
J. Fluid Mech. (2016), vol. 794, pp. 310–342. c© Cambridge University Press 2016
doi:10.1017/jfm.2015.750

310

Consistent nonlinear stochastic evolution
equations for deep to shallow water
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Nonlinear interactions between sea waves and the sea bottom are a major mechanism
for energy transfer between the different wave frequencies in the near-shore region.
Nevertheless, it is difficult to account for this phenomenon in stochastic wave
forecasting models due to its mathematical complexity, which mostly consists
of computing either the bispectral evolution or non-local shoaling coefficients. In
this work, quasi-two-dimensional stochastic energy evolution equations are derived
for dispersive water waves up to quadratic nonlinearity. The bispectral evolution
equations are formulated using stochastic closure. They are solved analytically and
substituted into the energy evolution equations to construct a stochastic model with
non-local shoaling coefficients, which includes nonlinear dissipative effects and slow
time evolution. The nonlinear shoaling mechanism is investigated and shown to
present two different behaviour types. The first consists of a rapidly oscillating
behaviour transferring energy back and forth between wave harmonics in deep water.
Owing to the contribution of bottom components for closing the class III Bragg
resonance conditions, this behaviour includes mean energy transfer when waves
reach intermediate water depths. The second behaviour relates to one-dimensional
shoaling effects in shallow water depths. In contrast to the behaviour in intermediate
water depths, it is shown that the nonlinear shoaling coefficients refrain from their
oscillatory nature while presenting an exponential energy transfer. This is explained
through the one-dimensional satisfaction of the Bragg resonance conditions by wave
triads due to the non-dispersive propagation in this region even without depth changes.
The energy evolution model is localized using a matching approach to account for
both these behaviour types. The model is evaluated with respect to deterministic
ensembles, field measurements and laboratory experiments while performing well
in modelling monochromatic superharmonic self-interactions and infra-gravity wave
generation from bichromatic waves and a realistic wave spectrum evolution. This lays
physical and mathematical grounds for the validity of unexplained simplifications in
former works and the capability to construct a formulation that consistently accounts
for nonlinear energy transfers from deep to shallow water.
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Nonlinear stochastic evolution equations for water wave shoaling 311

1. Introduction
Nonlinear energy transfer is a dominant process that affects the evolution of wave

spectra both in deep water and in the shoaling region. The nonlinear interactions in
deep water consist of wave quartet interactions at leading order. These wave quartets,
which act at cubic nonlinearity in wave steepness, satisfy resonant conditions of the
wave frequencies and wavenumbers. This type of evolution is rather a weak one that
requires large spatial distances (time) of thousands of wavelengths (wave periods) in
order to have a considerable effect. In intermediate to shallow water, the nonlinear
interactions act much faster with significant energy transfers between triads of waves.
This is possible due to the influence of the bottom, which enables the resonant
conditions to be satisfied already in quadratic nonlinearity. Furthermore, when waves
shoal, their steepness increases, and, as nonlinear interactions are proportional to the
wave steepness, the nonlinear energy transfer becomes even more dominant in this
region.

Various wave models address the problem of nonlinear interactions in the near-shore
environment. Boussinesq-type equations reduce one spatial dimension assuming
the depth is small compared to the wavelength. These equations can compute the
nonlinear time-domain problem with great accuracy (see e.g. Madsen, Fuhrman &
Wang 2006), but result in a very high computer effort, which prevents their application
to large regions. Other methods assume a set of slowly evolving harmonic wave
components with a vertical profile that fits the linear motion over a flat bottom (mild
slope-type assumptions). This approach results in a set of evolution equations for
each harmonic that are coupled with quadratic nonlinear terms. These equations can
be hyperbolic (e.g. Agnon et al. 1993; Bredmose et al. 2005), elliptic and parabolic
(e.g. Kaihatu & Kirby 1995; Tang & Ouellet 1997; Janssen, Herbers & Battjes 2008;
Toledo & Agnon 2009; Toledo 2013; Sharma, Panchang & Kaihatu 2014). Several
nonlinear interaction terms were compared by Janssen (2006) for one-dimensional
shoaling, and the formulation of Bredmose et al. (2005) was found to be superior.

In deep water and when ambient currents are neglected, resonant quartets (cubic
nonlinearities) are the main mechanism of energy transfer between the different
spectral components. In this region, wave triads (quadratic nonlinearities) cannot
close the resonance conditions due to the nonlinearity of the dispersion relation.
These interactions transfer energy back and forth with no mean energy transfer.
When the waves propagate into intermediate and shallow water, the influence of the
changing bottom depth enables the closing of a resonance condition, which results
in rapid and large energy transfers between the spectral components. In the lowest
order, this condition is the class III Bragg resonance. It takes into account three wave
components and one bottom component (see Liu & Yue 1998).

The advantage of using a stochastic approach is the significant reduction in
calculation effort, as, by averaging over the wave phases, the Nyquist limitation no
longer restricts the numerical solution. In addition, for large calculation regions, there
is currently no adequate physical model for transferring wind momentum to wave
growth rather than using empirical formulae. Several works on stochastic wave models
that account for nonlinear interactions have been presented. Polnikov (1997) and
Janssen (2009) utilized Hamiltonian theory for a homogeneous sea over finite depth.
Agnon & Sheremet (1997, 2000) and Eldeberky & Madsen (1999) presented stochastic
evolution equations based on hyperbolic models taking into account one-dimensional
interactions. Herbers & Burton (1997) and Kofoed-Hansen & Rasmussen (1998)
derived stochastic evolution equations starting from a Boussinesq-type model with the
latter presenting as well two-dimensional calculations for the quasi-two-dimensional
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problem (no bottom changes in the lateral direction). Janssen et al. (2008) derived
a stochastic model, which was based on a deterministic parabolic equation model.
Their model showed the importance of accounting for wave dissipation for limiting
the nonlinear energy transfer.

Stochastic wave models are commonly written as evolution equations for the wave
energy. In these models, quadratic nonlinearities are represented as bispectral terms,
which are composed by combinations of three wave energy spectral components.
Evolution equations for bispectral terms can also be written, resulting in dependence
on higher-order terms. As in the turbulence problem, a stochastic closure relation
is applied in order to relate higher-order terms (trispectra, etc.) to the lower-order
ones (wave energy and the bispectra). Owing to the vast amount of permutations, the
bispectral evolution equations induce a heavy computational load, which makes these
two-equation models inapplicable for operational wave forecasting models. Various
works have addressed this limitation specifically for these models, which are based on
a stochastic hyperbolic wave action equation. Eldeberky & Battjes (1995) simplified
the one-dimensional bispectral equations by assuming negligible bispectral changes,
a flat bottom and energy transfer to higher harmonics of each spectral component
(self-interactions) without accounting for other energy transfers between different
triad combinations and energy that is transferred to lower harmonics. Becq-Girard,
Forget & Benoit (1999) relaxed some of these assumptions by accounting for all
one-dimensional triad interactions. These simplifications resulted in an algebraic
solution of the bispectra, which allowed its substitution in the energy evolution
equation and hence constructing a one-equation model.

Agnon & Sheremet (1997, 2000) presented an analytical solution of the bispectra
ordinary differential equation without the aforementioned simplifications. This allowed
for construction of a more accurate one-equation model. Still, because of this
operation, the resulting interaction coefficients became non-local (i.e. containing
integrals over space), and therefore difficult to apply to forecasting models. This
difficulty was overcome in the works of Stiassnie & Drimer (2006) and Toledo
& Agnon (2012), where the non-local operator was separated into a mean energy
transfer component and an oscillatory integral one, which was neglected. In these
works, bottom slopes were shown to have a significant effect and without it the
nonlinear mechanism inflicts no mean energy transfer. In contrast to this finding, the
aforementioned works of Eldeberky & Battjes (1995) and Becq-Girard et al. (1999)
simplify the mathematical formulation by assuming flat bottom conditions. Yet these
works show to a certain extent a qualitatively accurate physical behaviour. Here lies a
question. How can this contradiction be settled? How is it that one branch of models
results in no mean energy transfers over a flat bottom while the other assumes flat
bottom conditions for its derivation and yet both may present reasonable results when
compared to experimental measurements?

This paper aims to settle this conflict. The answer in a nutshell is that both
assumptions have physical reasoning but for different nonlinear wave evolution
conditions. For the cases of one- and two-dimensional intermediate water depths or
two-dimensional evolution in shallow water depths, bottom depth changes dominate
the mean energy transfer. Nevertheless, for the case of one-dimensional nonlinear
interactions in shallow water depths, strong mean energy transfers occur even over
flat bottoms. This is explained through the possibility of closing the class III Bragg
resonance condition without bottom components in the one-dimensional shallow water
case due to the non-dispersive nature of water wave propagation in this region.

In light of the above understanding, the localization approach is reinspected and the
neglected integral is shown to change its behaviour from oscillatory to exponential
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Nonlinear stochastic evolution equations for water wave shoaling 313

under one-dimensional shallow water conditions. Therefore, under these conditions,
the integral cannot be neglected. A new localization formulation is constructed for
these conditions, where the integral is approximated and solved analytically. As a final
step, the two localization approximations are matched to provide a consistent deep to
shallow nonlinear stochastic model.

The paper is constructed as follows. In § 2 we present an explanation of the
one-dimensional mechanism of triad interactions in intermediate and shallow water.
Deterministic evolution equations are derived following Bredmose et al. (2005) while
adding slow time evolution and dissipation terms in § 3. In § 4, stochastic evolution
equations are derived in the manner of Agnon & Sheremet (1997, 2000). Advancing
the methods of Stiassnie & Drimer (2006) and Toledo & Agnon (2012), the nonlinear
interaction coefficients are then localized in two ways, one for intermediate water and
the other for shallow water. In § 5, the model is solved numerically and compared
to experimental and theoretical results for the cases of superharmonic self-interaction,
subharmonic interaction in shallow water, and deep to shallow water shoaling. The
model is also compared to field measurement for the case of a realistic wave spectrum
evolution. Conclusions and closing remarks are given in § 6.

