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Abstract We describe a strategy which allows one to produce computer assisted proofs
of almost everywhere strong convergence of Jacobi—Perron type algorithms in arbitrary
dimension. Numerical work is carried out in dimension three to illustrate our method. To
the best of our knowledge this is the first result on almost everywhere strong convergence
in dimension greater than two.

1. Introduction
The construction of simultaneous rational approximations to an irrational vector is a
classical problem which has been studied for over a hundred yBarg [L5, 21, 22,
24, 25, 28. By ‘rational approximation’ we mean a sequence of vectors of the form
(p1(n)/q(n), ..., pa(n)/q(n)) which converge to a vectdts, ..., wq) € I¢ = [0, 1]9.
This convergence can be understood in two different ways. The sequence converges in a
weak sense if

lim

n— oo

H <P1(n) pa(n) _o )

gn)’” 7 qn)

While (1) is a tempting definition of convergence, it is not what is really required for
applications. More useful is the following definition:

>—(a)1,...,a)d)

nleoo lg(n) (w1, ..., wq) — (p1(n), ..., pa(m)|l =0, (2
which we call strong convergence. Dirichlet’s theoréhstates that anyws, ..., wg) €
14\ Q4 has infinitely many approximations of the fortp1/q, . .., pa/q) such that, for
1<j<d,

o - Pl <1
R e ]
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This obviously implies the existence of a strongly convergent sequence. Moreover,
lg(@1, ..., 0a) = (p1, .-, pa)ll < Vg~

However, it is very difficult to find these approximations which are guaranteed to exist
by Dirichlet’s theorem. Thus it is important to have an algorithm which allows one to
construct strongly convergent approximations. By ‘algorithm’ we mean a procedure which
allows one to calculate-close strong approximations, i.e. approximations which satisfy

lg(w1,....0a) = (p1..... pa)ll <€,

using not more tham|loge| binary operations. Such an algorithm is certainly known

in dimension one, namely the famous continued fraction algorithm which has many nice
properties. Different generalizations of continued fractions to the multi-dimensional case
have been known for more than a hundred years. These include the Jacobi—Perron
algorithm (JPA) and other connected algorithms (séelp, 22, 23, 2. However,

the properties of these generalizations are much worse than the properties of continued
fractions. For example, continued fractions give strongly convergent approximations for
everyw € [0, 1] \ Q but no known multi-dimensional algorithms (seke B, 3, 7) have

this property. This means that there always exist ‘bad’ irrational vectors for which there is
no strong convergencé[1§. Thus the most one can hope to prove is almost everywhere
strong convergence, i.e. that strong convergence holds for points in a suli€etfdull
Lebesgue measure.

Numerical studies indicate (se8,[17]) that the Jacobi—Perron algorithm and many
other algorithms have the property of almost everywhere strong convergence in any
dimension. The only rigorous results concerning strong convergence are for two-
dimensional algorithms. Almost everywhere strong convergence for the two-dimensional
JPA follows from an old paper of Paley and Urséalll]. This fact was pointed out by
Khanin [L6] (see also Schweige]). A computer assisted proof of almost everywhere
strong convergence for a two-dimensional modification of the JPA was independently
provided by Fujita, Ito, Keane and Ohtsultil, 14. Their approach can also be carried
out in dimension greater than two, and this is closely related to our approach. In this paper
we consider the same modification but in higher dimensions. We call this modification the
ordered Jacobi—Perron algorithm (OJPA). For the two-dimensional OJPA, as for the two-
dimensional JPA, one can prove almost everywhere strong convergence without using a
computer (see Meeste2(]]). However, at present there are no theoretical results on strong
convergence in dimension greater than two. In fact there is a principle difference between
two dimensions and higher dimensions. In dimension two one can effectively describe
the set of bad vectors, i.e. the vectors for which strong convergence does not hold. For
example, in the case of the JPA these are vectors for which the integer entries produced by
the algorithm grow very fast. At the same time it is known that for high enough dimension
(d = 5) even noble vectors (i.e. vectors which are fixed points of the algorithm) may be
bad. The difference between two dimensions and higher dimensions can also be described
on a more technical level. It turns out that in the cdse 3 strong convergence is due
to the cancellation of positive and negative terms in certain matrix products. The absolute
values of both positive and negative contributions grow exponentially, but their difference
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is exponentially small, while in dimension two both positive and negative contributions are
exponentially small (sed p)).

The main purpose of this paper is to present a scheme which in principle allows one to
give a rigorous proof of almost everywhere strong convergence for any Jacobi—Perron type
algorithm. We will illustrate our strategy by discussing the OJPA which will be described
in the next section. In our opinion, this version of the JPA is the best generalization
of continued fractions. It shares many properties with the one-dimensional case which
makes the study of it easier than the study of other generalizations. For example, it has an
extremely nice natural extension (sdej]). Our scheme consists of two parts. The first
part is the reduction of the original problem to the calculation of certain concrete integrals
which give estimates for the Lyapunov exponents. The second part involves carrying out
a finite number of calculations numerically. In this sense the proof of the final result is
computer assisted. In the present paper we deal with the first part of the scheme, namely
the reduction part. The rigorous estimation of the Lyapunov exponents is carried out in a
forthcoming paper12.

Our aim here was to explain a simple approach which leads to a proof. The method is
simple mathematically but not from the point of view of numerical studies. It is actually
possible to use a more advanced scheme for a computer assisted proof but this will be
explained in a forthcoming publicatiod ).

