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SUMMARY
Teleoperated robots are used to perform tasks that human
operators cannot carry out because of the nature of the tasks
themselves or the hostile nature of the working environment.
Though many control architectures have been defined
for developing these kinds of systems reusing common
components, none has attained all its objectives because
of the high variability of system behaviors. This paper
presents a new architectural approach that takes into account
the latest advances in robotic architectures while adopting
a component-oriented approach. This approach provides
a common framework for developing robotized systems
with very different behaviors and for integrating intelligent
components. The architecture is currently being used, tested
and improved in the development of a family of teleoperated
robots which perform cleaning of ship-hull surfaces.1
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I. INTRODUCTION
The purpose of this paper is to present a reference archi-
tectural framework for service robot control applications.
These applications are used to teleoperate mechanisms such
as robots, vehicles and tools (or a combination of these)
that perform inspection and maintenance activities in hostile
environments. These activities are generally complex and
it is not possible to work with completely autonomous
systems. Therefore, the operator is in charge of monitoring
and operating the mechanisms. The system receives orders
from a human operator and performs the requisite actions to
execute them.

Teleoperation systems cover a broad range of mechanisms
and missions, all with their own specific features and
requirements. At the same time, however, they all share
many common characteristics, making it possible to describe
an application domain and its corresponding reference
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architecture. In fact, in recent years the DSIE research group
at the Technical University of Cartagena has been using a
reference architecture to enable a number of developments
for the nuclear industry1:

• Teleoperation software for the Westinghouse ROSA III
robot, used for maintenance operations inside steam
generator channel heads in pressurized water nuclear
plants.

• An IRV vehicle used to search for and retrieve fallen
objects inside nuclear plant primary circuit pipes.

• A TRON system design for inspection of lower PWR
vessel internals.

Despite their differences, these systems share some key
characteristics in terms of their control, and they can therefore
be relatively easily developed using the same architecture.
The shared characteristics are:

• Working areas are fixed and well known.
• Behavior is operator driven. Reactive behavior is limited

to some simple safety actions.
• The applications control a single system.

None of above characteristics apply to the new developments
considered in the EFTCoR project2 which the DSIE is
currently working on. The EFTCoR system comprises a
family of teleoperated systems whose mission is to retrieve
and confine paint, oxide and marine adherences from ship
hulls. In this case:

• Working environments are not fixed, given the great
variety of ship types, the number of different areas of
a given ship and the differences among shipyards.

• Systems need to have a high degree of autonomy.
• Different systems may have to work cooperatively at the

same time.

Because of these new characteristics, the original architecture
cannot be used for the EFTCoR robots. However, the use of
a common architecture for all developments is extremely
useful, in that it allows rapid development of systems and
the reuse of a wide variety of components, thus saving
time and money. For this reason, the DSIE research group
is working on a new architecture that takes these new
characteristics into account and can be used for development
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of the robots considered in the EFTCoR project. This paper
summarizes the main characteristics of this architecture and
is structured as follows: section II gives a brief description
of the main parts of the EFTCoR system; section III
presents and justifies the methodological approach adopted;
section IV describes the limits of the system considered and
the main issues for definition of the architecture. Section V
describes the architecture, and section VI summarizes the
conclusions.

II. THE EFTCoR SYSTEM
The EFTCoR system is a highly ambitious teleoperated
platform for non pollutant ship hull maintenance operations
in different working areas: from large dry docks free of
obstacles to areas full of obstacles such as synchrolift
systems. Five subsystems have been identified which co-
operate to provide the required functionality. A brief
description of these will give us an idea of some of the
general requirements to be reflected in the architectural
design:

• The Teleoperation Console. The teleoperation platform,
which is fed with CAD data from the hull being worked
on and the process parameters, is able to control and
coordinate up to ten robots to optimum quality standards
in order to minimize resources and operation time. The
teleoperation terminal shows the status of the robots to an
operator, who can remotely carry out blasting operations.
In fully-automated operational mode, control subsystems
use information from the Vision System to complete
blasting operations. They provide a set of commands and
allow the teleoperation subsystem to move the robot when
the operating mode is selected.

• The Vision System gives the operator a real-time video
image of the surface on which the cleaning head is
positioned. Subsequent versions of the vision system will
master the blasting operation by calculating the robot
trajectory; they will also test resulting blasting quality.
The Vision System will provide on-line automated path
planning for spot working and assessment in quality
control of the blasted surface. It will then communicate
with the robot control subsystem and the monitoring
system.

