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Abstract. We describe a strategy which allows one to produce computer assisted proofs
of almost everywhere strong convergence of Jacobi–Perron type algorithms in arbitrary
dimension. Numerical work is carried out in dimension three to illustrate our method. To
the best of our knowledge this is the first result on almost everywhere strong convergence
in dimension greater than two.

1. Introduction
The construction of simultaneous rational approximations to an irrational vector is a
classical problem which has been studied for over a hundred years [5, 7, 15, 21, 22,
24, 25, 28]. By ‘rational approximation’ we mean a sequence of vectors of the form
(p1(n)/q(n), . . . , pd(n)/q(n)) which converge to a vector(ω1, . . . , ωd) ∈ Id = [0, 1]d .
This convergence can be understood in two different ways. The sequence converges in a
weak sense if

lim
n→∞

∥∥∥∥(p1(n)

q(n)
, . . . ,

pd(n)

q(n)

)
− (ω1, . . . , ωd)

∥∥∥∥ = 0. (1)

While (1) is a tempting definition of convergence, it is not what is really required for
applications. More useful is the following definition:

lim
n→∞ ‖q(n)(ω1, . . . , ωd) − (p1(n), . . . , pd(n))‖ = 0, (2)

which we call strong convergence. Dirichlet’s theorem [8] states that any(ω1, . . . , ωd) ∈
Id \ Qd has infinitely many approximations of the form(p1/q, . . . , pd/q) such that, for
1 ≤ j ≤ d, ∣∣∣∣ωj − pj

q

∣∣∣∣ ≤ 1

q1+1/d
.
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This obviously implies the existence of a strongly convergent sequence. Moreover,

‖q(ω1, . . . , ωd) − (p1, . . . , pd)‖ ≤ √
dq−1/d.

However, it is very difficult to find these approximations which are guaranteed to exist
by Dirichlet’s theorem. Thus it is important to have an algorithm which allows one to
construct strongly convergent approximations. By ‘algorithm’ we mean a procedure which
allows one to calculateε-close strong approximations, i.e. approximations which satisfy

‖q(ω1, . . . , ωd) − (p1, . . . , pd)‖ < ε,

using not more thanc|logε| binary operations. Such an algorithm is certainly known
in dimension one, namely the famous continued fraction algorithm which has many nice
properties. Different generalizations of continued fractions to the multi-dimensional case
have been known for more than a hundred years. These include the Jacobi–Perron
algorithm (JPA) and other connected algorithms (see [7, 15, 22, 23, 24]). However,
the properties of these generalizations are much worse than the properties of continued
fractions. For example, continued fractions give strongly convergent approximations for
everyω ∈ [0, 1] \ Q but no known multi-dimensional algorithms (see [1, 2, 3, 7]) have
this property. This means that there always exist ‘bad’ irrational vectors for which there is
no strong convergence [6, 18]. Thus the most one can hope to prove is almost everywhere
strong convergence, i.e. that strong convergence holds for points in a subset ofId of full
Lebesgue measure.

Numerical studies indicate (see [3, 17]) that the Jacobi–Perron algorithm and many
other algorithms have the property of almost everywhere strong convergence in any
dimension. The only rigorous results concerning strong convergence are for two-
dimensional algorithms. Almost everywhere strong convergence for the two-dimensional
JPA follows from an old paper of Paley and Ursell [21]. This fact was pointed out by
Khanin [16] (see also Schweiger [29]). A computer assisted proof of almost everywhere
strong convergence for a two-dimensional modification of the JPA was independently
provided by Fujita, Ito, Keane and Ohtsuki [11, 14]. Their approach can also be carried
out in dimension greater than two, and this is closely related to our approach. In this paper
we consider the same modification but in higher dimensions. We call this modification the
ordered Jacobi–Perron algorithm (OJPA). For the two-dimensional OJPA, as for the two-
dimensional JPA, one can prove almost everywhere strong convergence without using a
computer (see Meester [20]). However, at present there are no theoretical results on strong
convergence in dimension greater than two. In fact there is a principle difference between
two dimensions and higher dimensions. In dimension two one can effectively describe
the set of bad vectors, i.e. the vectors for which strong convergence does not hold. For
example, in the case of the JPA these are vectors for which the integer entries produced by
the algorithm grow very fast. At the same time it is known that for high enough dimension
(d ≥ 5) even noble vectors (i.e. vectors which are fixed points of the algorithm) may be
bad. The difference between two dimensions and higher dimensions can also be described
on a more technical level. It turns out that in the cased ≥ 3 strong convergence is due
to the cancellation of positive and negative terms in certain matrix products. The absolute
values of both positive and negative contributions grow exponentially, but their difference
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is exponentially small, while in dimension two both positive and negative contributions are
exponentially small (see [12]).

The main purpose of this paper is to present a scheme which in principle allows one to
give a rigorous proof of almost everywhere strong convergence for any Jacobi–Perron type
algorithm. We will illustrate our strategy by discussing the OJPA which will be described
in the next section. In our opinion, this version of the JPA is the best generalization
of continued fractions. It shares many properties with the one-dimensional case which
makes the study of it easier than the study of other generalizations. For example, it has an
extremely nice natural extension (see [13]). Our scheme consists of two parts. The first
part is the reduction of the original problem to the calculation of certain concrete integrals
which give estimates for the Lyapunov exponents. The second part involves carrying out
a finite number of calculations numerically. In this sense the proof of the final result is
computer assisted. In the present paper we deal with the first part of the scheme, namely
the reduction part. The rigorous estimation of the Lyapunov exponents is carried out in a
forthcoming paper [12].

Our aim here was to explain a simple approach which leads to a proof. The method is
simple mathematically but not from the point of view of numerical studies. It is actually
possible to use a more advanced scheme for a computer assisted proof but this will be
explained in a forthcoming publication [12].

2. The ordered Jacobi–Perron algorithm
The ordered Jacobi–Perron algorithm (OJPA) was first introduced by Podsypanin [23] in
two dimensions. It was then considered by Schweiger in arbitrary dimension [26]. We will
define a slight variation of this which is, however, equivalent to Schweiger’s version. In the
papers by Podsypanin, Schweiger and others [11, 14, 20, 23, 26] this algorithm was called
the modified JPA. However, we think that the name ordered JPA describes its nature more
accurately.

