
The Journal of Symbolic Logic, Page 1 of 26

A PARAMETERIZED HALTING PROBLEM, Δ0 TRUTH AND THE MRDP
THEOREM

YIJIA CHEN, MORITZ MÜLLER, AND KEITA YOKOYAMA

Abstract. We study the parameterized complexity of the problem to decide whether a given natural
number n satisfies a given Δ0-formula ϕ(x); the parameter is the size of ϕ. This parameterization focusses
attention on instances where n is large compared to the size ofϕ. We show unconditionally that this problem
does not belong to the parameterized analogue of AC0. From this we derive that certain natural upper
bounds on the complexity of our parameterized problem imply certain separations of classical complexity
classes. This connection is obtained via an analysis of a parameterized halting problem. Some of these
upper bounds follow assuming that IΔ0 proves the MRDP theorem in a certain weak sense.

§1. Introduction.

1.1. Parameterized complexity. While classical complexity theory measures com-
putational resources by functions in the input length n alone, parameterized
complexity theory additionally takes into account a parameter k associated with
inputs.1 The motivation is to focus attention on inputs with relatively small
parameter k � n, namely, one asks for algorithms that are efficient on such inputs.
If “efficient” means polynomial time, this leads to the class FPT: decidable problems
that admit a polynomial time algorithm that is correct on inputs satisfying g(k) � n
for some computable g : N → N, or equivalently, an algorithm correct on all inputs
with runtime f(k) · nO(1) for some computable f : N → N. If “efficient” means
AC0, it leads to the class para-AC0. Here, and throughout, by AC0 we mean dlogtime
uniform AC0.

Many problems have natural parameters in the sense that the focus on inputs
with relatively small parameters is practically or theoretically well motivated. Two
examples:

p-Halt

Instance: n ∈ N in unary and a nondeterministic Turing machine M.
Parameter: |M|, the size of M.

Problem: Does M accept the empty input in at most n steps?

Received November 1, 2022.
2020 Mathematics Subject Classification. Primary 03F20, 03H15, 68Q15, 68Q19, 68Q27.
Key words and phrases. bounded arithmetical truth, parameterized halting, descriptive complexity,

weak arithmetic, MRDP theorem.
1All required definitions will be given precisely in Section 2.

© The Author(s), 2024. Published by Cambridge University Press on behalf of The Association for Symbolic Logic.
0022-4812/00/0000-0000
DOI:10.1017/jsl.2024.44

1

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use,

https://orcid.org/0000-0001-5329-3298
www.doi.org/10.1017/jsl.2024.44
https://crossmark.crossref.org/dialog?doi=10.1017/jsl.2024.44&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

2 YIJIA CHEN ET AL.

p-Δ0-Truth

Instance: n ∈ N in unary and a Δ0-formula ϕ(x).
Parameter: |ϕ|, the size of ϕ.

Problem: N |= ϕ(n) ?

The parameterized complexity of both problems is wide open. Before entering
their discussion we note a special property: the problems are almost tally, in that
inputs are long strings of 1’s padded with relatively short binary strings. This concept
is key to the approach taken here.

1.2. The parameterized halting problem. The importance of p-Halt is derived
from its close connections to central problems in proof complexity and descriptive
complexity theory [10]: the hypotheses that a certain logic considered by Gurevich
[24] does not capture PTIME, and that p-optimal propositional proof systems do
not exist [30] are both equivalent to the hypothesis that p-Halt cannot be decided
in time nf(k) where k := |M| and f : N → N is any function.2 So far, however,
such algorithms have been ruled out only under a certain very strong non-standard
complexity-theoretic hypothesis and only for computable f [9, 10]. Thus, lower
bounds on p-Halt are poorly understood and of fundamental interest.

A seemingly modest and natural starting point is the following.

Conjecture 1.1. p-Halt /∈ para-AC0.

This conjecture is highly plausible and might appear to be within reach because
AC0 is well-understood and, in particular, [11] establishes (unconditional) para-AC0

lower bounds for many well-studied parameterized problems. It deserves some
genuine interest because its failure implies thatAC0, or equivalently, (+,×)-invariant
FO is captured by some logic. However, we failed to prove the conjecture after
years of attempts and only now understand why: it implies that nondeterministic
exponential time NE is distinct from the linear time hierarchy LINH. This connection
can be further tightened by considering the following variant of p-Halt:

p-Halt=

Instance: n ∈ N in unary and a nondeterministic Turing machine M.
Parameter: |M|.

Problem: Does M accept the empty input in exactly n steps?

Accepting in exactly n steps means that there exists an accepting computation
that has exactly n steps. While the classical problems underlying p-Halt= and
p-Halt are easily seen to be equivalent (see Example 3.6), we shall see that their
parameterized versions behave quite differently. In fact, p-Halt= appears to be
harder than p-Halt, and is the hardest among all almost tally problems in para-NP,
the parameterized analogue of NP. We refer to Section 7 for a discussion. We show:

2[12] gives a direct proof of the equivalence of the first two hypotheses.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

A PARAMETERIZED HALTING PROBLEM, Δ0 TRUTH AND THE MRDP THEOREM 3

Theorem 1.2.

(i) p-Halt= ∈ para-AC0 if and only if NE ⊆ LINH.
(ii) p-Halt= ∈ para-AC0 implies p-Halt ∈ para-AC0.

1.3. Δ0 truth. Deciding the truth of Δ0 formulas is a fundamental problem of
mathematical logic. The choice of the parameter shifts attention to inputs where
n is much larger than |ϕ|. This is a natural focus. Classical work of Paris and
Dimitracopolous [34] took n to be nonstandard and related the complexity of truth
definitions for Δ0-formulas to the complexity-theoretic hypotheses that LINH or PH
does not collapse. Wilkie proved a weak version of the former hypothesis by showing
that p-Δ0-Truth restricted to quantifier-free formula inputs can be decided in space
f(k) +O(log n) where k := |ϕ| is the parameter and f : N → N a computable
function [36, proof of Lemma 3.1]. The straightforward algorithm decides
p-Δ0-Truth in space f(k) · log n. Can it be decided in space f(k) +O(log n)?
Maybe with nondeterminism? Can it be decided in time f(k) · nO(1), i.e., is it in
FPT? Maybe with nondeterminism, i.e., is it in para-NP?

Our main result (Theorem 4.3) shows that such upper bounds on the parameterized
complexity of p-Δ0-Truth imply lower bounds in classical complexity theory.
Notably,

Theorem 1.3. If p-Δ0-Truth ∈ para-NP, then NE �⊆ LINH.

The proof relies on our analysis of p-Halt= and the following unconditional
lower bound:

Theorem 1.4. p-Δ0-Truth �∈ para-AC0.

The proof is based on diagonalization or, more specifically, the undefinability
of truth. Furthermore, it relies on the classical result [6] of descriptive complexity
theory that, roughly speaking, equates (uniform) AC0 and first-order logic with
built-in arithmetic.

1.4. The MRDP theorem. Theorem 1.3 yields some information concerning the
provability of the Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem (see
[14] for an account) in bounded arithmetic. This theorem states that Σ1-definable
sets are Diophantine and it is a long standing open problem whether it is provable in
IΔ0, i.e., Peano arithmetic with induction restricted to Δ0-formulas.

Wilkie observed [36] that a positive answer would imply NP = co-NP. Gaifman
and Dimitracopoulos [22] showed that adding exponentiation suffices: IΔ0 +
∀x∃y 2x=y does prove MRDP. Kaye [27] proved MRDP using only induction
for bounded existential formulas plus an axiom stating the totality of a suitable
function of exponential growth. It is asked in [22, page 188] whether IΔ0 plus the
totality of x log x , or of x log log x etc. proves MRDP. A positive answer would imply
that IΔ0 proves MRDP for small numbers: this would mean that the equivalence
of any Δ0-formula ϕ(x̄) to some Diophantine formula is proved in IΔ0 for all x̄
of logarithmic order. Model-theoretically, the equivalence holds in any IΔ0-model
for all x̄ from the initial segment of numbers x such that 2x exists, while proof-
theoretically, we allow an IΔ0-proof to use exponentiation, but only once. Such
limited use of exponentiation has been studied in bounded arithmetic [29].

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

4 YIJIA CHEN ET AL.

We show that Theorem 1.3 implies:

Theorem 1.5. If IΔ0 proves MRDP for small numbers, then NE �⊆ LINH.

1.5. AC0-bi-immunity. Could Conjecture 1.1 be false? We give further evidence
for its truth by establishing a connection to the existence of AC0-bi-immune sets in
NP. Recall a problem Q is AC0-immune if it does not have an infinite subset in AC0;
if additionally, also the complement of Q is AC0-immune, then Q is AC0-bi-immune.