• The Monitoring System. This system is external to the
teleoperating system. The monitoring system considers
the scheduling information for each cleaning task. The
system will communicate with the teleoperated system by
means of wireless technology. The operator will query and
notify the maintenance task data produced.

• The Positioning System. Its purpose is to move the
cleaning head up to or away from the hull surface. The
positioning system may comprise primary and secondary
positioning systems: the primary positioning system can
be a large crane used to reach all the hull areas, and
the secondary positioning system may be a robot or a
manipulator capable of covering a certain area. The main
reasons that led us to consider differentiated primary
and secondary positioning systems were: (i) the difficulty
of finding a large positioning system that meets reach,

load, precision and controllability requirements at the
same time; (ii) the need for different positioning systems
depending on the size and shape of the hull and the part of
the hull to be cleaned; and (iii), the existence of primary
positioning systems for surface blasting that can be reused
for spotting if a controllable secondary positioning system
is attached to them. Depending on the nature of the tasks to
be performed and on the characteristics of the areas to be
treated, there could in principle be configurations where
only one of these positioning systems is required. The
secondary positioning system should position the cleaning
head over the area to be cleaned with reasonable speed
and precision. The secondary positioning system is the
first candidate for automation, so it is essential that it can
be operated as a robot.

• The Cleaning System. This system is composed of
three primary parts: the blasting head (injection unit),
the aspiration unit and the cleaning head. The cleaning
head consists of a pan&tilt head that guides the blasting
hose and allows the incident angle, air pressure and grit
feeding to be adjusted to control the blasting operation.
The assembly is enclosed by specially designed shrouds
around the blasting heads to “seal” the units to the surface
being cleaned, thus preventing dust emissions. Flexible
contact between the seal and the hull is achieved by
the combined use of air springs and adjusting springs.
The waste handling and recycling system eliminates the
residues produced by hull blasting, allowing reuse of the
grit material and adequately packaging and disposing of
other wastes.

III. METHODOLOGICAL APPROACH
Although many robotics architectures can be found in
the literature,3 it is more difficult to find examples of a
development process for defining reference architectures
in the field of robotics. In our proposal to arrive at a
reference architecture for service robot control applications,
we followed the Architecture Based Design Method (ABD)4

and completed it with the 4 views of Hofmeister,5 with their
notation based on UML for components.

The development methods based on use-cases (mainly
RUP6 and others derived from RUP) may be appropriate
for defining the architecture of a given system, but they
are not suitable to define reference architectures. The
use cases define concrete functionality; however, in the
design of reference architectures general rather than concrete
functionality is the issue, because the success or failure of
such architectures depends on their ability to deal with the
variability among the systems of the considered domain. In
this sense, use cases may be very relevant to one system
and not very relevant to others. Moreover, at the level
of abstraction required to deal with the variability of the
systems, concrete use cases cannot be properly defined.
For this reason, we have adopted another methodological
approach: ABD.

ABD is a methodology proposed by the SEI (Software
Engineering Institute of The Carnegie Mellon University) to
design software architectures for a given application domain
or product family. ABD is based on:
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• Functional decomposition of the problem based on the
concepts of low coupling and high cohesion and on
knowledge of the application domain.

• Realization of the functional and quality requirements by
means of a correct choice of architectural styles and design
patterns.

• The notion of software templates that define the elements
and responsibilities common to a group of components,
such as their interactions with the infrastructure.

ABD decomposes the system into subsystems recursively.
Thus, the same rules that apply to decomposing the system
into subsystems apply to decomposing the subsystems in
other simpler subsystems.

ABD offers as a final model a conceptual view of the
architecture that identifies the main subsystems and their
relationships, which are described in terms of architectural
styles and design patterns. Hofmeister et al5 propose another
architecture-oriented development method, which can be
superimposed on ABD in the initial stages. The approach
of these authors is interesting because it includes the
notions of ports and connectors among components, using
a ROOM inspired notation7. In this case, the UML notation
has been extended with stereotyped classes and special
symbols to express such components, ports and connectors.
Hofmeister’s approach also makes it easier to establish the
connection between the conceptual components and their
implementations.