Consider thed-dimensional simplex

1d = {ω = (ω1, . . . , ωd) ∈ Id : 1 ≥ ω1 ≥ ω2 ≥ · · · ≥ ωd ≥ 0}.
Define a transformationT : 1d → 1d by the following two steps. Firstly, givenω =
(ω1, . . . , ωd) ∈ 1d form the numbersω2/ω1, . . . , ωd/ω1 and{1/ω1} = 1/ω1 − [1/ω1]
(where {x} and [x] denote the fractional and integer parts ofx respectively, so that
{x} = x − [x]). Secondly, put{1/ω1} in the position in the sequenceω2/ω1, . . . , ωd/ω1

prescribed by the ordering in the simplex. More precisely,

T (ω1, . . . , ωd ) =



({
1

ω1

}
,
ω2

ω1
, . . . ,

ωd

ω1

)
if

{
1

ω1

}
>

ω2

ω1
;(

ω2

ω1
, . . . ,

ωj

ω1
,

{
1

ω1

}
,
ωj+1

ω1
, . . . ,

ωd

ω1

)
if

ωj

ω1
>

{
1

ω1

}
>

ωj+1

ω1
;(

ω2

ω1
, . . . ,

ωd

ω1
,

{
1

ω1

})
if

ωd

ω1
>

{
1

ω1

}
.

(3)
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Definition 1. The transformationT is called theordered Jacobi–Perron transformationin
dimensiond.

It can be shown thatT is a locally expanding mapping and consequently has nice
ergodic properties. Specifically,T , like all other transformations producing Jacobi–Perron
type algorithms, has a unique absolutely continuous invariant probability measure which
is ergodic [26]. One of the main advantages of the ordered Jacobi–Perron algorithm is that
an explicit expression for the density of the invariant measure is known. Indeed, one can
check that the probability measure

µ(dω) = 1

K
ρ(ω) dω (4)

ρ(ω) =
∑
π∈Sd

1

1 + ωπ(1)

1

1 + ωπ(1) + ωπ(2)

· · · 1

1 + ωπ(1) + ωπ(2) + · · · + ωπ(d)

is invariant underT . Here Sd is the group of permutations ofd symbols andK =∫
1d ρ(ω) dω. The fact that we have control over the invariant density is very important

for our method.

We now explain howT can be used to construct rational approximations. Note that the
main reason it can be used for this purpose is that it is expanding and all branches ofT −1

preserve the set of rational vectors(p1/q, . . . , pd/q).

First define a mapm : 1d → N by m(ω) = [1/ω1]. Also, letj (ω) = i where theith
coordinate ofT (ω) is {1/ω1}.

Consider the trajectory of a pointω1 underT , i.e.

ω1
T7→ ω2

T7→ · · · T7→ ωn
T7→ · · · . (5)

If the sequence(m1, j1), . . . , (mn, jn) is known, where

mi = m(T i−1ω1), ji = j (T i−1ω1),

then for 1 ≤ i ≤ n it is possible to find the pointωi for which T (ωi ) = ωi+1. Let
S(mi ,ji ) denote the inverse ofT on the branch specified by(mi, ji). Take the vector
(0/1, . . . , 0/1) as an approximation toωn+1, and consider the image of this vector under
S(m1,j1) ◦ S(m2,j2) ◦ · · · ◦ S(mn,jn). Then we obtain a vector(p1(n)/q(n), . . . , pd(n)/q(n))

which is thenth approximation toω1.

This procedure leads to the following formal description. For eachm ∈ N, j =
1, . . . , d, let us define a matrix̃A(m,j) ∈ GL(d + 1, Z). The first row ofÃ(m,j) has
only two non-zero entries:

a1,1 = m, a1,j+1 = 1.

All other rows have only one non-zero entry, which is equal to 1. In fact,ai,i−1 = 1 for

https://doi.org/10.1017/S014338570000095X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000095X


Multi-dimensional continued fraction algorithms 1715

i = 2, . . . , j + 1 andai,i = 1 for i = j + 2, . . . , d + 1. In short,

Ã(m,j) =



m 0 . . . 0 1 0 . . . 0 0
1 0 . . . 0 0 0 . . . 0 0
0 1 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

...

0 0 . . . 1 0 0 . . . 0 0
0 0 . . . 0 0 1 . . . 0 0
...

...
...

...
...

. . .
...

...

0 0 . . . 0 0 0 . . . 1 0
0 0 . . . 0 0 0 . . . 0 1


. (6)

Now defineA(m,j) = (Ã(m,j))
t whereAt denotes the transpose ofA. Define

Cn = A(mn,jn) · · · A(m2,j2)A(m1,j1), (7)

wheremi = m(T i−1ω1), ji = j (T i−1ω1). Then the first row ofCn gives the numerators
and the denominator of the approximation of thenth step described above. More precisely,
if the first row ofCn is (c

(n)
1,1, . . . , c

(n)
1,d , c

(n)
1,d+1) then(

p1(n)

q(n)
, . . . ,

pd(n)

q(n)

)
=
(

c
(n)
1,2

c
(n)
1,1

, . . . ,
c
(n)
1,d+1

c
(n)
1,1

)
.

The other rows ofCn correspond to approximations which were obtained previously, i.e.
approximations(p1(n

′)/q(n′), . . . , pd(n′)/q(n′)) wheren′ < n. Thed + 1 rows ofCn

gived + 1 points in1d which form a simplex1(n) which containsω1. In some sense the
whole simplex1(n) is the rational approximation toω1.

We introduce a matrix valued functionA : 1d → GL(d + 1, Z) defined byA(ω) =
A(m(ω),j (ω)). Then

Cn = A(T n−1ω1) · · · A(T ω1)A(ω1).

Since the approximations are constructed through the product of matrices along the
trajectory of an ergodic dynamical system, it is clear that the typical quality of
approximations will depend crucially on the corresponding Lyapunov exponents. This
will be explained in more detail in §3.

We finish this section with two definitions which are used in the rest of the paper. For
x = (x1, . . . , xd) ∈ Rd we set‖x‖ = ∑d

j=1 |xj |.
Definition 2. A sequence of rational vectorsxn = (p1(n)/q(n), . . . , pd(n)/q(n)) is said
to beconvergent toω in the weak senseif

‖ω − xn‖ → 0 asn → ∞. (8)

The sequence isexponentially convergent toω in the weak senseif there exist constants
K > 0, α > 0 such that

‖ω − xn‖ ≤ Kq(n)−α. (9)
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Definition 3. A sequence of rational vectorsxn = (p1(n)/q(n), . . . , pd(n)/q(n)) is said
to bestrongly convergent toω if

‖q(n)ω − (p1(n), . . . , pd(n))‖ → 0 asn → ∞. (10)

The sequence isexponentially strongly convergent toω if there exist constantsK > 0,
α > 0 such that

‖q(n)ω − (p1(n), . . . , pd(n))‖ ≤ Kq(n)−α. (11)

As we will see later, the denominatorsq(n) grow exponentially withn for almost allω,
and this explains the word exponential in the above definitions.

