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Using a variational optimization method we find the smallest flow perturbations
that can trigger kinematic dynamo action in Kolmogorov flow. In comparison to
previous work, a second-order mean field dynamo model is used to track down the
optimal dynamos in the high magnetic Reynolds number limit (Rm). The magnitude
of minimal perturbation flows decays inversely proportional to the magnetic Reynolds
number. We reveal the asymptotic high-Rm structure of the optimal flow perturbation
and the magnetic eigenmode. We identify the optimal dynamo as of α–Ω type, with
magnetic fluctuations that localize on a critical layer.
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1. Introduction
From the toroidal anti-dynamo theorem (Zel’dovich 1957), we know that pure one-

dimensional shear flows U= f (y)ex can never be kinematic dynamos for any value of
the magnetic Reynolds number Rm (see (2.4)). Transient growth is possible but there
can be no unbounded amplification of infinitesimal magnetic fields. But pure shear
flows are too perfect to be real. Small perturbations u in the flow will always exist
and from mean field dynamo theory (Braginsky 1964; Moffatt 1978; Krause & Rädler
1980) celebrated in this special issue, we know that such flow perturbations can trigger
dynamo action (see sketch of figure 1). In this study, I measure the minimal magnitude
of dynamo triggering flow perturbations as a function of Rm and I provide theoretical
elements that allow us to understand the optimal dynamo mechanism at high Rm.

In earlier work on the same topic (Herreman (2016), referred to as H16 hereafter),
I used a variational optimization algorithm similar to Willis (2012), Chen, Herreman
& Jackson (2015), Chen et al. (2018) to maximize kinematic dynamo action by
the perturbed shear flow U + u. Kolmogorov flow U = sin y ex was fixed as an
archetypical shear flow and the optimal perturbation u was sought within in the space
of all three-dimensional stationary, solenoidal vector fields with square integrable
vorticity. It is only recently that we know that large scale optimizations of this kind
are numerically feasible (see recent review by Kerswell 2018). The main result of
H16 was that minimal flow perturbations need magnitudes u ∼ Rm−1 to trigger a
dynamo at magnetic Reynolds number Rm. The minimal perturbation flow and the
destabilized magnetic field both had simple spatial structures involving few Fourier
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2 W. Herreman

FIGURE 1. In the kinematic dynamo approach, a one-dimensional shear flow U can only
transiently amplify magnetic field B. Well-chosen small perturbation flows can trigger
unbounded growth of B. We measure the minimal magnitude of such dynamo triggering
perturbations.

modes in the x and z directions. Furthermore, the magnetic field mode aligned with
the mean shear flow U and had a weak streamwise dependence. This suggested that
the optimal dynamo can be modelled as a mean field dynamo and this is what I do
in this new study.

By truncating the flow perturbation and magnetic field to a set of well-chosen
Fourier modes along x and z, the large scale optimization problem of H16 is
transformed into a much simpler optimization problem, where only the y-structure
of the fields is left free to vary by the optimizer. The magnetic field evolution is
constrained, not by the induction equation, but by a second-order mean field dynamo
model. These reductions conserve the essence of the optimal dynamo of H16 and
allow us to push the minimal flow perturbation study into the high Rm regime that
was previously inaccessible. Where Rm= 64 was the highest explored value in H16,
we can easily reach Rm = 103 with this new approach, thus providing access to the
asymptotically high Rm-limit of the optimal dynamo.

In § 2 we define the problem and explain the optimization method that we have used.
Section 3 gathers all the results. The new optimizations confirm the scaling law u∼
Rm−1 for the minimal magnitude of dynamo triggering flow perturbations. Intriguingly,
we find that the rescaled optimal perturbation flow v = Rm u is mainly independent
of Rm. In the high Rm structure of the magnetic eigenmode, we find a critical layer
phenomenon. In § 4, we identify the dynamo mechanism that seems to be of α–Ω
type and explain the origin of the critical layer. Section 5 concludes and discusses
some connections with the problem of subcritical transition to turbulence.

2. Methods

In an electrically conducting fluid with magnetic diffusivity η∗, bounded by a period-
ical cube of size L∗, we suppose a Kolmogorov shear flow U∗ = U∗ sin(2πy∗/L∗) ex.
Alone, this simple shear flow can never be a kinematic dynamo. We admit that the
Kolmogorov flow is perturbed by stationary and solenoidal flow perturbations u∗ with
magnitude

s∗ =
√

1
L∗3

∫
(∇∗ × u∗)2 dV∗ (2.1)
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and we want to measure how small s∗ can minimally be, so that U∗ + u∗ is a
kinematic dynamo. We non-dimensionalize the problem using L∗/2π, L∗/2πU∗, U∗
as length, time and velocity scales and denote all non-dimensional variables without
stars.

