
J. Appl. Prob. 55, 318–324 (2018)
doi:10.1017/jpr.2018.19

© Applied Probability Trust 2018

A CONJECTURE ON THE FELDMAN
BANDIT PROBLEM

MAHER NOUIEHED ∗ ∗∗ and

SHELDON M. ROSS,∗ ∗∗∗ University of Southern California

Abstract

We consider the Bernoulli bandit problem where one of the arms has win probability α

and the others β, with the identity of the α arm specified by initial probabilities. With
u = max(α, β), v = min(α, β), call an arm with win probability u a good arm. Whereas
it is known that the strategy of always playing the arm with the largest probability of
being a good arm maximizes the expected number of wins in the first n games for all n,
we conjecture that it also stochastically maximizes the number of wins. That is, we
conjecture that this strategy maximizes the probability of at least k wins in the first n

games for all k, n. The conjecture is proven when k = 1, and k = n, and when there are
only two arms and k = n − 1.
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1. Introduction

Consider a sequence of n games, where in each game one of m arms is pulled, and either
a win or a loss is obtained. We suppose that the set of win probabilities for the m arms is
known to equal {α, β, . . . , β}, where α �= β are specified probabilities. That is, it is known that
exactly one of the arms has win probability α whereas all the others have win probability β.
Although the identity of the arm with win probability α is not known, we assume there are
initial probabilities as to which arm it is. This problem was introduced by Feldman [1] for the
m = 2 case and its study for general m was undertaken by Rodman [2].

Let u = max(α, β), v = min(α, β), and call an arm with win probability u a good arm. With
π being the strategy that always plays the arm with the largest posterior probability of being
a good arm, it was shown in [1] and [2] that using strategy π maximizes the expected number
of wins in the first n games for all n. We believe that the stronger result that π stochastically
maximizes the number of wins in the first n games is also valid. That is, if Tn is the total number
of wins in the first n games, then we believe that P(Tn ≥ k) is maximized, for all k, n, when π

is utilized. In Section 2 we prove this result when k = 1 and k = n. In Section 3 we show it is
also true when m = 2 and k = n − 1. Final remarks are given in Section 4.
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2. Maximizing the probabilities of at least one win, and of all wins

Let Ai be the event that arm i is a good arm, i = 1, . . . , n, and suppose that pi, i = 1, . . . , n,
are the initial probabilities for these events. (If u = α then

∑n
i=1pi = 1; if u = β then∑n

i=1(1 − pi) = 1.) Also, let Wj be the event that arm j is used first and results in a win, and
let Lj be the event that arm j is used first and results in a loss.

Lemma 2.1. It holds that

P(Ai | Wi) ≥ pi, P(Ai | Wj) ≤ pi, i �= j,

P(Ai | Li) ≤ pi, P(Ai | Lj ) ≥ pi, i �= j,

pi ≥ pr �⇒ P(Ai | Wj) ≥ P(Ar | Wj), r �= i �= j,

pi ≥ pr �⇒ P(Ai | Lj ) ≥ P(Ar | Lj ), r �= i �= j.

Proof. First suppose that u = α > β. Then

P(Ai | Wi) = αpi

αpi + β(1 − pi)
≥ pi,

P(Ai | Wj) = βpi

αpj + β(1 − pj )
≤ pi, i �= j,

P(Ai | Li) = (1 − α)pi

(1 − α)pi + (1 − β)(1 − pi)
≤ pi,

P(Ai | Lj ) = pi(1 − β)

(1 − α)pj + (1 − β)(1 − pj )
≥ pi, i �= j.

The preceding formulae also verify that if pi ≥ pr and r �= i �= j , then P(Ai | Wj) ≥
P(Ar | Wj) and P(Ai | Lj ) ≥ P(Ar | Lj ). The proof in the u = β > α case is similar. For
instance,

P(Ac
i | Wj) = (1 − pi)β

(1 − pj )α + pjβ
≥ 1 − pi. �

Proposition 2.1. The policy π , which at every stage chooses the arm with the largest posterior
probability of being a good arm, maximizes P(Tn ≥ j) when either j = 1 or j = n.

Proof. We prove that π maximizes P(Tn ≥ 1) by induction on n. As it is immediate for
n = 1, assume it when n games are played, and now assume n + 1 games are played. Suppose
that P(A1) = maxi P(Ai). We need to show that there is a policy that initially chooses arm 1
which maximizes P(Tn+1 ≥ 1).