2. Bragg resonance in shallow and intermediate water depths
In order to better understand the nonlinear interactions in the shoaling region, it is

helpful to observe the problem in the frequency and wavenumber domains with respect
to resonant interactions. These resonant interactions (as well as near-resonant ones)
represent the majority of energy transfer within the wave spectrum. For a wave field in
deep water, interactions among different wave components become resonant at order
m (in wave steepness), if the wavenumbers kj and the corresponding frequencies ωj
satisfy resonance conditions. This requires the sum of wavenumbers and frequencies
to satisfy the following relations:

ω1 ±ω2 ± · · · ±ωm+1 = 0, k1 ± k2 ± · · · ± km+1 = 0, m > 1. (2.1a,b)

As the wavenumber and the frequency of each wave are related through the
dispersion relation, the satisfaction of (2.1) in deep water cannot occur at m = 2
(i.e. between wave triads). Therefore, the leading-order interaction is a quadruplet
of waves at m = 3, which is supplemented by weaker interactions at m = 4, 5, . . . .
In shallow to intermediate waters, a bottom-induced free-surface interference, which
does not satisfy the dispersion relation, can allow the satisfaction of this resonance
relation (2.1) even at order m = 1. These resonant interactions, which consist of
bottom components in addition to surface wave ones, relate to the so-called Bragg
resonance.

The linear class I and class II Bragg resonances occur at order m = 1 with one
bottom component and with two bottom components, respectively. The nonlinear class
III Bragg resonance occurs at order m=2 with one bottom component (see Liu & Yue
1998). The class I and class II Bragg resonances are the wavenumber representation of
the main linear reflection and refraction effects (see Agnon 1999), whereas the class
III Bragg resonance is the main nonlinear triad interactions in shallow to intermediate
depths. Equation (2.1) can be used to describe higher orders of linear and nonlinear
interactions with more bottom components, but these interactions usually have a lesser
effect. Different terms in wave equations can be ordered using this classification. For
simplification purposes, these equations can be truncated in a consistent way above a
chosen Bragg class resonance order.
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For m= 2 with one bottom component, (2.1) takes the form

ω1 ±ω2 ±ω3 = γ , k1 ± k2 ± k3 ±K= δ. (2.2a,b)

Here, K is a bottom component, and small detuning parameters, δ and γ , have been
added in order to represent the near-resonant interactions. Equation (2.2) describes the
class III Bragg resonance conditions.

A very interesting behaviour of the resonance condition can be inspected in one-
dimensional propagation over shallow water depths. In this regime, the waves are
non-dispersive and the dispersion relation takes the form ω2 = gk tanh kh ≈ gk2h or
ω= k

√
gh. Hence the frequency closure requirement given in (2.1) can written in the

following form:

ω1 ±ω2 ± · · · ±ωm+1 = 0=√gh(k1 ± k2 ± · · · ± km+1), m > 1. (2.3)

This shows that for one-dimensional interactions the resonance conditions will be
satisfied for any order. It is true, of course, for the dominating class III Bragg
resonance, which relates to wave triads, but it also relates to quartets, quintets and
so on. This fact explains why models that in practice neglect bottom components
or simulate triad interaction by degenerating quartet interaction models can exhibit a
good physical behaviour. In two-dimensional interactions the resonant condition (2.2)
will not be closed without a bottom component. Nevertheless, for very small bottom
slopes its neglect may be justified, as the bottom depth will be composed mainly by
very small-wavenumber components.

There are various possibilities to fulfill the nonlinear resonance conditions (2.2)
exactly. Two elementary possibilities are to be considered in this discussion for both
intermediate and shallow water depths: one-dimensional superharmonic self-interaction
and a subharmonic interaction. First, let us consider superharmonic self-interaction,
i.e. a monochromatic wave interacting with itself to generate a wave at double
frequency (see figure 1a,c). In this case the resonance conditions (2.2) take the
form

2ω1 −ω3 = 0, 2k1 − k3 ±K = 0. (2.4a,b)

The resonating superharmonic frequency ω3 is found to be the second harmonic (2ω1).
Its wavenumber k3 = k3(ω3) can be easily found using the dispersion relation 4ω2

1 =
gk3 tanh k3h, and the required bottom component for closing the resonance condition
is hence given by K = k3 − 2k1. In shallow water the resulting bottom component K
will be zero.

Second, let us consider a one-dimensional subharmonic interaction between two
forward-propagating waves of the third and second harmonics generating a forward-
propagating first harmonic wave. The closure of the frequency resonance condition
can be written as

ω1 −ω2 −ω3 =ω1 − 3ω1 + 2ω1 = 0. (2.5)

The wavenumbers k1, k2 and k3 can be calculated using the dispersion relation with the
frequencies ω1, 3ω1 and 2ω1, respectively. The required bottom component for closing
the resonance condition is hence given by

K = k2 − k3 − k1, (2.6)

which in shallow water will again be zero (see figure 1b,d). These two types of
interactions will also be investigated numerically in § 5.
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(a)

(b)

(c)

(d)

FIGURE 1. (Colour online) Geometric construction of class III Bragg unidirectional
resonance triad interactions. (a,c) Superharmonic self-interaction (k1 + k1) generating
a second harmonic wave (k3) in intermediate (a) and shallow (c) water depths.
(b,d) Subharmonic interaction (k2 − k3) generating a long wave (k1) in intermediate (b)
and shallow (d) water depths. Black arrows represent interacting wave components and
the generated wave. Blue arrows represent the bottom component (Kbot) where required for
closing the wave resonance condition. The circles represent all wavenumber solutions that
satisfy the frequency resonance closure. The problem parameters and calculated values are
given in table 1. In contrast to intermediate water depth interactions, unidirectional shallow
water interaction conditions can be satisfied without requiring a bottom component. This
indicates a very different physical behaviour.

Shallow water Intermediate water
Harmonic k (m−1) kh ω (rad s−1) Harmonic k (m−1) kh ω (rad s−1)

1 1.20 1.20 π 1 0.0231 0.01 π/66
2 4.03 4.03 2π 2 0.0462 0.02 π/33
3 9.05 9.05 3π 3 0.0693 0.03 π/22
4 16.10 16.10 4π 4 0.0924 0.04 2π/33

TABLE 1. Wavenumbers, frequencies and relative water depths for the interacting waves
in figure 1, for both intermediate and shallow water.

3. Derivation of the deterministic evolution equations

The present section describes the elimination of the vertical axis and the derivation
of the deterministic nonlinear spectral amplitude evolution equations. The method
chosen here follows closely the one used by Bredmose et al. (2005). This method
was chosen in order to better account for the nonlinear quadratic interactions. It
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consists of some minor augmentations that include the dissipation of energy and slow
time evolution.

3.1. Derivation of the Dirichlet to Neumann operator and the approximate
boundary conditions

The equations governing the irrotational flow of an incompressible inviscid fluid with
a free surface are given as

∇2φ + φzz = 0, −h< z<η, (3.1)
φz −∇φ · ∇η− ηt = 0, z= η, (3.2)

φt + gη+ ((∇φ)2 + φ2
z )/2= 0, z= η, (3.3)

φz +∇h · ∇φ = 0, z=−h. (3.4)

Equation (3.1) is Laplace’s equation for the velocity potential φ. Equations (3.2) and
(3.3) are the kinematic and dynamic free surface boundary conditions, respectively.
Equation (3.4) describes the free-slip bottom boundary condition. The coordinate
system is Cartesian, where z is zero at the undisturbed water level and points upwards,
while the x and y axes are in the onshore and longshore directions, respectively.
Finally, h represents the water depth, η is the surface elevation, subscripts denote
partial differentiation by z or t, and the horizontal gradient operator is represented
by ∇.

For the purpose of eliminating the vertical axis, the velocity potential is expanded
as a series in z as

φ(x, z, t)=
∞∑

n=0

znφn(x, t), (3.5)

with φ0 and φ1 describing the velocity potential and the vertical speed at the free
surface, respectively:

φ0 = φ(x, 0, t)=Φ, (3.6)
φ1 =w(x, 0, t)=W. (3.7)

By inserting (3.5) into (3.1), a recursion relation is obtained,

φn+2 =−∇2φn/((n+ 1)(n+ 2)), (3.8)

allowing the velocity potential to be expressed as

φ(x, z, t)=
∞∑

n=0

(−1)n
z2n∇2n

(2n)! Φ + (−1)n
z2n+1∇2n

(2n+ 1)!W. (3.9)

The operator ∇ is treated as a quasi-differential operator; it has a value only if it
operates on the other terms. For simplification, the two infinite sums in (3.9) can be
described using Taylor series to yield

φ(x, z, t)= cos(z∇)Φ + 1
∇

sin(z∇)W. (3.10)

By using (3.10), and by Taylor-expanding the surface boundary conditions around
z = 0, and after using linear transformations in the nonlinear part, the boundary
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conditions become

sin(h∇)∇Φ + cos(h∇)W =−(∇h) · {(∇ cos(h∇)Φ)− sin(h∇)W}, (3.11)

−W − 1
g
φtt + ε

[
− 1

2g3
(φ2

t )ttt +
1

2g3
(φ2

tt)t −
1
g
((∇φ)2)t − 1

g
φt∇2φ

]
=O(ε2), z= 0,

(3.12)

gη+ φt + ε
[

1
2
(∇φ)2 + 1

2g2
(φ2

t )tt −
1

2g2
φ2

tt

]
=O(ε2), z= 0. (3.13)

These relations will be used for the derivation of the deterministic evolution equations
for the velocity potential.