In H16, I optimized the full three-dimensional spatial structure of the perturbation
flow u(x) and the initial magnetic field B0 = B(x, 0) in order to maximize the
logarithm of the magnetic field norm

ln
(

1
8π3

∫
B2

T dV
)
. (2.2)

Here BT = B(x, T) is the magnetic field at finite time T . The evolution of B from
time t= 0 to T was constrained by the induction equation and Gauss’ law:

∂tB=∇× [(U+ u)×B] + Rm−11B, ∇ ·B= 0. (2.3)

The magnetic Reynolds number was defined as

Rm= U∗L∗
2πη∗

. (2.4)

During the optimization, the flow u varies and all that is required is that it remains
stationary, solenoidal ∇ · u and that it conserves a non-dimensional perturbation
magnitude

s=
√

1
8π3

∫
(∇× u)2 dV. (2.5)

Finally, it is necessary to normalize the initial magnetic field

1
8π3

∫
B2

0 dV = 1 (2.6)

to have a well-defined optimization problem. The maximization objective and the
mentioned physical constraints enter a Lagrangian functional

L = ln〈B2
T〉 − 〈Π1∇ · u〉 − λ1(〈(∇× u)2〉 − s2)

−〈Π2∇ ·B0〉 − λ2(〈B2
0〉 − 1)

−
∫ T

0
〈B†
· [∂tB−∇× ((U+ u)×B)− Rm−11B]〉 dt. (2.7)

We denote 〈· · ·〉 the volume average of the field and λ1, λ2, Π1, Π2, B† can be
interpreted as Lagrange multipliers. Conditions for the optimal are derived by
requiring that all variational derivatives need to vanish. This defines a big set of
Euler–Lagrange equations that can be solved iteratively in an optimization loop. At
each turn in the loop, direct (for B) and adjoint (for B†) induction equations are solved
back and forward, after which the gradients δL/δu and δL/δB0 can be computed.
These gradients serve to define updates for the flow u and B0 and they ultimately
vanish as u and B0 converge towards an optimal. The algorithm can converge to
local maxima so it is important to always launch several independent optimizations
for the same parameter set. It is also important to use long time horizons T ∼ 3–4Rm
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in order to maximize the exponential growth of the fastest growing magnetic field
eigenmode. This is crucial to separate unbounded amplification (kinematic dynamo)
from just transient amplification (no kinematic dynamo). The optimization of the
initial field structure B0 is only interesting because it allows us to use shorter T .

In a systematic series of optimizations, H16 varied both s and Rm keeping T= 3Rm.
For each optimized dynamo, one can measure the optimal dynamo growth rate γ as a
function of s and Rm. Interpolation in this data set allows us to measure the minimal
perturbation magnitude smin(Rm) as the magnitude s for which γ (smin,Rm)= 0, i.e. for
which the optimal dynamo reached its threshold. This yielded the scaling law smin ∼
Rm−1±0.1 where the exponent was slightly unsure due to the numerical limitations. Full
three-dimensional optimizations are rather costly and this explains why the moderate
value of Rm= 64 was the highest explored value in H16.

In the present study, we overcome the limitations on Rm by reformulating the
three-dimensional optimization problem of H16 as a much lighter, one-dimensional
optimization problem. We exploit the fact that the minimal flow perturbation u and
the magnetic eigenmode B found by H16 had relatively simple spatial structures,
involving few Fourier modes in the x (streamwise) and z (spanwise) directions.
Rather than optimizing the full three-dimensional structure of the perturbation flows,
we limit the search space to

u= u(y)+ {w(y)+ [w+(y)ei2z +w−(y)e−i2z]}eix + c.c.︸ ︷︷ ︸
u′(x,y,z)

(2.8)

with ∇ · u= 0. These four modes really dominated the structure in the optimal flow
perturbation of H16, so we can expect decent results with this severe truncation. Here
and elsewhere, the overline stands for x-independent (mean) part and primes for the
x-dependent (fluctuation) part. c.c. stands for complex conjugate. The spatial profiles
u(y), w(y), w±(y) are left free to vary by the optimization algorithm, but just as in
H16, we need to fix a normalization to the space of functions. With

s=
√
〈‖∇0,0 × u‖2〉 + 2〈‖∇1,0 ×w‖2〉 + 2〈‖∇1,2 ×w+‖2〉 + 2〈‖∇1,−2 ×w−‖2〉 (2.9)

and 〈· · ·〉 = (1/2π)
∫ 2π

0 . . . dy we use the same normalization as in H16. We denote
∇m,n =m ex + ey ∂y + n ez. For the magnetic field, we similarly truncate to a restricted
functional space

B= b(y, t)eiz + c.c.︸ ︷︷ ︸
B(y,z,t)

+ [b+(y, t)eiz + b−(y, t)e−iz]eix + c.c.︸ ︷︷ ︸
B′(x,y,z,t)

+ · · · (2.10)

with ∇ ·B= 0. In the optimal dynamo of H16, these three modes also dominate and
the x-independent field B was much larger than the x-dependent part B′. This means
that we can constrain the magnetic field evolution, not by the induction equation but
by a second-order mean field model. The usual equations for such model are

∂tB=∇× [(U+ u)×B] +∇× (u′ ×B′)+ Rm−11B (2.11a)
∂tB′ =∇× [(U+ u)×B′] +∇× (u′ ×B)+ Rm−11B′ + · · · (2.11b)

and here this further reduces to
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∂tb=∇0,1 × [(U+w)× b+w× b∗− +w∗ × b+ +w+ × b∗+ +w∗− × b−] + Rm−1∇2
0,1b

(2.12a)
∂tb+ =∇1,1 × [(U+w)× b+ +w× b+w+ × b∗] + Rm−1∇2

1,1b+ (2.12b)

∂tb− =∇1,−1 × [(U+w)× b− +w× b∗ +w− × b] + Rm−1∇2
1,−1b− (2.12c)

for the chosen truncation. As in H16, we also optimize the initial magnetic field
profiles b(y, 0), b±(y, 0) and normalize them as

1= 2〈b2
(y, 0)〉 + 2〈b2

+(y, 0)〉 + 2〈b2
−(y, 0)〉. (2.13)

Finally, we keep the same the maximization objective, changing ln〈B2
T〉 of (2.7) into

ln (2〈b2
(y, T)〉 + 2〈b2

+(y, T)〉 + 2〈b2
−(y, T)〉)︸ ︷︷ ︸

ET

. (2.14)

In the Appendix we provide further details on the Lagrangian functional L that
replaces (2.7) but is too long to write here. This new L sets the starting point for our
iterative algorithm and optimality conditions are deduced as usual. Since there are
more variables than in H16, it is slightly more laborious to manipulate the equations,
but apart from that, there are no particular difficulties. We spectrally decompose the
y-structure of the fields on a Fourier basis and use the same numerical schemes as
in H16 to time step direct and adjoint equations and to define updates.