Consider the best policy that starts with any other arm, say arm 2. If the initial result is a loss
then, as Lemma 2.1 shows, arm 1 has the largest posterior probability of being a good arm, and,
thus, the induction hypothesis implies that it is optimal to use arm 1 next. If the initial result
is a win then it makes no difference which arm is used next (since the goal has been reached).
Consequently, the best policy that starts with arm 2 will follow with arm 1. But we can match
its probability of at least one win by using a policy that first chooses 1 and then 2. Hence, there
is an optimal policy that starts with arm 1, which implies by the induction hypothesis that π is
optimal.

The proof that π also maximizes P(Tn ≥ n) is also by induction. As it is immediate for
n = 1, assume for n, and now suppose that n + 1 games are to be played and that we want
to maximize the probability of winning all n + 1. Again suppose that arm 1 has the largest
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probability of being a good arm. First note that if arm 1 is initially used, then if it results in
a win it will continue to be the arm with the largest posterior probability of being good, and
if it results in a loss then it makes no difference what choices are made next. Consequently,
we can conclude that the probability that policy π results in all successes is the probability of
all successes when arm 1 is used throughout. Let π1,1,...,1 be the policy that uses arm 1 for all
n + 1 games. Now consider any policy that starts with arm 2. There are two cases.

Case 1. When a win by arm 2 would result in the posterior probability that arm 2 is good
being greater than the posterior probability that arm 1 is good.

Case 2. Where a win with arm 2 would not make its posterior probability larger than the
one for arm 1.

If case 1 holds then, by the induction hypothesis, the best policy that starts with arm 2 would
have the same probability of obtaining all successes as the one that uses arm 2 throughout.
Now if arm i is to be used for all n + 1 trials then its probability of yielding all successes is
P(Ai)u

n+1 + (1 − P(Ai))v
n+1. Since P(A1) ≥ P(A2), it thus follows in case 1 that the best

policy that starts with arm 2 is not better than using arm 1 throughout.
If case 2 holds then since it makes no difference what follows arm 2 if it results in a loss, it

follows from the induction hypothesis that the best policy that starts with arm 2 will then use
arm 1 for the remaining n games. Call this policy π2,1,...,1. Now the probabilities of success
under policies π1,1,...,1 and π2,1,...,1 are the same when arms 1 and 2 are either both good or
both bad. That is,

Pπ2,1,...,1(Tn+1 = n + 1 | A1A2 ∪ Ac
1A

c
2) = Pπ1,1,...,1(Tn+1 = n + 1 | A1A2 ∪ Ac

1A
c
2).

Hence, with D ≡ Pπ1,1,...,1(Tn+1 = n + 1) − Pπ2,1,...,1(Tn+1 = n + 1), we have

D = (un+1 − vun)P(A1A
c
2) + (vn+1 − uvn)P(Ac

1A2)

≥ (un+1 − vun)P(Ac
1A2) + (vn+1 − uvn)P(Ac

1A2)

= (un − vn)(u − v)P(Ac
1A2)

≥ 0,

where the preceding equation used the fact that u > v and

P(A1A
c
2) = P(A1) − P(A1A2) ≥ P(A2) − P(A1A2) = P(Ac

1A2).

Hence, in both cases we have shown that the best policy starting with arm 2 is not better than
using arm 1 throughout. As arm 2 was arbitrary, the result follows. �

3. The case of two arms

Suppose that m = 2 and α > β. Thus, the arm with win probability α is the good arm. The
dynamic programming state of the system at any time is given by the triplet (i, n, p), where
p is the posterior probability that arm 1 is the good arm, a total of n games remain, and our
objective is to win at least i of these games. Let Vi,n(p) be the maximal probability of winning
at least i of the n games when p is the probability that arm 1 is the good arm. Note that, from
the proof of Proposition 2.1, it follows that

Vn,n(p) = pαn + (1 − p)βn = βn + p(αn − βn), p ≥ 1
2 .
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Lemma 3.1. It holds that Vi,n(p) is a convex function of p that is symmetric about p = 1
2 .

It is also a nondecreasing function of p for p ≥ 1
2 .

