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Geometrical confinement of turbulent Rayleigh–Bénard convection (RBC) in Cartesian
geometries is found to reduce the local Bolgiano length scale in the centre of the cell
LB,centre and can therefore be used to study cascade processes in the bulk of RBC. The
dependence of LB,centre versus Γ suggests a cut-off to the local LB, which depends
on the Prandtl number Pr and is of the order of the cell’s smallest dimension. It is
also observed that geometrical confinement changes the topology of the flow, causing
the turbulent kinetic energy dissipation rate and the temperature variance dissipation
rate (averaged over the centre of the cell and normalized by their respective global
averages) to exhibit a maximum at a certain Γ , which roughly coincides with the
aspect ratio at which the viscous and thermal boundary layers of the two opposite
lateral walls merge. As a result the mean heat flux through the core region also
exhibits a maximum. Unlike in the cubic case, we find that geometrical confinement
of the flow results in a local balance of the heat flux and the turbulent kinetic energy
dissipation rate for Pr= 4.38 for all values of the Rayleigh number Ra (up to 1010),
while no balance is observed for Pr= 0.7. The need for very high bulk resolution to
accurately resolve the gradients of the flow field at high Ra is shown by analysing
the second-order structure functions of the vertical velocity and temperature in the
bulk of RBC. Under-resolution of the temperature field yields a large error in the
dissipative range scaling, which is believed to be an effect of intermittently penetrating
thermal plumes. The resolution contrast resulting from the requirement to resolve the
thermal plumes and the homogeneous and isotropic background turbulence scales as
δT/〈ηk〉centre ∼ Ra0.1 and should therefore be taken into account when tackling very
high Ra. In the case studied here, under-resolution can have a significant effect on
the local heat flux through the centre of the cell.

Key words: Bénard convection, turbulent convection, turbulence simulation

1. Introduction
Turbulent thermal convection in a Rayleigh–Bénard configuration has been a very

active area of research in the past two decades (Ahlers, Grossmann & Lohse 2009;
Lohse & Xia 2010; Chillà & Schumacher 2012; Xia 2013). However, the question of
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how the small-scale properties of the convective flow depend on the aspect ratio has
not been investigated systematically. Such a study could shed light on how various
quantities behave as the system crosses over from being three-dimensional (3-D)
to being 2-D/quasi-2-D. In Kaczorowski & Xia (2013) we asked questions on how
the local Bolgiano length scale varies with the Rayleigh number Ra for the Prandtl
numbers Pr = 0.7 and Pr = 4.38, how this scaling compares with the scaling of
the global estimate of the Bolgiano length scale and how this is reflected in the
structure functions in the bulk of turbulent Rayleigh–Bénard convection (RBC) in a
cubic geometry. We found that the local Bolgiano length scale in the bulk is not
only much larger than the global estimate of the Bolgiano length scale, but also
increases rapidly after a certain critical Rayleigh number, which depends on the
Prandtl number and appears to grow as the Prandtl number increases. Thus, we took
into account two important parameters that govern the flow, namely the Rayleigh
number Ra= αgW3

z1T/(νκ) and the Prandtl number Pr= ν/κ , where α, ν and κ are
the thermal expansion coefficient, kinematic viscosity and thermal diffusivity of the
convecting fluid, respectively, and g is the gravitational acceleration. The height of
the fluid layer is given by Wz and the temperature difference between the horizontal
top and bottom plates is 1T .

A third parameter that is interesting to study, but which is not easy to vary
experimentally over a wide range and might require significant computational
resources for its large values, is the aspect ratio Γ of the container. The impact
of the aspect ratio of a cylindrical cell on the thickness of the horizontal and vertical
boundary-layer thicknesses was theoretically investigated by Grossmann & Lohse
(2003). The aspect-ratio dependence of the heat transfer has been experimentally
investigated by Funfschilling et al. (2005) and by Sun et al. (2005a) using a
cylindrical cell with aspect ratios 0.676 Γ 6 20. It was found that the heat transfer
reaches its large-Γ asymptotic value for Γ > 10. The influence of the aspect ratio
(0.256Γ 6 12) of a cylindrical cell on the heat transfer was numerically investigated
by Bailon-Cuba, Emran & Schumacher (2010) for 1076Ra6 109 and Pr= 0.7. They
observed that the Γ scaling of the heat transfer has a local minimum for Γ ≈ 2.5,
which coincides with a change from a single- to a double-role structure. They also
observed that the contribution of the primary proper orthogonal decomposition mode,
which is associated with the large-scale circulation (LSC), to the heat transport
increases with Γ . The influence of the aspect ratio (0.23 6 Γ 6 13) on the flow
structure of two-dimensional RBC (107 6 Ra 6 1012 and different Pr of order unity)
was also investigated by Poel et al. (2012). They show that finite size effects gradually
vanish as the aspect ratio is increased and appear to be negligible for Γ > 10. They
also investigate the influence of different experimentally observed flow states (Roche
et al. 2002; Funfschilling, Bodenschatz & Ahlers 2009; Niemela & Sreenivasan
2010) on the global heat transfer, in order to understand how these flow states
affect the heat transfer efficiency Nu–Ra scaling, where Nu is the Nusselt number.
Using a rectangular water-filled geometry consisting of 50 cm × 15 cm horizontal
plates and sidewalls of varying heights with 2.4 cm6H 6 40 cm Zhou et al. (2012)
observed that the global heat transfer is not affected by the aspect ratio of the
container, which they concluded to be an effect of the different dynamics of the
large-scale flow as compared to cylindrical geometries. Recently, in an experimental
and numerical study Huang et al. (2013) found that the heat transfer efficiency Nu
can be significantly enhanced (∼20 %) when the aspect ratio Γ is reduced to be less
than one, i.e. when the system is changed from a cube to a narrow rectangle. This
geometrical confinement-induced heat transfer enhancement was shown to result from
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the changes in the dynamics and morphology of the thermal plumes in the boundary
layers and in the large-scale flow structures in the bulk (Huang et al. 2013).

In contrast to studies of the global properties of the flow, there are many fewer
investigations of the local quantities. One of the interesting questions is how, and
how much, heat is transferred through the bulk of the flow (Shishkina & Wagner
2006, 2007; Kaczorowski & Wagner 2009; Emran & Schumacher 2012). Another
interesting property is the Bolgiano length scale, at which a cross-over from buoyancy-
to inertia-dominated cascade dynamics occurs, which has been studied by numerous
authors (e.g. Ching 2000; Shang & Xia 2001; Zhou & Xia 2001; Calzavarini, Toschi
& Tripiccione 2002; Sun, Zhou & Xia 2006; Kunnen et al. 2008; Zhou & Xia
2008; He, Tong & Ching 2010; Lohse & Xia 2010). From their recent study of
Rayleigh–Taylor turbulence Boffetta et al. (2012) concluded that the smallest length
of the geometry can be used to confine the Bolgiano length scale, so that cascade
processes in turbulent thermal convection may be studied by varying the aspect ratio
of the cell. Geometrical confinement of turbulent flows was also studied by Celani,
Musacchio & Vincenzi (2010), who found that reduction of the dimensionality of a
system, and hence the forcing length scale, leads to a cascade splitting with a direct
cascade below and an indirect cascade above the forcing length scale. Boffetta et al.
(2012) show that the Bolgiano length scale in their simulations of Rayleigh–Taylor
turbulence is associated with an indirect cascade. In light of this observation we now
analyse the impact of the aspect ratio of a Cartesian geometry on the flow in the
bulk of turbulent RBC.

In this paper we use direct numerical simulations of RBC in Cartesian geometries
with different lateral aspect ratios in order to answer the question of how the
local Bolgiano length scale is affected by the aspect ratio and whether the lateral
confinement would be a useful tuning parameter to study cascade processes in the
bulk of RBC. Furthermore, we extract the local heat flux in the centre of these cells
and compare the results with our previous findings for a cube and the experimental
results for a cylindrical cell obtained by Ni, Huang & Xia (2011). Using the example
of an aspect ratio Γ = 1/4 geometry filled with water and Ra = 1 × 1010 we also
study the influence of the resolution in the bulk on the dynamics of the flow in this
region.