In §4 we prove that for almost allω ∈ 1d the OJPA provides approximations which are
exponentially convergent toω in the weak sense. The geometrical meaning of convergence
in the weak sense and in the strong sense is the following. Weak convergence means
that (q(n), p1(n), . . . , pd(n)) converges to(1, ω1, . . . , ωd) in the directional sense, i.e.
the angle between the two vectors converges to 0 asn → ∞. Strong convergence means
that the vector(q(n), p1(n), . . . , pd(n)) itself converges to the ray

0ω = {λ(1, ω1, . . . , ωd) : λ > 0}
defined by the vector(1, ω1, . . . , ωd) (see [6, 18]).

3. Lyapunov exponents and strong convergence
In this section we prove a general theorem which is similar to Theorem 4.1 of [18].
However, our aim is to establish conditions for exponential strong convergence while
Lagarias [18] studies exponents which characterize the quality of the approximations. We
will comment on the connections with Lagarias’ theorem in more detail in the conclusions.

The result which we prove in this section is quite general. It applies not just to the
OJPA, but to general approximation schemes based on the product of matricesA(ω) ∈
GL(d +1, Z) along the trajectory of a transformationT of � ⊂ [0, 1]d . As in the previous
section, we writeCn(ω) = A(T n−1ω) · · ·A(T ω)A(ω) and set

x
(n)
j =

c
(n)
j,2

c
(n)
j,1

, . . . ,
c
(n)
j,d+1

c
(n)
j,1

 .

We considerx(n)
1 as thenth approximation toω and sometimes denote it by

xn =
(

p1(n)

q(n)
, . . . ,

pd(n)

q(n)

)
,

whereq(n) = c
(n)
1,1 andpi(n) = c

(n)
1,i+1.

We will suppose thatT and the matrix valued functionA(ω) satisfy the following
conditions:
(P1) T is ergodic with respect to an invariant probability measureµ(dω);
(P2) µ is equivalent to Lebesgue measure;
(P3) the matricesA(ω) are non-degenerate and have non-negative entries forµ-almost

all ω;
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(P4)
∫
� log(max(‖A(ω)‖, 1))µ(dω) < ∞;

(P5) for µ-almost allω ∈ �, a11(ω) > 0 and for all 2 ≤ i ≤ d + 1 there exists
1 ≤ k ≤ d + 1 such that

aij (ω) =
{

0 if j 6= k;

1 if j = k;

(P6) there exists a matrixM ∈ GL(d + 1, Z) with strictly positive elements such that

`(ω ∈ � : ∃k > 0 such thatCk(ω) = M) > 0, (12)

where` denotes Lebesgue measure on�;
(P7) there exists a constantc0 > 1 such that for almost allω there existsn0(ω) such that

for all n ≥ n0(ω),

max
1≤j≤d+1

‖ω − x
(n)
j ‖ ≤ c−n

0 . (13)

Condition (P5) is technical and it holds for most algorithms which are considered in this
area. It implies that the denominatorq(n) = c

(n)
1,1 of xn is the largest element of the first

column ofCn. As we will see, (P5) and (P6) imply that for almost allω and large enough
n, all rows ofCn correspond to some approximationxm = x

(m)
1 , wherem < n.

Denote
�M,k = {ω ∈ � : Ck(ω) = M}.

Define nM,k(ω) to be the number of visits to the set�M,k by the trajectoryT i(ω),
0 ≤ i ≤ n − 1, i.e.

nM,k(ω) =
n−1∑
i=0

χM,k(T
iω), (14)

whereχM,k(ω) is the indicator function of the set�M,k:

χM,k(ω) =
{

1 if ω ∈ �M,k;

0 if ω /∈ �M,k.

LEMMA 1. Suppose (P1), (P2) and (P6) hold. Then there isk > 0 such that for almost all
ω ∈ �,

lim
n→∞

nM,k(ω)

n
= µ(�M,k) > 0. (15)

Proof. It follows from (12) that there existsk > 0 such that̀ (�M,k) > 0. Hence, by (P2),
µ(�M,k) > 0. By Birkhoff’s ergodic theorem, for almost allω ∈ �,

lim
n→∞

nM,k(ω)

n
= µ(�M,k) > 0. 2

Denote

k(ω) = min{k : A(T k−1ω) · · · A(T ω)A(ω) is strictly positive}
and setk(ω) = +∞ if no suchk exists.
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COROLLARY 1. If (P1)–(P3) and (P6) hold thenk(ω) is finite for almost allω.

Proof. Notice that ifT iω ∈ �M,k then all entries of the matrix

Ck+i (ω) = Ck(T
iω)Ci(ω)

are positive. 2

If (P1) and (P4) hold then one can define Lyapunov exponentsλ1 ≥ λ2 ≥ · · · ≥ λd+1

in the usual way (see [30]). The following theorem is connected to Theorem 4.1 of [18].

THEOREM 1. Suppose (P1)–(P7) hold. Then:
(i) the largest Lyapunov exponentλ1 is greater than0 and is simple, i.e. it has

multiplicity 1;
(ii) for almost allω ∈ �,

lim
n→∞

1

n
logq(n) = λ1;

(iii) for Lebesgue almost allω the sequence of approximationsxn is exponentially
strongly convergent toω if and only ifλ2 < 0.

Proof. The proof of (i) is the same as in the proof of Theorem 4.1 of [18]. It also follows
from this proof that for almost allω the vectore1 = (1, 0, . . . , 0) ∈ Rd+1 does not belong
to the spaceE2(ω) corresponding to the Lyapunov exponentsλ2 ≥ λ3 ≥ · · · ≥ λd+1.
Since the first column ofCn is given by

c
(n)
1,1

c
(n)
2,1
...

c
(n)
d+1,1

 = Cne1

we get ∥∥∥∥∥∥∥∥∥∥


c
(n)
1,1

c
(n)
2,1
...

c
(n)
d+1,1


∥∥∥∥∥∥∥∥∥∥

= exp(λ1n(1 + o(1))). (16)

As was mentioned above, property (P5) implies thatq(n) = c
(n)
1,1 is the largest element of

the first column. Hence, for Lebesgue almost allω,

q(n) = exp(λ1n(1 + o(1))). (17)

Statement (ii) follows immediately from (17). The following formula was also proved in
[18]:

d+1∑
i=1

d∑
j=1

|c(n)
i,1 ωj − c

(n)
i,j+1| = exp((λ2 + o(1))n). (18)
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It follows from (18) that for alli,

d∑
j=1

|c(n)
i,1 ωj − c

(n)
i,j+1| ≤ exp((λ2 + o(1))n). (19)

This, together with (17), immediately implies

‖q(n)ω − (p1(n), . . . , pd(n))‖ ≤ q(n)(λ2+o(1))/λ1(1+o(1)) = q(n)(λ2+o(1))/λ1. (20)

This implies statement (iii) in the caseλ2 < 0. Moreover, the constantα in Definition 3
can be taken as−λ2/λ1 − ε for anyε > 0.