Proof. Fix i. It is immediate from its definition that Vi,n(p) is symmetric about p = 1
2 . Let

a deterministic policy be one whose initial choice is specified, and whose choice at any later
time depends on all earlier choices and the results of those choices. That is, a deterministic
policy is one whose decisions are not influenced by the initial value of p. Now, for a given initial
probability p, any policy whose decisions are a function of the current state can be implemented
by using a deterministic policy (with the appropriate deterministic policy depending on p).
Consequently, it follows that

Vi,n(p) = max
d∈D

Pd | p(Tn ≥ i), (3.1)

where D is the set of deterministic policies, and Pd | p(Tn ≥ i) is the probability, when arm 1 is
the good arm with probability p, that using policy d will result in at least i wins in the next n

games. Since

Pd | p(Tn ≥ i) = pPd | 1(Tn ≥ i) + (1 − p)Pd | 0(Tn ≥ i),

it follows that Pd | p(Tn ≥ i) is a linear and, thus, convex function of p, and the convexity of
Vi,n(p) follows from (3.1) since the maximum of convex functions is convex. That Vi,n(p) is
nondecreasing in p for p ≥ 1

2 follows from its convexity, and the fact that Vi,n(p) is symmetric
about 1

2 . �
Then Vi,n(p) satisfies the optimality equation

Vi,n(p) = max{H 1
i,n(p), H 2

i,n(p)},

where H
j
i,n(p) is the maximal probability of winning at least i of the following n games when p

is the probability that arm 1 is the good arm and arm j is initially played, j = 1, 2. In addition,
the policy that uses arm 1 in state (i, n, p) if H 1

i,n(p) ≥ H 2
i,n(p), and arm 2 otherwise, is an

optimal policy.

3.1. Maximizing the probability of winning at least n out of n + 1 games

With p equal to the probability that arm 1 is the α arm, let w2(p) = βp/(βp + α(1 − p))

be the conditional probability that arm 1 is the α arm given that a pull of arm 2 results in a win.

Proposition 3.1. The policy π , which at every stage chooses the arm with the largest posterior
probability of being a good arm, maximizes P(Tn+1 ≥ n).

Proof. We prove that π maximizes P(Tn+1 ≥ n) by induction on n. As it is immediate for
n = 0, assume that it maximizes P(Tn ≥ n − 1) and now consider the problem of maximizing
P(Tn+1 ≥ n). Suppose that p ≥ 1

2 . We will argue that there is an optimal policy that starts
with arm 1. Since Proposition 2.1 along with the induction hypothesis imply that whatever the
result of the first arm pulled, the optimal continuation is to use policy π , it follows that showing
that there is an optimal policy that starts with arm 1 proves the theorem.

Among all policies that start with arm 2, let π ′ be one that maximizes the probability of
reaching the goal of at least n successes in the n + 1 trials. We now argue that there is a policy
that starts with arm 1 and has at least as large a probability of resulting in at least n wins as
does π ′. To show this, suppose that we start by pulling arm 2. There are two cases, depending
on whether w2(p) is greater or less than 1

2 .
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When w2(p) ≥ 1
2 , it follows by Proposition 2.1 that arm 1 will be pulled next if there is a

loss and by the induction hypothesis that arm 1 will be pulled next if there is a win. Hence,
whether or not the first play results in a win or a loss, arm 1 will be used on the second pull.
But we can then match the probability of reaching the goal when π ′ is used by first using arm 1
and then arm 2. Thus, there is an optimal policy that starts with arm 1 in this case.

Now suppose that w2(p) < 1
2 . If the initial pull of arm 2 results in a loss, then by

Proposition 2.1 it is optimal to use arm 1 from then on. On the other hand, if arm 2 results in a
win, then by the induction hypothesis it is optimal to use arm 2 again, and, in fact, to continue
to use arm 2 until it results in a loss or n + 1 successes have been obtained. If a loss does
occur before n + 1 consecutive successes, it follows by Proposition 2.1 that it is optimal after
the loss to use from then on whichever arm has the higher probability of being the best. Since
w2(p) < p, it follows that the probability that arm 2 is the best arm is an increasing function
of the number of wins obtained before the first loss of arm 2. Using this, it follows that there
is a value k ≤ n, such that the best policy that starts with arm 2 uses arm 2 until a loss occurs,
and then either uses arm 1 from then on if the first loss occurs within the first k pulls or uses
arm 2 from then on if the loss occurs after there have been at least k wins. Letting P

k
2 be the

probability that this policy results in at least n successes in n + 1 trials, we have

P
k
2 = pBk + (1 − p)Ak,

where

Ak = αn+1 + (1 − α)

k∑
i=1

αi−1βn+1−i + (1 − α)(n + 1 − k)αn, (3.2)

Bk = βn+1 + (1 − β)

k∑
i=1

βi−1αn+1−i + (1 − β)(n + 1 − k)βn. (3.3)

But now consider the policy that starts with arm 1 and uses it until a loss, and then either uses
arm 2 from then on if the first loss occurs within the first k pulls or uses arm 1 from then on if
the loss occurs after there have been at least k wins. Letting P

k
1 be the probability this policy

results in at least n successes in n + 1 trials, we have

P
k
1 = pAk + (1 − p)Bk.