2. Numerical set-up
In § 2.1 we briefly describe the governing equations and the numerical method used,

while § 2.2 explains the geometries and meshes used in the present study and provides
a list of the relevant simulation parameters.

2.1. Numerical method
We solve the non-dimensional governing equations (Kaczorowski & Xia 2013)

∇ · u= 0,
∂u/∂t+ u · ∇u+∇p= (Ra/Pr)−1/21u+ Tez,

∂T/∂t+ u · ∇T = (RaPr)−1/21T

 (2.1)

using a fourth-order accurate finite volume method, where u= (u, v,w) is the velocity
vector, and T and p represent the temperature and pressure, respectively. The gravity
vector is acting in the vertical direction, i.e. the −ez direction. For a more complete
description of the numerical method used and a comparison of the Nu–Ra scaling with
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(a)

z

xy

(b)

(c) (d)

FIGURE 1. (Colour online) Illustration of the rectangular geometries with four different
aspect ratios, (a) Γ = 1/8, (b) Γ = 1/4, (c) Γ = 1/2 and (d) Γ = 1, and a visualization
of the instantaneous temperature field with isosurfaces for T > 0.1 to give an impression
of the size of the large coherent structures (Ra= 108 and Pr= 4.38). The colour scale is
from white (hot plate) through yellow to orange (bulk flow).

experimental data the reader is referred to Kaczorowski & Xia (2013). A comparison
with experimental data can also be found in Huang et al. (2013).

Since the governing equations are solved in non-dimensional form using the
normalizations xref = H, uref = (αgH1T)1/2, Tref = 1T and tref = xref /uref , all results
presented in the following are also non-dimensional, unless stated otherwise.

2.2. Computational set-up
The geometries used here to study turbulent RBC consist of a square cross-section
in the x–z plane, i.e. Wx =Wz, and an aspect ratio satisfying 1/406 Γ =Wy/Wz 6 1
in the y–z direction. A few examples of the instantaneous flow in different aspect-
ratio containers are illustrated in figure 1. The confinement of the flow thus allows
for a transition from a full 3-D to a quasi-2-D flow pattern. The Prandtl numbers
Pr under investigation are 0.7 and 4.38, representing the properties of widely used
media, namely air at ambient conditions and water at 40 ◦C. Table 1 summarizes the
simulation parameters.

The meshes of all simulations are equidistant in the centre of the cell and gradually
refined towards the walls, i.e. the grids are non-equidistant in all three coordinate
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Pr Ra Γ Nx ×Ny ×Nz NH NT Nv NuS Nu(εT) Nu(εu) tavg

0.7 1× 107 1 162× 162× 162 132 7/3.3 7/2.9 16.3 16.1 16.2 390
0.7 1× 107 1/4 162× 50× 162 132 7/2.8 6/2.4 16.0 16.3 16.4 100
0.7 1× 107 1/8 162× 26× 162 132 8/2.6 7/2.3 14.1 14.0 14.0 200
0.7 1× 108 1 322× 322× 322 281 7/3.9 6/3.4 31.3 31.1 31.6 400
0.7 1× 108 1/4 322× 98× 322 282 6/3.9 6/3.4 31.6 31.4 31.4 450
0.7 1× 108 1/8 322× 50× 322 285 8/4.0 8/3.5 33.8 34.0 34.1 480
0.7 1× 109 1/4 722× 202× 722 596 12/6.5 10/5.7 62.5 62.1 61.9 225
0.7 1× 109 1/8 722× 114× 722 596 11/6.6 10/5.8 63.4 63.0 63.0 425

4.38 1× 107 1 178× 178× 194 110 14/2.6 21/4.5 16.1 16.0 16.1 520
4.38 1× 107 1/2 178× 90× 194 110 14/2.7 21/4.4 15.9 15.9 15.9 250
4.38 1× 107 1/4 178× 50× 194 110 13/2.6 20/4.5 16.7 16.6 16.7 480
4.38 1× 107 1/8 178× 26× 194 110 15/2.7 22/4.6 14.9 14.9 14.8 380
4.38 1× 107 1/4 178× 50× 194 110 13/2.6 20/4.5 17.6 17.6 17.6 70 s.f. y-wall
4.38 1× 107 1/8 178× 26× 194 110 15/2.7 22/4.6 19.7 19.7 19.7 100 s.f. y-wall
4.38 1× 108 1 258× 258× 258 236 6/3.8 10/6.3 32.2 31.7 32.0 750
4.38 1× 108 1/2 258× 136× 258 236 6/3.7 10/6.2 31.8 31.6 31.8 240
4.38 1× 108 1/4 258× 74× 258 236 6/3.8 10/6.3 32.1 32.1 32.4 380
4.38 1× 108 1/8 258× 40× 258 236 6/3.9 9/6.5 35.0 34.3 34.6 370
4.38 1× 109 1 514× 514× 514 500 13/5.3 19/8.8 63.4 62.7 63.0 350
4.38 1× 109 1/2 514× 276× 514 500 13/5.3 19/8.8 63.2 63.2 61.7 239
4.38 1× 109 1/4 514× 156× 514 500 13/5.3 19/8.8 63.5 63.6 63.7 332
4.38 1× 109 1/8 514× 98× 514 508 13/5.5 18/9.1 67.8 67.8 67.7 230
4.38 1× 109 1/16 514× 66× 514 518 12/5.7 17/9.4 73.2 72.4 73.0 225
4.38 1× 109 1/32 514× 34× 514 500 13/5.3 19/8.8 61.7 61.4 61.1 120
4.38 3× 109 1 770× 770× 770 719 13/6.3 19/10.5 88.9 89.7 90.1 90
4.38 3× 109 1/4 770× 220× 770 719 13/6.3 19/10.5 89.2 88.5 88.8 184
4.38 3× 109 1/8 770× 128× 770 719 13/6.3 19/10.6 91.3 91.0 91.3 160
4.38 3× 109 1/16 770× 82× 770 719 12/6.6 18/11.0 100 99.5 99.6 315
4.38 3× 109 1/32 770× 50× 770 719 12/6.8 17/11.3 104 104.1 103.8 215
4.38 1× 1010 1/4 1142× 326× 1142 1060 13/7.6 19/12.6 130.9 130.1 131.0 140
4.38 1× 1010 1/8 1142× 192× 1142 1060 13/7.5 19/12.5 128.2 127.2 125.6 60
4.38 1× 1010 1/16 1142× 114× 1142 1060 11/7.8 18/13.0 137.5 137.8 137.7 117
4.38 1× 1010 1/32 1142× 66× 1142 1060 11/7.8 17/12.6 149.2 149.2 150.6 160
4.38 1× 1010 1/40 1142× 58× 1142 1060 10/8.2 17/13.7 153.7 153.6 153.8 160

TABLE 1. Simulation parameters and mean heat flux. Here, Nx × Ny × Nz is the number
of grid points in the respective spatial directions. The required number of grid points in
the vertical direction is NH and the numbers of grid points required to resolve the thermal
and the viscous boundary layers are NT and Nv repectively (actual resolution/requirement).
The mean convective heat transfer is calculated through NuS = 〈(RaPr)1/2uzT − ∂T/∂z〉S,
NuεT = (RaPr)1/2〈εT〉global and Nuεu = (RaPr)1/2〈εu〉global+ 1. Here, tavg denotes the averaging
time of the simulations. Simulations performed with shear-free front and back walls at
y= 0 and y=Wy (∂ux/∂y= ∂uz/∂y= 0) are denoted by ‘s.f. y-wall’.