Finally, if λ2 ≥ 0 then from (18), for at least onei,

d∑
j=1

|c(n)
i,1ωj − c

(n)
i,j+1| = exp((λ2 + o(1))n). (21)

Conditions (P5) and (P6) imply that forn large enough every row ofCn corresponds to
some approximationxm(n), m(n) ≤ n. Corollary 1 implies thatm(n) → ∞ asn → ∞.
Moreover, one can show that with probability 1 forn large enoughm(n) ≥ βn, 1 > β > 0.
Indeed, it follows from Lemma 1 that

nM,k ≥ 3
4µ(�M,k)n

for n large enough. Denote

in,M,k = max{i : 0 ≤ i ≤ n − k, T iω ∈ �M,k}.
It is easy to see thatm(n) > in,M,k. Notice thatin,M,k ≥ nM,k − k. Hence forn large
enough

m(n) > nM,k − k > βn,

whereβ = µ(�M,k)/2. It follows from (21) that

‖q(m(n))(xm(n) − ω)‖ = exp((λ2 + o(1))n).

Sinceq(m(n)) = exp(λ1(1 + o(1))m(n)) one has

‖q(m(n))(xm(n) − ω)‖ = q(m(n))(λ2+o(1))n/λ1(1+o(1))m(n). (22)

It follows from (22) that with probability 1 there is no exponential strong convergence.
Indeed, ifλ2 > 0 then the exponent

δ = (λ2 + o(1))n

λ1(1 + o(1))m(n)

is also positive forn large enough. Ifλ2 = 0 thenδ = o(1) since 1≤ n/m(n) ≤ 1/β for
n large enough. 2

We finish this section by checking that conditions (P1)–(P7) are satisfied for the OJPA.
(P1) follows from [26] (see also [19]). (P2) follows immediately from the formula (4) for
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the invariant measureµ. (P3) is obvious since|detA(ω)| = 1. In order to check (P4)
notice that‖A(ω)‖ = [1/ω1] + 1, where

‖A‖ = max
1≤j≤d+1

d+1∑
i=1

|aij |.

Using the explicit formula forµ we can easily check that∫
1d

log

(
1

ω1

)
µ(dω) < ∞.

(P5) is obvious. Property (P6) is considered in the following lemma.

LEMMA 2. Property (P6) holds for the JPA and the OJPA.

Proof. Consider the ‘golden’ vectorωG which is defined by the propertiesT (ωG) = ωG,
m(ωG) = 1 andj (ωG) = d. It is easy to show thatωG = (ω, ω2, . . . , ωd), where
0 < ω < 1 is the only positive root of the equationωd+1 + ω − 1 = 0. Notice that in a
neighbourhoodofωG the transformations corresponding to the JPA and the OJPA coincide.
Using the fact thatCn(ωG) = (A(1,d))

n, one can check that all the elements ofC2d (ωG)

are positive. TakeM = C2d(ωG). Since for allω in a small enough open neighbourhood
of ωG, C2d (ω) = C2d (ωG) = M, we have

`(ω ∈ � : C2d(ω) = M) > 0. 2

In the next section we will prove that property (P7) holds for the OJPA.

4. Exponential convergence in the weak sense
Sinceq(n) grows exponentially, property (P7) is equivalent to the exponential convergence
in the weak sense ofx(n)

j , 1 ≤ j ≤ d + 1, to the vectorω. We will show in this section
that convergence in the weak sense is a Perron–Frobenius-type property which basically
follows from the positivity of the matrices

Cn(ω) = A(T n−1ω) · · ·A(T ω)A(ω)

for largen. However, there is a small problem connected to the fact that the matricesA(ω)

are only non-negative. This difficulty can be overcome by the use of condition (P6).
Considern large enough so that the first column ofCn(ω) is positive, i.e.

min
1≤j≤d+1

c
(n)
j,1 > 0.

Then the approximations

x
(n)
i = 1

c
(n)
i,1

(c
(n)
i,2 , c

(n)
i,3 , . . . , c

(n)
i,d+1), 1 ≤ i ≤ d + 1,

are defined. The pointsx(n)
i ∈ Id , 1 ≤ i ≤ d + 1, are the vertices of the simplex

1n =
{
y ∈ Rd : y =

d+1∑
i=1

αix
(n)
i , αi ≥ 0,

d+1∑
i=1

αi = 1

}
. (23)

Denote
diam1n = max

1≤i,j≤d+1
‖x(n)

i − x
(n)
j ‖.
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THEOREM 2. Suppose that (P1)–(P6) hold. Then there exists a constant0 < γ < 1 such
that, for almost allω,

diam1n ≤ γ n (24)

for all n large enough.

Proof. The simplex1n is formed by the rows of the matrix

Cn(ω) = A(T n−1ω) · · · A(T ω)A(ω). (25)

We writeAi = A(T iω), 0 ≤ i ≤ n− 1. It follows from Lemma 1 that for almost allω and
for n large enoughnM,k(ω) > βn, whereβ = µ(�M,k)/2. Define

In = {i : 0 ≤ i ≤ n − 1, T i(ω) ∈ �M,k}.
Then forn large enough, the setIn contains at leastβn elements. Denotet1 = min{i : i ∈
In} andtl+1 = min{i : i ∈ In, i ≥ tl + k} for l ≥ 1. Suppose there aren′ + 1 elements
in the sequence{tl}, n′ ≥ [βn/k] − 1. For eachtl , except for the last one, we replace the
matricesAtl+k−1, . . . , Atl in the product (25) by the single matrixM. Then

Cn = Bm−1 · · · B0, m = n − n′(k − 1), (26)

where eachBs , 0 ≤ s ≤ m − 1, is equal either to some matrixAj , 0 ≤ j ≤ n − 1, or to
M. Clearly, there aren′ matricesM in the product (26). Denote the matrix elements ofBs

by bs(i, j), 1 ≤ i, j ≤ d + 1. For each 0≤ s ≤ m consider the indexj as a spin variable
js taking values 1, 2, . . . , d + 1. Define a probability distribution