Theorem 1.6. If NP contains an AC0-bi-immune problem, then p-Halt �∈
para-AC0.

It is a standard hypothesis that NP contains even P-bi-immune problems and this
follows from the measure hypothesis [31]. Whether NP contains at least AC0-bi-
immune problems has been asked once it was realized [1, 23] that deterministic time
hierarchy theorems hold with bi-immunity (or, equivalently [5], almost everywhere)
while this is open for nondeterministic time [1, 21]. While Zimand [37] obtained
some partial positive answers, Allender and Gore [2] showed that this has different
answers relative to different oracles.3 This indicates that also refuting Conjecture 1.1
might be non-trivial.

1.6. Outline. Much of the technical work consists in connecting the dots between
results of various subareas of logic and complexity, namely classical, parameterized
and descriptive complexity theory and formal arithmetic. Section 2 reviews the
results we need and fixes our notation. The technicalities are somewhat subtle, in
particular, the move fromp-Halt top-Halt= is crucial. Section 3 introduces almost
tally problems and proves Theorem 1.2 and various variants of it. Section 4 proves
Theorem 1.4. This together with the results in Section 3 implies Theorem 1.3 and
various variants. Section 5 derives (a strengthening of) Theorem 1.5. Section 6
proves Theorem 1.6. The final section discusses the role of uniformity, and exhibits
the different behaviours of our parameterized problems p-Halt, p-Halt= and
p-Δ0-Truth.

§2. Preliminaries. Standard monographs are [3, 32] for classical complexity
theory, [15, 16, 20] for parameterized complexity theory, [25, 28] for formal
arithmetic, and [17, 26] for descriptive complexity theory.

2.1. Classical complexity. A (classical) problem is a subset of {0, 1}∗, the set
of finite binary strings. The length of a binary string x ∈ {0, 1}∗ is denoted |x|.
For n ∈ N we let 1n denote the binary string consisting of n many 1’s. We use
multitape Turing machines with alphabet {0, 1} as our basic model of computation.
When considering dlogtime Turing machines, i.e., deterministic machines running
in time O(log n), it is understood that they access their input via an address tape
(see, e.g., [6]). As usual, P and NP denote deterministic and nondeterministic
polynomial time nO(1), and E and NE denote deterministic and nondeterministic
exponential time with linear exponent 2O(n). The linear time hierarchy LINH is the set
of problems acceptable by alternating Turing machines in linear timeO(n) withO(1)

3[2] studies AC0-immunity but their oracle constructions can be adapted to AC0-bi-immunity.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

A PARAMETERIZED HALTING PROBLEM, Δ0 TRUTH AND THE MRDP THEOREM 5

alternations. LINSPACE andNLINSPACE denote deterministic and nondeterministic
linear space O(n). Clearly,

LINH ⊆ LINSPACE ⊆ NLINSPACE ⊆ E ⊆ NE.

Following [6] we define (dlogtime uniform) AC0 as the set of problems decided by
AC0-circuit families (Cn)n∈N:

– Cn is a circuit (with ∧,∨,¬ gates and unbounded fan-in) with n variables, size
� nc and depth4 � d , where c, d ∈ N are two constants independent of n;

– there is a dlogtime Turing machine which given 〈1n, i, b〉 where n, i ∈ N and
b ∈ {0, 1} decides whether the ith bit of the binary encoding of Cn is b.

Here, for binary strings x = x0 ... x|x|–1 and y = y0 ... y|y|–1 we use the standard
pairing

〈x, y〉 := x0x0 ... x|x|–1x|x|–101y0y0 ... y|y|–1y|y|–1, (1)

and similarly for more arguments. The above definition is somewhat sensitive to
the choice of the binary encoding of a circuit. An appropriate choice would be to
encode Cn by the list of strings in the direct connection language corresponding to n;
we refer to [6] for details.

For n ∈ N we let bin(n) ∈ {0, 1}∗ denote the binary expansion of n; it has length
log(n + 1)� for n > 0. Forx ∈ {0, 1}∗ let num(x) be the natural number with binary
expansion 1x, i.e., bin(num(x)) = 1x. For a problem Q let

un(Q) :=
{

1num(x) | x ∈ Q
}
.

The last statement of the following is [2, Proposition 5], and the first two are trivial:

Proposition 2.1 [2]. Let Q be a problem. Then:
(i) Q ∈ NE if and only if un(Q) ∈ NP.

(ii) Q ∈ E if and only if un(Q) ∈ P.
(iii) Q ∈ LINH if and only if un(Q) ∈ AC0.

2.2. Parameterized complexity. A parameterized problem is a pair (Q, κ) of an
underlying classical problem Q ⊆ {0, 1}∗ and a parameterization κ : {0, 1}∗ → N

mapping an instance x ∈ {0, 1}∗ to its parameter κ(x) ∈ N. We follow [18] and
require that κ is computable by an AC0-circuit family (Cn)n∈N. That is, for all
x ∈ {0, 1}∗, besides |x| inputs the circuit C|x| has |x| outputs and computes
bin(κ(x)), possibly padded with leading 0’s to length |x|. It is a technical assumption
satisfied by almost all parameterized problems of interest. For example, p-Halt has
underlying classical problem

{
〈1n,M〉

∣∣ the nondeterministic Turing machine M

accepts the empty input in at most n steps
}

and a parameterization κ that maps
strings of the form 〈1n,M〉 to |M| and other strings to, say, 0.

The para-operator [19] turns a classical complexity class into a parameterized
one (the most important intractable parameterized classes are not of this form,
however). The class para-P = FPT contains the parameterized problems (Q, κ) that
are fixed-parameter tractable, i.e., decidable in deterministic time f(κ(x)) · |x|O(1)

4We assume ¬ gates are in front of inputs and not counted in depth; e.g., CNFs have depth 2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

6 YIJIA CHEN ET AL.

for some computable f : N → N. Similarly, para-NP denotes nondeterministic
time f(κ(x)) · |x|O(1) (for any computable f), para-L denotes deterministic space
f(κ(x)) +O(log |x|), and para-NL denotes nondeterministic such space. Clearly,

para-L ⊆ para-NL ⊆ FPT ⊆ para-NP.

The central parameterized class in this paper is para-AC0. It is characterized as
follows:

Proposition 2.2 [11]. Let (Q, κ) be a parameterized problem. The following are
equivalent:

(i) (Q, κ) ∈ para-AC0.
(ii) There is a family (Cn,k)n,k∈N of circuits such that:

– there are a computable f : N → N and c, d ∈ N such that for all n, k ∈ N

the circuit Cn,k has n inputs, size at most f(k) · nc , and depth at most d;
– for all x ∈ {0, 1}∗ we have

x ∈ Q ⇐⇒ C|x|,κ(x)(x) = 1;

– there are a computable g : N → N and a deterministic Turing machine which
given as input 〈1n, 1k, i, b〉 where n, k, i ∈ N and b ∈ {0, 1} decides in time
g(k) +O(log n) whether the ith bit of the binary encoding of Cn,k is b.

(iii) Q is decidable and there are a computable h : N → N and an AC0-circuit family
(Cn)n∈N such that for all x ∈ {0, 1}∗ with |x| � h(κ(x)) we have

x ∈ Q ⇐⇒ C|x|(x) = 1.

According to the terminology of [19], (iii) states that (Q, κ) is eventually in AC0.

2.3. Formal arithmetic. We let Lar := {+,×, 0, 1, <} be the language of arith-
metic with binary function symbols +,×, constants 0, 1 and a binary relation
symbol <. The standard Lar-structure, denoted N, has universe N and interprets
the symbols in the obvious way. Every Lar-term p computes a polynomial with
coefficients in N and of total degree at most |p|. We do not distinguish terms p
or formulas ϕ from their binary encodings, so |p| and |ϕ| denote the lengths of
these encodings. Writing ϕ(x̄) for a formula ϕ means that all free variables of ϕ are
among x̄. A sentence is a formula without free variables.

A Δ0-formula is an Lar-formula obtained from atomic formulas, Boolean
connectives, and bounded quantifiers ∃x<p, ∀x<p where p is an Lar-term not
involving x; e.g.,∃x<p ϕ stands for∃x(x<p ∧ ϕ). Σ1- and Π1-formulas are obtained
from Δ0-formulas by existential and universal quantification, respectively.