3.2. Constructing the problem in terms of spectral harmonics
Following a Wentzel–Kramers–Brillouin (WKB) approach, two time scales, t0 and t1,
are introduced. The term t0 corresponds to a fast time scale that is proportional to
the leading-order oscillatory motion of the flow, while t1 corresponds to slower time
evolutions of the wave amplitude. For brevity, the subscript in the fast time scale
is dropped (t = t0). The surface elevation and the velocity potential on the surface
are then written in terms of the rapidly oscillating wave-like behaviour and a slowly
evolving amplitude:

η(x, y, t, t1) =
N∑

p=−N

η̂p(x, y, t1)eiωpt

=
N∑

p=−N

M∑
l=−M

ap,l(x, t1)ei(ωpt−∫ kx
p,l dx−ky

l y), (3.14)

φ(x, y, t, t1) =
N∑

p=−N

φ̂p(x, y, t1)eiωpt

=
N∑

p=−N

M∑
l=−M

bp,l(x, t1)ei(ωpt−∫ kx
p,l dx−ky

l y). (3.15)

Here, the term ωp = pω1 represents the wave frequency, with ω1 representing the
lowest considered wave frequency. The terms kx

p,l and ky
l are the onshore and longshore

wavenumbers, respectively, with the wavenumber vector defined as kp,l = (kx
p,l, ky

l )
T.

In order to retain a real value for the surface elevation, it is clear that a−p,l = a∗p,l
and a0,l ∈R. The same applies for the amplitudes of the velocity potential. From here
the derivation of Bredmose et al. (2005) is followed to obtain(

tan(h∇)∇+ ω
2
p

g

)
φ̂p = 2

iωp

g
∂

∂t1
φ̂p − sec(h∇)(∇h)

×
{
(cos(h∇)∇φ̂p)− sin(h∇)

ω2
p

g
φ̂p

}
− ε

N∑
s=p−N

Y (2)s,p−sφ̂sφ̂p−s +O(ε2), (3.16)
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Y (2)s,p−s =
i

2g3
ω2

sω
2
p−sωp − i

2g3
ωsωp−sω

3
p

− i
g
ωp∇s · ∇p−s − i

2g
ωp−s∇

2
s −

i
2g
ωs∇

2
p−s. (3.17)

The horizontal derivative operators ∇s and ∇p−s are defined as ones that operate only
on φs and φp−s, respectively.

Equation (3.16) is the same as in the work of Bredmose et al. (2005), with
the exception of the term that accounts for slow time effects. The dispersion
relation can be obtained from (3.16) while accounting for quadratic nonlinear effects
(see appendix A). This work will remain with the common dispersion relation
approximation for linear water waves propagating over horizontal bottom.

3.3. Splitting the dispersion operator
The spectral evolution equations derived in the previous section incorporate all wave
propagation. In many wave shoaling scenarios, the vast majority of the wave energy
propagates to the shore direction with negligible reflection. Formulating the evolution
equations for such shoaling scenarios will significantly reduce the computational costs
as the model behaves in a hyperbolic manner. In order to apply such a simplification,
it will be helpful to start with the case of linear wave propagation with constant depth.
In this case (3.16) takes the form(

tan(h∇)∇+ ω
2
p

g

)
φ̂p = αpφ̂p, (3.18)

where αp represents the linear dissipation coefficient. For the case of no lateral bottom
changes, the lateral wavenumbers would remain constant and the wave field evolves
only in the onshore direction x. For this case, the dispersion operator in (3.18) is
rewritten in the form (

tan(h∇)∇+ ω
2
p

g

)
≡ ∂x + ikx

p,l +Dp,l

H
, (3.19)

with the dissipation term Dp,l defined as

Dp,l = αpH. (3.20)

Equation (3.19) can be solved to yield a definition for the operator H:

H = ∂x + ikx
p,l +Dp,l

tan(h∇)∇+ ω
2
p

g

. (3.21)

Applying (3.19) to (3.16) results in a hyperbolic model with pseudo-differential
higher-order terms:

(∂x + ikx
p,l +Dp,l)φ̂p = 2H

iωp

g
∂φ̂p

∂t1
−H sec(h∇)(∇h){sec(h∇)∇φ̂p}

− ε
N∑

s=p−N

HY (2)s,p−sφ̂sφ̂p−s. (3.22)

Here, the solution for ω2
p/g on the right-hand side was approximated.
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Next, the expression for the bed slope term, which contains derivatives of the
bottom depth, is replaced using the common mild-slope result

− C′g,p
2Cg,p

, (3.23)

where Cg,p is the group speed and C′g,p is the derivative of the group speed in the
onshore direction for the spectral component p. Finally, the evolution equation for the
Fourier amplitude of velocity potential takes the form(

1
Cg,p

∂

∂t1
+ ∂x + ikx

p,l +
C′g,p
2Cg,p

+Dp,l

)
φ̂p =−ε

N∑
s=p−N

HY (2)s,p−sφ̂sφ̂p−s. (3.24)

Note that if one substitutes the derivative operator with the leading-order spectral
component derivative (∇= ikp,l) into the left-hand side of (3.23), the results will not
exactly match. They will be almost identical in shallow water where the contribution
of the bed slope term is most significant, but will differ in intermediate water. Thee
is a further discussion on this in appendix B.

3.4. Expanding in the lateral direction
Equation (3.24) still depends on the lateral direction. As the model is derived for
the case when the lateral effects are assumed to be negligible, the dependence of the
spectral amplitude on lateral direction can be removed. By assuming that ky

l remains
constant in the propagation of the wave field, the spectral amplitude is again Fourier-
transformed, this time eliminating the dependence of the y axis from the spectral
amplitudes. This is done by expanding the left-hand side of (3.24) using the right-hand
side of (3.15) to yield

M∑
l=−M

{
∂bp,l

∂x

}
e−i(

∫
kx

p,l dx+ky
l y) = − C′g,p

2Cg,p
φ̂p −Dpφ̂p − 1

Cg,p

∂

∂t1
φ̂p

− ε
N∑

s=p−N

HY (2)s,p−sφ̂sφ̂p−s. (3.25)

By expanding the right-hand side of this equation, and by following the approach of
Bredmose et al. (2005), the final form of the deterministic evolution equation for the
Fourier amplitude of the velocity potential independent of the y component is

1
Cg,p

∂bp,l

∂t1
+ ∂bp,l

∂x
=− C′g,p

2Cg,p
bp,l −Dp,lbp,l

− ε
(

N∑
s=p−N

min{l+M,M}∑
u=max{l−M,−M}

HỸ (2)s,p−s,u,l−ubs,ubp−s,l−ue−i
∫
(kx

s,u+kx
p−s,l−u−kx

p,l) dx

)
. (3.26)

The terms inside the nonlinear part are defined as

Ỹ (2)s,p−s,u,l−u =
i

2g3
ω2

sω
2
p−sωp − i

2g3
ωsωp−sω

3
p +

i
g
ωp(kx

s,ukx
p−s,l−u + ky

s,uky
p−s,l−u)

+ i
2g
ωp−s(ks,u)

2 + i
2g
ωs(kp−s,l−u)

2, (3.27)
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H = ∂x + ikx
p,l +Dp,l

tan(h∇)∇+ kp,l tanh(hkp,l)+ ikp,l(∇h)sech(kp,lh)2
. (3.28)

The term ∇ can be interpreted in two ways. One is the so-called resonant model
∇ = ikp,l as used by Agnon & Sheremet (1997), which assumes resonance of
the nonlinear components with the free wave. The other approach, which will be
adopted here, is ∇=−i(ks,u+ kp−s,l−u) as used by Bredmose et al. (2005). The radial
frequencies ωi are calculated using the dispersion relation for the flat bottom case.

The evolution equation (3.26) for the velocity potential spectrum will be written
in terms of amplitudes of η while retaining accuracy of O(ε2). The approach used
is that of Agnon & Sheremet (1997), with the correction of Eldeberky & Madsen
(1999). The second-order relation between φ̂p and η̂p is constructed by inserting
(3.14) and (3.15) into (3.13) while using the linear relation φ̂p = (ig/ωp)η̂p in the
nonlinear terms without a reduction in accuracy. By following the approach of Agnon
& Sheremet (1997) and Eldeberky & Madsen (1999) the evolution equation for the
surface elevation amplitude is obtained in the form

1
Cg,p

∂ap,l

∂t1
+ ∂ap,l

∂x
+ C′g,p

2Cg,p
ap,l +Dp,lap,l

=−εi
N∑

s=p−N

min{l+M,M}∑
u=max{l−M,−M}

Ws,p−s,u,l−uas,uap−s,l−ue−i
∫
(kx

s,u+kx
p−s,l−u−kx

p,l) dx, (3.29)

where

T (2)s,p−s =
g2kskp−s

2ωpωsωp−s
− 1

2
ωp + ωsωp−s

2ωp
, (3.30)

Ws,p−s =−ωp

g
(kx

s,u + kx
p−s,l−u − kx

p,l)T
(2)
s,p−s + g

ωp

ωsωp−s
HỸ (2)s,p−s. (3.31)

Equation (3.29) is essentially the model derived by Bredmose et al. (2005), but
it also incorporates dissipation and slow time evolution. Note that the derivation in
this section resulted in a quasi-two-dimensional hyperbolic model, hence diffraction,
backscattering or reflection are not taken into account. Still, the model is aimed for the
advancement of the wave action equation to account for nonlinear triad interactions,
which are also hyperbolic in their nature and commonly do not take these effects into
account.