IV. DOMAIN CHARACTERIZATION.
TELEOPERATED SERVICE ROBOTS
Service robots are mechatronic systems, usually designed
for a concrete application that may be extended to a new
functionality in the course of time. They can differ widely
from a physical point of view, but they normally use similar
software and share many common components, both logical
and physical. The first step in defining the functional and
quality requirements that will inform the design of the
architecture is to characterize the application domain. In our
experience, the main features to be considered should be the
following:

• A high degree of specialization and hence high variability
of functionality and physical characteristics.

• Different combinations of vehicles, manipulators and
tools.

• A large variety of execution infrastructures, including
different kinds of processors, communication links and
man-machine interfaces.

• A large variety of sensors and actuators.
• Different kinds of control algorithms, from very simple

reactive actions to extremely complex algorithms and
navigation strategies, depending on the applications.

• Varying degrees of autonomy, from fully operator-driven
systems to semi-autonomous robots.

• Presence of hard real-time requirements.
• Hardware- versus software-intensive implementations

with all imaginable intermediate cases.
• And last but not least, safety is nearly always a main

concern.

Considering the differences among systems as noted
above, a central objective of the architecture must clearly
be to deal with such variability. A more precise analysis
of the differences among systems8 reveals that most of
them relate not to the components of the system but to
the interactions among the components. Therefore, when
designing the architecture the following points should be
borne in mind:

• Very different instances of the architecture should be able
to share the same “virtual” components.

• The designer should adopt policies that allow a clear
separation between the components as such and their
patterns of interaction.

• The implementation of such virtual components may be
software or hardware; it is highly advisable that such
components can be COTS (commercial off-the-shelf).

• It should be possible to derive concrete architectures
for both deliberative (operator-driven) and reactive
(autonomous intelligent) systems.

Following the ABD terminology, these four points constitute
the architectural drivers of the architecture.

V. ARCHITECTURE OVERVIEW
It should be possible for very different systems to use the
same components, and so the first issue is to define the
rules and common infrastructure that allow components
to be assembled or connected. To achieve this, the key
concepts are: component, container, port and connector, as
well as the Composite pattern.9 The port concept provides a
regular means of data and control interchange and therefore
of connecting and assembling components irrespective of
their functionality and granularity. The connector concept
makes it possible to separate the components’ functionality
from their interaction patterns (choreographies10), because
they are included in the connectors. The Composite pattern
provides a means of dealing with complex and simple
components in the same way, masking the inner complexity
of the large components created by the assembly of many
other components.

Once it has been defined how the components must or may
be assembled, the second step is to define what components
there are to be. The third architectural driver identified in
the previous section states that the components may be
implemented by software or hardware, and it is highly
advisable that such components can be COTS. To achieve
this, it is necessary to define the typical components of
systems of this kind, which can be identified at different
levels of granularity. At the lowest level are the actuators and
sensors. A level up are the controllers for simple actuators
(for example a motor controller). A further level up are the
controllers for groups of actuators (for example a motion card
capable of controlling the joints of a mechanism), and so on.
Many of these components can be acquired on the market
either as hardware devices and control cards or software
packages for a given platform. To facilitate the use of COTS
components, the most usual COTS should have its virtual
counterpart. The linkage between the virtual component and
its implementation can be achieved using the Bridge pattern.9

https://doi.org/10.1017/S0263574705002407 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574705002407


414 Teleoperated robots

Fig. 1. An abstract overview of the proposed architecture.

To define virtual components the architecture identifies
four levels of granularity and adopts the hardware abstract
layer notion described in the OROCOS framework.11 The
hardware abstract layers model the features of the physical
components of the system, defining virtual sensors, actuators,
motion controllers, etc. The hardware abstract layers make
it possible to define libraries of components and interchange
both hardware and software implementations (perhaps
commercial) of the devices with minimum impact.

The last architectural driver identified was the possibility
of deriving concrete architectures for both deliberative and
reactive systems. For this purpose, the autonomous or
programmed behavior has to be separated from the operator
driven behavior, as shown in figure 1. This scheme also
appears in the CLARAty (Coupled Layered Architecture for
Robotic Autonomy) architecture12 used for the development
of the Mars rovers. CLARAty distinguishes a Functional
Layer, where the components of the system are defined, and a
Decision Layer that encapsulates the subsystems responsible
for planning and executing the missions. However, our
approach separates these concerns in a different way.
As in the CLARAty architecture, the highest levels of
intelligence can directly access the lowest level components:
the intelligence is a client of the functionality. However,
unlike CLARAty, where some autonomous behaviors can be
added to the functional layer, in our approach the intelligence
of the system is completely separate from the functionality.