In practice, we initialize the optimization loop with random u and B0 and converge
all optima up to an optimization error of ri 6 10−3 (defined as in H16) or alternatively,
up until ET varies by less than 10−8 between two successive iterations. We fix the final
time to T = 4Rm and once an optimum is found, we integrate the induction equation
once with the optimal configuration up to the time T = 16Rm. An exponential fit on
ET over the time lapse t ∈ [12Rm, 16Rm] allows us to measure the optimal dynamo
growth rate γ with high precision.

Due to the symmetries of the Kolmogorov flow, optimal configurations are
degenerate. We introduce a change in coordinates x̌= x0 +Rx with

x0 =
 a

πδ
c

 , R=
s1

s2
s3

 (2.15a,b)

and δ = 0, 1, a, c ∈ [0, 2π[ and sj = −1, 1. Note that R2 = I . Kolmogorov flow is
(anti-) symmetrical with respect to such coordinate changes and we can write a general
formula

U(x)= s1s2(−1)δ︸ ︷︷ ︸
S

RU(Rx). (2.16)

For all symmetry transforms (S= 1), it is easy to show that the Lagrangian remains
invariant provided that we transform flow perturbations and magnetic fields as

ǔ(x)=Ru(R(x− x0)), B̌(x, t)=RB(R(x− x0), t), . . . (2.17a,b)

These relations were needed to do a meaningful comparison of independently obtained
optima. In practice, optimal field configurations are translated, rotated and reflected to
a reference optimum for which we fix wz to be maximal and rea l in the middle of
the computational domain (y=π), arg(w+,y(π))= arg(w−,y(π)) and Im(w+,y(π)) > 0.
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(a) (b)

FIGURE 2. The optimization algorithm converges to either an optimal or a suboptimal
branch. In (a), we see that the optimal dynamo is always a steady dynamo, whereas the
suboptimal branch is an oscillatory dynamo (Rm=256, s=5.8×10−3). In (b), we compare
growth rate measures Re(γ ) of both optimal and suboptimal branches for various values
of s.

3. Results

As in H16, I performed a systematic series of optimizations varying both parameters,
s and Rm. For each parameter set several (6–12) independent optimizations were
done, starting from different random initial configurations. As shown in figure 2,
the algorithm can converge to steady dynamo states (Im(γ ) = 0) or to suboptimal
states that correspond to oscillatory dynamos (Im(γ ) 6= 0). Suboptimal branches were
only sporadically seen in the three-dimensional optimizations of H16 but are more
frequently observed in this mean field model. From now on, we focus on the optimal
dynamo branch that is steady.

3.1. Optimal growth rates and minimal magnitudes
In figure 3 we show the optimal dynamo growth rates γ as a function of s. Data
points are gathered per value of Rm as marked in the figure. Per group of Rm, we
see that the optimal growth rates increase monotonically with perturbation magnitude s.
From these data, we can interpolate the minimal perturbation magnitudes smin(Rm) at
which the optimal dynamo reaches its threshold (data points marked with red squares).
Numerical measures are given in table 1 and they are plotted as a function of Rm in
figure 4(a). The new mean field data points superpose with the data points of H16
and from moderate to high Rm, we now clearly observe a scaling law

smin ∼ Rm−1 (3.1)

that was suggested in H16. This scaling law can be reformulated more simply as a
lower bound on the perturbation flow magnetic Reynolds number

Rms = sRm= s∗L2
∗

4π2η∗
. (3.2)
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(a) (b)

FIGURE 3. Optimal growth rates γ (s,Rm) as a function of perturbation magnitude s and
for various Rm as marked in the figure.

(a) (b)

FIGURE 4. (a) From the optimal growth rate data, we interpolate minimal perturbation
magnitudes smin(Rm) and plot them a function of Rm. Our new data points align with
the data of H16 and the scaling law smin ∼ Rm−1 is clearly visible. (b) By plotting the
rescaled magnetic Reynolds number Rms,min = sminRm as a function of Rm we can make
a finer comparison. Notice how an asymptotic value Rms,min→ 1.3 is reached in the high
Rm limit.