directions. The meshes of all aspect ratios for one particular Ra and Pr are identical
in the cross-section perpendicular to the y direction and are designed such that the
resolutions of the boundary layers and in the middle of the y direction of the slender
cells are approximately the same as for the cube. In particular, we designed the
meshes such that the grid spacing in the centre of the cell is equidistant and smaller
than the global estimate of the Kolmogorov and Batchelor length scales, and the
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grid spacing becomes finer towards the side walls in order to sufficiently resolve the
boundary layers, which has been illustrated in figure 2 of Kaczorowski & Xia (2013).
The grid in the near-wall region is constructed with a hyperbolic tangent, where
the wall spacing of the first grid point is chosen such that the grid point satisfies
the resolution requirements for the boundary layer. This means that, depending on
the Rayleigh number, the wall spacing of the first grid point is between 10−3 and
10−4 non-dimensional length. The achieved boundary-layer resolution can be found
in table 1, from which one can see that our boundary-layer resolution is often two
times as high as the requirement proposed by Shishkina et al. (2010). The resolution
of the simulations exceeds the requirements proposed by Shishkina et al. (2010)
not only in the boundary layers but also in the bulk. It has also been checked by
examining local profiles through the centre of the cells that all relevant turbulent
scales are sufficiently resolved (Kaczorowski & Xia 2013). Furthermore, the global
Nusselt number is computed from a volume integration of the thermal and kinetic
dissipation rates as, for instance, performed by Stevens, Verzicco & Lohse (2010).
The results of this are provided in table 1. It can be seen from the table that there
is no significant deviation between these values, indicating that the simulations are
sufficiently resolved and averaged over a sufficiently long time to obtain an accurate
prediction of the global Nusselt number. The averaging time is given in free-fall time
units in table 1. Simulations were run for approximately 400 time units before we
started averaging. For Ra= 1× 108, Pr = 4.38 and Γ = 1 we waited 800 time units
before starting to average in order to test whether all transients have been dissipated.

3. Γ scaling of the flow
In the following section we analyse the influence of the aspect ratio on the local

properties of the flow in the centre of the cell, which undergo a change from
relatively homogeneous bulk turbulence to a boundary-layer-dominated flow. The
influence on the local Bolgiano length scale and the dissipation rates is discussed in
§ 3.1, the velocity and temperature fluctuations and their probability density function
are analysed in § 3.2 and the heat transfer through the centre of the cell is discussed
in § 3.3.

3.1. Analysis of the Bolgiano length scale
We now discuss the influence of the lateral confinement on the local Bolgiano length
scale defined (in terms of our non-dimensional variables) as

LB(x, y, z)= 〈εu(x, y, z)5/4〉t〈εT(x, y, z)−3/4〉t, (3.1)

in order to investigate whether or not the smallest length of the confining geometry
limits the extent of the Bolgiano length scale as suggested by Boffetta et al. (2012).
Here, εT = (RaPr)−1/2 ∑

i (∂T ′/∂xi)
2 is the non-dimensional temperature variance

dissipation rate and εu = (Ra/Pr)−1/2 ∑
i

∑
j

(
∂u′i/∂xj

)2 is the non-dimensional
turbulent kinetic energy dissipation rate, and primed quantities denote turbulent
fluctuations defined as φ= φ̄+ φ′, so that the time average of φ′ is φ̄′= 0. It follows
by equating the second-order structure functions for K41 scaling,

〈(δru)2〉V,t =C 〈εu〉2/3V,T r2/3, (3.2)

〈(δrT)2〉V,t =CT 〈εT〉V,T 〈εu〉−2/6
V,T r2/3, (3.3)
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where C and CT are the Kolmogorov constants for the respective structure functions,
and the second-order structure functions for BO59 scaling,

〈(δru)2〉V,t =CBO,u 〈εT〉2/5V,Tr6/5, (3.4)

〈(δrT)2〉V,t =CBO,T〈εT〉4/5V,Tr2/5, (3.5)

where CBO,u and CBO,T are the respective proportionality factors, in the inertial range,
that the mean Bolgiano length scale averaged over a certain subvolume V of the flow
is given by

LB,V = 〈εu〉5/4V,t 〈εT〉−3/4
V,t . (3.6)

Here, δr defines the increment of the velocity or temperature over a distance r,
where r is either in the horizontal (x) or in the vertical (z) direction, depending on
whether the longitudinal or transverse structure functions are to be analysed. In this
paper the subvolume V is defined to be in the centre of the cell, the dimensions
of which are 1/4 of the respective edge lengths Wx, Wy and Wz. We also averaged
the dissipation rates over subvolumes in the centre of the cell with 1/2 and 1/8 of
the cell’s respective edge length and found that the scaling in all cases is the same,
while the magnitude varies significantly for the 1/2-edge length volume, but results
are almost identical for 1/4- and 1/8-edge length subvolumes. The global Bolgiano
length scale can be written as

LB,global = (Nu− 1)5/4Nu−3/4(RaPr)−1/4, (3.7)

by averaging (3.6) over the entire volume and substituting the exact relations for the
temperature variance dissipation rate 〈εT〉V =Nu(RaPr)−1/2 and turbulent kinetic energy
dissipation rate 〈εu〉V = (Nu − 1)(RaPr)−1/2 obtained from the Boussinesq equations
into the equation (see also Lohse & Xia 2010).

The relationship between the lateral aspect ratio Γ = Wy/Wz and the global
Bolgiano length scale is presented in figure 2(a,b), illustrating that the globally
averaged Bolgiano length scale does not change significantly with Γ . This can be
explained through the relation LB,global ∼ Nu1/2, which for constant Ra and Pr yields
a Γ variation of LB,global of approximately 1 %, since the maximum variation of Nu
with Γ is approximately 10 % (cf. table 1). The local Bolgiano length scale in the
core region shown in figure 2(c,d), on the other hand, is significantly influenced by
Γ . It is observed that LB,centre decreases as Γ decreases and that the rate at which
LB,centre decreases is larger for Pr = 0.7 than for Pr = 4.38 (note the difference in
the horizontal axis scales between figures 2c and 2d). We observe that the local
Bolgiano length scale in the centre of the box is smaller than the width of the cell
for sufficiently large Γ . For our largest Ra and small Γ with Pr = 4.38, it is found
that both LB,centre and LB,global are larger than Wy, while Boffetta et al. (2012) state
that the local Bolgiano length scale in their simulations is always smaller than the
smallest length of the geometry. Therefore, although the smallest dimension of the
cell does not limit the global Bolgiano length scale, it does limit the local Bolgiano
length scale LB,center in the sense that LB,center is now of the same order of magnitude
as the smallest cell dimension and its decrease approximately follows the decrease
of the smallest cell dimension. We conclude that confinement of the flow reduces
the local Bolgiano length scale, which then can be used to study the impact on the
structure function scaling at high Ra, when the local LB,centre in a cube would be
very large and therefore would not allow for the observation of a cross-over from
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FIGURE 2. (Colour online) The Γ dependence of the global Bolgiano length scale (a,b),
the local Bolgiano length scale (c,d), where the black dashed line represents the scaling
when the lateral extent of the convection cell equals the Bolgiano length scale, i.e. LB =
Wy, (e,f ) the Γ dependence of the turbulent kinetic energy dissipation rate locally averaged
in the centre of the cell normalized with the globally averaged value and (g,h) the Γ
dependence of the temperature variance dissipation rate locally averaged in the centre of
the cell normalized with its globally averaged value. The dependence for Pr = 4.38 is
shown in (a), (c), (e) and (g) and the dependence for Pr=0.7 in (b), (d), (f ) and (h). Here,
Ra= 1× 107 (�), Ra= 1× 107 with ∂v/∂y|wall = 0 (×), Ra= 1× 108 (◦), Ra= 1× 109

(O), Ra = 3 × 109 (4) and Ra = 1 × 1010 (♦). Note that LB = 1 corresponds to the cell
height H =Wz.
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K41 to BO59 scaling in RBC. In figure 2 (and in subsequent figures), the error bars
represent the differences between the time-averaged quantities using the full time
series and only half of the time series.