2. The ordered Jacobi—Perron algorithm
The ordered Jacobi—Perron algorithm (OJPA) was first introduced by Podsygahin |
two dimensions. It was then considered by Schweiger in arbitrary dimerZéhrii/fe will
define a slight variation of this which is, however, equivalent to Schweiger’s version. In the
papers by Podsypanin, Schweiger and othkts 14, 20, 23, 2gthis algorithm was called
the modified JPA. However, we think that the name ordered JPA describes its nature more
accurately.
Consider the/-dimensional simplex

Al ={w=(o1,...,00) €I{:1>w1>wp > >wy >0}

Define a transformatioff : A4 — A? by the following two steps. Firstly, givea =

(w1, ...,wq) € A? form the numbersn /w1, . .., wg/w1 and{1l/w1} = 1/w1 — [1/w1]
(where {x} and [x] denote the fractional and integer parts.ofrespectively, so that
{x} = x — [x]). Secondly, pufl/wi} in the position in the sequene® /w1, ..., ws/w1

prescribed by the ordering in the simplex. More precisely,

(fah-o50) b
— e, — if 4 —1 > —;
w1 w1 w1 w1l w1

T(oL..... o) (w_w_{_}w_w_) .f&>{_}>w-/+1;

w1 w1’ lo1]’ o1’ w1

T e T Y T |f —_— > et
w1 w1 w1 w1 w1
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Definition 1. The transformatio” is called theordered Jacobi—Perron transformation
dimensiord.

It can be shown that" is a locally expanding mapping and consequently has nice
ergodic properties. Specifically, like all other transformations producing Jacobi—Perron
type algorithms, has a unique absolutely continuous invariant probability measure which
is ergodic R6]. One of the main advantages of the ordered Jacobi—Perron algorithm is that
an explicit expression for the density of the invariant measure is known. Indeed, one can
check that the probability measure

1
wdo) = 2 p(@) do (4)
1 1 1
Ao Ltonmltor +ore 1+ o +or@+- -+ ora)

is invariant underT. Here S; is the group of permutations ef symbols andk =
Jra p(@)dw. The fact that we have control over the invariant density is very important
for our method.

We now explain howl” can be used to construct rational approximations. Note that the
main reason it can be used for this purpose is that it is expanding and all brandte’s of
preserve the set of rational vect@ys /q, . . ., pa/q)-

First define a map: : AY — N by m(w) = [1/w1]. Also, let j(w) = i where thath
coordinate ofl' (w) is {1/w1}.

Consider the trajectory of a poigh underT, i.e.

T T T T
WL @2 > @y e (5)

If the sequencémsi, j1), ..., (m,, j,) is known, where
mi =m(T' 1), ji = j(T"  wy),

then for 1 < i < n it is possible to find the poind; for which T(w;) = w;+1. Let
S, j;y denote the inverse of on the branch specified bgn;, j;). Take the vector
(0/1,...,0/1) as an approximation te,1, and consider the image of this vector under
Stmy, j1) © Stma, j2) © **+ © Sam,, juy- TheN we obtain a vect@pi(n)/q(n), ..., pa(n)/q@))
which is thenth approximation ta;.

This procedure leads to the following formal description. For eacke N, j =
1,...,d, let us define a matrid,. ;, € GL(d + 1,Z). The first row ofA,_;, has
only two non-zero entries:

aij1=m, ayjy1=1

All other rows have only one non-zero entry, which is equal to 1. In tagt,; = 1 for

https://doi.org/10.1017/5014338570000095X Published online by Cambridge University Press


https://doi.org/10.1017/S014338570000095X

Multi-dimensional continued fraction algorithms 1715

i=2,...,j+1anda;; =1fori =j+2,...,d + 1. In short,

m 0 010..00
10 000.. 00
0 1 000.. 00

Amjp=10 100..00 (6)
0 0 001 00
00..000..10
00..000.. 001

Now defineA . jy = (A ) whereA! denotes the transpose 4f Define

Cn = Any,ju) *** Alma, j) Ama, ja) (7)

wherem; = m(T' 1), j; = j(T''w1). Then the first row o, gives the numerators
and the denominator of the approximation of ittle step described above. More precisely,

if the first row of C, is (c{"}. ... c{"). ¢{")1) then
(n) (n)
<P1(ﬂ) Pd(”)) _ (Cl,z Cl,d+l>
== |
q(n) q(n) 1 €11

The other rows of”,, correspond to approximations which were obtained previously, i.e.
approximationg p1(n')/q(n'), ..., pa(n’)/q(n’)) wheren’ < n. Thed + 1 rows ofC,
gived + 1 points inA¢ which form a simplexA (n) which containss;. In some sense the
whole simplexA (n) is the rational approximation t®;.
We introduce a matrix valued functioh : AY — GL(d + 1, Z) defined byA(w) =
Am().j@)- Then
Co = A(T"w1) -+ A(Tw1) A(@1).

Since the approximations are constructed through the product of matrices along the
trajectory of an ergodic dynamical system, it is clear that the typical quality of
approximations will depend crucially on the corresponding Lyapunov exponents. This
will be explained in more detail in 83.

We finish this section with two definitions which are used in the rest of the paper. For
x = (x1,....xg) € R we setlx| = Y9_ |x;l.