V.1. An overview of the architecture layers and components
The architecture proposed in this paper identifies four layers
of granularity at which the components can be defined
(Fig. 1):

• Layer 1: Abstract characteristics of atomic components,
such as sensors and actuators.

• Layer 2: Simple Unit Controllers (SUCs).
• Layer 3: Mechanism controllers (MUCs).
• Layer 4: Robot controllers (RUCs).

These layers are called hardware abstract layers because the
components defined within them may be (and frequently

are) implemented in commercial hardware. The simplest
components modeled by the architecture are the sensors and
actuators, which are defined at the lowest architectural layer.
The sensors are components that provide the information
required for controlling a given active element, for example
the encoder and limit switches associated with a given
joint. The actuators model the simplest active elements, for
example a motor.

SUCs (Simple Unit Controllers) are the components
defined at the second architecture layer (Fig. 2). The SUC
components model control over the actuators and collection
of data from the sensors. For example, there will be SUCs
defined for controlling the joints of a given mechanism. The
SUC generates the commands for the actuator according to
the order that it receives from another component (through
the controllerControl port), the information received
from the sensors that describe the state of the actuator, and its
own control policy. This policy is an interchangeable part of
the SUC. For example, the ControlStrategy of a given joint
may be a traditional control (PID) or may be exchanged for
a fuzzy logic strategy. SUCs usually need to satisfy hard real
time requirements and are therefore generally implemented
in hardware. When they are implemented in software they
tend to impose severe real time requirements on operating
systems and platforms.

At the third level of granularity is the Mechanism Unit
Controller (MUC). The MUC component models control
over a whole mechanism (vehicle, manipulator or end
effector). As figure 3 shows, the MUC is a logical entity
composed of an aggregation of SUCs plus a Coordinator
responsible for coordinating their actions in accordance with
the commands and information that it receives and their own
coordination strategy. This strategy is an interchangeable
part of the SUC; for example, the coordination strategy of a
given manipulator may be a particular solution for its inverse
kinematics, the coordination strategy for a given vehicle may
be a particular navigation strategy, and so on.

Although the architecture defines the MUCs as relational
aggregates, they can be inclusive components (hard or soft)
when the architecture is instantiated to develop a concrete
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Fig. 2. SUC: Simple Unit Controller.

Fig. 3. MUC: Mechanism Unit Controller.

system. Whether or not the interfaces of the inner SUCs
are directly accessible is a decision of the architecture
instantiation. In fact, although MUCs may be implemented
by hardware or software, they are frequently commercial
motion control cards that constrain the range of possible
commands to their internal components. COSTs limit the
flexibility of the approach, in that COSTs do not always
provide direct access to either their inner sub-components or
their inner state.

Finally, the architecture defines the RUC (Robot Unit
Controller) component at the fourth layer. The RUC
component models control over a whole robot, for example

a robot composed of a vehicle with an arm and several
interchangeable tools. As figure 4 shows, an RUC is
an aggregation of MUCs with a global coordinator that
generates the commands for the MUCs and coordinates their
actions in accordance with the orders and the information
that it receives and with its own coordination strategy. Such a
strategy is an interchangeable part of the RUC. For example,
the CoordinationStrategy of a robot comprising a vehicle
with a manipulator may be a generalized kinematic solution
that takes into account the possibility of moving the vehicle
to reach a given target. Like MUCs, RUCs are logical
components that can take the form of physical components
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Fig. 4. RUC: Robot Unit Controller.

depending on concrete instantiations. In general, the RUC
is quite a complex component that comprises hardware and
software components and can have a large variety of inter-
faces depending on the complexity of the controlled system.