In Huang et al. (2013) the impact of lateral confinement on the large-scale flow
and the global heat transport was highlighted. It is therefore interesting to take
a closer look in order to gain a deeper understanding of the dynamics of the
bulk. Here, we focus primarily on the properties of the flow in the core region,
in particular the Γ dependence of the turbulent kinetic energy dissipation rate εu and
the temperature variance dissipation rate εT . From figure 2(e,g) it becomes clear that
both 〈εu〉centre/〈εu〉global and 〈εT〉centre/〈εT〉global exhibit a maximum at a certain Γ that
is a function of Ra. With increasing Ra this maximum is shifted towards smaller Γ .

In order to examine the effect of the viscous drag of the lateral sidewalls (in the y
direction), we conducted simulations for Ra= 1× 107, Pr= 4.38 and aspect ratios of
Γ =1/8 and Γ =1/4 with free-slip lateral (y) walls, while a no-slip condition was still
imposed on all other walls and the temperature boundary conditions were unchanged.
A significant change of the global Nusselt number (Nu is approximately 30 % higher
with the free-slip condition) is also observed for Γ = 1/8, while only a 7 % increase
of Nu is found for Γ = 1/4, showing that the effect of the sidewalls for Γ = 1/4
is relatively small, but still significant. It is interesting to note that removal of the
no-slip condition on the y-walls has a significant impact on the temperature variance
dissipation rate in the centre of the cell, which becomes significantly smaller than
in the case with viscous y-walls. The normalized turbulent kinetic energy dissipation
rates, however, are nearly unaffected by changing the velocity boundary conditions
on the sidewalls. The influence of the lateral viscous boundary layers on the flow
and the impact of confinement on the heat transfer should be an interesting field
for further study, to unravel the key elements that lead to confinement-induced heat
transfer enhancement. Here, we just wish to point out that the effective width of the
cell, which is determined by the thickness of the boundary layers on the sidewall,
plays a key role in the heat transfer enhancement mechanism. This can be seen from
the comparison of the no-slip and free-slip cases in table 1. While for Ra= 1× 107

Γ = 1/4 is close to the optimum Γ (in terms of heat transfer) and smaller Γ lead to a
sharp drop in Nu, the effective width of the shear-free cell is still too large to result in
a drop of Nu. Analysis of the boundary layer thicknesses on the y-walls discussed in
§ 3.3 reveals the importance of the cell width compared to the sidewall boundary-layer
thickness. This phenomenon will be studied in detail in a subsequent publication.

Furthermore, figure 2(e,f ) highlights that the resolution requirement for the core
region becomes increasingly more demanding as Γ is reduced towards roughly twice
the boundary-layer thickness, since the local dissipation rates increase significantly
for high Ra. It is, however, noted that both εu and εT decrease again for even
smaller Γ . We know from Huang et al. (2013) that this is related to the fact that
the thermal plumes become more coherent and are more likely to travel vertically
through the bulk as the aspect ratio is reduced. We find that the resolution in these
cases is ηb/1xp ≈ 1.1 . . . 1.2, showing that the mean field is still well resolved. It is,
however, reckoned that the thermal plumes and their associated strong gradients are
not sufficiently resolved, which might in turn result in an erroneous dissipation rate.
The effect of under-resolving the bulk is further discussed in § 5.

The different dynamics of the large-scale flow for the different aspect-ratio
geometries are illustrated for the plane y=Wy/2 in figure 3. They show that the flow
is sufficiently stable for large aspect ratios, since an LSC can be clearly identified
from the time-averaged velocity field. Hence, the core region is stirred by the LSC,
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FIGURE 3. (Colour online) Mean in-plane normalized velocity vectors coloured by their
magnitude in the centre plane y=Wy/2 for (a) Γ = 1/4 and (b) Γ = 1/8 for Ra= 1× 109

and Pr = 4.38. (c)–(e) The instantaneous flow in the Γ = 1/8 geometry underlying the
mean field in (b). The three snapshots are for times t=400, 450 and 485 with the velocity
vectors coloured according to the colour scale in (a,b) and the temperature field coloured
from blue (cold) to red (hot).

as can be seen from figure 3(a). For Γ = 1/8, however, this is not the case, as can
be seen from 3(b). The LSC has become unstable with frequent reversals of the LSC
direction, which is illustrated in figure 3(c–e). The series of instantaneous snapshots
provides an example of such a reversal, where plumes frequently propagate through
the centre region of the flow. The frequent reversals of the LSC and its breakdowns
can be more clearly observed from the complementary movie. Based on short-time
averages of their experimental data, Sun, Xia & Tong (2005b) showed that averaging
of two mean fields with opposite sense of flow direction yields a four-roll pattern
similar to the one illustrated in figure 3(b).

3.2. Analysis of turbulent fluctuations
The influence of the aspect ratio on the flow is also reflected by the increased
turbulent fluctuations in the bulk region in terms of the Reynolds number (Re) =
(Ra/Pr)1/2wrmsH, with wrms = (〈(w′)2〉)1/2. The Γ dependence of the velocity
fluctuations represented by Rerms(Γ ) presented in figure 4(a,b) exhibits a clear
maximum for the highest Ra, while our data set does not comprise small enough
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FIGURE 4. (Colour online) The Γ dependence of the turbulent fluctuations Re =
(Ra/Pr)1/2wrmsH and Trms = (〈(T ′)2〉)1/2 averaged in time and the centre volume Vcentre =
Γ 0.253 for Pr=4.38 (a,c) and Pr=0.7 (b,d): Ra=1×107 (�), Ra=1×107 with free-slip
y-walls (×), Ra= 1× 108 (◦), Ra= 1× 109 (O), Ra= 3× 109 (4) and Ra= 1× 1010 (♦).

Γ for Ra6 1× 108 to observe the maximum. Analysis of the Γ dependence of the
turbulent temperature fluctuations Trms = (〈(T ′)2〉)1/2 presented in figure 4(c,d) shows
that the fluctuations increase with decreasing aspect ratio. A maximum as observed
for the velocity fluctuations is not observed, although the shape of Trms(Γ ) suggests
that there might be one for very small Γ .

The different dynamics of the bulk flow may also be presented by plotting the bulk
fluctuations as a function of Ra (figure 5). Although the plot is a little scattered, the
plot highlights the impact of the aspect ratio on the magnitude of the fluctuations,
which reflects the different dynamics of the flow presented in figure 3. While for very
small aspect ratios the flow constantly undergoes reversals, it is relatively stable for
large aspect ratios, which will affect the mean velocity profile. However, we note that
the mean value in the centre of the cell is very small (smaller than 0.01 for Ra =
1 × 109) for all aspect ratios. We therefore conclude that the different magnitude of
the fluctuations in the centre represents a feature of the flow.

We therefore investigate the p.d.f.s of the vertical velocity and the temperature
fluctuations in the bulk and observe that the aspect ratio has a significant impact
on the shape of the p.d.f.s. The p.d.f. of the vertical velocity fluctuations plotted
in figure 6(a) is essentially Gaussian for Γ = 1/8, while the p.d.f.s of the vertical
velocity fluctuations for larger Γ show a significant deviation from the Gaussian
distribution. The deviation from the Gaussian distribution is, however, not as high
as for the temperature fluctuations, which are presented in figure 6(b). For Γ = 1/8
a Gaussian-like p.d.f. is observed, while the p.d.f. for Γ = 1 exhibits a very large
kurtosis. From this it could be inferred that the bulk flow in the small-aspect-ratio
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FIGURE 5. (Colour online) The Ra dependence of the turbulent fluctuations averaged in
time and the centre volume Vcentre=Γ 0.253 for Pr= 4.38. Here, Γ = 1 (�), Γ = 1/2 (�),
Γ = 1/4 (4) and Γ = 1/8 (O).

cells is well mixed; however, it has to be taken into account that Trms is significantly
larger for small Γ , which is also evident from the online supplementary movie
available at http://dx.doi.org/10.1017/jfm.2014.154. In this context we would also
like to refer to Huang et al. (2013), where it was already observed that the thermal
plumes become larger and more coherent as the aspect ratio is reduced.