P(jm, jm−1, . . . , j0) = 1

Z

m−1∏
s=0

bs(js+1, js), (27)

where

Z =
∑

1≤j0,j1,...,jm≤d+1

m−1∏
s=0

bs(js+1, js). (28)

Denote byPt (jt , . . . , j0|jm = j) the conditional distribution for the firstt + 1 spins under
the conditionjm = j . It is easy to see that up to normalization thej th row of Cn(ω) is
equal toP0( · |jm = j):

P0(j0|jm = j) = c
(n)
j,j0∑d+1

i=1 c
(n)
j,i

, 1 ≤ j0 ≤ d + 1. (29)

Denote by 0 < dt(j, j
′) < 1 the variational distance betweenPt ( · |jm = j) and

Pt( · |jm = j ′):

dt (j, j
′) = 1

2

∑
1≤jt ,...,j0≤d+1

|Pt (jt , . . . , j0|j) − Pt (jt , . . . , j0|j ′)|. (30)

Statements (31) and (32) below are well known (see [9]). For fixed j, j ′ the sequence
dt (j, j

′) satisfies

dt−1(j, j
′) ≤ dt(j, j

′), 1 ≤ t ≤ m − 1. (31)

https://doi.org/10.1017/S014338570000095X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000095X


1722 D. M. Hardcastle and K. Khanin

Suppose now thatBt = M. Then there exists a constant 0< δ < 1 such that

dt (j, j
′) ≤ δdt+1(j, j

′). (32)

It follows from (31) and (32) that

d0(j, j
′) ≤ δn′ ≤ δ(βn/k)−2 = 1

δ2δn
1, (33)

whereδ1 = δβ/k. The vertices of1n correspond to the vectors

x
(n)
j = 1

c
(n)
j,1

(c
(n)
j,2, . . . , c

(n)
j,d+1), 1 ≤ j ≤ d + 1. (34)

Consider the(d + 1)-dimensional vectors

y
(n)
j = (1, x

(n)
j ), z

(n)
j = c

(n)
j,1∑d+1

i=1 c
(n)
j,i

y
(n)
j . (35)

It is easy to see that

z
(n)
j = (P0(1|j), P0(2|j), . . . , P0(d + 1|j)). (36)

Hence

‖z(n)
j − z

(n)

j ′ ‖ = 2d0(j, j
′) ≤ 2

δ2δn
1, 1 ≤ j, j ′ ≤ d + 1. (37)

Denotec(n)
j = ∑d+1

i=1 c
(n)
j,i . Sincey

(n)
j = (c

(n)
j /c

(n)
j,1)z

(n)
j we have

‖y(n)
j − y

(n)

j ′ ‖ =
∥∥∥∥∥∥c

(n)
j

c
(n)
j,1

z
(n)
j − c

(n)

j ′

c
(n)

j ′,1
z
(n)

j ′

∥∥∥∥∥∥
≤ c

(n)
j

c
(n)
j,1

‖z(n)
j − z

(n)

j ′ ‖ +
∣∣∣∣∣∣c

(n)
j

c
(n)
j,1

− c
(n)

j ′

c
(n)

j ′,1

∣∣∣∣∣∣
= c

(n)
j

c
(n)
j,1

‖z(n)
j − z

(n)

j ′ ‖ +
∣∣∣∣∣∣
c
(n)

j ′,1

c
(n)

j ′
− c

(n)
j,1

c
(n)
j

∣∣∣∣∣∣ c
(n)
j

c
(n)
j,1

c
(n)

j ′

c
(n)

j ′,1

≤ c
(n)
j

c
(n)
j,1

 c
(n)

j ′

c
(n)

j ′,1
+ 1

 ‖z(n)
j − z

(n)

j ′ ‖. (38)

In the last inequality we have used the following trivial fact:∣∣∣∣∣∣c
(n)
j,1

c
(n)
j

− c
(n)

j ′,1

c
(n)

j ′

∣∣∣∣∣∣ ≤ ‖z(n)
j − z

(n)

j ′ ‖.

It follows from (P5) thatc(n)
1,1 = exp(λ1n(1 + o(1))). Sincec

(n)
1 > c

(n)
1,1 and c

(n)
1 ≤

exp(λ1n(1 + o(1))) we conclude thatc(n)
1 = exp(λ1n(1 + o(1))). Hence

0 <
c
(n)
1,1

c
(n)
1

= eno(1) < 1.
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Since ∣∣∣∣∣∣c
(n)
1,1

c
(n)
1

− c
(n)
j,1

c
(n)
j

∣∣∣∣∣∣ ≤ ‖z(n)
1 − z

(n)
j ‖ ≤ 2

δ2
δn

1, (39)

we have

0 <
c
(n)
j,1

c
(n)
j

= eno(1) < 1, 1 ≤ j ≤ d + 1. (40)

Using (37), (38) and (40) one has

‖x(n)
j − x

(n)

j ′ ‖ = ‖y(n)
j − y

(n)

j ′ ‖ ≤ eno(1)e(logδ1)n = en(logδ1+o(1)). (41)

This implies (24) for allδ1 < γ < 1. 2

The estimate (24) implies (P7) ifω ∈ 1n for all n large enough. As it is proved
below, this property holds for all Jacobi–Perron-type algorithms. In order to prove it in the
general setting one has to impose additional conditions on the transformationT and the
matrix valued functionA(ω) which will guarantee thatω ∈ 1n when1n is defined.

We make the following assumptions about the transformationT (see [27]). Suppose

T (ω) =
(

L1(ω) + b1

L0(ω) + b0
, . . . ,

Ld(ω) + bd

L0(ω) + b0

)
, (42)

whereb0, b1, . . . , bd are piecewise constant functions on� andL0, L1, . . . , Ld are linear
forms on� with piecewise constant coefficients, i.e.

Li(ω) = Li(ω1, . . . , ωd) =
d∑

j=1

lij ωj , 0 ≤ i ≤ d,

wherelij are piecewise constant functions. DenoteT (ω) = (ω′
1, . . . , ω

′
d ). Clearly, (42)

can be written in the form

(L0(ω) + b0)


1
ω′

1
...

ω′
d

 = D(ω)


1
ω1
...

ωd

 , (43)

whereD(ω) = (dij ) is the piecewise constant matrix valued function on� given by

dij =
{

bi−1 if j = 1,

li−1,j−1 if j 6= 1,
1 ≤ i, j ≤ d + 1.

The matricesA(ω) have to be connected withD(ω) in order to produce good rational
approximations. We will formulate this connection as condition (P8):
(P8) T satisfies (42) andA(ω) = (D−1(ω))t.
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This condition is clearly satisfied for the JPA and the OJPA, since the construction ofA

is based on the procedure explained above. In both casesL0(ω) = ω1 andb0 = 0. Notice
that (P5), (P8) implyL0(ω) + b0 > 0.