4. Stochastic model
The deterministic model given in (3.29) can be used for calculation of nonlinear

wave shoaling. Nevertheless, the deterministic approach has several limitations that
may make it problematic for some applications. In order to solve the model for a
realistic scenario, numerical methods should be used. For this purpose the calculation
grid should be defined containing several grid points per wavelength (Nyquist
limitation), resulting in a requirement for a grid point every few metres. As the
calculation area grows larger, the computational effort required becomes enormous,
and this approach is limited by the lack of adequate computer resources. Another
limitation of the deterministic calculation is the lack of a simplified physical source
term for including the injection of wind energy into the waves (or in some cases
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its extraction) and the lack of adequate deterministic information about the wind flow
above the water. Hence, for a large calculation region the wind-generated waves are
hard to account for using such an approach. In addition, for forecasting purposes,
the system is very chaotic, a fact that reduces its ability to serve as a long-time
forecasting tool.

The above reasons gave rise to the utilization of ensemble-averaged stochastic
models. The wave energy (or action) variance is advected in these models while the
wave phase is averaged, the characteristic length scale becomes much larger than
the wavelength. Hence, the model leaps over the Nyquist limitation and can have
a grid spacing of quite a few wavelengths. Empirical models of wave growth (and
decay) were constructed for such models and the ensemble averaging resulted in the
formulation being more stable for forecasting purposes. Hence, stochastic wave action
models are the main tool for wave hindcasting, nowcasting and forecasting of surface
gravity waves in larger domains.

4.1. Deriving the stochastic evolution equations
The aim of this section is to derive coupled equations for the energy spectrum
and bispectrum and to combine them into a one-equation model for the forward-
propagating wave field. This is done in the manner of Agnon & Sheremet (1997)
but using (3.29) as a starting point. The slow time evolution of the bispectra will
be neglected. Multiplying (3.29) by the complex conjugate of ap,l while adding the
result to its complex conjugate and ensemble averaging yields

1
Cg,p

∂Fp,l

∂t1
+ ∂Fp,l

∂x
+ C′g,p

Cg,p
Fp,l + 2Dp,lFp,l

=−2
N∑

s=p−N

min{l+M,M}∑
u=max{l−M,−M}

Re[(iWs,p−s,u,l−uBs,u,p−s,l−u)e−i
∫
(kx

s,u+kx
p−s,l−u−kx

p,l) dx], (4.1)

with the energy spectrum and bispectrum defined as

Fp,l = 〈|ap,l|2〉, Bs,u,p−s,l−u = 〈a∗p,las,uap−s,l−u〉. (4.2a,b)

The angular brackets 〈 〉 denote the ensemble averaging operation.

4.2. Two- and one-equation models
The next step is to derive an evolution equation for the bispectrum. In this derivation
we will ignore the slow time evolution. This topic will be left for future work. The
x derivative of the bispectrum can be constructed in the following form:

dBs,u,p−s,l−u

dx
=
〈

a∗p,lap−s,l−u
das,u

dx

〉
+
〈

a∗p,las,u
dap−s,l−u

dx

〉
+
〈

as,uap−s,l−u
da∗p,l
dx

〉
. (4.3)

Applying (3.29) to (4.3) yields

dBs,u,p−s,l−u

dx
+ (Dp,l +Ds,u +Dp−s,l−u)Bs,u,p−s,l−u

+
(

C′g,p
2Cg,p

+ C′g,s
2Cg,s

+ C′g,p−s

2Cg,p−s

)
Bs,u,p−s,l−u
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=−i
(
Iq,r,s−q,u−r,−p,l,p−s,l−uTq,r,s−q,u−r,−p,l,p−s,l−u

+ Iq,r,s−q,u−r,−p,l,s,uTq,r,s−q,u−r,−p,l,s,u

+ Iq,r,s−q,u−r,s,u,p−s,l−uTq,r,s−q,u−r,s,u,p−s,l−u
)
, (4.4)

with the trispectrum components and their coefficients defined as

Tq,r,s−q,u−r,−p,l,p−s,l−u = 〈aq,ras−q,u−ra∗p,lap−s,l−u〉, (4.5)

Iq,r,s−q,u−r,−p,l,p−s,l−u =
N∑

q=s−N

min{u+M,M}∑
r=max{u−M,−M}

Wq,s−q,r,u−re−i
∫
(kx

q,r+kx
s−q,u−r−kx

s,u) dx. (4.6)

In a similar manner it can be shown that the trispectrum will depend on fourth-order
moments, which will in turn depend on fifth-order moments and so forth. Therefore,
to solve the system, a closure relation is required. The closure relation used in this
section is the one devised by Benney & Saffman (1966). This closure is based on
the observation that for dispersive waves the leading-order contribution comes from
products with repeated indices.

Applying Benney & Saffman’s closure to (3.29) yields a solvable evolution equation
set for the bispectra as follows:

dBs,u,p−s,l−u

dx
+ (Dp,l +Ds,u +Dp−s,l−u)Bs,u,p−s,l−u

+
(

C′g,p
2Cg,p

+ C′g,s
2Cg,s

+ C′g,p−s

2Cg,p−s

)
Bs,u,p−s,l−u

=−2i
(
W−s,−(p−s),u,l−uFs,uFp−s,l−u +Wp,−s,l,l−uFp,lFs,u

+Wp,−(p−s),l,l−uFp,lFp−s,l−u
)

ei
∫
(kx

s,u+kx
p−s,l−u−kx

p,l) dx. (4.7)

Equations (4.1) and (4.7) make up a two-equation stochastic model, which can be used
to solve the shoaling problem.

The number of permutations between wave components constructing the various
bispectral components is very large. This means that the large number of differential
equations represented by (4.7) results in a computationally intensive situation. In order
to address this limitation, equation (4.7) is solved for Bs,u,p−s,l−u. The bispectrum is
assumed to be negligible in deep water, as in this region the sea is nearly Gaussian.
Applying the integration factor method to (4.7) yields a solution for the bispectrum,

Bs,u,p−s,l−u =

∫ x

0
Us,u,p−s,l−ue(

∫ x′
0 −Js,u,p−s,l−u dx′′) dx′

e
∫ x

0 −Js,u,p−s,l−u dx
, (4.8)

with terms J and U defined as

Js,u,p−s,l−u =−
(

C′g,p
2Cg,p

+ C′g,s
2Cg,s

+ C′g,p−s

2Cg,p−s

)
− (Dp,l +Ds,u +Dp−s,l−u), (4.9)

Us,u,p−s,l−u = −2i
(
W−s−(,p−s),u,l−tFs,uFp−s,l−u +Wp,−s,l,t−uFp,lFs,u

+Wp,−(p−s),l,l−uFp,lFp−s,l−u
)

ei
∫
(kx

s,u+kx
p−s,l−u−kx

p,l) dx. (4.10)
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Eliminating the bispectral components by substituting (4.8) into (4.1) allows a one-
equation model to be formed:

1
Cg,p

∂Fp,l

∂t1
+ ∂Fp,l

∂x
+ C′g,p

Cg,p
Fp,l + 2Dp,lFp,l

=+4
N∑

s=p−N

min{l+M,M}∑
u=max{l−M,−M}

Re [Qs,p−s,u,l−uFs,uFp−s,l−u

+Qp,s,l,t−uFp,lFs,u +Qp,p−s,l,l−uFp,lFp−s,l−u]Ws,p−s,u,l−u. (4.11)

The nonlinear interaction term Q is given as

Qs,p−s,u,l−u = e−i
∫ x

0 (k
x
s,u+kx

p−s,l−u−kx
p,l) dx

×

∫ x

0
W−s,−(p−s),u,l−uei

∫
(kx

s,u+kx
p−s,l−u−kx

p,l) dxe(
∫ x′

0 −Js,u,p−s,l−u dx′′) dx′

e(
∫ x

0 −Js,u,p−s,l−u dx)
. (4.12)

In this derivation it is assumed that the energy spectrum varies slowly, so it is taken
out of the integration.

Equation (4.11) describes the one-equation model, which significantly reduces the
required computational effort due to the significantly reduced number of coupled
differential equations. Nevertheless, it still has a downside, as it contains non-local
terms which require a solution of integrals in the x direction. This results in difficulties
for its application to wave action equation models.

There is one difference between the current model and that of Agnon & Sheremet
(1997) that needs to be pointed out. In the previous work the bed slope term was
absorbed into the spectrum, yielding

Fp,l =Cg,p〈|ap,l|2〉, (4.13)

and as a consequence the group velocity was taken out of the integration together
with the spectrum. In deep water, the group velocity remains constant; however, as
the waves enter shallow water, the group velocity starts to grow quickly, so it is no
longer justifiable to take it out of the integration. Because of this approach, there is
an additional term J in the (4.12), which would not exist otherwise.

4.3. Localizing the nonlinear shoaling coefficient of the one-equation model
In this subsection the non-local nonlinear interaction terms will be localized following
the approach of Stiassnie & Drimer (2006) and Toledo & Agnon (2012) for deep to
intermediate water depths. This localization method will be shown to fail in shallow
water. Therefore, a novel localization method will be applied in this region. The
resulting approximated localized model is significantly simpler for calculation, as it
does not require the numerical solution of integrations in the x direction. It is also
setting a better foundation for a possible extension to two-dimensional nonlinear
interactions.