Perturbations u in the explored class of functions can only trigger dynamos in
Kolmogorov flow when

Rms > Rms,min with Rms,min = sminRm. (3.3)

In figure 4(b), we plot Rms,min as a function of Rm. We clearly observe a high Rm-
limit (see also table 1) in which

lim
Rm→+∞

Rms,min ≈ 1.3± 0.1. (3.4)

https://doi.org/10.1017/S0022377818000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000508


8 W. Herreman

Rm 12 16 24 32 48 64 96
smin 1.65× 10−1 1.14× 10−1 6.99× 10−2 4.99× 10−2 3.15× 10−2 2.30× 10−2 1.48× 10−2

Rms,min 1.97 1.83 1.68 1.60 1.52 1.47 1.43

Rm 128 192 256 384 512 768 1024
smin 1.10× 10−2 7.18× 10−3 5.33× 10−3 3.52× 10−3 2.62× 10−3 1.73× 10−3 1.29× 10−3

Rms,min 1.40 1.38 1.36 1.35 1.34 1.33 1.32

TABLE 1. Minimal perturbation shear magnitudes smin as a function of Rm. The rescaled
magnetic Reynolds number Rms,min = sminRm reaches towards an asymptote estimated near
Rms,min→ 1.3± 0.01.

Mainly Rms decides whether there can be a kinematic dynamo or not in the perturbed
Kolmogorov flow, the precise value of Rm is less important, provided that it is high
enough.

3.2. Spatial structure of the minimal flow perturbation
We compute optimal configurations for parameters (s,Rm)= (smin(Rm),Rm) of table 1
at the optimal dynamo threshold (γ = 0). With the mentioned phase convention, we
find a reference optimal state for which we always have

ux, uz,wx,wz,w±,x,w±,z ∈R, wy,w±,y ∈ iR (3.5a,b)

and uy = 0. The y-structure of the flow components renormalized by s, is plotted in
figure 5, for low, intermediate and high Rm = 48, 112, 1024. At low Rm there is a
mean flow modification u 6= 0 as in H16. In the interval Rm ∈ [60, 130], we see that
the mean flow component gradually vanishes, but it is necessary to mention that this
figure for Rm= 112 is slightly uncertain. For Rm ∈ [60, 130], the optimizer does not
converge to a well-defined state with or without small mean flow. Small u apparently
does not affect the magnetic field amplification in a significant way. At high Rm, we
find that the optimal flow has a much simpler spatial structure without mean flow
u ≈ 0 and with w ≈ wz(y)ez and w+,x ≈ w−,x, w+,y ≈ w−,x, w+,z ≈ −w−,z. Combined
with (3.5) and (2.8) this suggests an asymptotic, high Rm optimal perturbation flow
of the type ux/s

uy/s
uz/s

=
 0

0
fz(y) cos x

+
gx(y) cos x cos 2z

gy(y) sin x cos 2z
gz(y) sin x sin 2z

 . (3.6)

The profiles f (y),gx(y),gy(y),gz(y) are shown in figure 6, for various Rm∈ [128,1024].
The optimal perturbation flow renormalized by s has a spatial structure that is mostly
independent of Rm at high Rm.

3.3. Spatial structure of the magnetic field
To compare magnetic field eigenmodes for different Rm, we rescale BT by the final
time norm

√
ET and we choose the sign of B so that bx(π) > 0. Figure 7 shows a

typical profile that is observed for high Rm = 1024. Clearly, the streamwise ‘mean’
component bx is much larger than all other field components: the magnetic field almost

https://doi.org/10.1017/S0022377818000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000508


Minimal perturbation flows that trigger mean field dynamos in shear flows 9

FIGURE 5. Spatial profiles of the components of u(y),w(y),w±(y) that define the minimal
perturbation flow u (see (2.8)). At low Rm = 48, the optimal perturbation flow is more
complex and there is a mean flow perturbation u 6= 0. At high Rm= 1024, u is simpler,
since u≈ 0, w≈ wzez and w± are strongly correlated. In an intermediate range of Rm ∈
[60, 130], we observe a passage between the low and high Rm states.

FIGURE 6. The minimal perturbation flow renormalized by s (or Rm) is mainly
independent of Rm at high Rm. Here we cumulate profiles fz(y), gx(y), gy(y), gz(y) that
appear in the simplified formula (3.6) for u/s, for various higher Rm= 128→ 1024.

aligns with the mean flow at high Rm. Fields b± are smaller as they should and seem
to localize near y=π. The field components by, bz are the smallest and they are not
as localized.

The different magnetic field variables vary differently with Rm. The maximal
absolute values of the components of b(y) and b±(y) are plotted as a function of Rm
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FIGURE 7. Spatial structure of the magnetic field modes b(y), b±(y) at high Rm= 1024.
The mean magnetic field b really is dominated by a strong x-component and is not
localized. The fields b±(y) are much smaller and localized near the y = π shear layer
(suggested by dashed lines).

in figure 8(a). This suggests power-law behaviour

bx ∼ 1
by ∼ Rm−1

bz ∼ Rm−1

 ,

b±,x ∼ Rm−1/3 ?

b±,y ∼ Rm−2/3

b±,z ∼ Rm−2/3.

 (3.7a,b)

All laws are well established except for b±,x ∼ Rm−1/3 that is not observed. Below
I provide arguments in favour of this scaling law. In figure 8(b), it is demonstrated
that the magnetic field b± localizes in Rm−1/3 wide layers. The left panel groups the
original field components rescaled in magnitude for different Rm plotting them versus
y−π. There is little are no alignment in the different profiles. In the right panel, the
same profiles are shown, this time as a function of the zoomed variable

ỹ= Rm1/3(y−π). (3.8)

This scaling law seems rather well adapted to align all the different high Rm profiles.
This kind of localization in O(Rm−1/3)-wide layers is typical for diffusive critical
layers (see for example Drazin & Reid 2004). A phase shift of π/4 simplifies the
interpretation of the magnetic field profiles since

bxeiπ/4, byeiπ/4 ∈R, bzeiπ/4 ∈ iR, Re(b+,zeiπ/4)=−Im(b−,zeiπ/4), . . . (3.9a−d)