Definition 2. A sequence of rational vectoxg = (p1(n)/q(n), ..., pa(n)/q(n)) is said
to beconvergent ta in the weak sensé

lo —x,|| > 0 asn — oo. (8)

The sequence isxponentially convergent ® in the weak sensi there exist constants
K > 0,a > 0 such that

lo —xull < Kg(m)™*. €)
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Definition 3. A sequence of rational vectoxg = (p1(n)/q(n), ..., pa(n)/q(n)) is said
to bestrongly convergent te if

lg(m)@ — (p1(n), ..., pa(n))|l - 0 asn — oo. (10)

The sequence isxponentially strongly convergent & if there exist constantX > 0,
« > 0 such that

lg(m)@ — (p1(n), ..., pa)| = Kq(n)~*. (11)

As we will see later, the denominataré:) grow exponentially with: for almost allw,
and this explains the word exponential in the above definitions.

In 84 we prove that for almost all € A? the OJPA provides approximations which are
exponentially convergent @ in the weak sense. The geometrical meaning of convergence
in the weak sense and in the strong sense is the following. Weak convergence means

that (¢(n), p1(n), ..., pa(n)) converges tal, w1, ..., wy) in the directional sense, i.e.
the angle between the two vectors converges to® as co. Strong convergence means
that the vectotq (n), p1(n), ..., pa(n)) itself converges to the ray

'y ={AQ,w1,...,w4) : 2> 0}
defined by the vectail, wy, ..., wg) (see b, 19).

3. Lyapunov exponents and strong convergence
In this section we prove a general theorem which is similar to Theorem 4.18f |
However, our aim is to establish conditions for exponential strong convergence while
Lagarias 1§ studies exponents which characterize the quality of the approximations. We
will comment on the connections with Lagarias’ theorem in more detail in the conclusions.
The result which we prove in this section is quite general. It applies not just to the
OJPA, but to general approximation schemes based on the product of mattices
GL(d+1, Z) along the trajectory of a transformati@rof  c [0, 1]%. As in the previous
section, we write’, (@) = A(T" o) - - - A(Tw)A(w) and set

(n) (n)
m _ | %2 Cjd+1
x: === ...,
J c(n) C(n)
il jil

We considetxf’) as thenth approximation ta and sometimes denote it by

_ <P1(ﬂ) Pd(”))
Xn = s ey ,
q(n) q(n)

whereg (n) = c(lni andp;(n) = Cg,li)+l'

We will suppose thaf” and the matrix valued functiod (w) satisfy the following
conditions:
(P1) T is ergodic with respect to an invariant probability measu(éw);
(P2) n is equivalentto Lebesgue measure;
(P3) the matricesi(w) are non-degenerate and have non-negative entrigg-&dmost

all w;
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(P4) [, log(max[A(w)l, 1)u(dw) < oo;
(P5) for u-almost allw € , a11(w) > 0 and forall 2< i < d + 1 there exists
1 <k <d+ 1suchthat
0 ifj#£k;
a;j (@) = L

1 ifj=k

(P6) there exists a matrid € GL(d + 1, Z) with strictly positive elements such that
L(w € Q: 3k > 0suchthaCy(w) = M) > 0, (12)

wheret denotes Lebesgue measuresan
(P7) there exists a constafyt > 1 such that for almost adb there existsig(w) such that
forall n > no(w),
n) —n
\max o = xl < 65" (13)
Condition (P5) is technical and it holds for most algorithms which are considered in this
area. It implies that the denominatptn) = cg”i of x,, is the largest element of the first
column ofC,. As we will see, (P5) and (P6) ifnply that for almostalband large enough
n, all rows of C,, correspond to some approximatien = xi’"), wherem < n.
Denote
Qui=1{weQ:Cr(w) = M}.

Define ny « (@) to be the number of visits to the s€ty x by the trajectoryT’ (w),
O<i<n-1,ie.

n—1
nur(@) =Y xui(T'®), (14)
i=0

whereyy « (w) is the indicator function of the s€l; x:

@) 1l ifweQuui;
w) =
Xk 0 ifw¢ Qs
LEMMA 1. Suppose (P1), (P2) and (P6) hold. Then there is 0 such that for almost all
w € 2,
fim "M@ Q) > 0. (15)
n—00 n

Proof. It follows from (12) that there exists > 0 such that(Q2.x) > 0. Hence, by (P2),
1 (k) > 0. By Birkhoff's ergodic theorem, for almost all € <,

ny k(@)

lim

n— oo

=n(Qui) > 0. O

Denote
k(w) = min{k : A(T* o) - - - A(Tw)A(w) is strictly positive

and sef(w) = +oo if no suchk exists.
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COROLLARY 1. If (P1)—(P3) and (P6) hold theh(w) is finite for almost alke.

Proof. Notice that if7'w € Q.x then all entries of the matrix
Cr+i(@) = Ct(T' @) Ci (w)
are positive. |

If (P1) and (P4) hold then one can define Lyapunov exporiants Ao > --- > Agy1
in the usual way (see3[)]). The following theorem is connected to Theorem 4.11 |

THEOREM 1. Suppose (P1)—(P7) hold. Then:

(i) the largest Lyapunov exponent is greater thanO and is simple, i.e. it has
multiplicity 1;

(i) foralmostallw € 2,

o1
lim —logqg(n) = A1;
n—oo n

(i) for Lebesgue almost alb the sequence of approximatiowg is exponentially
strongly convergent t@ if and only ifA2 < O.