4.3.1. Deep to intermediate water depths
The non-local shoaling coefficients of the present work Q are given in (4.12). The

first step in localizing the model is to rewrite Q using a new variable,
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ξ(x)=
∫ x

0
(kx

s,u + kx
p−s,l−u − kx

p,l + iJs,u,p−s,l−u) dx′, (4.14)

in the following manner:

Qs,p−s,u,l−u = e−iξ(x)
∫ ξ(x)

0

W−s,−(p−s),u,l−u

kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u

eiξ ′ dξ ′. (4.15)

The nonlinear interaction coefficient (4.15) is then integrated by parts twice and
transformed into

Qs,p−s,u,l−u = e−iξ(x)

[(
− iW−s,−(p−s),u,l−u

kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u

+ d
dξ ′

W−s,−(p−s),u,l−u

kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u

)
eiξ ′
]ξ(x)

0

− e−iξ(x)
∫ ξ(x)

0

d2

dξ ′2
W−s,−(p−s),u,l−u

kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u

eiξ ′ dξ ′. (4.16)

The integration by parts can be applied recursively to derive a series similar to the
Taylor series composed of terms of increasing derivatives of the original integrand
and an additional higher-order residual integral term. For an arbitrary number of
integrations this series is given as

Re[Qs,p−s,u,l−u] = d
dξ

(
W−s,−(p−s),u,l−u

kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u

)
− d3

dξ 3

(
W−s,−(p−s),u,l−u

kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u

)
+ · · ·

+ (−1)l−1 d2l−1

dξ 2l−1

(
W−s,−(p−s),u,l−u

kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u

)
+Re

[
e−iξ

(
− iW−s,−(p−s),u,l−ueiξ ′

kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u

+ · · ·
)
ξ ′=0

+ i2le−iξ
∫ ξ

0

d2l

dξ ′2l

(
W−s,−(p−s),u,l−u

kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u

)
eiξ ′ dξ ′

]
. (4.17)

The series part of (4.17) represents a non-oscillating and hence mean energy transfer
component of the equation. The last term is commonly a fast oscillating function, at
least in deep and intermediate water. As mean energy transfer components comprise
the main interest in such models, Stiassnie & Drimer (2006) and Toledo & Agnon
(2012) have neglected the last term. This last term is the only one that contains an
integration, hence this resulted in localization of the nonlinear interaction coefficient.
For a first-order approximation (i.e. l = 1), the deep to intermediate water depth
nonlinear shoaling coefficient Q can be reconstructed in the original variables by
applying (4.14) to (4.16):
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FIGURE 2. (Colour online) The localized (mean evolution, (4.15)) and non-local
(oscillating, (4.18)) nonlinear interaction coefficients Q1,1,0,0. The coefficients describe the
transfer of energy to the second harmonic due to the self-interaction of the first harmonic
over a 1/25 slope from deep to intermediate water. The localized coefficient has also been
plotted with a shift to the negative and positive directions in order to better present how
it follows the mean evolution of the non-local coefficient. This specific coefficient relates
to the problem described in § 5.1.

Re[Qs,p−s,u,l−u] =Re
[ −iW−s,−(p−s),u,l−u

kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u

+ 1
(kx

s,u + kx
p−s,l−u − kx

p,l + iJs,u,p−s,l−u)2

dW−s,−(p−s),u,l−u

dx

− W−s,−(p−s),u,l−u

(kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u)3

d(kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u)

dx

]
. (4.18)

The above approximation works well in deep to intermediate water. Nevertheless, as
shown in § 2, for one-dimensional wave shoaling in shallow water the wavenumber
triads can close the resonance condition. This changes the nature of the e±iξ(x)

components from oscillatory functions to constant or exponential ones. Hence, the
localization method of Stiassnie & Drimer (2006) and Toledo & Agnon (2012) will
fail in this region. Comparison between the local and non-local interaction coefficient
models illustrating this concept can be seen from figures 2 and 3.

The approximation for the mean energy transfer is shown to be quite good. The non-
local energy transfer term is a fast oscillating function, while the localized one takes
into account only the mean transfer of energy. The localized coefficient is centred
around zero at the beginning but was plotted this way to show that it follows the
mean change of the oscillating function. As the waves enter a shallower region, the
oscillations decrease in magnitude, but the localized nonlinear term still follows the
mean evolution (see figure 2).

4.3.2. Shallow water
The strongest resonant interactions occur in shallow water. In addition, very long

infra-gravity waves are created due to nonlinear shoaling. These waves, which
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FIGURE 3. (Colour online) Interaction coefficient for the propagation over a uniform
slope from deep into shallow water. The case in question is transfer of energy to the
first harmonic due to the subharmonic interaction of the third and fourth harmonics over
a bottom slope of 1/10. The exact formulation (4.12) and the approximations of the
nonlinear interaction term Q4,−3,0,0 are compared. The straight line represents the non-local
value of the interaction term, and the dashed line represents the localized version. The
agreement is very good until the waves enter shallow water, where the discarded integral
starts to grow quickly, and the approximation starts failing. This coefficient relates to the
problem described in § 5.3.

are essentially shallow water waves, have significant importance to various coastal
applications from harbour agitation to sediment transport. It is therefore important to
extend the validity of the model to this region. First the propagation over a monotonic
slope is considered, and it is later shown how this approach can be used for variable
bathymetry. In intermediate water, equation (4.18) describes the mean energy transfer,
but as it enters shallow water the truncation of the last component can no longer be
justified. Therefore, another approach is required in shallow water depths as well as
a method for matching the intermediate and shallow water approximations.

The first step in the shallow water localization method is to approximate the integral
in (4.12) under shallow water assumptions. This is done by splitting the integral into
two parts, yielding its new form

Qs,p−s,u,l−u = e−iξ(x)
∫ ξ(x)

0
W−s,−(p−s),u,l−ueiξ ′ dξ ′

= e−iξ(x)

(∫ x0

0
W−s,−(p−s),u,l−ueiξ ′ dξ ′ +

∫ x

x0

W−s,−(p−s),u,l−ueiξ ′ dξ ′
)

= (Yd + Ys)e−iξ(x). (4.19)

The term Ys represents the value of the integral from the start of the shallow water
area, x0, to the current point. The term Yd is the value of the integral from the start
of the propagation to the point where the waves enter shallow water, x0. The problem
with this approach is that there is knowledge only of the current point, and therefore
the point x0 is unknown. By assuming that the slopes at the point x0 and at the current
point are the same and that the slope remains constant between them, by determining
the depth at the point x0 it is fully defined.
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The cause of this failure is that the integral that was discarded from (4.17) starts
to grow exponentially in the shallow water area. Therefore the depth at the point
x0 is chosen so that the absolute value of the term inside the discarded integral
is equal to the absolute value of the interaction coefficient in the formulation for
deep and intermediate water from (4.18). This ratio goes to zero in deep water, but
starts growing exponentially as the water gets shallower. By choosing this point, it is
ensured that the previous formulation still works relatively well, but it is starting to
fall apart.

As the exact value of the term Yd at the point x0 is unknown, it will be
approximated by the value of the localized interaction coefficient Qs,p−s,u,l−u from
(4.18) at the point x0, while adopting the bed slope from point x. It will be divided
by the oscillating term in front of the integral e−iξ(x0) to yield

Yd = Qs,p−s,u,l−u(x0)

e−iξ(x0)
. (4.20)

Equation (4.20) is multiplied by the value of the oscillating factor at the current point
e−iξ(x) to obtain

e−iξ(x)Yd = e−i[ξ(x)−ξ(x0)]Qs,p−s,u,l−u(x0). (4.21)

The next step is to derive the formulation for the shallow water part of the integral
Ys. The exponential term whose power is the integral of the wavenumber mismatch is
absorbed into the interaction term W̃, yielding

W̃−s,−(p−s),u,l−u =W−s,−(p−s),u,l−u[ei
∫ x

0 (k
x
s,u+kx

p−s,l−u−kx
p,l) dx], (4.22)

which leads to

Ys =
∫ x

x0

W̃−s,−(p−s),u,l−ue
∫ x′

x0
−Js,u,p−s,l−u dx′′ dx′

=
∫ ν(x)

ν(x0)

W̃−s,−(p−s),u,l−ueν dν ′. (4.23)

As before, the integral is transformed by introducing a new term ν and its derivative,
which are given as

ν =
∫ x

x0

−Js,u,p−s,l−u dx′, dν =−Js,u,p−s,l−u dx. (4.24a,b)

The ν term can be analytically determined as

ν = − 1
2 ln(Cg,p(x)−Cg,p(x0))

− 1
2 ln(Cg,p−s(x)−Cg,p−s(x0))− 1

2 ln(Cg,s(x)−Cg,s(x0)), (4.25)

by using

−
∫ C′g,p(x)

2Cg,p(x)
dx=−1

2
ln(Cg,p). (4.26)

Only the bed slope terms are considered inside the J term and the dissipation term
is omitted. The dissipation is usually empirically derived so it depends on the problem
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at hand. It can be inserted into the J term, provided that its integral can be determined.
It should be noted that the initial value of the integral of the bed slope term at the
start of the shallow water area is irrelevant, as the terms in front of and inside the
integral will cancel each other out, so it is taken to be zero. Then the entire integral
will be integrated by parts three times, which leads to its new form:

Ys = eν
[

W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u
− d

dν
W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u
+ d2

dν2

W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u

]ν(x)
ν(x0)

−
∫ ν(x)

ν(x0)

d3

dν ′3

(
W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u

)
eν
′
dν ′. (4.27)

The remaining integral cannot be solved analytically in its current form; however,
the exponential term eν′ inside the integral can be approximated by its Taylor series
eν′ ≈ 1 + ν + ν2/2 and, since the value of ν can be determined by using (4.25),
the integral can be solved analytically. The reason that the exponential term of the
wavenumber mismatch was absorbed into W is because the second-order Taylor series
would not be enough to approximate it and going to higher orders would be too
computationally expensive. The solution of the remaining integral is given as

∫ ν(x)

ν(x0)

d3

dν ′3

(
W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u

)(
1+ ν ′ + ν

′2

2

)
dν ′

=
[

W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u
− d

dν ′
W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u
(1+ ν ′)

+ d2

dν ′2
W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u

(
1+ ν ′ + ν

′2

2

)]ν(x)
ν(x0)