Theorem 2.3 (MRDP). For every Δ0-formula ϕ(x̄) there are Lar-terms
p(x̄, ȳ), q(x̄, ȳ) such that

N |= ∀x̄
(
ϕ(x̄) ↔ ∃ȳ p(x̄, ȳ)=q(x̄, ȳ)

)
.

Gödel showed that computable functions are Σ1-definable. The MRDP theorem
improves this to an existential definition:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

A PARAMETERIZED HALTING PROBLEM, Δ0 TRUTH AND THE MRDP THEOREM 7

Corollary 2.4. For every computable f : N → N there is a quantifier-free Lar-
formula ϕf(x, y, z̄) such that for every n,m ∈ N

f(n) = m ⇐⇒ N |= ∃z̄ ϕf(n,m, z̄).

We are mainly concerned with finite arithmetical structures with universe

[n] := {0, ... , n – 1}

for some n ∈ N with n � 2, and therefore consider the relational version

Lr
ar

of Lar where +, × are ternary relation symbols. The standard Lr
ar-structure

with universe N, also denoted N, interprets +, × by the graphs of addition and
multiplication, respectively. For n ∈ N with n > 1, the standard Lr

ar-structure with
universe [n], simply denoted n, is the substructure of N with universe [n], i.e.,
it interprets the symbols in Lr

ar by +[n] := {(k, �,m) ∈ [n]3 | k + � = m}, ×[n] :=
{(k, �,m) ∈ [n]3 | k · � = m}, 0[n] := 0, 1[n] := 1 and <[n]:= {(k, �) ∈ [n]2 | k < �}.

Let ϕ<y be obtained from ϕ by replacing all quantifiers ∃z, ∀z by ∃z<y, ∀z<y.
For n̄ = (n0, ... , nk–1) ∈ N

k and n ∈ N write n̄ < n to express ni < n for all i < k.
For every Lr

ar-formula ϕ(x̄) with 1, n̄ < n we have

N |= ϕ<n(n̄) ⇐⇒ n |= ϕ(n̄).

Remark 2.5. Corollary 2.4 holds for a quantifier-free Lr
ar-formula ϕf(x̄, y, z̄).

Indeed, it is straightforward to express an Lar-term (in)equality by an existential
Lr

ar-formula.

2.4. Descriptive complexity. A binary string x = x0 ···xn–1 ∈ {0, 1}∗ of length
n > 1 is often identified with the string structure S(x) defined as the Lr

ar ∪ {ONE}-
expansion of the standard Lr

ar-structure n that interprets the unary relation symbol
ONE by

ONEx := {i ∈ [n] | xi = 1},

i.e., S(x) =
(
[n],+[n],×[n], 0[n], 1[n], <[n],ONEx

)
. We shall work with the following

descriptive characterization of (dlogtime uniform) AC0:

Theorem 2.6 [6]. A problem Q is in AC0 if and only if there is an Lr
ar ∪ {ONE}-

sentence ϕ such that for every x ∈ {0, 1}∗ with |x| � 2:

x ∈ Q ⇐⇒ S(x) |= ϕ.

This result and Proposition 2.2(iii) imply what is to be our working definition of
para-AC0: the parameterized problems that are eventually definable.

Corollary 2.7. Let (Q, κ) be a parameterized problem with decidable Q. Then
(Q, κ) is in para-AC0 if and only if (Q, κ) is eventually definable: there are a computable
h : N → N and an Lr

ar ∪ {ONE}-sentence ϕ such that for all x ∈ {0, 1}∗ with
|x| � h(κ(x)):

x ∈ Q ⇐⇒ S(x) |= ϕ.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

8 YIJIA CHEN ET AL.

In descriptive complexity the role of reductions is played by interpretations. Let
L,L′ be languages consisting of relation symbols and constants. Let w ∈ N with
w � 1. An interpretation I of L′ in L (of width w) is given by an L-formula ϕuni(x̄),
an L-formula ϕR(x̄0, ... , x̄r–1) for each r-ary relation symbol R ∈ L′, and an L-
formula ϕc(x̄) for every constant c ∈ L′; here, x̄, x̄i are w-tuples of variables.
Given an L-structure A define the L′-structure AI as follows. It has universe AI :={
ā ∈ Aw

∣∣ A |= ϕuni(ā)
}
, interprets an r-aryR ∈ L′ by

{
(ā0, ... , ār–1) ∈ (AI)r

∣∣ A |=
ϕR(ā0, ... , ār–1)

}
, and a constant c ∈ L′ by the unique ā ∈ AI satisfying ϕc(x̄) in A.

If this uniqueness is violated or if the universe AI is empty, then AI is not defined. If
B ∼= AI for some I, we say B is interpretable in A. The following is standard.

Lemma 2.8. Let I an interpretation of L′ in L of width w and I ′ an interpretation
of L′′ in L′ of width w′. Further let A be an L-structure such that AI is defined.

(i) For every L′-formula ϕ(x, y, ...) there is an L-formula ϕI (x̄, ȳ, ...) where
x̄, ȳ, ... are w-tuples of variables such that for all ā, b̄, ... ∈ AI :

AI |= ϕ(ā, b̄, ...) ⇐⇒ A |= ϕI (ā, b̄, ...).

(ii) There is an interpretation I ′ ◦ I of L′′ in L of width w · w′ such that if (AI)I
′

is defined, then so is AI
′◦I and

AI
′◦I ∼= (AI)I

′
.

The following is folklore, and a proof can be found in [35, Appendix].

Lemma 2.9. Let d ∈ N.

(i) For every n > 1 the standard Lr
ar-structure nd is interpretable in the standard

Lr
ar-structure n. In fact, there is an interpretation Id of width d such that nd ∼=
nId for every n > 1, and the isomorphism maps each a < nd to the length d
representation of a in base n.

(ii) There is an Lr
ar-formula BIT(x, y) such that for every n > 1 and all i, j ∈ [n]:

n |= BIT(i, j) ⇐⇒ the jth bit of bin(i) is 1.

§3. p-Halt and NE versus LINH. In this section we first introduce a workable
notion of reduction that preserves para-AC0, then prove Theorem 1.2, then introduce
almost tally problems and show p-Halt= is the hardest among them in para-NP,
and finally consider some generalizations and variants that will be instrumental later
in Section 4 for the proof of Theorem 1.3 and its variants.

3.1. Eventually definable reductions. A parameterized reduction from a parame-
terized problem (Q, κ) to another (Q′, κ′) is a reduction r : {0, 1}∗ → {0, 1}∗ from
Q to Q′ such that κ′ ◦ r � f ◦ κ for some computable function f : N → N.

Definition 3.1. Let κ be a parameterization. A function r : {0, 1}∗ → {0, 1}∗ is
κ-eventually definable if there are a computable h : N → N and an interpretation I
such that

S(x)I ∼= S(r(x))

for all x ∈ {0, 1}∗ with |x| � h(κ(x)).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

A PARAMETERIZED HALTING PROBLEM, Δ0 TRUTH AND THE MRDP THEOREM 9

Example 3.2. The function

〈1n, x〉 �→ 1num(〈bin(n), x〉),

where n ∈ N, x ∈ {0, 1}∗ is κ-eventually definable where κ maps 〈1n, x〉 to |x| (both
functions map arguments that are not of the required form to, say, 0).

Proof. Note num(〈bin(n), x〉) < 2|〈bin(n),x〉|+1 � 2O(log n+|x|). Choose a constant
d ∈ N and a computable h : N → N such that num(〈bin(n), x〉) < nd and num(x) <
n whenever n � h(|x|). It suffices to describe an interpretation of S(1num(〈bin(n),x〉))
in S(〈1n, x〉) whenever n � h(|x|). It will be clear that the interpretation does not
depend on n, x.

Let (n, num(x)) be the expansion of the standard Lr
ar-structure n that interprets

a new constant by num(x) ∈ [n]. This is interpretable in S(〈1n, x〉) using BIT . By
Lemma 2.9, also (nd , num(x)) is interpretable inS(〈1n, x〉). But this structure defines
(n and) num(〈bin(n), x〉) ∈ [nd] using BIT . Thus, S(1num(〈bin(n),x〉)) is interpretable
in S(〈1n, x〉) as claimed.

Finally, note there is a sentence ϕ that is true exactly in structures of the
desired form S(〈1n, x〉) for n ∈ N and x ∈ {0, 1}∗. It is easy to modify the above
interpretation to produce a structure isomorphic to S(0) given a structure that is
not of the desired form. �

Example 3.3. Let P : {0, 1}∗ → {0, 1}∗ be computable. The function

〈1n, x〉 �→ 〈1n, P(x)〉,

where n ∈ N, x ∈ {0, 1}∗ is κ-eventually definable where κ maps 〈1n, x〉 to |x| (both
functions map arguments that are not of the required form to, say, 0).