Since p ≥ 1 − p, it follows that P
k
1 ≥ P

k
2 is equivalent to Ak ≥ Bk . Thus, if we can show that

with Fk ≡ Ak − Bk ≥ 0, then it follows that there is an optimal policy that starts with arm 1,
which proves the theorem. To show that Fk ≥ 0, first note that

Ak+1 − Ak = (1 − α)αkβn−k − (1 − α)αn, Bk+1 − Bk = (1 − β)βkαn−k − (1 − β)βn.

Hence, for k < n,

Fk+1 − Fk = (1 − α)αkβn−k − (1 − α)αn − (1 − β)βkαn−k + (1 − β)βn

= (βn−k − αn−k)((1 − β)βk + (1 − α)αk)

≤ 0.

Thus, Fk+1 ≤ Fk , and because, as will be shown in the following lemma, Fn = 0 it follows
that Fk ≥ 0. �
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Lemma 3.2. With Ak and Bk as given by (3.2) and (3.3), An = Bn.

Proof. We need to show that An = Bn, where

An = αn + (1 − α)

n∑
i=1

αi−1βn+1−i , Bn = βn + (1 − β)

n∑
i=1

βi−1αn+1−i .

Let X1 and X2 be independent geometric random variables with respective parameters 1 − α

and 1 −β. Conditioning on X1 yields that P(X1 +X2 ≥ n+ 2) = An, and conditioning on X2
yields that P(X1 + X2 ≥ n + 2) = Bn. �

Thus, when p ≥ 1
2 , there is an optimal policy that uses arm 1 until its first loss. If that loss

occurs on pull k then the conditional probability that arm 1 is the α arm, call it P(1 | k), is

P(1 | k) = αk−1(1 − α)p

αk−1(1 − α)p + βk−1(1 − β)(1 − p)
.

Letting

k(p) =
{

0 if P(1 | 1) ≥ 1
2 ,

max
{
k : P(1 | k) < 1

2

}
otherwise,

it follows that if the first loss occurs before there have been k(p) wins, then after that loss it
is optimal to pull arm 2 from then on. (If a loss occurs when using arm 2 then, as it would
be the second loss, there is no need to change back to arm 1.) Thus, if k(p) = n then the
optimal policy would use arm 1 until its first loss and then switch to using arm 2 from then on.
However, by Lemma 3.2, one would obtain the same return by starting with arm 2 and using
it until its first loss and then switching to arm 1 from then on. Consequently, it need not be
uniquely optimal to use arm 1 when p > 1

2 . For example, if n = 1, α = 0.8, and β = 0.3, then
it is easy to check that k(p) = 1 for any p ∈ [ 1

2 , 7
9 ]. Since it is irrelevant which arm is used on

the second play when the first results in a win (since the goal has been reached), it is optimal to
use each arm once, showing that V1,2(p) is constant for p ∈ [ 1

2 , 7
9 ]. Thus, perhaps surprisingly,

we see that it need not be uniquely optimal to use arm 1 when p > 1
2 and Vn,n+1(p) need not

be a strictly increasing function of p when p > 1
2 .

4. Final remarks

As Feldman’s original paper was published in 1962, one might wonder why the issue raised
in this paper has never been considered before. We believe it is because of how the results of [1]
and [2] were proven. It is easy to see, say in the two arm case when α > β, that if Nn is equal
to the number of times in the first n plays that the α arm is used, then

E[Tn] = αE[Nn] + β(n − E[Nn]) = (α − β)E[Nn] + nβ.

Consequently, π maximizing E[Tn] is equivalent to its use maximizing E[Nn], and it is the latter
that was actually proven in [1] and [2]. Thus, in thinking about π being stochastically optimal,
our initial thought might be towards thinking about whether it stochastically maximizes Nn.
Since this is clearly not the case (for instance, if n = 2 then the probability of using the best
arm at least once in the two games is maximized by the strategy that plays each arm once), this
may be a reason why the stochastic optimality possibility has not been considered.
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We have been able to prove in the case of two bandits that the conjectured optimal policy
maximizes the probability of at least two wins in the first four trials when β = 1 − α.

A continuous-time version of our conjecture appeared in [3], where a proof, based on
Pontryagin’s maximum principle, was given in the case of two arms. The proof is, however,
very difficult to read and assess.
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