Proof. The proof of (i) is the same as in the proof of Theorem 4.118;.[ It also follows
from this proof that for almost ath the vectore; = (1,0, . .., 0) € R?*! does not belong
to the spacetz(w) corresponding to the Lyapunov exponehts> Az > -+ > Ag41.
Since the first column of, is given by

(n)

)
n
c
21 | _ C el
(n;
Ca+1.1
we get
(n)
€11
(n)
€21
) = exp(A1n(l+ o(1))). (16)
,(n;
Ca+1.1

As was mentioned above, property (P5) implies that) = cg”i is the largest element of
the first column. Hence, for Lebesgue almostall

q(n) = exp(r1n(1+ o(1))). an
Statement (ii) follows immediately from (17). The following formula was also proved in
[18:
d+1 d
Y3 lew; — 1l = expl(hz + o(D)n). (18)
i=1j=1
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It follows from (18) that for all;,
d
Y e Vo) — cfjf]? 4l < exp(Az + o(D)n). (19)
j=1

This, together with (17), immediately implies

lg(m)e — (p1(n), ..., pa(m))|| < q(n)P*2re@/2adto@) — 4y Gate@)/2 —(20)

This implies statement (iii) in the cage < 0. Moreover, the constantin Definition 3
can be taken asiy/11 — € foranye > 0.
Finally, if > > 0 then from (18), for at least orie

d
3 1eaw; — e 4| = exp(iz + o(D)n). 21)
=1

Conditions (P5) and (P6) imply that farlarge enough every row af, corresponds to
some approximatiom,,,y, m(n) < n. Corollary 1 implies thatz(n) — oo asn — oo.
Moreover, one can show that with probability 1 folarge enouglm (n) > n,1> 8 > 0.
Indeed, it follows from Lemma 1 that

nuk = Su(Quion
for n large enough. Denote
inmr=maxi:0<i<n—k T'oecQux)

It is easy to see that(n) > i, m . Notice thati, px > nyx — k. Hence forn large
enough
mn) > ny  —k > Bn,

whereg = w(2p.£)/2. It follows from (21) that
llg (m (1)) Xmn) — @)l = exp((A2 + o(1)n).
Sinceq (m(n)) = exp(A1(1+ o(1))m(n)) one has
lg (m (1)) Gemny = @) | = g (m(n)) P2+ Paltotimm, (22)

It follows from (22) that with probability 1 there is no exponential strong convergence.
Indeed, ifr2 > 0 then the exponent

_ (2+o)n

T @4 o(@)m(n)

is also positive fon large enough. Ifp = 0 thend = o(1) since 1< n/m(n) < 1/8 for
n large enough. m|

We finish this section by checking that conditions (P1)—(P7) are satisfied for the OJPA.
(P1) follows from p€] (see also19)]). (P2) follows immediately from the formula (4) for
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the invariant measurg. (P3) is obvious sincédetA(w)| = 1. In order to check (P4)
notice that|A(w)|| = [1/w1] + 1, where
d+1

1Al =_max > lal.
1<j=d+1{-

Using the explicit formula fop. we can easily check that

/ log (i) u(dw) < oo.
Ad w1

(P5) is obvious. Property (P6) is considered in the following lemma.
LEMMA 2. Property (P6) holds for the JPA and the OJPA.

Proof. Consider the ‘golden’ vectavg which is defined by the propertidywc) = wg,
m(wg) = 1 andj(wg) = d. Itis easy to show thabg = (w, @?,...,»?%), where

0 < w < 1is the only positive root of the equatiaf*! + » — 1 = 0. Notice that in a
neighbourhood obg the transformations corresponding to the JPA and the OJPA coincide.
Using the fact thaC, (wg) = (A(1,4))", one can check that all the elements(f;(wc)

are positive. Také/ = Cy4(wg). Since for allw in a small enough open neighbourhood
of wg, C2q(w) = C24(wg) = M, we have

LweQ:Cy(w)=M)>0. O

In the next section we will prove that property (P7) holds for the OJPA.

4. Exponential convergence in the weak sense

Sinceg (n) grows exponentially, property (P7) is equivalent to the exponential convergence
in the weak sense oa‘;”), 1< j <d+1,tothe vectow. We will show in this section

that convergence in the weak sense is a Perron—Frobenius-type property which basically
follows from the positivity of the matrices

Ch(@) = A(T"  w) - A(Tw)A(w)

for largen. However, there is a small problem connected to the fact that the matriaes
are only non-negative. This difficulty can be overcome by the use of condition (P6).
Considem large enough so that the first column@f(w) is positive, i.e.

min c("{ > 0.

1<j<d+1 7
Then the approximations
1
o = e, 1=isdeL
€1

are defined. The poinng(”) e 14,1 <i <d+1, are the vertices of the simplex

d+1 d+1
An:{yeRd:y=Za,'xi(n),a,~ zO,Z(xizl}. (23)
i=1 i=1
Denote
diama, = max [lx/"” —x{"|.
1<i,j<d+1
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THEOREM2. Suppose that (P1)—(P6) hold. Then there exists a conbtany < 1 such
that, for almost alkw,

diama, < y" (24)
for all n large enough.
Proof. The simplexA,, is formed by the rows of the matrix
Ch(@) = A(T" w) - A(Tw)A(w). (25)

We writeA; = A(T'w), 0 < i < n — 1. It follows from Lemma 1 that for almost all and
for n large enough s x (@) > Bn, whereg = (2 .1)/2. Define