Proof. Let p : N → N be computable with p(num(x)) = num(P(x)) for all
x ∈ {0, 1}∗. We choose:

• a quantifier-free Lr
ar-formula ϕ(x, y, z̄) according to Remark 2.5,

• a computable f : N → N so that for all � ∈ N

N |= ∃z̄<f(�) ϕ(�, p(�), z̄),

• and a computableh :N → N such thath(|x|)> num(x), num(P(x)), f(num(x))
for all x ∈ {0, 1}∗.

Assume n � h(|x|). Then S(〈1n, x〉) interprets the expansion (n, �) of the standard
structure n by a constant c interpreting � := num(x). In (n, �) the formula
∃z̄ϕ(c, y, z̄) defines p(�) = num(P(x)). Using BIT , thus S(〈1n, x〉) interprets
S(〈1n, P(x)〉).

Again it is easy to modify this interpretation to produce a structure isomorphic
to S(0) given a structure that is not of the desired form. �

Recall, a function r : {0, 1}∗ → {0, 1}∗ is honest if |r(x)| � |x|Ω(1).

Lemma 3.4. Assume that r, r′ : {0, 1}∗ → {0, 1}∗ are κ- and κ′-eventually defin-
able, respectively, that κ′ ◦ r � f ◦ κ for some computable f : N → N, and that r is
honest. Then r′ ◦ r is κ-eventually definable.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

10 YIJIA CHEN ET AL.

Proof. Choose I , h for r and I ′, h′ for r′ according to Definition 3.1. We can
assume that h′ is nondecreasing. Choose n0, c ∈ N such that |r(x)| � |x|1/c for all
x ∈ {0, 1}∗ with |x| � n0. Define g : N → N by

g(k) := max
{
(h′(f(k)))c , h(k), n0

}
.

We claim that I ′ ◦ I and g witness that r′ ◦ r is κ-eventually definable. To
verify this let x ∈ {0, 1}∗ satisfy |x| � g(k) where k := κ(x). Then |r(x)| �
|x|1/c � h′(f(k)) � h′(κ′(r(x))) using that h′ is nondecreasing. Hence S(r(x))I

′ ∼=
S(r′(r(x))). As |x| � g(k) � h(k), we conclude S(x)I ∼= S(r(x)), which implies
S(x)I

′◦I ∼= S(r′(r(x))). �

Definition 3.5. Let (Q, κ) and (Q′, κ′) be parameterized problems. An eventually
definable reduction from (Q, κ) to (Q′, κ′) is a parameterized reduction from (Q, κ)
to (Q′, κ′) that is honest and κ-eventually definable.

Example 3.6. There is an eventually definable reduction from p-Halt to
p-Halt=.

Proof. Let P : {0, 1}∗ → {0, 1}∗ map a nondeterministic Turing machine M to
another M′ that simulates M and, if M accepts, then M

′ nondeterministically makes
any number of steps before it halts and accepts; strings x not encoding machines are
mapped to themselves. This is clearly a parameterized reduction. By Example 3.3,
〈1n, x〉 �→ 〈1n, P(x)〉 is eventually definable.

Recall that this function outputs 0 on strings y not of the desired form 〈1n, x〉,
i.e., the interpretation produces a structure isomorphic to S(0). We change the
interpretation to output S(y) in this case. This ensures honesty (we can assume
|M′| � |M|) and thus gives a reduction as desired. �

Remark 3.7. A parameterized problem (Q, κ) is in para-AC0 if and only if Q
is decidable and there is an eventually definable reduction from (Q, κ) to a trivial
problem, say, (Q0, κ0) forQ0 the set of strings starting with 0 and κ0 is constantly 0.

It is straightforward to check that this reducibility is transitive and preserves
membership in para-AC0:

Lemma 3.8. Assume that there is an eventually definable reduction from (Q, κ) to
(Q′, κ′).

(i) If there is an eventually definable reduction from (Q′, κ′) to (Q′′, κ′′), then there
is one from (Q, κ) to (Q′′, κ′′).

(ii) If (Q′, κ′) ∈ para-AC0 and Q is decidable, then (Q, κ) ∈ para-AC0.

Proof. (i) follows from Lemma 3.4. (ii) follows from (i) and Remark 3.7. �

3.2. The complexity of p-Halt=. It is known that the question whether p-Halt=

is fixed-parameter tractable is closely related to the relationship of E and NE:

Theorem 3.9 [4, 7]. p-Halt= ∈ FPT if and only if NE ⊆ E.

Theorem 1.2(i) is a para-AC0-analogue of this result.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

A PARAMETERIZED HALTING PROBLEM, Δ0 TRUTH AND THE MRDP THEOREM 11

Theorem 1.2.

(i) p-Halt= ∈ para-AC0 if and only if NE ⊆ LINH.
(ii) p-Halt= ∈ para-AC0 implies p-Halt ∈ para-AC0.

Proof. (ii) follows from Example 3.6 and Lemma 3.8. Alternatively, let (Cn,k)n,k
witness p-Halt= ∈ para-AC0 according to Proposition 2.2(b). Then (

∨
m�n C

n
m,k)n,k

witnesses p-Halt ∈ para-AC0 where Cnm,k checks its input has the form 〈1n, x〉 for
some x ∈ {0, 1}k and then runs Cm,k on 〈1m, x〉.

To prove (i), first assumeNE ⊆ LINH and let Q be the classical problem underlying
p-Halt= but with input n encoded in binary:

Q
Instance: n ∈ N in binary and a nondeterministic Turing machine M.
Problem: Does M accept the empty input in exactly n steps?

Clearly,Q ∈ NE, so by assumption and Proposition 2.1(iii) we have un(Q) ∈ AC0.
Recall

un(Q) =
{

1num(〈bin(n),M〉)
∣∣∣ the nondeterministic Turing machine M

accepts the empty input in exactly n steps

}
.

By Example 3.2 the map 〈1n,M〉 �→ 1num(〈bin(n),M〉) is eventually definable with respect
to the parameterization of p-Halt=. It is an honest parameterized reduction
to (un(Q), κ) where κ maps 1num(〈bin(n),M〉) to |M|. Since (un(Q), κ) ∈ para-AC0,
Lemma 3.8 implies p-Halt= ∈ para-AC0.

Conversely, assumep-Halt= ∈ para-AC0. LetQ ⊆ {0, 1}∗ be a problem inNE. To
show that Q ∈ LINH, it suffices to prove un(Q) ∈ AC0 again by Proposition 2.1(iii).

As Q ∈ NE there is a constant c ∈ N and a nondeterministic Turing machine
M accepting Q that on input x halts in time at most num(x)c – 2|x| – 2. Consider
the nondeterministic Turing machine M

∗ that started with the empty input runs as
follows:

1. guess y ∈ {0, 1}∗
2. simulate M on y
3. if M rejects, then reject
4. make dummy steps such that so far the total running time is num(y)c

5. accept.

Line 1 takes exactly 2|y| + 2 many steps by moving the head forth and back on some
tape, so the dummy steps in line 4 are possible. Since num is injective, we have

x ∈ Q ⇐⇒ M
∗ accepts the empty input tape in exactly num(x)c + 1 many steps.

(2)

Since M∗ is a fixed machine, p-Halt= ∈ para-AC0 implies that the classical problem

Q′ :=
{

1n
∣∣∣ M∗ accepts the empty input tape in exactly n + 1 many steps

}

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

12 YIJIA CHEN ET AL.

is in AC0. Choose a first-order sentence ϕ for Q′ according to Theorem 2.6.
Lemma 2.9 gives an interpretation I such that S(1n)I ∼= S(1n

c
) for all n > 1.

Then 1n
c ∈ Q′ is equivalent to S(1n) |= ϕI . Thus the r.h.s. in (2) is equivalent

to S(1num(x)) |= ϕI provided num(x) > 1, i.e., x is non-empty. The l.h.s. in (2) is
equivalent to 1num(x) ∈ un(Q). Thus ϕI witnesses that un(Q) ∈ AC0 according to
Theorem 2.6. �

Remark 3.10. The direction from left to right only required anAC0-circuit family
for instances of p-Halt= with the fixed machine M∗. This implies that the assertions
in Theorem 1.2(i) are equivalent to p-Halt= ∈ XAC0 (see Definition 7.1).