Let 6n denote the closed cone inRd+1 generated by the rows ofCn(ω):

6n =
{
(z1, . . . , zd+1) ∈ Rd+1 : (z1, . . . , zd+1) =

d+1∑
j=1

αj (c
(n)
j,1, . . . , c

(n)
j,d+1), αj ≥ 0

}
.

(44)

Denotẽω = (1,ω) = (1, ω1, . . . , ωd) ∈ Rd+1.

LEMMA 3. Suppose that (P5) and (P8) hold. Then, for almost allω ∈ �, ω̃ ∈ 6n for all
n ≥ 1.

Proof. Denoteω(i) = T i(ω) andω̃(i) = (1,ω(i)) for i ≥ 0. It follows from (43) that for
i ≥ 1,

ω̃(i)A(ω(i−1)) = 1

L0(ω(i−1)) + b0
ω̃(i−1).

Hence

ω̃(n)A(ω(n−1)) · · ·A(ω(0)) =
n−1∏
i=0

(
1

L0(ω(i)) + b0

)
ω̃(0). (45)

Denoteα(n)(ω) = ∏n−1
k=0(L0(ω

(k)) + b0). Then (45) can be rewritten as

α(n)(ω)ω̃(n)Cn(ω) = ω̃(0). (46)

It follows from (46) that

ω̃ = ω̃(0) =
d+1∑
j=1

α(n)(ω)ω̃
(n)
j (c

(n)
j,1, . . . , c

(n)
j,d+1), (47)

whereω̃
(n)
j are the components of the vectorω̃(n), i.e. ω̃(n) = (ω̃

(n)
1 , . . . , ω̃

(n)
d+1). Since

ω̃
(n)
j ≥ 0, 1≤ j ≤ d + 1, andα(n)(ω) > 0, (47) implies the lemma. 2

The following corollaries are immediate consequences of Lemma 3.

COROLLARY 2. Suppose that (P5) and (P8) hold. If1n is defined, i.e.min1≤j≤d+1 c
(n)
j,1

> 0, thenω ∈ 1n.

Proof. Consider the rays0j = {(z1, . . . , zd+1) = λ(c
(n)
j,1, . . . , c

(n)
j,d+1) : λ > 0}, 1 ≤ j

≤ d + 1. Notice that the verticesx(n)
j of 1n correspond to the points of intersection of0j

with the hyperplanez1 = 1. Sincẽω = (1,ω) belongs to6n it follows thatω ∈ 1n. 2

COROLLARY 3. (P1)–(P6) and (P8) imply (P7).

Proof. Sinceω ∈ 1n, we have for almost allω

max
1≤j≤d+1

‖ω − x
(n)
j ‖ ≤ diam1n ≤ γ n, 0 < γ < 1. 2
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COROLLARY 4. (P7) holds for the OJPA.

Remark.It follows from property (P7) that, for almost allω, the sequence of
approximationsxn exponentially converges toω in the weak sense. Indeed, since
‖ω−xn‖ ≤ γ n andq(n) = exp(λ1n(1+o(1))), we have‖ω−xn‖ ≤ q(n)(logγ )/λ1(1+o(1)),
which implies exponential convergence in the weak sense.

5. Analysis of Lyapunov exponents
It follows from Theorem 1 that in order to have exponential strong convergence almost
everywhere one has to show thatλ2 < 0.

It is well known that the calculation of Lyapunov exponents is a hard problem. There are
no general formula to calculate them. However, there are several general methods which
give rigorous estimates of Lyapunov exponents.

We start with a method which is based on the extension of the matricesA to their action
ons-forms. It is well known (see [4, 10]) that the largest Lyapunov exponent corresponding
to such an extension is equal toλ1 + · · ·+λs , whereλ1, . . . , λs are thes largest Lyapunov
exponents for(T ,A(ω)). Below we will formulate this more precisely for the cases = 2.

Consider the linear transformation inRd+1 generated byA(ω), i.e.

x 7→ A(ω)x.

Recall that a 2-form onRd+1 is a bilinear skew-symmetric function on a pair of vectors,
α(x, y). Denote byF the ((d + 1)d/2)-dimensional linear space of 2-forms onRd+1.
Consider the natural basis inF , ei,j = xi ∧ xj for 1 ≤ i < j ≤ d + 1. We can define a
linear transformation inF generated byA(ω), namely

Â(ω)α(x, y) = α(A(ω)x, A(ω)y).

We writeÂi(ω) = Â(T i−1ω) andAi(ω) = A(T i−1ω). Define

Ĉn(ω) = Â1(ω) ◦ · · · ◦ Ân(ω).

Clearly,
Ĉn(ω)α(x, y) = α(An(ω) · · ·A1(ω)x, An(ω) · · · A1(ω)y).

Obviously the operator̂Cn(ω) has the property

Ĉn+m(ω) = Ĉn(ω) ◦ Ĉm(T nω). (48)

Take an arbitrary norm inF . This norm generates a norm inL(F,F). Denote

fn(ω) = log‖Ĉn(ω)‖.
Property (48) implies thatfn(ω) is a subadditive function, i.e.

fn+m(ω) ≤ fn(ω) + fm(T nω).

It follows from (P4) thatf1 ∈ L1(�, dµ). Hence by Kingman’s subadditive ergodic
theorem, for almost allω, the following limit exists:

lim
n→∞

fn(ω)

n
= lim

n→∞
1

n
log‖Ĉn(ω)‖ = F.
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Moreover,

F = lim
k→∞

1

k

∫
�

fk(ω) µ(dω)

and, for arbitraryk > 0,

F ≤ 1

k

∫
�

fk(ω) µ(dω).

Note thatF does not depend on the choice of norm onF since all norms inL(F,F) are
equivalent.

The following theorem is well known (see [4, 10]). However, we will provide a proof.

THEOREM 3. Suppose (P1), (P3) and (P4) hold. Then

F = λ1 + λ2.

Proof. Take a measurable orthonormal basis{e1, . . . , ed+1} of Rd+1 such that

lim
n→∞

1

n
log‖An · · · A1ei‖ = λi .

(We have dropped the dependence onω in the notation.) The existence of such a basis
follows from Oseledec’s multiplicative ergodic theorem. Here{e2, . . . , ed+1} is a basis of
the space

E2 =
{
x : lim

n→∞
1

n
log‖An · · · A1x‖ ≤ λ2

}
.