Li={i:0<i<n—1T\(0) e Qi

Then forn large enough, the sét contains at leagtn elements. Denota = min{i : i €
I,}andfp1 =min{i : i € I,,,i > 1, +k} forl > 1. Suppose there aré + 1 elements
in the sequencg;}, n’ > [Bn/k] — 1. For eachy, except for the last one, we replace the
matricesA, 1«1, - . . , A, in the product (25) by the single matr. Then

Co,=Bnu_1---Bg, m=n—n'(k—1), (26)

where eaclB,, 0 < s < m — 1, is equal either to some matrik;, 0 < j <n — 1, 0orto
M. Clearly, there are’ matricesM in the product (26). Denote the matrix elementBgf
bybs(i, j),1<i,j <d+1. Foreach < s < m consider the index as a spin variable
Js taking values 12, ..., d + 1. Define a probability distribution

1 m—1
P(jms jm*lv cee JO) = E l_[ by (js+lv js): (27)
s=0
where
m—1
zZ= > [ s Gz gio)- (28)

lSjO)jls'~~)j)?]Sd+l s=0
Denote byP; (j, - . ., joljm = j) the conditional distribution for the first+ 1 spins under

the conditionj,, = j. It is easy to see that up to normalization tith row of C, () is
equal toPo( - |jm = ])

(n)
c. .
L J»Jo .
PO(]0|]m—J)—W, l1<jo<d+1. (29)
i=1%i
Denote by 0 < 4;(j, j’) < 1 the variational distance betwedn(-|j, = j) and
Pi(-jm = J):
diG.ih=%5 3 PG joli) = PG ol (30)

1<ji,...,jo<d+1

Statements (31) and (32) below are well known (&g [For fixed j, j' the sequence
d:(j, j') satisfies

dt*l(]v]/)fdt(.ls.]/)s 1St§m_1 (31)
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Suppose now thak; = M. Then there exists a constank0s < 1 such that

dt(.]a .]/) S 5dl+1(]7 ]/)
It follows from (31) and (32) that
, 1
do(j. j') < 8" < 8P/0=2 = S8,
wheres; = §#/%. The vertices ofA,, correspond to the vectors

(n) (n) (n) .
] c(n)(]z,.. ]d+1) 1<j<d+1

j,.1
Consider théd + 1)-dimensional vectors

X .

(n)
(n) (n) (n) €1 n)
=@Qx;), 2z =gV
J d+1 J
Z =1 Cﬁnz)

It is easy to see that
2 = (Po(11j). Po(21)). ... Pold +11,)).

Hence
2
lzj” =2l = 2do(j. J) < 558 1<j.j'<d+1.
Denotecﬁ.") =yl 5”1) Slncey = (c (")/c(”))z(") we have
() ()
1y — 0 = € G _ €y Z(n)
AR RS ) %
Ci1 Cira
om o (n)
) G
= (n)”Z —2 I e~
Ci1 i1 Sy
(n) (n) n) | (n) .(n)
— ”Z(n) Z(n)”+ Cj/!l _ ijl CLC'I'/
- (n) J' ™ C(n) ROMO)
€1 J j €1
om (n)
G n
< o T 1 =2l
1\ S

In the last inequality we have used the following trivial fact:

(ni 6(1/1)1
én) j(n) _||z(") z(’/’)”
] ./

It follows from (P5) thatc(”) = expin(l + o(1)). Slncec(”) > c&"{

exp(A1n(1+ o(1))) we conclude thatg”) = exp(A1n(1 + o(1))). Hence

(n)
1

=D 1
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(34)

(39)

(36)

(37)

(38)

(m ~


https://doi.org/10.1017/S014338570000095X

Multi-dimensional continued fraction algorithms 1723

Since
(n) (n)
€11 %a w _ my — 2
0] - C(_n) < llzg -z Il < ?5]_’ (39)
1 J
we have
c(.")
0<-It—e® 1 1<j<d+1l (40)
c(n)
J
Using (37), (38) and (40) one has
”x;n) _ x;l/‘l)” — ”y;n) _ y;I/‘l) | < eno(l)e(logél)n — en(|0981+o(l))' (41)
This implies (24) foralb; <y < 1. m|

The estimate (24) implies (P7) & € A, for all n large enough. As it is proved
below, this property holds for all Jacobi—Perron-type algorithms. In order to proveitin the
general setting one has to impose additional conditions on the transfornfatiod the
matrix valued functiom (@) which will guarantee thab € A,, whenA,, is defined.

We make the following assumptions about the transformatigsee R7]). Suppose

L b L b
T(w):( 1@ b1 La@ + d), (42)
Lo(®) + bo Lo(®) + bo
wherebg, b1, ..., by are piecewise constant functions@randLo, L1, ..., Ly are linear
forms onQ2 with piecewise constant coefficients, i.e.
d
Li(w)=Li(w1,...,wq) = ) lijjwj, 0=<i<d,
j=1
wherel;; are piecewise constant functions. Dendi@) = (wj, ..., »,). Clearly, (42)
can be written in the form
1 1
) w1
(Lo(w) + bo) = D(w) e (43)
o oY,

whereD(w) = (d;;) is the piecewise constant matrix valued functiorcdgiven by

dij = bi-1 ff{zl’ 1<i,j<d+1
li—yj—1 ifj#1,

The matricesA (w) have to be connected with(w) in order to produce good rational
approximations. We will formulate this connection as condition (P8):
(P8) T satisfies (42) and (w) = (D~ L(w))".
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This condition is clearly satisfied for the JPA and the OJPA, since the construction of
is based on the procedure explained above. In both dages = »w; andbg = 0. Notice
that (P5), (P8) imphL.o(w) + bo > O.