3.3. Almost tally problems. Recall that a classical problem Q ⊆ {0, 1}∗ is tally if
Q ⊆ {1}∗. All parameterized problems mentioned in the introduction are almost
tally in the following sense:

Definition 3.11. A parameterized problem (Q, κ) is almost tally if

Q ⊆
{
〈1n, x〉

∣∣ n ∈ N, x ∈ {0, 1}∗
}

and there is a computable f : N → N such that for all n ∈ N, x ∈ {0, 1}∗

|x| � f(κ(〈1n, x〉)).

Theorem 1.2(ii) holds not only for p-Halt but for every almost tally problem in
para-NP. In fact, p-Halt= is the hardest almost tally problem in para-NP:

Lemma 3.12. For every almost tally problem in para-NP there is an eventually
definable reduction to p-Halt=.

Proof. Let (Q, κ) ∈ para-NP be almost tally. The identity is a parameterized
reduction from (Q, κ) to its re-parameterization (Q, κ′) where κ′(〈1n, x〉) := |x| for
all n ∈ N, x ∈ {0, 1}∗. Hence, the identity is an eventually definable reduction. We
can therefore assume that κ = κ′.

Let M be a nondeterministic Turing machine that accepts Q and on input 〈1n, x〉
runs in time at most f(k) · nc where c ∈ N, f : N → N is a computable function,
and k := |x|.

Define g : N2 → N by

g(m, k) := mc+1 + 2m + 2k + 2.

For x ∈ {0, 1}∗ with k := |x|, consider the nondeterministic Turing machine Mx

that on the empty input runs as follows:

1. nondeterministically write 〈1m, x〉 for some m ∈ N

2. simulate M on 〈1m, x〉
3. if M does not halt or rejects, then reject
4. make dummy steps such that so far the total running time is g(m, k)
5. accept.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

A PARAMETERIZED HALTING PROBLEM, Δ0 TRUTH AND THE MRDP THEOREM 13

Step 1 can be implemented to take exactly 2 + 2m + 2 + 2k many steps (recall
(1)), so the dummy steps in line 4 are possible if m > f(k). Note that for each k,
the function m �→ g(m, k) is injective. Thus, if n > f(k), we have

〈1n, x〉 ∈ Q ⇐⇒ 〈1g(n,k)+1,Mx〉 ∈ p-Halt=.

Using Example 3.3, one easily constructs an eventually definable reduction that
maps 〈1n, x〉 to 〈1g(n,k)+1,Mx〉. �

It is straightforward to infer from Proposition 2.1 that NE ⊆ LINH if and only if
every tally problem in NP is in AC0. We don’t know of a similarly easy proof of the
following parameterized variant of this observation. Instead, our proof relies on our
analysis of p-Halt=:

Corollary 3.13. NE ⊆ LINH if and only if every almost tally problem in para-NP
is in para-AC0.

Proof. The l.h.s. is equivalent to p-Halt= ∈ para-AC0 by Theorem 1.2(i). And
by Lemmas 3.8 and 3.12, p-Halt= ∈ para-AC0 is equivalent to the r.h.s. �

3.4. Variants. For the optimistic reader, Corollary 3.13 gives an approach to
separate NE from LINH. From this perspective, it is of interest to ask whether finding
an almost tally problem outside para-AC0 but in a natural subclass of para-NP implies
stronger separations of natural complexity classes. We verify the following variants
of Corollary 3.13:

Lemma 3.14.

(i) E ⊆ LINH if and only if every almost tally problem in FPT is in para-AC0.
(ii) NLINSPACE ⊆ LINH if and only if every almost tally problem in para-NL is in

para-AC0.
(iii) LINSPACE ⊆ LINH if and only if every almost tally problem in para-L is in

para-AC0.

Proof. The proof of (i) is analogous to the proof of Corollary 3.13 using the
subproblem of p-Halt= where the input machine M is deterministic. Similarly the
proof of (iii) is analogous to the proof of (ii). We show how (ii) is proved by
modifying the proof of Corollary 3.13.

Consider the following variant of p-Halt:

p-Halt
∗
=
Instance: n,m ∈ N in unary with n � m and a nondeterministic

Turing machine M.
Parameter: |M|.

Problem: Does M accept the empty input in exactly n steps and space
at most �logm�?

Here, the space �logm� of a run bounds all work tapes together, that is, if ci is
the maximal cell number visited on work tape i, then

∑
i ci � �logm�.

It is clear that this problem is in para-NL.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

14 YIJIA CHEN ET AL.

Claim 1. p-Halt
∗
= ∈ para-AC0 if and only if NLINSPACE ⊆ LINH.

Proof of Claim 1. Assume NLINSPACE ⊆ LINH and let Q be the classical
problem underlying p-Halt

∗
= but with the inputs n,m encoded in binary. Clearly,

Q ∈ NLINSPACE ⊆ LINH, so un(Q) ∈ AC0 by Proposition 2.1(iii). Similarly as
Example 3.2 one sees that

〈1n, 1m,M〉 �→ 1num(〈bin(n),bin(m),M〉)

is eventually definable. Then p-Halt
∗
= ∈ para-AC0 follows as in Theorem 1.2(i).

Conversely, assume p-Halt
∗
= ∈ para-AC0 and let Q ∈ NLINSPACE. Choose a

nondeterministic Turing machine M accepting Q that on input x ∈ {0, 1}∗ runs
in time at most

num(x)c

10c(|x| + 2)
– 10c(|x| + 2) – |x|

and uses space at most c · |x|; here c ∈ N is a suitable constant. Define M
∗ as in

the proof of Theorem 1.2 but with the following implementation details. For the
simulation in line 2, first initialize a length c(|y| + 2) binary counter using exactly
10c(|y| + 2) steps, and increase it using exactly 10c(|y| + 2) many steps for each
simulated step of M. In line 4 continue increasing the counter in this way until it
reaches num(y)c/(10c(|y| + 2)). For long enough y, the binary representation of
this number can be computed in time at most num(y) and space O(|y|) (where the
constant in the O-notation depends on c). This computation can be done in parallel
to the simulation in lines 2 and 4. Hence, line 5 completes exactly num(y)c + 1 steps,
and uses space at most d · |y| for a suitable d � c.

Thus, we arrive at the following variant of (2). For long enough x ∈ {0, 1}∗:

x ∈ Q ⇐⇒ M
∗ accepts the empty input in exactly num(x)c + 1 many steps

and space at most
⌊

log(num(x)d)
⌋
.

Our assumption p-Halt
∗
= ∈ para-AC0 implies that the classical problem

Q′ :=
{
〈1n, 1m〉

∣∣ n � m and M
∗ accepts the empty input in exactly n + 1 many

steps and space at most �logm�
}

is in AC0. Now un(Q) ∈ AC0 (and hence Q ∈ LINH) follows as in Theorem 1.2(i)
using an interpretation I such that S(1n)I ∼= S(

〈
1n
c
, 1n

d 〉
). �

Claim 2. For every almost tally problem in para-NL there is an eventually definable
reduction to p-Halt

∗
=.

Proof of Claim 2. Let (Q, κ) ∈ para-NL be almost tally and M be a nonde-
terministic Turing machine that accepts Q and that on input 〈1n, x〉 runs in time
at most f(k) · nc and space at most f(k) + c · log n where c ∈ N, f : N → N is a
computable function, and k := κ(〈1n, x〉). We can assume k = |x| (see the proof of
Lemma 3.12).

For x ∈ {0, 1}∗ with k := |x|, define the nondeterministic Turing machine Mx as
in the proof of Lemma 3.12 but with a different g (chosen below) and line 1 changed

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

A PARAMETERIZED HALTING PROBLEM, Δ0 TRUTH AND THE MRDP THEOREM 15

to nondeterministically write some m ∈ N in binary in exactly 2 log(m + 1)� + 2
steps. The simulation in line 2 is done as in the previous claim maintaining a length
(c + 1) log(m + 1)�binary counter. It further maintains the position ofM’s head on
the input tape which we can assume to be at most |〈1m, x〉| + 1 and uses it to compute
the currently scanned bit. Counter and position are updated for each simulated step
of M. If k < m, then one step of M is simulated in exactly 10c log(m + 1)� steps.
In line 4 the binary counter is updated until it reachesmc+1. Hence line 4 is completed
after exactly g(m, k) := mc+1 · 10c log(m + 1)� + 2 log(m + 1)� + 2 steps. The
dummy steps in line 4 are possible if m > f(k). In this case the computation takes
space at most d logm for suitable d ∈ N. Thus, if n > f(k), we have

〈1n, x〉 ∈ Q ⇐⇒ 〈1g(n,k)+1, 1n
d
,Mx〉 ∈ p-Halt

∗
=.