Fix a norm inF generated by the norm inRd+1 × Rd+1 given by

‖(x, y)‖ = max(‖x‖, ‖y‖),
where‖x‖ =

√
x2

1 + · · · + x2
d+1, ‖y‖ =

√
y2

1 + · · · + y2
d+1. Let x, y ∈ Rd+1 be arbitrary

vectors with‖x‖ = 1, ‖y‖ = 1. They can be uniquely written asx = ae1 + x1,
y = be1 + y1, wherex1, y1 ∈ E2 and‖x1‖ ≤ 1, ‖y1‖ ≤ 1, |a| ≤ 1, |b| ≤ 1. Then,
sinceα(An · · · A1ae1, An · · · A1be1) = 0, we have

|α(An · · · A1x, An · · · A1y)| ≤ |α(An · · ·A1ae1, An · · ·A1y1)|
+ |α(An · · · A1x1, An · · · A1be1)|
+ |α(An · · · A1x1, An · · · A1y1)|

≤ |a|‖α‖‖An · · ·A1e1‖‖An · · · A1y1‖
+ |b|‖α‖‖An · · · A1x1‖‖An · · · A1e1‖
+ ‖α‖‖An · · · A1x1‖‖An · · · A1y1‖

≤ eλ1n(1+o(1))eλ2n(1+o(1)).

The last inequality is uniform inα, x, y with ‖x‖ = 1, ‖y‖ = 1, ‖α‖ = 1. Hence

lim
n→∞

1

n
log‖Ĉn‖ = lim

n→∞
sup‖α‖=1 sup‖x‖=1 sup‖y‖=1 log |α(An . . . A1x, An . . . A1y)|

n

≤ lim
n→∞(λ1 + λ2)(1 + o(1)) = λ1 + λ2.
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To prove the inequality from the other side, consider the vectors

ei (n) = An · · · A1ei , 1 ≤ i ≤ d + 1.

Let 5n be the parallelepiped generated by(e1(n), . . . , ed+1(n)) and let Pn be the
parallelogram defined bye1(n), e2(n). Denote the(d + 1)-dimensional volume of5n

by Vn and the two-dimensional area ofPn by Sn. It follows from Oseledec’s theorem that

Vn = |det(An · · · A1)| = e(λ1+···+λd+1)n(1+o(1)).

Since
Vn ≤ Sn‖e3(n)‖ · · · ‖ed+1(n)‖,

we have

Sn ≥ Vn∏d+1
i=3 ‖ei (n)‖ = e(λ1+···+λd+1)n(1+o(1))∏d+1

i=3 eλin(1+o(1))
= e(λ1+λ2)n(1+o(1)).

Notice that ∑
1≤i<j≤d+1

|xi ∧ xj (e1(n), e2(n))|2 = S2
n.

Hence for at least onexi ∧ xj ,

|xi ∧ xj (An · · · A1e1, An · · · A1e2)| ≥ Sn√
1
2(d + 1)d

.

Clearly,‖xi ∧ xj‖ = 1. Thus

‖Ĉn‖ ≥
√

2Sn√
d(d + 1)

,

which implies

lim
n→∞

log‖Ĉn‖
n

≥ lim
n→∞

loge(λ1+λ2)n(1+o(1))

n
= λ1 + λ2. 2

We next show that if (P8) holds thenλ1 can be found explicitly. This fact is also well
known (see [14]).

LEMMA 4. Under conditions (P1), (P3)–(P5), (P8),

λ1 = −
∫

�

log(L0(ω) + b0)µ(dω). (49)

Proof. Consider again the sequence of vectorsω(i) = T iω, i ≥ 0, and the vectors
ω̃(i) = (1,ω(i)). Formula (45) implies that

n−1∏
i=0

1

L0(ω(i)) + b0
=

d+1∑
j=1

ω̃
(n)
j c

(n)
j,1 = c

(n)
1,1 +

d+1∑
j=2

ω
(n)
j−1c

(n)
j,1. (50)

Sincec
(n)
1,1 = max1≤j≤d+1 c

(n)
j,1 = exp(λ1n(1 + o(1))), and 0≤ ω

(n)
j ≤ 1, 1 ≤ j ≤ d, it

follows from (50) that

n−1∏
i=0

1

L0(ω(i)) + b0
= exp(λ1n(1 + o(1))). (51)
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Properties (P3)–(P5) imply that 1/(L0(ω) + b0) ∈ L1(�, dµ). Hence, by Birkhoff’s
ergodic theorem,

n−1∏
i=0

1

L0(ω(i)) + b0
= exp(λn(1 + o(1))), (52)

where

λ =
∫

�

log

(
1

L0(ω) + b0

)
µ(dω) = −

∫
�

log(L0(ω) + b0)µ(dω).

Comparing (51) and (52) we getλ1 = λ. 2

Summarizing the results of this section we can prove the following.

THEOREM 4. Suppose (P1)–(P6), (P8) hold. Then the algorithm is exponentially strongly
convergent almost everywhere if and only if there existsk such that

1

k

∫
�

fk(ω)µ(dω) < λ1 = −
∫

�

log(L0(ω) + b0)µ(dω). (53)

Proof. If (53) holds then obviously

λ1 + λ2 = F ≤ 1

k

∫
�

fk(ω)µ(dω) < λ1.

Henceλ2 < 0, which implies exponentially strong convergence.
On the contrary, if

1

k

∫
�

fk(ω)µ(dω) ≥ −
∫

�

log(L0(ω) + b0)µ(dω),

for all k then

λ1 + λ2 = F = lim
k→∞

1

k

∫
�

fk(ω)µ(dω) ≥ λ1

which impliesλ2 ≥ 0. 2

6. Numerical results in dimension three
In this section we will present numerical results which imply that in dimension three
the OJPA is exponentially strongly convergent with probability 1. As explained in the
introduction, this scheme can in principle be used to prove exponential strong convergence
in any dimension.

Basically, one has to findk such that

1

k

∫
13

log‖Ĉk(ω)‖µ(dω) < −
∫

13
log(ω1)µ(dω). (54)

The notation is that of the previous section applied to the OJPA in the cased = 3. Notice
that it is enough to prove this inequality for an arbitrary norm in the space of 2-forms.
Sinceµ(dω) is known explicitly and‖Ĉk(ω)‖ is a well-defined function on13 one can
find the integrals in (54) with arbitrary precision.

LEMMA 5.