The scale dependences of the p.d.f.s of the fluctuations with spatial separations r in
the inertial range are presented in figure 7 for Γ = 1/2 and Γ = 1/8. It is revealed
that for both aspect ratios the temperature field in the bulk is more intermittent than
the velocity field, since the shape of the p.d.f.s changes significantly more. Zhou &
Xia (2010) observed exponential tails of P(δrw′/(δrw′)rms) for r at the integral scale in
a cylindrical cell of aspect ratio unity filled with water. In our simulations we observe
a similar tendency, but the trend is not as clear as in the experimental observations.

Comparison of the aspect-ratio dependence of the velocity and temperature
fluctuations obtained from our simulations indicates that the dynamics of the
temperature field is much more sensitive to changes of the aspect ratio than the
velocity fluctuations. The relatively thick viscous laminar boundary layers adjacent
to the lateral walls seem to dampen the fluctuations in the bulk, which we will
investigate in the following section.

3.3. Influence of the sidewalls on the bulk flow
Since we are going to compare the heat flux through the centre of the cell in § 4,
we will analyse the profiles of the vertical convective heat flux Nuc = 〈wT ′

√
RaPr〉x,z

averaged over 2-D regions with 3/8 6 x, z 6 5/8. In figure 8 the profiles of the
mean heat flux are plotted as a function of the lateral coordinate y. It is revealed
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FIGURE 6. (Colour online) The p.d.f.s of (a) the vertical velocity fluctuation wrms and
(b) the temperature fluctuation Trms in the core region (Vcentre = Γ 0.253) for aspect ratios
Γ = 1/16 (–··–), 1/8 (–·–), 1/4 (– –), 1/2 (— —) and 1 (—) with Ra = 1 × 109 and
Pr= 4.38. A Gaussian distribution (– –) with the same standard deviation as the respective
distributions for Γ = 1/16 is given for reference.

that the distribution of the heat flux in the lateral direction is strongly dependent on
the aspect ratio Γ . The local heat flux is largest close to the lateral sidewalls and
very small in the centre of the cell. However, with decreasing aspect ratio the centre
region vanishes and the regions that are influenced by the lateral boundary layers
begin to overlap, so that for Γ = 1/8 the heat flux in the centre of the cubic cell
becomes largest. The aspect-ratio dependence of the distribution of the local heat flux
is therefore significantly different from the distribution in the centre plane y/Wy= 0.5
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FIGURE 7. (Colour online) The p.d.f.s of the increments of the temperature fluctuations
(a,b) and of the vertical velocity fluctuations (c,d) with different separations r for Ra=1×
109, Pr= 4.38 with Γ = 1/8 (a,c) and Γ = 1/2 (b,d) in the core region (Vcentre=Γ 0.253)
of the cell. Here, r≈ ηk (– · –), r≈ 10ηk (– –) and r≈ 0.40H (—).

as observed in Huang et al. (2013), where it was observed that the heat flux increases
not only close to the sidewalls of the square cross-section (x–z plane), but also in the
centre, as the aspect ratio is reduced from Γ = 1/2 to 1/8. Together with the present
analysis it becomes clear that the increase of the heat flux in the centre is due to the
influence of the lateral sidewalls. Although the impact of periodic boundaries on the
bulk dynamics would also be interesting to study, we are presently mainly concerned
with highly confined flow, and therefore we do not consider periodic boundaries here.
From figure 8(a,c) it can also be seen that even a shear-free lateral wall still exhibits
some sort of near-wall region with a significantly higher heat flux than the bulk. It
is, however, interesting to note that the heat flux in the lateral direction through the
centre of the cell is generally smaller than with viscous lateral walls, indicating that in
this case more heat is carried by the LSC and less through the bulk. In other words,
the friction of the sidewalls destabilizes the LSC and leads to larger heat transport
through the bulk.

Since the boundary layers on the y-walls have a significant impact on the dynamics
of the system, we wish to analyse the thickness relative to the cell width Wy. Here,
we define the boundary layers on the y-walls by the root-mean-square (r.m.s.) values
of the wall-normal temperature and velocity profiles (Xin & Xia 1997; Qiu & Xia
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FIGURE 8. (Colour online) Profiles of the vertical convective heat flux averaged over
the 2-D region (3/86 x, z6 5/8) as a function of the lateral coordinate y (a,b) and the
normalized lateral coordinate y/Wy (c,d) for Ra = 1 × 107 (a,c) and Ra = 1 × 109 (b,d).
Here, Γ = 1/8 (–··–), Γ = 1/4 (–·–), Γ = 1/2 (– –) and Γ = 1 (—) with Pr= 4.38. The
dot-dashed curve in (a,c) is a Γ = 1/4 cell with shear-free lateral walls.

1998), as illustrated in figure 9. While the velocity boundary layer is defined by the
maximum of the vertical velocity fluctuations (see figure 9a), the thermal boundary
layer is defined as the intersection of the tangent through the maximum of the profile
(∂T/∂y = 0) and the secant through the logarithmic r.m.s. temperature profile at
y1 = 0.05 and y2 = 0.1. The thermal boundary-layer thickness is therefore given
by δσT = exp(log(y1) + (Trms(y = 0) − Trms(y1))/b), where b = (Trms(y2) − Trms(y1))/

(log(y2)− log(y1)). While the boundary layers have already merged for Γ = 1/8 and
Ra = 1 × 108, the profile of the r.m.s. values of T still shows two separate peaks
for Ra = 1 × 109. However, the abovementioned method fails in this case, since
the boundary layers have almost merged, so that no sufficiently large region exists
to define the secant. Here, we use the peaks of the profile as the boundary-layer
thickness. For Γ < 1/8 the thermal boundary layers have merged, so that only one
peak in the centre of the cell exists. This so-defined thermal boundary layer might
be understood as the near-wall region that is affected by the thermal plumes that
predominantly flow along the vertical walls. The results of this analysis are plotted
in figure 10. The figure demonstrates that the sidewall boundary layers merge when

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

15
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.154


88 M. Kaczorowski, K.-L. Chong and K.-Q. Xia

10−4 10−3 10−2 10−1 100

y

0.005

0.010

0.015

0.020

0.025

0.030

0.035(b)

10−4 10−3 10−2 10−1 100

y

0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(a)

FIGURE 9. (Colour online) Illustration of the definition of the viscous-boundary-layer
thickness (a) and the thermal-boundary-layer thickness (b) adjacent to the y-walls. The
profiles are taken from the case Ra= 1× 109, Pr= 4.38 and Γ = 1.
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FIGURE 10. (Colour online) The Γ dependence of the thermal- and viscous-boundary-
layer thicknesses on the lateral walls averaged over the 2-D region (3/8 6 x, z 6 5/8)
for Pr = 4.38: Ra = 1 × 108 (δσw �; δσT ♦), Ra = 1 × 109 (δσw •; δσT ◦). The viscous-
boundary-layer thickness is defined by the maximum r.m.s. value of the vertical velocity
normal to the wall and the thermal-boundary-layer thickness is determined by the distance.
Any point that lies above the dot-dashed curve indicates that the averaging volume used
to evaluate the centre of the flow also contains (at least partially) contributions from the
sidewall boundary layers. The solid curve represents the half-cell width.

Γ falls below a certain value that is dependent on Ra, which is when the global
Nusselt number exhibits its maximum. The figure also illustrates the extension of
the averaging volume in the centre of the cell, indicated by the dot-dashed curve.
If the boundary-layer thickness is above this line in figure 10, the analysis of the
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centre region will contain contributions from the boundary layers. The illustration
of the r.m.s. velocity profile in figure 9(a) indicates that due to entrainment the
centre region is even affected when the boundary-layer thickness is slightly smaller
than indicated by the dot-dashed curve. Entrainment and interactions between the
boundary layers on the sidewalls might also explain why there is a sudden increase
of the boundary-layer thickness when the boundary layers from the two opposite
walls merge for Ra= 1× 108. Strictly speaking, in these cases the centre of the cell
cannot be considered as bulk flow in the usual sense. However, one might take the
view that lateral confinement changes the flow to a boundary-layer-dominated flow.