Similarly as seen in the proof of Lemma 3.12, this implies the claim. �

It now suffices to show that p-Halt
∗
= ∈ para-AC0 if and only if every almost tally

problem in para-NL is in para-AC0. The forward direction follows from Claim 2 and
Lemma 3.8. And if p-Halt

∗
= �∈ para-AC0, then we get an almost tally problem in

para-NL \ para-AC0 by rewriting inputs 〈1n, 1m,M〉 of p-Halt
∗
= to 〈1〈n,m〉,M〉 where

〈n,m〉 is a pairing function on N. �

We find it worthwhile to explicitly point out the following direct corollary
concerning the parameterized halting problem for deterministic Turing machines:

Corollary 3.15. If p-DHalt �∈ para-AC0, then E �⊆ LINH.

p-DHalt

Instance: n ∈ N in unary and a deterministic Turing machine M.
Parameter: |M|.

Problem: Does M accept the empty input in at most n steps?

§4. On the parameterized complexity of p-Δ0-Truth. Recall, the problem
p-Δ0-Truth asks whether a given n ∈ N in unary satisfies a given Δ0-formula ϕ(x),
parameterized by the length of ϕ. Further recall that Δ0 refers to the language Lar

with function symbols +, · and contains the Lar-formulas with quantifiers bounded
by Lar-terms.

This section first observes thatp-Δ0-Truth is “the same” as a basic parameterized
model-checking problem, uses this to prove the lower bound p-Δ0-Truth �∈
para-AC0 (Theorem 1.4), and finally, based on the previous section, infers
consequences from upper bounds on the parameterized complexity of p-Δ0-Truth,
including Theorem 1.3.

4.1. Model-checking arithmetic. Recall Lr
ar is the relational version of the

language of arithmetic Lar. We observe that p-Δ0-Truth is “the same” as the
parameterized model-checking problem for first-order logic over finite standard
Lr

ar-structures:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

16 YIJIA CHEN ET AL.

p-MC(Lr

ar
)

Instance: n > 1 in unary and an Lr
ar-sentence ϕ.

Parameter: |ϕ|.
Problem: n |= ϕ?

Lemma 4.1. There is a computable function that maps every Δ0-formula ϕ(x) to
an Lr

ar-sentence � such that for all n ∈ N with n > 1:

N |= ϕ(n) ⇐⇒ n |= �. (3)

Further, there is a computable function that maps every Lr
ar-sentence � to a

Δ0-formula ϕ(x) such that (3) holds all n ∈ N with n > 1.

Proof. For the second assertion define ϕ(x) as �<x with atoms rewritten in the
functional language Lar. The first assertion is folklore, see [22, Proposition 2.2].
We give a brief sketch for completeness. It is routine to compute, given a
Δ0-formula ϕ(x̄), a constant cϕ > 1 and an Lr

ar-formula �0(x̄) such that

N |= ϕ(n̄) ⇐⇒ N |= �<m0 (n̄)

for all n̄, m ∈ N with m � max{n̄, 2}cϕ . Hence, for n > 1, the truth of ϕ(n) is
equivalent to ncϕ |= �0(n). Since the number n is definable in the standard Lr

ar-
structure ncϕ (as the minimal element whose cϕth power does not exist), we can

replace �0(n) by some sentence �1. Then set � := �
Icϕ
1 for the interpretation Icϕ

from Lemma 2.9. �

4.2. A lower bound. In this subsection we prove the following.

Theorem 1.4. p-Δ0-Truth �∈ para-AC0.

We fix a proper elementary extension M of the standard Lr
ar-model N, and a

nonstandard element a ∈M \ N. We let <M denote the interpretation of < in M.
We need a simple lemma:

Lemma 4.2. Letf : N → N be a computable function. Then there is anLr
ar-formula

�f(x, y) such that for every k ∈ N and every b ∈M :

f(k) = b ⇐⇒ M |= �<af (k, b).

Proof. Choose ϕf(x, y, z̄) according to Remark 2.5, and set �f(x, y) :=
∃z̄ϕf(x, y, z̄). In particular, ϕf is quantifier-free, so �<af = ∃z̄<a ϕf . Let k ∈ N

and b ∈M .
If b = f(k), then N |= ϕf(k, b, m̄) for some m̄ ∈ N

|z̄| since �f(x, y) defines f.
Then m̄ <M a andM |= ϕf(k, b, m̄), soM |= �<af (k, b).

IfM |= �<af (k, b), then bothM |= �f(k, b) andM |= �f(k,f(k)). But �f(x, y)
defines a function in N and hence in M (by elementarity of the extension), so
b = f(k). �

Some notation: for n ∈ N define the Lr
ar-formula “x=n” by “x=0” := x=0 and

“x=(n + 1)” := ∃y(“y=n” ∧ +(y, 1, x)). For anLr
ar-formulaϕ(y, x̄) setϕ(n, x̄) :=

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

A PARAMETERIZED HALTING PROBLEM, Δ0 TRUTH AND THE MRDP THEOREM 17

∃y(“y=n” ∧ ϕ(y, x̄)); we understand ϕ<z(n, x̄) as
(
ϕ(n, x̄)

)<z
. If n < m, then both

(“x=n”)<m and “x=n” define n in N, so ϕ<m(n, x̄) and ϕ<m(n, x̄) are equivalent
in N. In particular, for every n ∈ N:

M |= ∀x̄
(
ϕ<a(n, x̄) ↔ ϕ<a(n, x̄)

)
. (4)

Proof of Theorem 1.4. For contradiction, assume otherwise, so p-MC(Lr
ar) ∈

para-AC0 by Lemma 4.1. By Corollary 2.7, there is an increasing computable function
h : N → N and a sentence sat such that for every n ∈ N and every Lr

ar-sentence ϕ
with n > h(num(ϕ)) we have

n |= ϕ ⇐⇒ S
(
〈1n, ϕ〉

)
|= sat. (5)

�

For k < n, let (n, k) denote the expansion of the standard Lr
ar-structure n that

interprets a constant c by k. It is clear that there is an interpretation I (independent
of n, ϕ) such that (n, num(ϕ))I ∼= S(〈1n, ϕ〉) for all ϕ with num(ϕ) < n. Replacing
in satI the constant c by a new variable x gives an Lr

ar-formula true(x) such that for
n > h(num(ϕ)) � num(ϕ):

S
(
〈1n, ϕ〉

)
|= sat ⇐⇒ n |= true

(
num(ϕ)

)
⇐⇒ N |= true<n

(
num(ϕ)

)
, (6)

where N is the standard Lr
ar-model. Since h : N → N is computable, there is an Lr

ar-
formula “h(x) < y” with the obvious meaning. Note the l.h.s. of (5) is equivalent
to N |= ϕ<n. Combining (5) and (6) we get that N satisfies the universal closure of

“h(num(ϕ)) < y” →
(
ϕ<y ↔ true<y(num(ϕ))

)
for every Lr

ar-sentence ϕ. ButM |= “h(num(ϕ)) < a”, hence

M |= ϕ<a ↔ true<a(num(ϕ)) (7)

for every Lr
ar-sentence ϕ. As stated in [34, proof of Proposition 3] this contradicts

Tarski’s undefinability of truth. We include the details as they are omitted in [34].
The function which for everyLr

ar-formulaϕ(x) maps num(ϕ) to num(ϕ(num(ϕ)))
is computable. So by Lemma 4.2, there is a formula sub(x, y) such that for every
formula ϕ(x) and every b ∈M :

b = num(ϕ(num(ϕ))) ⇐⇒ M |= sub<a(num(ϕ), b). (8)

Define �(x) := ∀y
(
sub(x, y) → ¬true(y)) and � := �(num(�)), and note

num(�) = num(�(num(�))). (9)

We arrive at the desired contradiction:

M |= �<a ⇐⇒ M |= ∀y<a
(
sub<a(num(�), y) → ¬true<a(y)

)
by (4)

⇐⇒ for all b <M a :M |= sub<a(num(�), b) → ¬true<a(b)
⇐⇒ M |= ¬true<a(num(�)) by (8) and (9)
⇐⇒ M �|= �<a by (7).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

18 YIJIA CHEN ET AL.

4.3. Upper bounds. Based on our analysis of halting problems in Section 3,
we now see that various upper bounds on the complexity of p-Δ0-Truth imply
separations of classical complexity classes from LINH. This is our main result. The
first assertion is Theorem 1.3:

Theorem 4.3.

(i) If p-Δ0-Truth ∈ para-NP, then NE �⊆ LINH.
(ii) If p-Δ0-Truth ∈ FPT, then E �⊆ LINH.
(iii) If p-Δ0-Truth ∈ para-NL, then NLINSPACE �⊆ LINH.
(iv) If p-Δ0-Truth ∈ para-L, then LINSPACE �⊆ LINH.