−
∫

13
log(ω1)µ(dω) = 0.4897219015± (0.5 × 10−9).
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Proof. The invariant measure is given by

µ(dω) = 1

K
ρ(ω1, ω2, ω3) dω1 dω2 dω3,

where

ρ(ω1, ω2, ω3) = 1

1 + ω1 + ω2 + ω3

(
1

(1 + ω1)(1 + ω1 + ω2)
+ 1

(1 + ω1)(1 + ω1 + ω3)

+ 1

(1 + ω2)(1 + ω2 + ω1)
+ 1

(1 + ω2)(1 + ω2 + ω3)

+ 1

(1 + ω3)(1 + ω3 + ω1)
+ 1

(1 + ω3)(1 + ω3 + ω2)

)
and

K =
∫

13
ρ(ω1, ω2, ω3) dω1 dω2 dω3.

We have

−
∫

13
log(ω1)µ(dω) = − 1

K

∫ 1

0

∫ ω1

0

∫ ω2

0
log(ω1)ρ(ω1, ω2, ω3) dω3 dω2 dω1

= 1

0.1668786238
× −0.08172411697

= 0.4897219015.

(The calculations were performed using Maple V Release 5.) 2

Consider the basiseij = xi ∧ xj , 1 ≤ i < j ≤ 4 of the spaceF of 2-forms onR4:

eij (ei , ej ) = 1, eij (ej , ei ) = −1 and eij (ek, el ) = 0 if (k, l) 6= (i, j), (j, i),

where{e1, e2, e3, e4} is the standard basis ofR4. Any 2-formα ∈ F can be written as

α =
∑

1≤i<j≤4

αij eij , αij ∈ R.

We use the standard norm onF which is defined by

‖α‖ =
∑

1≤i<j≤4

|αij |.

By looking at the action of̂A on the basis ofF we can obtain a matrix representation of
Â. We write

Âekl =
∑

1≤i<j≤4

βij eij .

Note thatβij = Âekl(ei , ej ). By the definition ofÂ, we find

Âekl(ei , ej ) = ekl(Aei , Aej ) = akialj − aliakj .

Thus
βij = akialj − aliakj .

This allows us to find an explicit matrix representation ofÂ, and hence of̂Ck.
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LEMMA 6. For k = 20,

1

k

∫
13

log‖Ĉk(ω)‖µ(dω) = 0.44± 0.01. (55)

We have found the integral above using a Monte-Carlo integration scheme. Lemmas 5
and 6 indicate that condition (53) is satisfied. By changing the norm in (55), one can
probably reduce the value ofk for which (53) is satisfied from 20 to 15, but not much
further. As was mentioned in the introduction, the rigorous calculation of (55) will be
carried out in [12]. Since Monte-Carlo methods do not provide rigorous bounds we
formulate our result as the following.

‘T HEOREM’ 5. In dimension three, the OJPA is exponentially strongly convergent almost
everywhere.

7. Conclusions
In this paper we have presented a numerical scheme which in principle can provide a
rigorous proof of exponentially strong convergence of the OJPA in arbitrary dimension.
The scheme we present is simple from the theoretical point of view, although numerically
it can be substantially improved (see [12]). The main advantage of the OJPA in this setting
is the existence of a formula for the density of the invariant measure, but this is not the
only advantage. As we will explain in [13] the OJPA shares many other nice properties
with one-dimensional continued fractions.

Our scheme could in principle be made to work for the JPA itself provided we have a
good approximation to the invariant measure. At the same time, almost everywhere strong
convergence of the JPA, OJPA and other algorithms seems to be a conceptual fact and
ideally a proof of this should not rely on the evaluation of concrete numbers. Unfortunately,
such a conceptual proof is lacking at present.

Lagarias has considered two exponentsη and η∗ which characterize the quality
of approximations provided by multi-dimensional continued fraction algorithms [18].
Consider an integer vectorū = (q, p1, . . . , pd) ∈ Zd+1+ and denote byu the corresponding
rational vector(p1/q, . . . , pd/q) ∈ Qd . The quality of the approximation byu of an
irrational vectorω can be characterized by the exponent

η(u,ω) = − log‖ω − u‖
logq

. (56)

Note that

‖ω − u‖ = q−η(u,ω). (57)

At the nth step of any approximation scheme such as the OJPA one gets a simplex with
rational vertices

ui (n) =
(

p
(i)
1 (n)

q(i)(n)
, . . . ,

p
(i)
d (n)

q(i)(n)

)
, 1 ≤ i ≤ d + 1.

Define

ηn(ω) = max
1≤i≤d+1

η(ui (n),ω) and η∗
n(ω) = min

1≤i≤d+1
η(ui (n),ω).
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We can now define two approximation exponents which characterize the best and the worst
approximations of the OJPA or any other similar scheme. The best approximation exponent
for ω given by the OJPA is defined as

ηOJP(ω) = lim sup
n→∞

ηn(ω).

The uniform approximation exponent is defined as

η∗
OJP(ω) = lim inf

n→∞ η∗
n(ω).

Under conditions (P1)–(P4), (P7) plus the additional condition that∫
�

k(ω)µ(dω) < ∞, (58)

Lagarias has shown thatηOJP(ω) = ηOJP and η∗
OJP(ω) = η∗

OJP are constant with
probability 1. Moreover,

η∗
OJP= 1 − λ2

λ1
.

It can be shown that condition (58) holds for the OJPA (see [12]). According to a classical
result, for almost allω,

ηOJP(ω) ≤ 1 + 1

d
.

Obviously,η∗
OJP(ω) ≤ ηOJP(ω) which, providedλ2 < 0, implies

|λ2|
λ1

≤ 1

d
.

Numerical simulations suggest that for the JPAλ1 has a limit asd → ∞ and in the case
of the OJPAλ1 scales like 1/d. Based on our simulations the following conjecture seems
to be reasonable:

CONJECTURE. For the JPA,

λ1(d) → λJP
1 asd → ∞

and
λ2(d)d → λJP

2 < 0 asd → ∞.

For the OJPA,
λ1(d)d → λOJP

1 asd → ∞
and

λ2(d)d2 → λOJP
2 < 0 asd → ∞.

Numerical simulations give the following values of the exponentsλ1, λ2 in dimension
three:

λJP
1 (3) = 1.18, λJP

2 (3) = −0.23, λOJP
1 (3) = 0.49, λOJP

2 (3) = −0.11.

Notice that
|λOJP

2 (3)|
λOJP

1 (3)
>

|λJP
2 (3)|

λJP
1 (3)

.

https://doi.org/10.1017/S014338570000095X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000095X


1732 D. M. Hardcastle and K. Khanin

We expect that the same holds in any dimension. It is an interesting question whether or
not this is true in the limit asd → ∞, i.e. whether

|λOJP
2 |

λOJP
1

>
|λJP

2 |
λJP

1

.
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