This information together with that for the scalings of the magnitudes and considering
the initial truncation (2.10) brings us to a simplified formula for the asymptotic high
Rm magnetic field mode:Bx

By

Bz

=
 Ax(y) cos(z−π/4)

Rm−1 Ay(y) cos(z−π/4)
Rm−1 Az(y) sin(z−π/4)

 (3.10a)

and b′x
b′y
b′z

=
Rm−1/3a′x( ỹ ) sin(x+ψ ′x( ỹ )) cos(z−π/4)

Rm−2/3a′y( ỹ ) sin(x+ψ ′y( ỹ )) cos(z−π/4)
Rm−2/3a′z( ỹ ) cos(x+ψ ′z( ỹ )) sin(z−π/4)

 . (3.10b)
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(a)

(c)

(b)

FIGURE 8. Magnetic field structure and magnitude for varying Rm. (a) Scaling of
the maximal values of the different magnetic field components as a function of Rm.
(b) Localization of b± in Rm−1/3 wide layers around y = π. (c) Renormalized spatial
profiles of the magnetic field for Rm= 128→ 1024 dephased by π/4 with respect to the
flow u.

Figure 8(c) displays all high Rm profiles of Aj(y), a′j( ỹ ), ψ ′j ( ỹ ) for j= x, y, z. All the
optimal fields align reasonably well. Note that Az changes sign abruptly, probably in
the O(Rm−1/3) area around y= π. Notice also the proportionality a′y( ỹ )∼ a′z( ỹ ) and
the nearly linear phase slips in

ψ ′y( ỹ )≈ψ ′z( ỹ )≈ 4.5ỹ (3.11)

and a jump from −π/2 to π/2 as we pass ỹ=−5→+5. The phase ψ ′x( ỹ ) makes a
slip that is three times larger, from nearly −π/4→π for negative ỹ and from −π→
π/4 for positive ỹ in a similar ỹ-interval. The strange behaviour of the phase curves
when |̃y| � 5 is irrelevant since the field b′ becomes too small there.

4. The optimal dynamo mechanism
This section provides some insights in the optimal dynamo mechanism. With a

perturbation flow u of magnitude Rm−1 it is possible to maintain a mean field dynamo
of α–Ω type. The different scalings for the magnitude and localization of the magnetic
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FIGURE 9. The optimal dynamo is of α–Ω type with the particularity that magnetic field
fluctuations localize on Rm−1/3 wide critical layers around y = 0, π, where U vanishes.
This gives rise to inner and outer regions where the scalings for the magnetic fluctuation
are different.

field variables are also explained. A sketch of the dynamo loop at threshold is given
in figure 9 and each of the different steps is discussed in detail.

4.1. Starting with a dominant streamwise mean magnetic field Bx ex

The magnetic field driven by the optimal dynamo basically aligns with the mean
Kolmogorov flow and has no streamwise dependence. Approximately, this means that

B≈ Bx(y, z) ex. (4.1)

In the following, one may consider Bx ∼ 1.

4.2. The interaction ∇× (u×B) generates a localized magnetic fluctuation b′

The mean magnetic field Bxex is deformed by the optimal perturbation flow that we
rewrite as u = Rm−1v. Since Rm−1 ∼ s at the optimal dynamo threshold, v is an
order-one flow. Within the framework of a second-order mean field dynamo model,
the magnetic field fluctuation b′ that is driven, needs to satisfy

∇× (U× b′)+ Rm−1∇2b′ =−Rm−1
∇× (v×B), ∇ · b′ = 0. (4.2)

This set of equations is overdetermined. In practice, we can focus on

−sin y∂xb′j + Rm−1(∂2
xx + ∂2

yy + ∂2
zz)b
′
j =−Rm−1Bx∂xvj (4.3a)

and here and further, we use the index j to refer to j = y, z components. The
solenoidality requirement

∂xb′x + ∂yb′y + ∂zb′z = 0 (4.3b)

yields b′x. In the high Rm-limit, one can propose an asymptotic solution to this set of
equations and a natural guess for the leading-order magnetic fluctuation would be

b′y = Rm−1c′y + · · · (4.4)
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with c′y of order 1. Injected into (4.3a), the leading balance is at order Rm−1 and
fixes c′j

−sin y∂xc′j = Bx∂xvj ⇒ c′j =
Bxvj

sin y
. (4.5)

This diffusionless solution is not correct everywhere in space. In the vicinity of y=
0,π where U vanishes, it is singular. This means that we must account for a possible
sharp variation of the fields in a critical layer spanning the local neighbourhoods of
y = 0 and/or y = π. To model the critical layer, we introduce a zoomed variable ỹ
through the relation

y=π+ Rm−β ỹ (4.6)

for the layer around y=π. We leave β > 0 free to determine. Localization of the field
structure of b′ means that we need to replace

b′y(y)→ b′y( ỹ )
b′z(y)→ b′z( ỹ )

}
, sin y→−Rm−β ỹ+O(Rm−3β) (4.7a,b)

in this (inner) region. Equation (4.3a) then reduces to

Rm−β ỹ∂xb′j + (Rm−1+2β∂ỹ̃y + Rm−1(∂2
xx + ∂2

zz))b
′
j =−Rm−1Bx∂xvj|π +O(Rm−1−β). (4.8)