Proof. Since p-Δ0-Truth is an almost tally problem, (i) follows from Theo-
rem 1.4 and Corollary 3.13. The other assertions follow using Lemma 3.14. �

§5. Provability of the MRDP theorem. In this section we prove:

Theorem 1.5. If IΔ0 proves MRDP for small numbers, then NE �⊆ LINH.

In fact, we show that Theorem 1.3 implies a stronger statement for all computably
enumerable Π1-theories—up to logical equivalence, IΔ0 is a Π1-theory. Here, a
theory is a set of sentences, and a Π1-theory is a set of Π1-sentences. The proof uses
Parikh’s theorem [33]:

Theorem 5.1. Let T be a Π1-theory and ϕ(x̄, ȳ) a Δ0-formula. If T proves
∃ȳ ϕ(x̄, ȳ), then T proves ∃ȳ<p(x̄) ϕ(x̄, ȳ) for some term p(x̄).

Definition 5.2. A theory T proves MRDP if for every Δ0-formula ϕ(x̄) there are
Lar-terms p(x̄, ȳ) and q(x̄, ȳ) such that T proves

ϕ(x̄) ↔ ∃ȳ p(x̄, ȳ)=q(x̄, ȳ).

As mentioned in the introduction it is a long standing open problem whether IΔ0

proves MRDP and it is known that adding exponentiation suffices. Intuitively, the
following concept asks whether MRDP can be proved using exponentiation only
once.

Definition 5.3. A theory T proves MRDP for small numbers if for every k ∈ N

and every Δ0-formulaϕ(x̄) = ϕ(x0, ... , xk–1) there areLar-termsp(x̄, ȳ) and q(x̄, ȳ)
such that T proves

∧
i<k 2xi�z →

(
ϕ(x̄) ↔ ∃ȳ p(x̄, ȳ)=q(x̄, ȳ)

)
. (10)

Here, 2x�z stands for a well-known Δ0-formula [25, Section V.3(c)]. The following
strengthens Theorem 1.5:

Theorem 5.4. Let T be a true Π1-theory. Moreover, assume that T is computably
enumerable. If T proves MRDP for small numbers, then p-Δ0-Truth ∈ para-NP and
thus NE �⊆ LINH.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

A PARAMETERIZED HALTING PROBLEM, Δ0 TRUTH AND THE MRDP THEOREM 19

Proof. Assume T proves (10) for ϕ(x), and hence

2x�z ∧ ϕ(x) → ∃ȳ p(x, ȳ)=q(x, ȳ).

By Theorem 5.1 ∃ȳ can be replaced by ∃ȳ<r(x, z) for some term r(x, z). But since
T proves (10) for ϕ(x), T proves

2x�z →
(
ϕ(x) ↔ ∃ȳ<r(x, z) p(x, ȳ)=q(x, ȳ)

)
.

Since T is computably enumerable, such terms p, q, r can be computed from ϕ.
Given an instance 〈1n, ϕ〉 of p-Δ0-Truth, compute p, q, r as above, guess
m̄ < r(n, 2n) and check p(n, m̄)=q(n, m̄). Note the length of the guess m̄ is
O(|r| · � · n) where � is the length of the tuple ȳ. The check can be done in time
(|p| · |q| · |r| · n)O(1).

It follows that p-Δ0-Truth ∈ para-NP. Now apply Theorem 1.3. �

It would be interesting to find variants of this result that infer p-Δ0-Truth ∈
FPT or p-Δ0-Truth ∈ para-NL from certain provabilities of MRDP or other
arithmetical statements. Note this implies stronger separations of complexity classes
by Theorem 4.3.

§6. p-Halt and a universal AC0-easy set in NP. Recall, a problem Q is AC0-bi-
immune if neither Q nor its complement contain an infinite subset in AC0. In this
section we prove the following.

Theorem 1.6. If NP contains an AC0-bi-immune problem, then p-Halt �∈
para-AC0.

We use the following technical lemma stating, roughly, that every computable
function is dominated by a computable injection which is AC0-invertible.

Lemma 6.1. Let f : N → N be computable. Then there is an increasing h : N → N

with the following properties.

(i) h(n) � f(n2) for every n ∈ N.
(ii) 1n �→ 1h(n) is computable in time h(n)O(1).
(iii) There is an Lr

ar-sentence ϕh such that for every x ∈ {0, 1}∗ with |x| > 1:

S(x) |= ϕh ⇐⇒ x = 1h(n) for some n ∈ N.

(iv) There is an Lr
ar-formula ϕ(x) that defines n in S(1h(n)) for every n > 1.

Proof. Given a deterministic Turing machine M and x ∈ {0, 1}∗ we let yM,x ∈
{0, 1}∗ encode the computation of M on x. This encoding can be chosen so that:

(a) x �→ yM,x is computable in time |yM,x |O(1).
(b)

{
〈x, yM,x〉

∣∣ x ∈ {0, 1}∗
}
∈ AC0.

Now, letMf be a Turing machine that computes 1n �→ 1f(n). LetM be the machine

that on input 1n runs Mf on 1i
2

for every i � n. Define the increasing function
h : N → N by

h(n) = num
(
〈1n, yM,1n 〉

)
. (11)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

20 YIJIA CHEN ET AL.

Clearly, the string y
Mf,1n

2 encoding the computation of Mf on input 1n
2

has length

at least f(n2). Similarly, |yM,1n | � f(n2). Thus h(n) � f(n2) for every n ∈ N, i.e.,
(i) holds.

(ii) holds by (a). To show (iii), Theorem 2.6 and (b) imply that there is an Lr
ar-

sentence ϕ that holds precisely in the string structures of the form S
(
bin(h(n))

)
for

n ∈ N. Using BIT , there is an interpretation I such that S(1m)I ∼= S(bin(m)) for
everym > 1, so ϕh := ϕI holds precisely in the string structures of the form S(1h(n))
for n ∈ N (we have h(n) > 1 for all n ∈ N).

Trivially, n is definable in S(bin(h(n))), so (iv) follows using the interpretation I
above. �

Theorem 1.6 is an easy consequence of the following stronger result, and we view
it as good evidence for the truth of Conjecture 1.1.

Theorem 6.2. Assume p-Halt ∈ para-AC0. Then there is an infinite tally problem
X such that for every Q ∈ NP we have Q ∩ X ∈ AC0.

Proof of Theorem 1.6 from Theorem 6.2: Assume p-Halt ∈ para-AC0 and let
Q ∈ NP. Let X be as stated in Theorem 6.2. Then either Q ∩ X or ({0, 1}∗ \Q) ∩
X is infinite. By Theorem 6.2 they are both in AC0; indeed, ({0, 1}∗ \Q) ∩ X =
({0, 1}∗ ∩ X) \ (Q ∩ X) is in AC0 because both {0, 1}∗ ∩ X and Q ∩ X are. Hence,
Q is not AC0-bi-immune.

Proof of Theorem 6.2. By Corollary 2.7 there is a computable increasing
function f : N → N and an Lr

ar-sentence ϕ such that for every 〈1n,M〉 with
n � f(|M|):

S
(
〈1n,M〉

)
|= ϕ ⇐⇒ M accepts the empty input tape in at most n steps. (12)

Now let h : N → N be the increasing function as stated in Lemma 6.1. In particular,
there is a deterministic Turing machine Mh and a constant c � 1 such that on input
1m the machine Mh outputs the string 1h(m) in time h(m)c . The desired set X is
defined by

X :=
{
1h(m)

∣∣ m > 1
}
.

By Lemma 6.1(iii) the sentence ϕh witnesses X ∈ AC0 according to Theorem 2.6.
Now letQ ⊆ {0, 1}∗ be a problem in NP. In particular, there is a nondeterministic

Turing machine MQ accepting Q and a constant d � 1 such that MQ on x runs in
time |x|d .

Define the nondeterministic Turing machine MQ,h,m to run Mh on 1m to produce
output 1h(m) and then run MQ on 1h(m). This machine runs in time

n(m) := h(m)c + h(m)d .

Choose a constant e ∈ N such that m � |Mh | + |MQ| + e implies m2 � |MQ,h,m|.
Then

n(m) � h(m) � f(m2) � f(|MQ,h,m|).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

A PARAMETERIZED HALTING PROBLEM, Δ0 TRUTH AND THE MRDP THEOREM 21

Hence, by (12), for m � |Mh | + |MQ| + e:

1h(m) ∈ Q ⇐⇒ MQ,h,m accepts the empty input in at most n(m) steps

⇐⇒ S(〈1n(m),MQ,h,m〉) |= ϕ. (13)

Lemma 6.1(iv) implies that there is an interpretation I such that for every m ∈ N

S(1h(m))I = S
(
〈1n(m),MQ,h,m〉

)
.