. (4.28)

Some of the terms cancel out, which leads to a new formulation for Ys:

Ys = eν
[

W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u
− d

dν
W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u
+ d2

dν2

W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u

]ν(x)

−
[

W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u
− (1+ ν ′) d

dν
W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u

+
(

1+ ν ′ + ν
′2

2

)
d2

dν2

W̃−s,−(p−s),u,l−u

Js,u,p−s,l−u

]
. (4.29)

Finally, in shallow water Q takes the form

Qs,p−s,u,l−u(x) = e−i[ξ(x)−ξ(x0)](Qs,p−s,u,l−u(x0)+ Ys). (4.30)

The terms inside (4.30) are differentiated to obtain
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Qs,p−s,u,l−u(x)= e−i[ξ(x)−ξ(x0)]

Qs,p−s,u,l−u(x0)+
[
(eν − 1)

W̃−s,−( p−s),u,l−u

Js,u,p−s,l−u

]

+

(1+ ν − eν)


dW̃−s,−( p−s),u,l−u

dx
J2

s,u,p−s,l−u
− W̃−s,−( p−s),u,l−u

J3
s,u,p−s,l−u

dJs,u,p−s,l−u

dx




x

x0

−


(

1+ ν + ν
2

2
− eν

)
3W̃−s,−( p−s),u,l−u

(
dJs,u,p−s,l−u

dx

)2

J5
s,u,p−s,l−u

+
d2

dx2
(W̃−s,−( p−s),u,l−u)

J3
s,u,p−s,l−u

−
3
(

dJs,u,p−s,l−u

dx

)(
dW̃−s,−( p−s),u,l−u

dx

)
J4

s,u,p−s,l−u
−

(
d2Js,u,p−s,l−u

dx2

)
W̃−s,−( p−s),u,l−u

J4
s,u,p−s,l−u




x

x0

 .

(4.31)

The exponential terms of the integral of the wavenumber mismatch from the W̃ terms
cancel out the e−i[ξ(x)−ξ(x0)] term to yield

Qs,p−s,u,l−u(x)= e−i[ν(x)+ξdif ]Qs,p−s,u,l−u(x0)+ e−ν(x)

×


[
(eν(x) − 1)− W−s,−(p−s),u,l−u

Js,u,p−s,l−u

]

+
[
(1+ ν − eν)

(
Ŵ−s,−(p−s),u,l−u

J2
s,u,p−s,l−u

− W−s,−(p−s),u,l−u

J3
s,u,p−s,l−u

dJs,u,p−s,l−u

dx

)]x

−


(

1+ ν + ν
2

2
− eν

)
3W−s,−(p−s),u,l−u

(
dJs,u,p−s,l−u

dx

)2

J5
s,u,p−s,l−u

+
̂̂W−s,−(p−s),u,l−u

J3
s,u,p−s,l−u

−
3
(

dJs,u,p−s,l−u

dx

)
Ŵ−s,−(p−s),u,l−u

J4
s,u,p−s,l−u

−

(
d2Js,u,p−s,l−u

dx2

)
Ŵ−s,−(p−s),u,l−u

J4
s,u,p−s,l−u




x

x0

 ,

(4.32)

where

Ŵ−s,−(p−s),u,l−u = iW−s,−(p−s),u,l−u(kx
s,u + kx

p−s,l−u − kx
p,l)+

dW−s,−(p−s),u,l−u

dx
, (4.33)
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̂̂W−s,−(p−s),u,l−u =
[
−(kx

s,u + kx
p−s,l−u − kx

p,l)
2 + i

d(kx
s,u + kx

p−s,l−u − kx
p,l)

dx

]
W−s,−(p−s),u,l−u

+ 2i
dW−s,−(p−s),u,l−u

dx
(kx

s,u + kx
p−s,l−u − kx

p,l)+
d2W−s,−(p−s),u,l−u

dx2
,

(4.34)

and

ξdif = (kx
s,u + kx

p−s,l−u − kx
p,l)(x− x0)+ 1

2
∂(kx

s,u + kx
p−s,l−u − kx

p,l)

∂x
(x− x0)

2

+ 1
6
∂2(kx

s,u + kx
p−s,l−u − kx

p,l)

∂x2
(x− x0)

3 + 1
24
∂3(kx

s,u + kx
p−s,l−u − kx

p,l)

∂x3
(x− x0)

4 + · · · .
(4.35)

The ν terms were retained for brevity. This leaves one term with non-local terms in
it, ξ(x)− ξ(x0), and it represents the integral of the wavenumber mismatch between
point x0 and x. This term is approximated using the Taylor series.

Finally, the two water areas are joined together using the gate function, which yields
the final form of the Q coefficient suitable for intermediate and shallow water defined
as

Re[Qs,p−s,u,l−u] =Re
[

e−ifg[ν(x)−ν(x0)+ξdif ]
(
− iW−s,−(p−s),u,l−u

kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u

+ 1
(kx

s,u + kx
p−s,l−u − kx

p,l + iJs,u,p−s,l−u)2

dW−s,−(p−s),u,l−u

dx

− W−s,−(p−s),u,l−u

(kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u)3

d(kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u)

dx

)]x+fg(x0−x)

+ fgQs,p−s,u,l−u(x). (4.36)

The term Qs,p−s,t,l−t(x) is defined in (4.32). The exact formulation of the gate term is
defined as

fg = 1
2
− 1

2
sgn

[
1−

∣∣∣∣ d2

dξ 2

W−s,−(p−s),u,l−u

kx
s,u + kx

p−s,l−u − kx
p,l + iJs,u,p−s,l−u

∣∣∣∣/ |Qs,p−s,u,l−u|
]
. (4.37)

As the water gets shallower, the term inside the discarded integral from (4.16) starts
to grow exponentially and it makes discarding it result in a large error. The point that
is chosen for x0 is when this term is equal in magnitude to the previous localized
coefficient (4.18). Although the exact ratio between these two terms is somewhat
arbitrary, the ratio of one was chosen as it performed best in the examples. If the
ratio is chosen to be too small, term Ys will be incorrect, and if chosen too big, the
term Yd will be incorrect. The process used to determine the point x0 is to start from
a certain depth and to slowly decrease it until the gate term becomes greater than
one, thus determining the point x0.

It should be noted that it is possible for the ratio between these values to start
behaving erratically when the water gets shallow. Therefore, care should be taken
in very shallow water when determining the gate term. As the gate term starts to
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behave differently, the localized interaction coefficient for intermediate water or the
term inside the discarded integral start growing in the opposite direction compared to
the deep water, so this can also be used as a criterion for determining fg.

Often the bathymetry is characterized by many changes in the slope. This is solved
by assuming at each point that it is a part of a monotonic slope propagating towards
the beach. While several approximations were used in this approach, the end result
matches closely the non-local nonlinear interaction term, as will be shown in the
examples. The area of transition from intermediate to shallow is the most problematic
one; however, this area is relatively short, and the evolution of the wave field in
shallow water is described much better than in the previous models. The wave action
formulation is derived and presented in appendix C.

5. Numerical examples
In order to verify the stochastic model’s validity, numerical simulations were

performed using the Mathematica 9.0 software. The model used is for the one-
dimensional case where all of the waves propagate in the onshore direction. Results
are presented for the case of superharmonic self-interaction in intermediate water,
the case of subharmonic interaction in shallow water, the propagation from deep to
shallow water, a comparison with the experimental results of Luth, Klopman & Kitou
(1994) and a comparison to the field measurements of Freilich & Guza (1984) on
the spectral evolution over a mildly sloping beach.

5.1. Superharmonic self-interaction in intermediate water depth
In this example, a monochromatic wave field is shoaling over a mildly sloping bottom,
and as a result of superharmonic self-interaction, a wave of double the frequency is
generated. The new model’s results are compared with the deterministic model of
Bredmose et al. (2005). The problem was also modelled using the localized models
of Stiassnie & Drimer (2006) and Toledo & Agnon (2012) for comparison purposes.
These models are based on the non-local stochastic models of Agnon & Sheremet
(1997, 2000), respectively. Both use the same localization method also applied in this
paper for the intermediate water region. The difference between the two models is that
in the work of Stiassnie & Drimer (2006) the interaction coefficient corresponding
to W is assumed to be changing very slowly. This means that it is taken outside of
the integration together with the spectrum before localization, while only the integral
of the exponent of the wavenumber mismatch remains in the integral before the
localization. In the work of Toledo & Agnon (2012) this assumption is not used and
changes of the interaction term are accounted for. The present model improved the
stochastic non-local model, as it accounts for faster changes of the group velocity,
which were disregarded in both former models. In addition, it uses a more accurate
deterministic model (Bredmose et al. 2005) as a starting point.

The bottom profile for the numerical example is defined as

h(x)=
{

7− 0.04x x< 162.5,
0.5 x> 162.5, (5.1)

all of the values are given in metres. The period of the incident wave is T = 2 s and
the initial wave amplitude is A01 = 0.02 m, with a wave steepness of kA01 = 0.0201.
The nonlinear interaction coefficient is defined by (4.18) as the water is deep or
intermediate for the whole propagation distance. As can be seen in figure 4, the
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FIGURE 4. (Colour online) Evolution of the wave field due to superharmonic
self-interaction over a 1/25 slope ending in a horizontal bar with 2 cm, and its period is
2 s. (a) First harmonic wave elevation amplitude (A1). (b) Second harmonic wave elevation
amplitude (A2). Both amplitudes are normalized by the initial value of the first harmonic
(A01). The oscillating line represents the deterministic solution of Bredmose et al. (2005),
the dot-dashed line is the work of Stiassnie & Drimer (2006), the dashed line is the work
of Toledo & Agnon (2012), and the thick line is the current work. Equation (4.18) was
used for the simulations of the current model.

current model presents a minor overprediction of the nonlinear second harmonic
amplitude evolution, while the previous models present a major underprediction.
Hence, the present model is shown to provide a significant improvement already for
the intermediate water depths.