Let =, denote the closed conelkft1 generated by the rows 6f, (w):

d+1
>, = {(zl, v zasD) €ERITY (e, zag) = Za (cgni, .. Enﬂ)l-i-l) aj > 0}

(44)
Denotem = (1, w) = (1, w1, ..., wg) € RI*TL,

LEMMA 3. Suppose that (P5) and (P8) hold. Then, for almosta#t 2, ® € T, for all
n> 1

Proof. Denotew”) = T'(w) and®?) = (1, ®®) fori > 0. It follows from (43) that for
i>1,

OA@ID) = T i,
Lo(@ D) + b

Hence

n—1
1
5P A" D) A =[] : 50, 45
erAET A ,.:0<Lo(w<l>)+bo)w )

Denotex ™ (w) = Hz;é(Lo(w(")) + bo). Then (45) can be rewritten as

a™ (@)@ Cp(w) = @9, (46)
It follows from (46) that
®=00 = Za(") (w)cs(’“(c;"{, ... 5"31 ) (47)
j=1
where" are the components of the vec®f”), i.e.™ = @{".....&y);). Since
55’” >0,1<j <d+1,anda™ (@) > 0, (47) implies the lemma. |

The following corollaries are immediate consequences of Lemma 3.
COROLLARY 2. Suppose that (P5) and (P8) hold. Af, is defined, i.emini<j<441 cﬁ"{

> 0, thenw € A,.

Proof. Consider the ray§; = {(z1,...,z411) = )»(cﬁ”i, §n0)1+1) A>05L,1<j
(1)

< d + 1. Notice that the vertlces] of A, correspond to the points of intersectionlof
with the hyperplane; = 1. Sincew = (1, ) belongs tox,, it follows thatw € A,,. O

COROLLARY 3. (P1)—(P6) and (P8) imply (P7).
Proof. Sincew € A,,, we have for almost ath

max ||co x(")|| <diamA, <y", O<y <1 O
1<j<d+
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COROLLARY 4. (P7) holds for the OJPA.

Remark.1t follows from property (P7) that, for almost allb, the sequence of
approximationsx,, exponentially converges t@ in the weak sense. Indeed, since
lo—x, |l < y" andg(n) = exp(r1n(1+0(1))), we have|e —x, || < g(n)9r)/ 7+,
which implies exponential convergence in the weak sense.

5. Analysis of Lyapunov exponents
It follows from Theorem 1 that in order to have exponential strong convergence almost
everywhere one has to show that< 0.

Itis well known that the calculation of Lyapunov exponents is a hard problem. There are
no general formula to calculate them. However, there are several general methods which
give rigorous estimates of Lyapunov exponents.

We start with a method which is based on the extension of the mattitetheir action
ons-forms. Itis well known (see4, 1Q) that the largest Lyapunov exponent corresponding
to such an extension is equalit@+ - - - + As, whereiq, . . ., A; are thes largest Lyapunov
exponents for7T, A(w)). Below we will formulate this more precisely for the case: 2.

Consider the linear transformationitf *1 generated by (w), i.e.

X = A(w)x.

Recall that a 2-form oiR?*1 is a bilinear skew-symmetric function on a pair of vectors,
a(x, y). Denote byF the (d + 1)d/2)-dimensional linear space of 2-forms &qf*1.
Consider the natural basisJR, ¢; ; = x; Axjforl <i < j <d + 1. We can define a
linear transformation iF generated by (w), hamely

A@a(x, y) = a(A@)x, A@)y).
We write A; (0) = A(T'~lw) andA; (w) = A(T'~1w). Define
Cp(@) = AL(@) 0 -+~ 0 Ap(®).

Clearly, _
Cr(@a(x, y) = a(Ap(@) - Ar(@)x, Ay(@) - - Ar(@)y).

Obviously the operato@n (w) has the property
Crim (@) = Cp(®) 0 Cou (T" ). (48)
Take an arbitrary norm itF. This norm generates a normAi(F, F). Denote
fu(@) =log||C,y (@)
Property (48) implies thaf, (w) is a subadditive function, i.e.
Jram(@) < fu(@) + fin(T" o).

It follows from (P4) thatf; € L1(Q2,dw). Hence by Kingman’'s subadditive ergodic
theorem, for almost ath, the following limit exists:

n—-oo n

.1 ~
= lim —log||Cy(w)| = F.
n—-oon
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Moreover, L
F=lim —/ fr(@) n(dw)
k—oo k Jo
and, for arbitrary > 0,

1
F< ;f fe(@) n(do).
Q

Note thatF does not depend on the choice of norm®msince all norms irC(F, F) are
equivalent.
The following theorem is well known (sed,[1(). However, we will provide a proof.