4. Energy balance
As in Kaczorowski & Xia (2013), we compute the local heat flux

Nucentre ≡ (RaPr)1/2〈wT ′〉t,centre (4.1)

in the core region of the flow, where w is the vertical velocity and T ′ is the fluctuating
component of the temperature, and compare it with its estimate based on the turbulent
kinetic energy dissipation rate εu = (Ra/Pr)−1/2 ∑

i

∑
j

(
∂ui/∂xj

)
,

Nucentre = 〈εu〉centre(RaPr)1/2, (4.2)

which was shown to hold in the bulk of cylindrical geometries filled with water
(Shang et al. 2004; Ni et al. 2011), while the estimate based on the temperature
variance dissipation rate εT = (RaPr)−1/2 ∑

i (∂T/∂xi),

Nucentre = 〈εT〉centre(RaPr)1/2, (4.3)

was found not to hold in a cylindrical geometry filled with water (Shang et al. 2008).
We observed previously (Kaczorowski & Xia 2013) that for a cubic geometry with
Pr = 0.7 none of the above estimates match the directly measured heat flux, and
even for the water case (Pr = 4.38) we observed a good agreement of (4.1) and
(4.2) only for low Ra. A significant difference between a cubic and a cylindrical
geometry is the orientation of the LSC in the two geometries. While it is aligned
with one of the diagonal directions in the cube, it is randomly oriented and less
stable in a cylinder. We therefore now compare the quantities (4.1)–(4.3) for Cartesian
geometries of varying aspect ratio, where it is known that the LSC is more unstable
at low aspect ratios. Hence, we intend to investigate the influence of the plumes on
the abovementioned relationships.

From figure 11 it can be concluded that the decreasing aspect ratio not only
increases the heat transfer through the core region, but also leads to a better balance
between the heat transfer and the dissipation of turbulent kinetic energy. It can also
be seen that in the small-aspect-ratio cases this energy balance also holds for the
cases with Pr = 0.7, while it was previously observed (Kaczorowski & Xia 2013)
that the directly measured Nu lies between the estimates from the turbulent kinetic
energy dissipation rates and the temperature variance dissipation rates. This might
be a result of the different flow topologies, as discussed in § 3.1 and illustrated in
figure 3. While a stable LSC exists for high Ra in the Γ = 1 cell, the LSC becomes
more and more unstable as the flow is more confined, hence resulting in more vertical
flow through the core region. This in turn implies that a balance of the local heat
flux and the dissipation of turbulent kinetic energy is only given when a sufficient
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FIGURE 11. (Colour online) The Ra scaling of the local vertical heat transfer for (a)
the cube (results taken from Kaczorowski & Xia (2013)), (b) the aspect ratio Γ = 1/4
and (c) the aspect ratio Γ = 1/8 cell. Direct measurements of the local vertical heat
transfer (Pr = 0.7: •; Pr = 4.38: �), the local Nusselt number calculated through (4.2)
(Pr = 0.7: �; Pr = 4.38: �) and (4.3) (Pr = 0.7: �; Pr = 4.38: �) in the centre region
with the volume Vcentre=Γ 0.253. In (a) the data are compared with experimental data for
direct measurements of Nu (4) (Shang, Tong & Xia 2008) and Nu calculated from the
turbulent kinetic energy dissipation rates (×) (Ni et al. 2011), both measured in the centre
of cylindrical cells.

number of plumes are involved. This is the case when the aspect ratio is reduced
and the LSC becomes more unstable, so that the scaling of the low-aspect-ratio cells
approaches the scaling obtained in the cylindrical cells.
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FIGURE 12. (Colour online) (a) The p.d.f.s of the vertical convective heat flux Nu in the
core region (Vcentre=Γ 0.253) for aspect ratios Γ = 1/16 (–··–), 1/8 (–·–), 1/4 (- - -), 1/2
(– –) and 1 (—) with Ra= 1× 109 and Pr= 4.38. (b) The Γ dependence of the vertical
convective heat flux Nucentre (•) in the core region (Vcentre=Γ 0.253) normalized with the
globally averaged heat flux Nu for Ra= 1× 109 and Pr= 4.38.

For a more detailed analysis we compare the p.d.f.s of the vertical convective heat
flux through the core region of cells with different aspect ratios calculated from (4.1)
in figure 12(a). All geometries have in common that the most probable heat flux in the
centre of the cell is zero and the p.d.f.s are positively skewed with almost exponential
left tails and intermittent right tails. However, it can also be seen that the probability
of extreme events increases with decreasing aspect ratio in the lateral direction. In
particular, the right tail becomes strongly intermittent for small aspect ratios, which
is probably linked to the increasingly unstable LSC and eventually results in a higher
mean heat transfer through the core region at lower aspect ratios.

This is also reflected by a direct comparison of the local heat flux through the centre
of the cell Nucentre and the globally averaged heat flux that is reported in table 1, as
presented in figure 12(b). It becomes clear that in the cube for Ra = 1 × 109 and
Pr = 4.38 only a negligible amount of heat is transported through the centre of the
cell, while the centre of the cell contributes approximately three-quarters to the global
heat transfer when Γ = 1/8. For aspect ratios Γ 6 1/16 the vertical convective heat
flux in the centre is as large as the global heat flux.

4.1. Energy flux
One of the very few exact relations in turbulence study is Kolmogorov’s four-fifths
law, which is derived under the condition of local isotropy. A generalized version of
the law, which is local in both space and time, was later obtained without requiring the
flow to be strictly locally isotropic but by spherically averaging the structure function
over all directions (Duchon & Robert 2000; Eyink 2003), i.e.

εcentre(r, t)= 〈(δrur(r, t))3〉centre

−4/5r
, (4.4)

where the structure function is averaged in all directions. This instantaneous local
dissipation rate may also be interpreted as an energy flux, defined positive when
it flows from large to small scales. Although εcentre(r, t) is on average positive, its
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FIGURE 13. (Colour online) The integral kernel of the third-order structure function
evaluated in the centre of the cell for Ra= 1× 109, Pr = 4.38 and Γ = 1. The different
curves represent the spatial separation r in the dissipative range (—), (close to) the inertial
range (- -) and at large scale (– –) indicated by the symbols in figure 14.

fluctuating sign shows that energy cascade can momentarily reverse its direction,
i.e. from small to large scales in what is called energy backscattering. Energy
backscattering has been observed experimentally by Bandi et al. (2006). These authors
further observed that the probability of backscattering increases as the measurement
domain of the flow decreases, which is consistent with the numerical finding by
Tao, Katz & Meneveau (2002). In the present study the decrease of aspect ratio also
reduces the size of averaging flow domains. Moreover, as the aspect ratio decreases
turbulent flows becomes increasingly anisotropic and quasi-2-D; it would therefore be
interesting to examine how this influences energy backscattering.

We first check the convergence of the third-order structure function by examining
its integral kernels for three different separations r, representative of the dissipative,
the inertial and the largest length scales. The results are plotted in figure 13, showing
that the integrals are finite, since the integral kernels approach zero for large values
of δrur.