5.2. Subharmonic interaction of bichromatic waves in shallow water
The nonlinear interaction between two monochromatic waves with different frequencies
is inspected in this subsection in order to test the model’s capabilities to accurately
represent subharmonic triad interactions. Unpublished experimental results of Stiassnie
& Drimer (2006) were used as a benchmark. The model was compared to the
models of Stiassnie & Drimer (2006) and Toledo & Agnon (2012) as well as to the
deterministic model of Bredmose et al. (2005).

Stiassnie & Drimer’s (2006) experimental investigation was conducted using a wave
flume 45 cm deep and 45 m long with a bottom profile given as

h(x)=


0.45 x< 5.64,
0.45+ (5.64− x)/90 5.64< x< 19.41,
0.297+ (19.41− x)/140 19.41< x< 28.09,
0.235+ (28.09− x)/90 x> 28.09,

(5.2)

where all values are given in metres. The incident wave is a bichromatic wave with
energy at periods 11 and 12 s. The model was tested for two values of the initial
amplitudes: first with 1.22 cm for the incident waves and 0.02 cm for the bound
wave, and second with 2.07 cm and 0.04 cm, respectively. The bichromatic waves
were introduced in the experiment and the numerical calculation without a phase
difference.

In this experiment, shallow waves are generated by the wavemaker, so from the
beginning of the flume the shallow water localization method is used (i.e. the point
x0 is at the wavemaker). Therefore, the values of all energy transfer terms Q at
the beginning of the propagation are zero. The problem is also simulated using
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FIGURE 5. (Colour online) Difference between the non-local (solid line) and localized
(dashed line) energy transfer terms for (a) the current work and (b) that of Toledo &
Agnon (2012), corresponding to figure 6. The interaction coefficient in question measures
the transfer of energy from the 12th and 11th harmonics to the first harmonic, through
the process of subharmonic interaction. In (b) it can be seen that the localized coefficient
of Toledo & Agnon (2012) is several orders of magnitude larger than the non-local
coefficient, as the water is very shallow from the beginning of propagation. The localized
and non-local coefficients in (b) have been plotted on different scales.
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FIGURE 6. (Colour online) Amplitude evolution of a low-frequency wave due to
subharmonic interaction of bichromatic waves. The energy transfer results from the
subharmonic interaction of a bichromatic wave with periods of 11 and 12 s with no
phase difference and with equal initial amplitudes of 1.22 cm (a) and 2.07 cm (b). Dots:
unpublished experimental results of Stiassnie & Drimer (2006). Dashed red line and
dash-dotted blue line: the localized stochastic models of Toledo & Agnon (2012) and
Stiassnie & Drimer (2006), respectively. Thick dashed brown line: the deterministic result
of Bredmose et al. (2005). Dotted brown line: ensemble average of the deterministic
results of Bredmose et al. (2005). Thick black line: the current stochastic model using
the shallow water approximation (4.36).

the deterministic model of Bredmose et al. (2005) with no phase difference at the
wavemaker. The evolution of the generated harmonics is shown in figure 6, for the
deterministic model (Bredmose et al. 2005) and stochastic models together with the
experimental results.

In order to show the importance of the exact phases of the interacting waves in the
shallow water, an ensemble of 100 runs of the deterministic model of Bredmose et al.
(2005) with randomized initial phases of the interacting waves was run 100 times.
The ensemble average of the generated harmonic and the standard deviation is shown

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

75
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.750


334 T. Vrecica and Y. Toledo

0.05

0

 0.10

0.15

 0.20

0.25

0.02
0.01

0

0.03
0.04
0.05
0.06
0.07

500 1000 1500 2000 2500 30000 500 1000 1500 2000 2500 3000 35000

a 
(c

m
)

x (cm) x (cm)

(a) (b)

FIGURE 7. (Colour online) Monte Carlo averaged evolution of the generated low-
frequency wave for the initial amplitude of 0.02 cm (a) and 0.04 cm (b). Thick black line:
current stochastic model. Thick brown line: the averaged result of Bredmose et al. (2005).
Thin brown lines: the standard deviation added or subtracted from the averaged result.
Dotted line: the ensemble-averaged deterministic result of Agnon & Sheremet (1997).
Shaded area: the span of the obtained realizations using Bredmose et al. (2005).

in figure 7. It can be seen that, depending on the initial phasing, the results can be
very different. However, the ensemble-averaged result is in good agreement with the
derived stochastic model, which shows that the new localization procedure works well
in shallow water.

The localized subharmonic coefficients of Stiassnie & Drimer (2006) and Toledo &
Agnon (2012) are shown figure in 5(b). They are orders of magnitude higher than the
non-local coefficient because the localization procedure they use fails in shallow water.
The coefficient obtained using the new localization procedure is shown in figure 5(a),
presenting a good match to the non-local coefficient.

The initial phases of the waves have a significant impact on the solution, as shown
in figure 7, so extreme events should be taken into account instead in addition to
ensemble-averaged results. The stochastic model shows good agreement with the
deterministic and experimental results. The previous stochastic models have a very
strong overshoot past a certain water depth, owing to their inability to accurately
model shallow water.

5.3. Deep to shallow water nonlinear subharmonic and superharmonic interactions
The evolution of waves from deep into shallow water over a sloping bottom is
presented in this subsection. The new model’s results will be compared to the
stochastic models of Stiassnie & Drimer (2006) and Toledo & Agnon (2012). The
evolution of the wave components will be compared to the deterministic model of
Bredmose et al. (2005). The new model is tested for superharmonic and subharmonic
interactions shoaling over a linear bottom with a slope of 10 %. The bottom profile
is defined as

h(x)=
{

161− 0.1x x< 1600,
1 x> 1600, (5.3)

where all values are given in metres. The periods of the interacting waves are T1,3,4=
15, 5, 3.75 s for the subharmonic and T1,2= 7.5, 3.75 s for the superharmonic self-
interaction.

In deep to intermediate water depths, the localized coefficients follow the mean
evolution of the oscillating non-local term. As the waves enter shallower depths, the
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FIGURE 8. (Colour online) Comparison between the localized coefficients for three
different models in the case of wave propagation from deep into shallow water over a
monotonic slope. The relative water depth kh is shown for all of the interacting wave
components. The cases considered are the subharmonic interaction (a,c,e), and the case
of superharmonic self-interaction (b,d, f ). These coefficients govern the intensity of energy
transfer to one harmonic from two other harmonics. The models used are (a,b) that of
Toledo & Agnon (2012) and (c,d) that of Stiassnie & Drimer (2006). The equation used
for the current model (e, f ) is (4.36), which works in both shallow and intermediate
conditions.

original formulation fails. By using the derived shallow water localization, the range of
validity of the interaction coefficients is extended to this region. Comparisons between
local and non-local nonlinear interaction coefficients are presented in figure 8 together
with the non-dimensional water depth of each wave component. It can be seen that,
while all localized models show good agreement with the respective non-local models
in deep to intermediate water, for shallow water depths the localization method in the
previous works fails. It should be noted that the nature of the models is different, and
therefore the magnitude of the coefficients is different for each model. The results
shown in figure 8 present a measure of accuracy of the localization procedures in
comparison to their non-local counterparts.
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FIGURE 9. (Colour online) (a) The evolution of the first harmonic as a result of
subharmonic interaction of the fourth and third harmonics and (b) the evolution of the
fourth harmonic as a result of the self-interaction of the second harmonic. The thick black
line represents the current model, the dashed line is the model of Toledo & Agnon (2012),
the dash-dotted line is the model of Stiassnie & Drimer (2006), and the two thin lines
are the deterministic models of Bredmose et al. (2005) and Agnon & Sheremet (1997).

The localized stochastic models are compared to the deterministic models of Agnon
et al. (1993) and Kaihatu & Kirby (1995) for two different cases. The first case is the
evolution of low (first) harmonic, due to the subharmonic interaction of two higher
(third and fourth) harmonics whose amplitudes are 0.05 m. The second case is the
superharmonic self-interaction of the second harmonic, whose amplitudes are 0.05 m,
which generates the fourth harmonic. The evolution of harmonics for both cases is
presented in figure 9.

It can be seen that previous formulations for the localized coefficients fail in shallow
water. In the case of subharmonic interaction, past a certain depth the model of Toledo
& Agnon (2012) overpredicts the amplitude evolution, while the model of Stiassnie &
Drimer (2006) underpredicts the deterministic results. In the case of superharmonic
interaction, the models of Stiassnie & Drimer (2006) and Toledo & Agnon (2012)
underpredict the evolution of the amplitude. The new localization formulation shows
good agreement with the deterministic model for both cases.

5.4. Monochromatic wave propagation over a bar
In this section the results of the deterministic and stochastic models are compared to
the results of the experiment conducted by Luth et al. (1994). Both local and non-
local formulations will be inspected. This experiment deals with the propagation of
the monochromatic wave field over a trapezoidal bar, which results in a transfer of
energy from the monochromatic wave to its higher harmonics. The incident wave has
an amplitude of 2 cm and its period is T = 2.86 s. The bathymetry is given by

h(x)=


0.8 0< x< 11,
0.8− 0.05(x− 11) 11< x< 23,
0.2 23< x< 27,
0.2+ 0.1(x− 27) 27< x< 33,
0.8 33< x,

(5.4)

where all of the values are given in metres.
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FIGURE 10. (Colour online) Evolution of the monochromatic wave field propagating over
a bar. The height of the initial wave is 2 cm, and the period is 2.86 s. (a) The initial
harmonic. (b) The second harmonic generated by the self-interaction of the first harmonic.
(c,d) The third and fourth harmonic, respectively. Only the current model was used. Dots
represent the experimental results, the solid line is the localized formulation using (4.36),
the dashed line is the non-local formulation using (4.12) and the dot-dashed line is the
deterministic model.