THEOREM 3. Suppose (P1), (P3) and (P4) hold. Then

F =X+ Ao

Proof. Take a measurable orthonormal basis . . . , es+1} of R¥*+1 such that
. 1
lim =log||lA, --- Aiei|| = A;.
n—-oon

(We have dropped the dependencesoin the notation.) The existence of such a basis
follows from Oseledec’s multiplicative ergodic theorem. H&rg . . ., es+1} IS a basis of
the space

. 1
Eor = {x : lim —log|lA, - Awx| < Az}.
n—oon
Fix a norm inF generated by the norm R?+1 x R4+ given by

1Ge, Il = max(flx]|l. [y},

where||x || = /xZ+ -+ x5 4, Iyl =/¥2+ -+ y7,,. Letx, y € R?" be arbitrary
vectors with|jx|| = 1, |ly|| = 1. They can be uniquely written as = ae; + x1,
y = bex + y1, wherexy, y1 € Ez and|x1|| < 1, [y1ll < 1,]al < 1,]b] < 1. Then,
sincea(A, --- Aiaeq, A, --- A1ber) = 0, we have
le(Ap - - - Aax, Ap - - A1y)| < |a(Ay - - - Araer, Ap -~ - A1y1)|
+la(Ap - A1x1, Ap - - - Arber)|
+la(Ap - A1x1, Ap -+ - A1y1)l
<lalllelllAn - - - Areall| Ay - - - Aryall
+ DlllallllAn - - - A1xall[Ag - - - Azedll
+ llallllAn - - - Aaxalll|An - - - Aayall
< grn(+o)) yazn(l+o0(D)

The last inequality is uniform i, x, y with ||x|| = 1, ||y|| = 1, le|]l = 1. Hence

SUP|¢ =1 SURx =1 SUR y|=1 109 | (Ap ... A1x, Ay ... A1Y)]
n
< lim (A1 + 22) (1 4 0(1)) = A1 + A2
n—oo

1 ~ .
lim —log|Cy,|l = lim
n—-oon n—oo
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To prove the inequality from the other side, consider the vectors
ei(n)=A,---Ate;, 1<i<d+1

Let I1,, be the parallelepiped generated gi(n), ..., es+1(n)) and let P, be the
parallelogram defined byi(n), e2(n). Denote the(d + 1)-dimensional volume of1,
by V,, and the two-dimensional area Bf by S,,. It follows from Oseledec’s theorem that

V, = |det(A, - - A1)| = M1t trarpn(d+o(d)

Since
Vi < Snllesm)|| - - - lleg1(n) ]l
we have
5 = V, o1t +rarn(1+o(1)) _ JUation(o®)
M7 leill 13 ko)
Notice that

2 2
|xi Axj(er(n), e2(n))|” = S;.
l<i<j<d+1
Hence for at least ong A x;,

Sn

\/%(d+1)d.

|xi Axj(Ay---Are1, Ay --- Are2)| >

Clearly,||x; A x;|| = 1. Thus

”6 ” - «/ESn
"= Jdd+ D)
which implies
_log|IC,  Jogetatin(dto)
jim 291Cnl iy 100¢ =1+ 22 O
n—00 n n—00 n

We next show that if (P8) holds then can be found explicitly. This fact is also well
known (see 14)).

LEMMA 4. Under conditions (P1), (P3)-(P5), (P8),
= [ loa(Lo(@) + boyudw). (49)

Proof. Consider again the sequence of vectef§ = T'w, i > 0, and the vectors
o) = (1, ). Formula (45) implies that

n—1
1 POROENG) )
l_[Lo(w(!))+b0_Zl 11_611+Z W;i_16j1- (50)
]:

Slnceci”i = max1<,<d+1c(i = exp(A1n(1 + o(1))), and 0< a) <1, 1<j<d,it
follows from (50) that

n—1 1
,l:([) m = exp(A1n(1+o0(1))). (51)
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Properties (P3)—(P5) imply that/dLo(w) + bo) € LY(Q2,dw). Hence, by Birkhoff’s
ergodic theorem,

iﬁ. 1
i g Lo(@®) + bo

1
A= /S;bg <m> uldw) = — /Q log(Lo(®) + bo) i (dw).
Comparing (51) and (52) we g&t = A. m|

Summarizing the results of this section we can prove the following.

= exp(An(l+ o(1))), (52)

where

THEOREM4. Suppose (P1)-(P6), (P8) hold. Then the algorithm is exponentially strongly
convergent almost everywhere if and only if there existsch that

1
X /Q Jr(@p(dw) < iy = — /Q log(Lo(@) + bo)u(dw). (53)

Proof. If (53) holds then obviously

1
MAA=F< %/ fr(@)p(dw) < A1.
Q

Hencel, < 0, which implies exponentially strong convergence.
On the contrary, if

1
E/ Jr(@)p(dw) > —/ log(Lo(®) + bo) i (dw),
Q Q
for all £ then 1
A+Aix=F = lim —/ fi(@)u(dw) > A1
k—oo k Jo

which impliesiz > 0. O

6. Numerical results in dimension three
In this section we will present numerical results which imply that in dimension three
the OJPA is exponentially strongly convergent with probability 1. As explained in the
introduction, this scheme can in principle be used to prove exponential strong convergence
in any dimension.

Basically, one has to fink such that

1 -~
%/ log || Ck (@) | n(dw) < —/ log(w1) pu(dw). (54)
A3 A3

The notation is that of the previous section applied to the OJPA in thedcas8. Notice

that it is enough to prove this inequality for an arbitrary norm in the space of 2-forms.
Sinceu(dw) is known explicitly and||5k(w)|| is a well-defined function o\ one can

find the integrals in (54) with arbitrary precision.

LEMMA 5.