Figure 14 shows examples of the locally-averaged energy dissipation rate as
a function of r averaged over a centre volume of the RB convection cell with
Ra = 1 × 109, Pr = 4.38 and aspect ratios Γ = 1 and 1/8. It can be seen that the
energy flux is always positive, which is evidence for a direct energy cascade. For
Γ =1 the energy flux is almost constant for the largest scales until r≈10ηk is reached
and the energy flux begins to vanish rapidly, indicating that the energy is dissipated
by small scales. In this case the inertial range covers only about 1r=L11− 10ηk≈ 0.1
cell heights, where L11 is the longitudinal integral scale. For Γ = 1/8 the r-distribution
of the energy flux looks slightly different with a clear maximum at approximately
r≈ 20ηk and generally slightly higher values of εcentre(r). Since the integration volume
for Γ = 1/8 is only 1/8 of the volume used for Γ = 1, we also compute the flux in
the cubic cell using the same subvolume as in the Γ = 1/8 case. Figure 14(c) shows
that the maximum value of εcentre(r) in this case is about the same as in figure 14(a),
suggesting that the extent of the integration volume in the y direction does not have
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FIGURE 14. (Colour online) The energy flux εcentre(r)= 〈(δrur)
3〉centre,t/(−4/5r) evaluated

in the centre of the cell for Ra=1×109 and Pr=4.38 for (a) Γ =1 and (b) Γ =1/8. The
vertical lines represent the Batchelor length scale ηb (-··-), the Kolmogorov length scale
(-·-) and the local Bolgiano length scale LB,centre (– –) averaged over the centre of the
cube (Vcentre=Γ 0.53). Panel (c) shows εcentre(r) evaluated in the cube, but using the same
subvolume as for the Γ = 1/8 cell. The symbols indicate the r values used in figure 15
in the dissipative range (circles), in the lower end of the inertial range (diamonds) and at
large scale (squares). The arrows indicate the region where the inertial range is to expected
(L11 is the longitudinal integral scale).

a significant effect on εcentre(r), hence confirming the different cascade processes in
the cubic and Γ = 1/8 geometries. Another feature that can be seen from the figure
is that the inertial range is now much wider. This is an indication that the turbulent
flow in the smaller averaging volume is now more homogeneous and isotropic, as the
averaging volume now encloses only a small region in the central core. We note that
the maximum value of εcentre(r) in all these cases occurs near the Taylor microscale.
We also computed the energy flux for our small-aspect-ratio shear-free simulations
and observed that its shape is qualitatively the same as in figure 14(b).

Figure 15 shows the p.d.f.s of the instantaneous energy flux εcentre(r, t) for three
different length scales r as indicated by the symbols in figure 14, i.e. r values that
are in the dissipative range, at the lower end of the inertial range, and at the largest
scales, respectively. It is seen clearly that, due to its small averaging volume and
quasi-2-D nature, there exists stronger energy backscattering, as shown by the negative
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FIGURE 15. (Colour online) The p.d.f.s of the energy flux εcentre(r, t) =
〈(δrur(r, t))3〉centre/(−4/5r) evaluated in the centre of (a) the Γ = 1 cell (corresponding to
the case in figure 14a) and (b) the Γ = 1/8 cell (corresponding to the case in figure 14b),
for Ra= 1× 109 and Pr= 4.38. Different symbols represent the values of the scale r as
indicated in figure 14 and the vertical lines represent the respective mean values.

energy flux, in the Γ = 1/8 geometry than in the Γ = 1 case, i.e. the momentary
reversals of the energy cascade direction now occur more frequently, even though the
overall energy flux is still positive, as indicated by the mean values. It should also
be noted that there is now backscattering even for r at large scales, and the mean
values are also smaller. These findings are consistent with those by Tao et al. (2002)
and Bandi et al. (2006). Furthermore, in Γ = 1/8 and for r in the dissipative range,
the distribution is almost symmetric with the mean close to zero. Normalization with
their respective r.m.s. values, however, yields very similar distributions of εcentre(r, t)
in both geometries.

5. Effect of bulk resolution on the small-scale properties
In the course of our study we encountered the problem that there seem to be

quantities that scale differently with Ra in a cube than in a cylindrical geometry.
Since we did not know a priori which differences are physical and which might be
errors of the simulation, whether due to the finite averaging time, contamination by
transients or under-resolution, we had to rule out at least the most obvious ones, so
we increased the resolution and waited for a longer time before starting to average.
In the following an example of the influence of the bulk resolution is given by
comparing two such grids, one with low and one with high resolution.

Typically, the Nusselt number Nu is computed in different ways using a spatial
average over horizontal slices and volume averages of the turbulent kinetic energy
dissipation rate and the temperature variance dissipation rate to test the resolution,
which we have also presented in table 1. It can be seen that the results are all within
their error bars. It is, however, important to be aware of the limits of this approach:
it applies to integral quantities, but care should be taken when local quantities are
investigated. Since we are interested in the small-scale properties of the core region,
in particular their scaling with respect to the scale separation r, we believe that a more
rigorous check is necessary. We therefore use the second-order longitudinal structure
functions, in order to study the impact of the resolution on the dynamics of the bulk
flow.
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NH NG NS Nv NT NuS Nu(εu) Nu(εT) tavg

Simulation 1 898 338 1060 21/12.6 14/7.6 130.6± 1.0 131.2± 0.9 129.2± 0.7 240
Simulation 2 1142 338 1060 19/12.6 13/7.6 130.7± 0.5 130.0± 0.5 131.5± 1.2 80

TABLE 2. Characteristic quantities for the resolution check at Ra = 1 × 1010, Pr = 4.38
and Γ = 1/4. The number of grid points of the simulation in the vertical direction
is NH and the estimates NG and NS are from Shishkina et al. (2010) and Grötzbach
(1983), respectively. The resolutions in the other two directions, Nx × Ny, for simulations
1 and 2 are 770 × 258 and 1142 × 326, respectively. Comparison is made of the
number of grid points in the viscous and thermal boundary layers Nv and NT (actual
resolution/requirement), the mean Nusselt number NuS calculated by averaging over
horizontal slices and through volume averages of the kinetic and thermal dissipation rates
and the averaging time tavg.
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FIGURE 16. (Colour online) The vertical grid spacing as a function of the vertical
coordinate for (a) simulation 1 with NH = 898 grid points and (b) simulation 2 with
NH = 1142 grid points. The grids are designed for Ra= 1× 1010 and Pr= 4.38.

In table 2 some general information on the resolution requirements is provided and
in figure 16 the actual grids are illustrated. The grid for simulation 1 is designed in
such a way that the local grid spacing is always smaller than the global estimate of
the Kolmogorov length scale, while the grid for simulation 2 is designed with a grid
spacing that is always smaller than the global estimate of the Batchelor length scale.
Knowing that the local dissipative length scales in the bulk are larger than their global
estimates, the first grid will resolve the Kolmogorov scales very well, while the second
one will also resolve the Batchelor length scales very well.

In figure 17 we compare the second-order longitudinal vertical velocity structure
functions 〈δrw〉centre averaged in time and over the core region of both simulations,
revealing that despite the (mean) Kolmogorov scales of both simulations being
resolved, both structure functions differ. Comparison of the temperature structure
functions shows an even clearer discrepancy between the two simulations. While the
high-resolution simulation is close to the analytical r2 scaling in the dissipative range,
figure 18 reveals that the lower-resolution case does not obey the r2 scaling in the
dissipative range.