Note that, owing to the rapidly changing bottom profile (with respect to the
wavelength), this test contradicts one of the main assumptions used for formulating
wave action equation models. Still it is of interest to see how well the stochastic
models behave even for such a situation. The comparison between model simulations
and the experimental results for the first four harmonics are given in figure 10. The
agreement between the experimental results and the non-local model is relatively
good for the first two harmonics. However, there are several limitations with the
localized formulation. The first is that the transfer of energy over the bottom is zero.
The second is that the change of the bathymetry is very sharp in this case. The
stochastic model is based on the assumption that the changes of the bathymetry and
of the spectrum in space are mild. Therefore, usage of the deterministic models is
recommended.

5.5. Spectrum evolution of shoaling waves in comparison to field measurements
In order reassure that the stochastic localized model yields good results also for
a realistic nonlinear wave shoaling problem, an evolution of a wave spectrum is
simulated using the deterministic and stochastic models and compared with field
measurements. The formulation of the localization procedure changes between the
intermediate and the shallow formulations based on the local parameters of each
wave harmonic. The results of the numerical simulations are compared to the field
measurement results of Freilich & Guza (1984).
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FIGURE 11. (Colour online) Evolution of a measured wave spectrum over a mildly
sloping beach. The dot-dashed red line describes the field measurement results of Freilich
& Guza (1984); the thick black line represents the current localized stochastic model; the
dashed blue line describes the ensemble-averaged results of the deterministic model of
Bredmose et al. (2005); and the dark green dotted line describes the linear stochastic
model solution. Results are plotted for the depths of 14 m (a), 10.4 m (b), 5.25 m (c)
and 4.1 m (d).

The bottom profile used for the numerical simulations was digitized and is
approximated as

h(x)=


14− 0.0151x 0< x< 265,
10− 0.0238(x− 265) 65< x< 370,
7.5− 0.0266(x− 370) 370< x< 490,
4.3− 0.0162(x− 490) 490< x< 570,
3 570< x,

(5.5)

where all values are given in metres. It should be noted that the experimental results
of Freilich & Guza (1984) were laterally averaged and no detailed bathymetry is
provided. The averaged measured spectrum was digitized from the paper itself. These
may cause some inaccuracies and hence discrepancies in comparison with the models’
results.

The field measurements and numerical calculations describe the nonlinear wave
shoaling over a mildly sloping beach with a significant transfer of energy between
spectral components. The field measurements at four depths of 14, 10.4, 5.25 and
4.1 m and the numerical results of the deterministic model of Bredmose et al. (2005)
and the present localized stochastic model are shown in figure 11. For the numerical
calculations, the initial spectrum was divided to 40 bins. For the deterministic model
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an ensemble of 55 numerical calculations with randomized initial phases was used
and its average was presented. The stochastic localized model already encompasses
the ensemble averaging operation and hence yields the results in a single run.

It can be seen from figure 11 that, in the initial spectrum (at 14 m depth), energy
is concentrated around a single peak frequency of 0.065 Hz. As the waves propagate
into shallower water depths, a significant transfer of energy is observed, and a second
peak forms at double the frequency of the initial peak. It can also be seen that
there are significant differences between the linear solution of the stochastic model
and both the nonlinear solution and the field measurements also in the lower part
of the spectrum (0.015–0.05 Hz). This low-frequency energy is of high importance
for harbour agitation and sediment transport calculations, and its underestimation by
linear models may result in unsafe design criteria. The new localization formulation
presents a very good agreement with the field measurements – a fact that reassures its
capability in serving as a nonlinear triad interaction source term in wave forecasting
models for realistic problems.

6. Conclusions
In this work, an investigation of nonlinear shoaling was presented. It starts by

inspecting the Bragg resonance conditions that describe the shoaling process in the
frequency/wavenumber domain. This inspection reveals two essentially different ways
to satisfy these conditions. The first way requires a bottom component for closing the
wavenumber condition. The second relates to the one-dimensional wave evolution in
shallow water where no bottom component is required and the condition degenerates
from a Bragg resonance condition to a regular one. This is due to the non-dispersive
nature of surface gravity waves in shallow water. It is the case for any resonance
order conditions, i.e. in one-dimensional shallow water evolution, wave triads, quartets,
quintets and so on are all resonating even over a flat bottom.

This work was aimed to advance stochastic wave action equation models to account
for triad interactions in the near-shore region. The requirement of such models is the
formulation of source functions acting on each modal component describing nonlinear
energy transfer between wave components. These source terms, which relate to the
bispectra, are essentially integral in space, i.e. they require either a solution of the
bispectral evolution equations or an integration in space. In order for wave action
models to practically include these source terms, they should either be localized or
consist of an analytical solution of the space integral.

The first way of satisfying the Bragg resonance condition was already shown to
have an oscillatory behaviour of the nonlinear source terms. As in former works, the
localization method in this case involves the extraction of the mean energy transfer
component. The second and formerly unaddressed way that refers to one-dimensional
shallow water evolution is shown here to relate to strong exponential energy transfer.
Using some approximations, its non-local integral is solved analytically. This addition
together with using a different deterministic nonlinear approach and some minor
correction of the former stochastic non-localization process were shown in this
work to have consistent accuracy for deep to shallow water depths. The model is
evaluated with respect to deterministic ensembles, field measurements and laboratory
experiments, while performing well in modelling monochromatic superharmonic
self-interactions and infra-gravity wave generation from bichromatic waves and
a realistic wave spectrum evolution. This sets the foundation for utilizing this
formulation for practical implementation as a nonlinear triad interaction source
term in wave forecasting models.
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Appendix A. The dispersion relation with bottom slope effects
The dispersion relation is obtained from (3.16) by taking into account the bed slope

and discarding the nonlinear and slow time effects:(
tan(h∇)∇+ ω

2
p

g

)
φ̂p =−sec(h∇)(∇h) ·

(
(cos(h∇)∇φ̂p)− sec(h∇)

ω2
p

g
φ̂p

)
. (A 1)

While the nonlinear terms can make significant changes to the dispersion relation, this
is beyond the scope of this paper; more information on this topic can be found in
Willebrand (1975). By assuming that the bottom is flat, the right-hand side of (A 1)
reduces to zero. The bottom boundary condition in that case is defined as(

tan(h∇)∇+ ω
2
p

g

)
φ̂p = 0. (A 2)

Substituting in this equation, the flat bottom linear solution leads to the commonly
used dispersion relation

ω2
p

g
= kp tanh(kph). (A 3)

By inserting the flat bottom solution back into (A 1), a new form of the dispersion
relation is obtained as

ω2
p

g
= ikp(∂xh)sech(kph)2 + kp tanh(kph). (A 4)

The difference between (A 1) and (A 4) was found to be small. The dispersion relation
that was derived contains an additional imaginary term compared to the flat bottom
one. This additional term is zero in deep water and, while it does grow substantially
in shallow water, it is still an order of magnitude smaller than the usual term, so can
be discarded and the slope’s effect will be captured in the solution of φ̂p.

Appendix B. The bed slope term
The term that depends on the spatial derivative of the bottom in (3.22) is called the

bed slope term. By using (3.21) its form becomes

Tbed =−
∂x + ikx

p,l +Dp,l

tan(h∇)∇+ ω
2
p

g

sec(h∇)(∇h) · {sec(h∇)∇φ̂p}. (B 1)

Both the numerator and the denominator in (B 1) go to zero if the lowest-order
approximation (∇= ikp, ∂x= ikx

p) is taken. To solve this issue, a limit is taken for the
quasi-differential operator (∇→ ikp, ∂x→ ikx

p), for which the operator H reduces to

lim
∇→kp,l

H = lim
k′→kp,l

−ikx′ + ikx
p,l

−ω′2/g+ω2
p/g
= lim

k′→kp,l
ig
−k′ + kp,l

−ω′2 +ω2
p

= ig
∂kp

∂ω2
p

= ig
2ωpCg,p

. (B 2)
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In order to achieve consistency with the previous models, the usual bed slope term
derived by Agnon et al. (1993) will be used. These two show good agreement in deep
and shallow water but there is a difference in intermediate water. The bed slope term
that will be used is

Tbed =−
C′g,p

2Cg,p
. (B 3)

Term Cg,p is the group velocity of the harmonic p in the onshore direction.

Appendix C. Wave action equation
All of the source terms have been derived, so now the equation will be presented

in wave action formulation. The starting point is (4.11) for evolution of the spectrum
given as

1
Cg,p

∂Fp,l

∂t
+ ∂Fp,l

∂x
=−C′g,p

Cg,p
Fp,l − 2Dp,lFp,l −NL, (C 1)

where the term NL represents the nonlinear part of the evolution equation. The
evolution equation can be rewritten as

∂Fp,l

∂t
+Cg,p

∂Fp,l

∂x
+C′g,pFp,l =−2Cg,pDp,lFp,l −Cg,pNL= S′D + S′NL, (C 2)

or, after some manipulation,

∂Fp,l

∂t
+ ∂

∂x
(Cg,pFp,l)= S′D + S′NL, (C 3)

where S′D and S′NL are dissipation and nonlinear interaction source terms, respectively.
By dividing the spectrum by the wave frequency ω, the wave action formulation for
the evolution equations is obtained. It takes the form

∂Np,l

∂t
+ ∂

∂x
(Cg,pNp,l)= SD + SNL, (C 4)

where the wave action is given as

Np,l = 〈|Ap,l|2〉
ωp

. (C 5)
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