The notation |π refers to the field evaluated at y=π. To find a solution in high Rm-
limit, one has to admit a different leading-order expansion inside the critical layer

b′j = Rm−αd′j + · · · (4.9)

with d′j of order 1 and the exponent 0 < α < 1 to be determined. Injecting this
expansion in the (4.8), we find that the dominant balance inside the critical layer is

Rm−β−α ỹ∂xd′j + Rm−1+2β−α∂ỹ̃yd′j =−Rm−1Bx∂xvj|π (4.10)

for j= y, z. All terms have the same magnitude if

β + α = 1
2β − α = 0

}
⇒ α = 2/3

β = 1/3

}
(4.11)

which explains the O(Rm−1/3) localization of b′ and the scaling laws for the
magnitudes of b±,y, b±,z. The scaling law for the streamwise component b±,x can
be derived from the solenoidality requirement, that becomes

∂xb′x + Rm1/3∂ỹb′y + ∂zb′z = 0 (4.12)

in the critical layer region. This implies that

b′x = Rm−1/3d′x + · · · (4.13)

with d′x of order 1, which is the scaling that was suggested for b±,x.
In principle, it is possible to pursue the theoretical analysis of the critical layer and

to obtain an inner solution formally written in terms of Airy functions. This inner
solution needs to be asymptotically matched to the outer solution (4.5) in order to
find the magnetic field fluctuation b′ everywhere. This is a rather technical procedure
that is not detailed here.
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4.3. The interaction ∇× u× b′ generates a small normal mean field By ∼ Rm−1

Magnetic field and flow fluctuations interact to regenerate small mean fields B: this
is the essence of the so-called α-effect of dynamo theory. The α-effect can generate
all three mean field components weakly, but only the α-regeneration of By is crucial
in the dynamo mechanism. Denoting u= Rm−1v, we find the equation for By

Rm−1(∂2
yy + ∂2

zz)By = Rm−1(v · ∇)b′y − Rm−1(b′ · ∇)vy. (4.14)

On the right-hand side of (4.14) we find b′ and since this field is localized near
the critical layer, we must consider the balances in the equation, for inner and outer
regions separately. Far away from the critical layer, we know that b′ ∼ Rm−1. This
means that the right-hand side of (4.14) is O(Rm−2). A balance with the diffusive
terms on the left-hand side is only possible when

By = Rm−1Cy + · · · (4.15)

with Cy an order-one field. This indeed corresponds to the scaling we have found for
By. In the critical layer region, the balance is different due to the localization. There
we have

(Rm2/3∂2
ỹ̃y +O(1))By = Rm−1/3(vy∂ỹd′y − d′x∂xvy − d′y∂ỹvy)+O(Rm−2/3). (4.16)

Equilibrium between both sides requires that

By = Rm−1Dy + · · · (4.17)

in the inner region, with Dy an order-one field. All combined, it seems that the mean
magnetic field component By ∼ Rm−1 everywhere. This suggests that the generation
of By by the α-effect can occur as much inside as outside the critical layer. It also
explains why By is much less localized than b′.

For the dynamo process Bz is of no real importance. If desired, one can calculate
Bz using the solenoidality of the mean magnetic field,

(outer) : ∂yBy + ∂zBz = 0, (inner) : Rm1/3∂ỹBy + ∂zBz = 0. (4.18a,b)

This yields Bz ∼ Rm−1 in the outer region which is what we observe, but possibly
Rm−2/3 in the critical layer region. This higher value is not really what has been
observed although figure 8(a), but also the left panel of figure 8(c) (yellow curves
do not align as much near y=π) indeed suggest that Bz may be slightly bigger than
Rm−1.

4.4. The transverse By ∼ Rm−1 is sheared to regenerate Bx ∼ 1

In the final step, we consider the regeneration of a large streamwise mean field Bx∼ 1
out of the small By∼Rm−1 due to the background shear. This is the essence of what
dynamo theory calls the Ω-effect. The equation for Bx is

Rm−1(∂2
yy + ∂2

zz)Bx =−By cos y− Rm−1(∇× v× b′)x. (4.19)
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Far away from critical layer regions, we know that both b′ and By ∼ Rm−1. This
implies that the magnetic stretching term By cos y really is dominant on the right-hand
side. With (4.15), the leading-order balance for Bx becomes

(∂2
yy + ∂2

zz)Bx =−Cy cos y, (4.20)

with Cy of order 1. This implies that the large Bx ∼ 1 that we started with can be
regenerated away from the critical layer. In the critical layer region and keeping only
the leading-order terms, we find that

Rm−1/3∂2
ỹ̃yBx =−Rm−1Dy + Rm−1(vy∂ỹd′x)+O(Rm−4/3) (4.21)

that implies
∂2

ỹ̃yBx = 0. (4.22)

A simple solution to this equation is that Bx is independent of ỹ, which is compatible
with what we observe: Bx does not vary by much in the critical layer.

4.5. Summary
In passing through these different steps we have completed one turn in the dynamo
feedback loop at threshold. With perturbation flows u of magnitude Rm−1, it is
possible to maintain mean field dynamos with dominant Bx ∼ 1 it the high-Rm limit.
Magnetic fluctuations of magnitude b′y, b′z ∼ Rm−2/3 to b′x ∼ Rm−1/3 can develop on
Rm−1/3 wide critical layers. The α-effect occurs in this layer but is also active in
the bulk and it allows us to regenerate By ∼ Rm−1. This small normal mean field is
amplified and rotated by the shear to regenerate Bx ∼ 1, in what we usually call the
Ω-effect in dynamo theory.