- / log(w1) i (dw) = 0.489721901% (0.5 x 1079).
A3
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Proof. The invariant measure is given by

1
nldw) = —p(w1, w2, w3) dw dw dws,

K
where
( ) 1 < 1 n 1
w1, W2, W3) =
Pl 02 ) = it et w3\ (A + o)A+ w1 +w2) | A+ o)A+ w1+ ws)
1
+ +
A+ w)A+wr+w1) A+ w2)(l+ w2+ w3)
1 1 )
+ +
A+w3)l+wz+w1) A+ w3)(1+ w3+ w)
and
K=/ p(w1, w2, w3) dw1 dwp dws.
A3
We have

1 1 rwr w2
—/ log(w1) u(dw) = ——/ / / log(w1) p(w1, w2, w3) dws dwy dw
A3 K Jo Jo Jo

1
=—————— x —0.08172411697
01668786238 08 69
= 0.4897219015
(The calculations were performed using Maple V Release 5.) |

Consider the basis; = x; Ax;, 1 <i < j < 4 of the spacéF of 2-forms onR%:
eijlei,ej) =1, ejej,e))=—1 and ej(ex,e) =0 if (k,1)#(,J), (J, i),
where{es, e, e3, e4} is the standard basis Bf*. Any 2-forma € F can be written as
o = Z ajjeij, o €R.
1<i<j<4

We use the standard norm gnwhich is defined by
loell = > ol

By looking at the action oft on the basis ofF we can obtain a matrix representation of
A. We write

A=Y Pijeij-

1<i<j<4
Note thatg;; = Aex(e;, ;). By the definition ofA, we find
Aeyi(ei, ej) = ey (Ae;, Aej) = ayjaij — ajiay;.

Thus
Bij = ariaij — ajiay;.

This allows us to find an explicit matrix representation?ofand hence of}.
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LEMMA 6. Fork = 20,

1 ~
. / 10g||Cy (@)|| 12 (dw) = 0.44+ 0.01 (55)
A3

We have found the integral above using a Monte-Carlo integration scheme. Lemmas 5
and 6 indicate that condition (53) is satisfied. By changing the norm in (55), one can
probably reduce the value a&ffor which (53) is satisfied from 20 to 15, but not much
further. As was mentioned in the introduction, the rigorous calculation of (55) will be
carried out in L2]. Since Monte-Carlo methods do not provide rigorous bounds we
formulate our result as the following.

‘THEOREM 5. In dimension three, the OJPA is exponentially strongly convergent almost
everywhere.

7. Conclusions

In this paper we have presented a numerical scheme which in principle can provide a
rigorous proof of exponentially strong convergence of the OJPA in arbitrary dimension.
The scheme we present is simple from the theoretical point of view, although numerically
it can be substantially improved (se¥?]). The main advantage of the OJPA in this setting

is the existence of a formula for the density of the invariant measure, but this is not the
only advantage. As we will explain irLB] the OJPA shares many other nice properties
with one-dimensional continued fractions.

Our scheme could in principle be made to work for the JPA itself provided we have a
good approximation to the invariant measure. At the same time, almost everywhere strong
convergence of the JPA, OJPA and other algorithms seems to be a conceptual fact and
ideally a proof of this should not rely on the evaluation of concrete numbers. Unfortunately,
such a conceptual proof is lacking at present.

Lagarias has considered two exponentand n* which characterize the quality
of approximations provided by multi-dimensional continued fraction algorithb@ [
Consider an integer vectar= (g, p1, ..., pd) € Zi*l and denote by the corresponding
rational vector(p1/q, ..., pa/q) € Q¢. The quality of the approximation by of an
irrational vectorw can be characterized by the exponent

logll@ — ull

097 (56)

N, ©) = —
Note that
o —ul =g~ "1™, (57)

At the nth step of any approximation scheme such as the OJPA one gets a simplex with
rational vertices

(i) (@)
o [(Pi py () .
ul(n)_(q(i)(n)""’q(i)(n)>’ 1<i<d+ 1

Define

@)= max ni(n),w) and n;(@) = _min nu;@n), ).
1<i<d+1 1<i<d+1

https://doi.org/10.1017/5014338570000095X Published online by Cambridge University Press


https://doi.org/10.1017/S014338570000095X

Multi-dimensional continued fraction algorithms 1731

We can now define two approximation exponents which characterize the best and the worst
approximations of the OJPA or any other similar scheme. The best approximation exponent
for @ given by the OJPA is defined as

nosr(w) = lim supn, ().
n—o0
The uniform approximation exponent is defined as
* — limi *
NoJew) = Ilnrn)|or<1)f 1, (®).

Under conditions (P1)—(P4), (P7) plus the additional condition that

/ k(@)u(dw) < oo, (58)
Q
Lagarias has shown thajojp(@) = nogp and ng ;@) = nG;p are constant with
probability 1. Moreover,
A2
Sp=1-——=-.
Noasp %

It can be shown that condition (58) holds for the OJPA (48 [ According to a classical
result, for almost all,

1

noJrw) <1+ E
Obviously,ng;s@) < nosr@) which, provided., < 0, implies
Pal 1

AT E
Numerical simulations suggest that for the JBfhas a limit asi — oo and in the case
of the OJPAAL; scales like 1d. Based on our simulations the following conjecture seems

to be reasonable:
CONJECTURE For the JPA,

r(d) — Aip asd — oo

and
ra(d)d — 237 <0 asd — oo.
For the OJPA,
r(d)d — 29 asd - oo
and

r2(d)d? - 19P <0 asd - .

Numerical simulations give the following values of the exponéats., in dimension
three:
A3 =118 (3 =-023 193 =049, 1973 =-011

Notice that
DR 1R )

> .
A3 T A
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We expect that the same holds in any dimension. It is an interesting question whether or
not this is true in the limit a8 — oo, i.e. whether
A9 1A
0JP JP -
A M
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