In order to quantify our observations, we compute the exponent of r for both
simulations and find that 〈δrw〉 ∼ r1.98 and 〈δrw〉 ∼ r1.99 for simulations 1 and 2,
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FIGURE 17. (Colour online) (a) The second-order longitudinal structure functions of
vertical velocity increments for simulation 1 with NH = 898 grid points in the vertical
direction (- -) and simulation 2 with NH = 1142 grid points (—) in the vertical direction.
The scalings of the dissipative range 〈δrw〉 ∼ r2, the K41 scaling (〈δrw〉 ∼ r2/3) and
the BO59 scaling (〈δrw〉 ∼ r6/5) of the inertial range are given for reference. (b) The
r2-compensated plots of the structure functions normalized with D = 〈εu〉centre(Ra/Pr)1/2.
The vertical lines indicate the positions of the local Batchelor length scale 〈ηb〉centre (–··–),
the local Kolmogorov length scale 〈ηk〉centre (–·–) and the local Bolgiano length scale
LB,centre (– –). (c) The BO59-compensated (– – NH = 898; — NH = 1142; C= r−6/5〈εT〉−2/5

centre)
and K41-compensated (-··- NH=898; –·– NH=1142; C= r−2/3〈εu〉−2/3

centre) structure functions.

respectively, which we consider to be good approximations of the dissipative range.
For the temperature structure function we observe the scalings 〈δrT〉 ∼ r1.80 and
〈δrT〉 ∼ r1.95 for the respective simulations. This indicates that not enough thermal
energy is dissipated in this area of the flow. Since both simulations run stably and
yield similar global Nu values, this also raises the question of how under-resolving
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FIGURE 18. (Colour online) (a) The second-order temperature structure functions of
vertical temperature increments for simulation 1 with NH = 898 grid points (- -) and
simulation 2 with NH=1142 grid points (—). The scalings of the dissipative range 〈δrT〉∼
r2, the K41 scaling (〈δrT〉∼ r2/3) and the BO59 scaling (〈δrT〉∼ r2/5) of the inertial range
are given for reference. (b) The r2-compensated plots of the structure functions normalized
with D = 〈εT〉centre(RaPr)1/2. (c) The BO59-compensated structure functions. The vertical
lines indicate the positions of the local Batchelor length scale 〈ηb〉centre (–··–), the local
Kolmogorov length scale 〈ηk〉centre (–·–) and the local Bolgiano length scale LB,centre (– –).

the bulk might affect other regions of the flow, namely the boundary layers, which
need to dissipate this excess of thermal energy.

At first sight, the poor performance of simulation 2 might come as a surprise,
since both 〈ηb〉centre and 〈ηk〉centre are well resolved. Since it is known that plumes
intermittently penetrate the bulk and thermal plumes are in effect detached thermal
boundary layers, it also becomes clear that, strictly speaking, boundary-layer resolution
would be necessary to resolve all relevant turbulent scales in the bulk, a requirement
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FIGURE 19. (Colour online) The p.d.f.s of the heat flux through the bulk region (V =
Γ (0.25H)3) for simulation 1 with NH = 898 grid points (- -) and simulation 2 with NH =
1142 grid points (—). The mean convective heat flux is Nucentre = 9.0 ± 2.0 (NH = 898)
and Nucentre = 10.4± 0.3 (NH = 1142).

that given the present computational resources is not practical. In the range of Ra and
Pr considered here, the scaling exponent of the thermal-boundary-layer thickness with
Ra is approximately −0.3 and the local dissipative scale in the boundary layer can be
estimated to follow the Ra scaling ηk,BL∼ (Nu0.3)−3/2 (see (39)–(41) in Shishkina et al.
(2010)). The local Kolmogorov length scale in the bulk scales as 〈ηk〉centre ∼ Ra−3/8,
which follows from 〈ηk〉centre = [(Ra/Pr)3/2〈εu〉centre]−1/4 and 〈εu〉centre ≈ const for high
Ra (see the data of Ni et al. (2011) plotted in Kaczorowski & Xia 2013). Following
the above way of resolving the bulk, this yields a resolution deficit of the thermal
plumes that scales as ηk,BL/〈ηk〉centre∼Ra−0.08, showing that adequate resolution of the
bulk becomes increasingly challenging or, in other words, as the flow becomes more
and more intermittent at high Ra the numerical errors will dramatically increase if
the meshes are not designed accordingly.

Furthermore, we investigate the impact of the resolution on the p.d.f. of the local
convective heat flux in the centre of the cell. Figure 19 illustrates that both p.d.f.s have
a very similar shape, with the tails of the low-resolution p.d.f. being slightly higher
than the tails of the high-resolution case. Integration of the two p.d.f.s yields that the
mean convective heat fluxes through the centre of the cell are within the error bars
of the simulations: Nucentre= 9.0± 2.0 with NH = 898 versus Nucentre= 10.4± 0.3 with
NH = 1142.

6. Conclusions
We have extended our highly-resolved direct numerical simulation study

(Kaczorowski & Xia 2013) on the small-scale properties of turbulent RBC in the
core region of a cubic cell by investigating the impact of lateral confinement on
the small-scale statistics in the bulk, and hence have also complemented our study
on confinement-induced heat transfer enhancement (Huang et al. 2013), which is
concerned with the aspect-ratio dependence of the large-scale flow features.
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We find that the local Bolgiano length scale in the bulk of turbulent RBC can be
reduced by geometrically confining the flow in the lateral direction of the cell. It
is observed that the rate at which the local Bolgiano length scale in the centre of
the cell decreases with decreasing Γ is larger for Pr = 0.7 than for Pr = 4.38. This
affords one the opportunity to investigate the influence of the local Bolgiano length
scale on cascade processes at any Ra and Pr by simply varying Γ . The local energy
flux in the centre of the cell calculated as εcentre(r, t)= 〈(δrur(r, t))3〉centre/(−4/5r) is
shown to vary significantly for separations r ' 10ηk, where the Γ = 1 cell exhibits
a plateau, while the Γ = 1/8 cell forms a clear maximum, revealing the impact of
lateral confinement on the cascade processes in the bulk region. However, unlike the
findings by Boffetta et al. (2012) in developing Rayleigh–Taylor turbulence, the local
Bolgiano length scale in the centre of turbulent RBC is not strictly confined by the
smallest dimension of the container. We do, however, observe that the local Bolgiano
length scale in the centre of the cell roughly follows the scaling LB,centre ∼Wy, when
Γ is smaller than a certain value, which imposes a cut-off on LB,centre, which is of the
order of the cell’s width.

It is also observed that geometrical confinement changes the topology of the flow,
since the LSC becomes less stable, which results in more vertical flow through the
core region at lower aspect ratios. Hence, the turbulent kinetic energy dissipation rate
and the temperature variance dissipation rate, as well as the velocity and temperature
fluctuations, increase in the core region until a certain Γ is reached. This mechanism
strongly depends on the relative width of the cell compared to the thicknesses of
the boundary layers on the lateral walls. This leads to an increased local heat flux,
which is also reflected by an increasingly more exponential right tail of the heat flux
p.d.f.s of the vertical velocity fluctuations; moreover, in contrast, the p.d.f.s of the
temperature fluctuations become almost Gaussian for small aspect ratios.

It is also found that the heat flux through the core region increases as the aspect
ratio Γ decreases and that for aspect ratios smaller than unity the local heat flux and
the turbulent kinetic energy dissipation rate are balanced, as experimentally observed
in the centre of cylindrical geometries. This highlights that (at least for the moderate
Rayleigh numbers studied here) there are significant differences between the flows
in the core regions of cylindrical and Cartesian geometries that are not yet well
understood and require further attention. Furthermore, flow visualizations show that
the dynamics of the core region of RBC are strongly geometry dependent, as the
bulk flow is stirred by the LSC for large aspect ratios but frequently penetrated by
the thermal plumes at small aspect ratios. We also find that, with decreasing Γ ,
i.e. as the system changes from 3-D to quasi-2-D, the local energy flux εcentre(r, t)
in the centre of the cell exhibits an increasing amount of energy backscattering. This
backscattering seems to occur at all length scales, but is more significant at small
scales.

By analysing the second-order structure functions of the vertical velocity and
temperature in the bulk of RBC with Ra = 1 × 1010, Pr = 4.38 and Γ = 1/4, we
have shown that under-resolution of the temperature field yields a large error in the
dissipative range scaling, resulting in a scaling 〈δrT〉/r2 6= const. This is thought to be
an effect of the thermal plumes (and the related strong gradients at their boundaries)
that intermittently propagate through the bulk and essentially require boundary-layer
resolution. It is therefore pointed out that the resolution contrast resulting from
the requirement to resolve the thermal plumes and the homogeneous and isotropic
background turbulence scales as δT/〈ηk〉centre ∼ Ra0.1 and therefore should be taken
into account when tackling very high Ra. It is also observed that the p.d.f.s of the
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heat flux in the centre of the cell almost coincide for both resolutions, and integration
of the p.d.f.s yields that the local vertical heat fluxes of both simulations are within
their error bars.
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