5. Conclusion
One-dimensional shear flows such as the Kolmogorov flow are never kinematic

dynamos on their own but the addition of small flow perturbations can easily trigger
dynamo action. This was suspected more than 50 years ago by the scientists that
developed the mean field dynamo theory celebrated in the present special issue. But
where mean field dynamo theory provided the mechanisms, it did not allow us to
measure what was minimally required on a perturbation flow for it to trigger a
dynamo.

In H16 and now also in this article, I have shown that variational optimization
algorithms can be used to numerically isolate the smallest possible fluctuation flows
that can trigger a dynamo in shear flows. Compared to H16, I replaced the full
three-dimensional search space of stationary perturbation flows u and magnetic
fields B with a well-chosen set of modes. This was not a blind guess as it was
directly inspired by the outcome of H16. From a practical point of view, this
truncation reduces a (costly) three-dimensional optimization problem to a (light)
one-dimensional optimization. This allowed us to track the optimal dynamo into the
high Rm asymptotic regime, inaccessible in H16. From a physical point of view, we
optimized the dynamo within the framework of a second-order mean field dynamo
model.

The outcome of this study is very satisfying. First of all, we have confirmed the
scaling law smin∼Rm−1 for the minimal magnitude of dynamo triggering perturbation
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flows. As a simple reinterpretation of this scaling law, we now propose that a dynamo
requires perturbation magnetic Reynolds numbers Rms = s∗L∗2/4π2η∗ in the high Rm-
limit. Physically, this tells us that the true magnitude U∗ of the dominant mean flow
is not important for the onset of dynamo at high Rm=U∗L∗/4πη∗.

As we could reach into the high Rm-regime, we were also able to identify that the
optimal perturbation flow rescaled by s (or Rm−1) has a spatial structure that is almost
independent of Rm. This is a compelling feature that still needs to be explained. We
were able to propose a simplified structure for the optimal perturbation flow.

The magnetic field driven by the optimal dynamo also shows signs of an underlying
high Rm-asymptotic structure. We were able to identify a simplified expression for the
magnetic eigenmode. Analysis of the dynamo mechanism suggest that the high Rm
optimal dynamo is a mean field dynamo of α–Ω type, with a particularity that at least
part of the α-effect occurs on a critical layer. Similar high Rm-mean field dynamos
with critical layers appear in the context of the Braginsky dynamo (Braginsky &
Roberts 1975). It is possible that our optimal dynamos may be correctly modelled
using that particular high-Rm approach to mean field dynamo action.

The dynamo problem that we have studied here is very similar to the
hydrodynamical problem of subcritical transition to turbulence. Shear flows such
as Couette flow or pipe flow are linearly stable for all values of the Reynolds
number Re, but they do become turbulent in experiments beyond some value of Re.
The transition is triggered by finite amplitude flow perturbations and it has also been
of interest to measure their minimal magnitude as a function of Re. Several scaling
laws have been proposed from theoretical, numerical or experimental studies and
the particular law umin ∼ Re−1 similar to what we found, also appears in Waleffe
(1997), Chapman (2002), Hof, Juel & Mullin (2003), Ben-Dov & Cohen (2007),
Mellibovsky & Meseguer (2007), Peixinho & Mullin (2007), Duguet, Brandt &
Larsson (2010), Cherubini, Palma & Robinet (2015). Apart from that, one can notice
that the α–Ω diagram of figure 9 is very similar to those diagrams that are used
to explain the self-sustaining process (SSP) (Waleffe 1997). If in figure 9, B were
to be a flow instead of a magnetic field, then Bx would be a strong streamwise
mean flow perturbation often called a ‘streak’ in subcritical transition literature. The
smaller normal field By, Bz would carry the name ‘roll’ and u and b′ would be the
‘wavy disturbances’ that ‘nonlinearly regenerate’ By. Critical layers similar to the
ones observed in the present study also occur in the high Re-limit descriptions of
self-sustaining states (Wang, Gibson & Waleffe 2007; Hall & Sherwin 2010; Deguchi
& Hall 2015). Finally, we can suggest Biau & Bottaro (2009), Pralits, Bottaro &
Cherubini (2015) to any mean field dynamo scientist. These fairly recent articles are
true hydrodynamical analogues of our α–Ω mean field dynamos. The hydrodynamical
study of (Pralits et al. 2015) is particularly close to what we did in this article.

Considering the 50 year heritage of mean field dynamo theory, it is possible that
some of our mean field dynamo tools transpose to the subcritical transition problem.
Conversely, with so many flows that can alone not be dynamos, there is an immense
potential in dynamo theory for the variational optimization methods that are now
being deployed in the subcritical transition problem. Nonlinear dynamos that are
self-sustaining in ways similar to the SSP of Waleffe (1997) have been proposed
by Rincon, Ogilvie & Proctor (2007), Rincon et al. (2008) and they were found by
Herault et al. (2011), Riols et al. (2013, 2015) in shearing boxes and more recently
in quasi-Keplerian Taylor–Couette flows (Guseva et al. 2017). This implies that
subcritical nonlinear dynamo branches exist in shear flows and we now need to map
out how much flow or magnetic field perturbation is necessary to trigger transition
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FIGURE 10. Phase space representation of the magnetohydrodynamical boundary Σ that
separates the laminar shear flow state u= b= 0, from the nonlinear dynamo state. Pure
flow perturbations with magnitudes u> umin (u) or pure magnetic field perturbations with
magnitudes b> bmin (p) can trigger transition to a nonlinear dynamo, but in general we
expect that a combination of both u and b also triggers the transition. Slightly above or
under a state (?) on the boundary Σ , perturbations u and b can either grow out towards
a nonlinear dynamo state (black full line) or relaminarize back to u, b= 0 (black dotted
line). We expect this nozzle shape of the surface Σ , since minimal magnitudes of dynamo
triggering perturbations u and b likely decrease with increasing Reynolds or magnetic
Reynolds numbers Re or Rm.

