)f (t) ≤ f (st) for all s, t ∈ [0, 1].
This implies that

Q(x) ≤ f

(
x

M

)
= f

(
x

x + b

)

since (
∏n−1

i=0 rx+i�)(x + n�)/M = x/M.
(ii) If � < b < M − x, then M − x − b > 0 and so there exists a nonnegative

integer m such that m� < M − x − b ≤ m� + �. Since n� < b ≤ n� + � and m� <

M − x − b ≤ m� + �, it follows that n� + m� < M − x ≤ n� + m� + 2�. Using (3.1)
repeatedly yields that

Q(x) =
( n+m−1∏

i=0

f (rx+i�)

)
Q(x + n� + m�)

=
( n−1∏

i=0

f (rx+i�)

)( m−1∏
j=0

f (rx+n�+j�)

)
Q(x + n� + m�),

and from (3.3), we have

Q(x + b) =
( m−1∏

j=0

f (rx+b+j�)

)
f

(
x + b + m�

M

)
.

Therefore, (3.10) becomes

( n−1∏
i=0

f (rx+i�)

)( m−1∏
j=0

f (rx+n�+j�)

)
Q(x + n� + m�)

≤ f

(
x

x + b

)( m−1∏
j=0

f (rx+b+j�)

)
f

(
x + b + m�

M

)
. (3.11)

Since f (s)f (t) ≤ f (st) for all s, t ∈ [0, 1], this implies that

n−1∏
i=0

f (rx+i�) ≤ f

(
x

x + n�

)
(3.12)
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since
∏n−1

i=0 rx+i� = x/(x + n�). With (3.12), (3.11) holds if we can prove that

f

(
x

x + n�

)( m−1∏
j=0

f (rx+n�+j�)

)
Q(x + n� + m�)

≤ f

(
x

x + b

)( m−1∏
j=0

f (rx+b+j�)

)
f

(
x + b + m�

M

)
. (3.13)

Let s0 = x/(x + b), t0 = x/(x + n�), sj = rx+b+j�−�, and tj = rx+n�+j�−� for j ≥ 1.
Then (3.13) becomes

( m∏
j=0

f (tj)

)
Q(x + n� + m�) ≤

( m∏
j=0

f (sj)

)
f

(
x + b + m�

M

)
. (3.14)

Let v0 = t0 and

vj = x + b + j� − �

x + n� + j�
for j ≥ 1.

It follows that sjvj+1 = tj+1vj and sj ≤ min{vj, tj+1} ≤ max{vj, tj+1} ≤ vj+1 for all
j ≥ 0. Therefore, we have for all j ≥ 0,

f (tj+1)f (vj) ≤ f (sj)f (vj+1) (3.15)

and this imply that
∏m−1

j=0 (f (tj+1)f (vj)) ≤ ∏m−1
j=0 (f (sj)f (vj+1)), which is equivalent to

f (v0)

( m∏
j=1

f (tj)

)
=

( m∏
j=0

f (tj)

)
≤ f (vm)

( m−1∏
j=0

f (sj)

)
(3.16)

since v0 = t0. If we can prove that

f (vm)Q(x + n� + m�) ≤ f (sm)f

(
x + b + m�

M

)
, (3.17)

then (3.14) holds by (3.16).
Notice that n� + m� < M − x ≤ n� + m� + 2�. If 0 < M − x − n� − m� ≤ �,

then from (3.2), we have Q(x + n� + m�) = f ((x + n� + m�)/M). Note that vm(x +
n� + m�)/M = sm(x + b + m�)/M and

sm ≤ min

{
vm,

x + n� + m�

M

}
≤ max

{
vm,

x + n� + m�

M

}
≤ x + b + m�

M
.

It follows that

f (vm)Q(x + n� + m�) = f (vm)f

(
x + n� + m�

M

)
≤ f (sm)f

(
x + b + m�

M

)
;

that is, (3.17) holds.
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If � < M − x − n� − m� ≤ 2�, then, from (3.3), we have

Q(x + n� + m�) = f (rx+n�+m�)f

(
x + n� + m� + �

M

)

= f (tm+1)f

(
x + n� + m� + �

M

)
.

According to (3.15) with j = m, we have f (tm+1)f (vm) ≤ f (sm)f (vm+1) and so

f (vm)Q(x + n� + m�) ≤ f (sm)f (vm+1)f

(
x + n� + m� + �

M

)
.

Since f (s)f (t) ≤ f (st) for all s, t ∈ [0, 1], it follows that

f (vm+1)f

(
x + n� + m� + �

M

)

= f

(
x + b + m�

x + n� + m� + �

)
f

(
x + n� + m� + �

M

)

≤ f

(
x + b + m�

M

)

and so (3.17) holds. Hence, the proof is complete. �

Remark 3.2: Suppose that the win probability function f satisfies f (u)f (v) < f (s)f (t)
for all 0 ≤ s < u ≤ v < t ≤ 1 with st = uv. Then we can prove that (3.10) is actually
an equality if and only if b = � as 1 ≤ x < M − �. This means that, in this case, the
timid strategy is the unique optimal strategy for player II while player I plays boldly.

Remark 3.3: For the case � = 1, Chen and Hsiau [2] proved a similar result as
Theorem 3.2 under a weaker condition that f (st) ≥ f (s)f (t) for all 0 ≤ s ≤ t ≤ 1.
However, for � ≥ 2, this condition is not sufficient. For example, for � ≥ 2 and
M ≥ 2� + 1, suppose f (s) = s(2 − s)/2 and player II has 2� units. It is easy to verify
that f (st) ≥ f (s)f (t) holds for all 0 ≤ s ≤ t ≤ 1. However, we can prove that while
player I plays boldly, it is better for player II to bet � + 1 units at first stage and then
to play timidly than always to play timidly.

ByTheorems 3.1 and 3.2 and Remarks 3.1 and 3.2, we now can proveTheorem 2.1.

Proof of Theorem 2.1: If f satisfies (2.1) and (2.2), then, by Theorem 3.1, a bold
strategy is optimal for player I while player II plays timidly; moreover, by Theorem
3.2, a timid strategy is optimal for player II while player I plays boldly. Therefore, the
profile (bold, timid) is a Nash equilibrium.

For the second part of the theorem, if h is strictly decreasing and f (u)f (v) <

f (s)f (t) for all 0 ≤ s < u ≤ v < t ≤ 1 with st = uv, then, by Remarks 3.1 and 3.2,
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we can see that the bold strategy is the unique optimal strategy for player I if player
II plays timidly and that the timid strategy is the unique optimal strategy for player II
if player I plays boldly. Now, from [6, Lemma A.1], it follows that the profile (bold,
timid) is the unique Nash equilibrium. �
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