Having defined SUCs, MUCs and RUCs, it would seem
logical to define a Group Unit Controller (GUP) capable of
managing and coordinating a group of cooperative robots.
However, the architecture does not go beyond RUCs. There
is a good reason for this. The “usual intelligence” required
to control a joint or mechanism which is an assembly of
joints or to teleoperate a robot which is a combination
of various mechanisms is limited, is well-known and can
be encapsulated in reusable components. The intelligence
required to work cooperatively usually demands a more
flexible approach. This also goes for some missions involving
SUCs, MUCs and RUCs, and likewise algorithms for
collision avoidance or navigation systems for vehicles. It
is very difficult to define a component that will encapsulate
“intelligence”. If a system or component is capable of being
intelligent and taking non-trivial decisions, it will normally
be complex enough to have a defined architecture of its own
(for example, an artificial vision system able to determine
obstacle-free paths). In that case, the approach should be
different: Do not impose a structure on the intelligent
components but find a way to integrate them into the system.

V.2. Adding autonomous behavior
The SUC/MUC composition produces a hierarchical
architecture where the decisions flow from the top down and

the information flows from the bottom up. This architecture
sits well with operator-driven systems, where autonomous
behavior does not exist or is confined to some hardware safety
actions. It also sits well with systems where the reactive
or autonomous behavior responds to simple rules that can
be added to controllers and coordinators so that the latter,
following these rules, can take decisions and notify them
to the upper level controller or coordinator. However, there
are systems where the autonomous behavior is anything but
simple. In such cases, the intelligent component needs to
integrate more information and access more functionalities
than those embedded in a given component. The approach
in that case (see figure 5) is to superimpose the “intelligent”
autonomous behavior and the operator-driven behavior while
providing the means for integrating both and resolving the
potential conflicts. This approach does not entail any change
in the components defined so far, but simply new command
sources for them. These sources are constituted by new
components that have access to the global information system
and are capable of deciding what to do on the basis of
programmed rules, algorithms or heuristics.

Every component of a given layer can access the
information and control ports of components of lower layers.
In this sense, every component of a given layer is an
intelligent component for the layer below it, for example
from the point of view of a MUC, no matter whether the
commands come from the coordinator of the RUC that
controls it (see figure 5), from the operator or from some
of the intelligent components defined on a level above the
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Fig. 5. Superimposition of operator-driven and autonomous behavior.

RUCs. Since a component can receive commands from more
than one source, it is necessary to decide what command
to perform. The logic for this decision is external to the
component. Figure 5 shows a new type of component: the
arbitrator. Arbitrators encapsulate the rules that determine
which command should be delivered to a given component.
The arbitrator is separately defined because the rules that
it encapsulates (or even the arbitrator itself) can vary from
system to system, during the life of a given system or even at
different stages in the functioning of a system. The concept of
an arbitrator derives from the notion of a composition filter13

and is strongly connected to the need to separate functionality
from the patterns of interaction among components.

This approach is highly flexible and makes it possible
to integrate intelligence that is directly concerned not with
the missions of robotic devices but with management of the
application as regards fault tolerance policies or a meta-layer
for reconfiguring the application.

VI. SUMMARY AND FUTURE WORK
The architecture described in this paper takes the
most promising architectural advances in the domain of
teleoperation and puts them together with a component-
oriented approach. This approach focuses on the definition of
a common component framework that allows the definition
of components that can be reused in different systems
and integrated in intelligent systems capable of driving

robot behavior. Our main sources of inspiration have
been OROCOS,11 CLARAty12 (robotic architectures) and
the PRISMA approach10 (component and aspect oriented
approaches).

The architecture is currently being used in the development
of a family of robots whose mission is to retrieve and confine
paint, oxide and marine adherences from ship hulls (see
figure 6). Presenting as it does a wide variety of behaviors and
degrees of complexity, this family of robots is an excellent
test bench for the architecture.

Our experience using the architecture has been satis-
factory; however, we would note two major challenges in
this respect:

• There is not enough support to express the component
abstractions and model their interactions.

• Also, there are no well-known techniques to cope with
the variability of components from one instantiations to
another.

These challenges can be met by the PRISMA approach.
We are currently working on this with the Technical
University of Valencia (Spain) within the framework of a
nationally funded (CICYT) research project, DYNAMICA,
ref. TIC2003-07804-C05. A possible first step is to use the
PRISMA language to define the components and the layered
architecture. A possible second step is to consider changes
in the interactions among these components.
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Fig. 6. Three prototypes (cherry-picker model, elevation platform and mobile vehicle, respectively) of the family of robots and a ship
awaiting repair.
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