to such nonlinear dynamo states. Figure 10 gives a phase space impression of how
the ‘laminar flow’–‘nonlinear dynamo’ boundary may look for nonlinear dynamos in
shear flows. With a variational method that can optimize magnetic field growth in
the full magneto hydro dynamical (MHD) problem, it should be possible to locate
the position of the edge of dynamo Σ in this diagram. I hope to report on this topic
in the future.
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Appendix A. Supplementary information on optimization loop
The Lagrangian functional (2.7) needs to be modified in order to take into account

the truncation of the flow, the magnetic field and the mean field equations (2.12). With
many more explicit variables, this looks awkward

L = ln(2〈|b(y, T)|2〉 + 2〈|b+(y, T)|2〉 + 2〈|b−(y, T)|2〉)
−〈p∇0,0 · u〉 + 〈p∇1,0 ·w〉 + 〈p+∇1,2 ·w+〉 + 〈p−∇1,−2 ·w−〉
− λ1(〈(∇0,0 × u)2〉 + 2〈(∇1,0 ×w)2〉 + 2〈(∇1,2 ×w+)2〉 + 2〈(∇1,−2 ×w−)2〉 − s2)

−〈q∇0,1 · b〉 + 〈q+∇1,1 · b+〉 + 〈q−∇1,−1 · b−〉
− λ2(2〈|b(y, 0)|2〉 + 2〈|b+(y, 0)|2〉 + 2〈|b−(y, 0)|2〉 − 1)

−
∫ T

0
〈b†
· (∂tb− · · ·)+ b†

+ · (∂tb+ − · · ·)+ b†
− · (∂tb− . . .)〉 dt. (A 1)

https://doi.org/10.1017/S0022377818000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000508


18 W. Herreman

In the last line, we abbreviated the notation by suggesting (2.12) of the mean field
model. We introduced the fields p̄, p, p± and q̄, q± to express the solenoidality
constraints. Adjoint magnetic fields are truncated as in (2.10) and denoted by the
variables b†

, b†
±. The non-trivial Euler–Lagrange equations are found by partial

integration. The equations δL/δb= 0, δL/δb±= 0 define the adjoint system of (2.12):

−∂tb
† = (∇0,1 × b†

)× (U+w)
+ (∇1,−1 × b†

−)
∗ ×w+ (∇1,1 × b†

+)×w∗

+ (∇1,1 × b†
+)
∗ ×w+ + (∇1,−1 × b†

−)×w∗− + Rm−1∇2
0,1b†

(A 2)

−∂tb†
+ = (∇1,1 × b†

+)× (U+w)

+ (∇0,1 × b†
)×w+ (∇0,1 × b†

)∗ ×w+ + Rm−1∇2
1,1b†
+ (A 3)

−∂tb†
− = (∇1,−1 × b†

−)× (U+w)

+ (∇0,1 × b†
)∗ ×w+ (∇0,1 × b†

)×w− + Rm−1∇2
1,−1b†

−. (A 4)

The variational derivatives needed to update the flow variables are

δL
δw
= 2Re

∫ T

0
[b∗ × (∇0,1 × b†

)+ b∗+ × (∇1,1 × b†
+)+ b∗− × (∇1,1 × b†

−)] dt

+ 2λ2∇2
0,0w+∇0,0p (A 5)

δL
δw
=
∫ T

0
[b− × (∇0,1× b†

)+ b+ × (∇0,1× b†
)∗ + b∗ × (∇1,1× b†

+)+ b× (∇1,−1× b†
−)] dt

+ 2λ2∇2
1,0w+∇1,0p (A 6)

δL
δw+
=
∫ T

0
[b+ × (∇0,1 × b†

)+ b× (∇1,1 × b†
+)] dt+ 2λ2∇2

1,2w+ +∇1,2p+ (A 7)

δL
δw−
=
∫ T

0
[b− × (∇0,1 × b†

)∗ + b∗ × (∇1,−1 × b†
−)] dt+ 2λ2∇2

1,−2w− +∇1,−2p−. (A 8)

The variational derivatives needed to update the initial magnetic field are

δL
δb0
= b†

0 − 2λ2b0 +∇0,1q,
δL
δb±,0

= b†
±,0 − 2λ2b±,0 +∇1,±1q±. (A 9a,b)

In the numerical implementation of the optimization algorithm, we expand all fields
in Fourier series along y, e.g.

b(y, t)=
N/2∑

k=−N/2+1

b̂(k, t)eiky. (A 10)

The optimization loop itself follows the same path as in Willis (2012), Chen et al.
(2015), Herreman (2016). The direct and adjoint mean field equations are integrated
forward and backward in time using a standard 2/3 dealiased pseudospectral solver
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(exact integration rule for diffusion, second-order predictor–corrector for product
terms). Time integrals in δL/δw, δL/δw and δL/δw± are calculated using Simpson’s
rule. The flow variables and the initial magnetic fields are updated using the same
scheme as in Chen et al. (2015).
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