By Theorem 2.6 it suffices to show that for every x ∈ {0, 1}∗ with |x| � h(|Mh | +
|MQ| + e):

x ∈ Q ∩ X ⇐⇒ S(x) |= ϕh ∧ ϕI .

Assume x ∈ Q ∩ X . Then x = 1h(m) for somem > 1 and S(x) |= ϕh . Since |x| =
h(m) � h(|Mh | + |MQ| + e) and h is increasing, we have m � |Mh | + |MQ| + e.
Thus x = 1h(m) ∈ Q implies S(〈1n(m),MQ,h,m〉) |= ϕ by (13), and S(1h(m)) |= ϕI

follows.
Conversely, assume S(x) |= ϕh ∧ ϕI . By S(x) |= ϕh , we have x ∈ X , so x = 1h(m)

for some m > 1. By S(1h(m)) |= ϕI we have S(〈1n(m),MQ,h,m〉) |= ϕ. This implies
x = 1h(m) ∈ Q by (13) because, as above, m � |Mh | + |MQ| + e. �

§7. Problem comparison.

7.1. The role of uniformity. Our proof of the lower bound p-Δ0-Truth /∈
para-AC0 (Theorem 1.4) makes crucial use of the uniformity condition in the
definition of para-AC0. To shed some light on this dependence, we relax the
uniformity condition as follows.

Definition 7.1. Let (Q, κ) be a parameterized problem and d, k ∈ N. The kth
slice of (Q, κ) is the classical problem {x ∈ Q | κ(x) = k}. The class XAC0 contains
(Q, κ) if and only if AC0 contains every slice of (Q, κ). The class XAC0

d contains
(Q, κ) if and only if AC0

d contains every slice of (Q, κ); here, AC0
d denotes the class

of problems decided by dlogtime uniform circuit families of polynomial size and
depth d.

Clearly,

para-AC0 ⊆
⋃
d∈N

XAC0
d ⊆ XAC0 (14)

and XAC0
0 �⊆ para-AC0 since it contains undecidable problems.

Lemma 7.2. Assume there is an eventually definable reduction from (Q, κ) to
(Q′, κ′).

(i) If (Q′, κ′) ∈ XAC0, then (Q, κ) ∈ XAC0.
(ii) If (Q′, κ′) ∈

⋃
d XAC

0
d , then (Q, κ) ∈

⋃
d XAC

0
d .

Proof. Let r denote the reduction and choose f such that κ′ ◦ r � f ◦ κ. Choose
an interpretation I and a function h witnessing that r is eventually definable. To show
(i), assume (Q′, κ′) ∈ XAC0. We show that for everyk ∈ N the kth slice of Q is inAC0.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

22 YIJIA CHEN ET AL.

Fix k ∈ N and let x ∈ {0, 1}∗ with κ(x) = k. Since κ′ is AC0-computable,
Theorem 2.6 implies that for every k′ ∈ N there is a sentence �k′ that is true in
S(r(x)) if and only if κ′(r(x)) = k′. For every k′ ∈ N choose a sentence �k′ that
defines the k′th slice of Q′ according to Theorem 2.6. If |x| � h(k), then

ϕ :=
∨
k′�f(k)(�k′ ∧ �k′)I

is true in S(x) if and only if r(x) ∈ Q′, i.e., x ∈ Q. Translatingϕ gives anAC0-family
that decides the kth slice of Q on instances x with |x| � h(k). This can be extended
to the whole slice by hardwiring instances of length < h(k).

For (ii) we assume there is d ∈ N such that every slice of Q′ is in AC0
d . Now, in

Theorem 2.6, the quantifier alternation rank of ϕ depends only on the depth of
the AC0-family, and vice-versa; this follows from the proof of [6, Theorem 8.1]. In
particular, all �k′ and �k′ have quantifier alternation rank � d ′ for some d ′ that
depends only on d. The depth of the AC0-family translating the above ϕ is � d ′′ for
some d ′′ depending only on d ′. The hardwiring of instances of small length can be
done by circuits of depth 2. Thus, (Q, κ) ∈ XAC0

d ′′ . �

The class XAC0 is important in our context because it is a natural upper bound
on p-Δ0-Truth:

Proposition 7.3. p-Δ0-Truth ∈ XAC0.

Proof. It suffices to show that for every Δ0-formula ϕ(x) the problem {1n |
N |= ϕ(n)} belongs to AC0. But this problem is un(Q) for Q := {x ∈ {0, 1}∗ | N |=
ϕ(num(x))}. Clearly Q ∈ LINH, so un(Q) ∈ AC0 follows from Proposition 2.1. �

We show that it is likely difficult to improve Theorem 1.4 to p-Δ0-Truth �∈⋃
d∈N

XAC0
d . This somewhat artificial class also exhibits the different behaviors

of the parameterized problems p-Halt, p-Halt=, and p-Δ0-Truth.

Theorem 7.4.

(i) p-Halt ∈ XAC0
2.

(ii) p-Halt= ∈ XAC0
d for some d ∈ N if and only if NE ⊆ LINH.

(iii) p-Δ0-Truth ∈ XAC0
d for some d ∈ N if and only if LINH collapses.

Proof. (i) For fixed k ∈ N, let Mk,0, ... ,Mk,�k–1 list all nondeterministic Turing
machines of size k and let nk,i be the minimal n such that Mk,i accepts the empty
input in n steps; if there is no such n, let nk,i := ∞. Then, on instances (1n,M) with
parameter |M| = k, p-Halt is decided by the following family of simple Boolean
functions:

Fn,k(x0 ... xn–1, y0 ... yk–1) =
∨

i<�k such
that nk,i�n

(
x0 ... xn–1 = 1n ∧ y0 ... yk–1 = Mk,i

)
.

Observe that Fn,k can be understood as a circuit of depth 2 and size O(k · �k · n).
(ii) By Remark 3.10, NE ⊆ LINH is equivalent to both p-Halt= ∈ para-AC0 and

p-Halt= ∈ XAC0. By (14) it is equivalent to p-Halt= ∈
⋃
d XAC

0
d .

To see (iii), assume LINH collapses. Paris and Dimitracopolous [34, proof of
Proposition 4] showed that this implies the following. There is an Lr

ar-formula

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

A PARAMETERIZED HALTING PROBLEM, Δ0 TRUTH AND THE MRDP THEOREM 23

�(x, y) such that for every Δ0-formula ϕ(x) there are cϕ, dϕ, eϕ ∈ N such that for all
n � cϕ

N |= ϕ(n) ⇐⇒ ndϕ |= �(n, eϕ).

For each fixed ϕ there is an AC0-family that given 1n decides whether n satisfies the
r.h.s. The size of this family is bounded by nfϕ for somefϕ ∈ N depending onϕ, but
the depth of this family is determined by the quantifier alternation rank of � and,
in particular, does not depend on ϕ. This implies p-Δ0-Truth ∈ XAC0

d for some
d ∈ N.

Conversely, assume p-Δ0-Truth ∈ XAC0
d and let Q ∈ LINH. It is well known

(see, e.g., [25, Chapter V, Lemma 2.13]) that there is a Δ0-formula that is satisfied
by num(x) if and only if x ∈ Q. Fixing this formula in the input to p-Δ0-Truth,
the assumption implies that there is a dlogtime uniform circuit family (Cn)n of
polynomial size and depth d such that for all x ∈ {0, 1}∗:

x ∈ Q ⇐⇒ Cnum(x)(1num(x)) = 1.

It suffices to show that, given x, the r.h.s. can be checked by an alternating
machine in linear time with d alternations. This is straightforward by guessing a
path through Cnum(x). For example, if the output gate is a ∨-gate, the machine
existentially guesses an input gate g1 to it, and if it is a∧-gate it universally guesses g1.
Depending on the type of g1 it either existentially or universally guesses an input
gate g2 to g1, and so on. When reaching (with gd–1 or earlier) an input gate or a
negation thereof, the machine accepts or rejects, respectively. Each guess requires
O(|x|) bits. Checking that, e.g., g2 is an input to g1 can be done in time logarithmic
in the size of Cnum(x), that is, in time O(|x|). We omit further details. �

7.2. Reducibilities. On the one hand p-Halt= might appear ‘easier’ than
p-Δ0-Truth in that the latter is not in para-AC0 while this is unknown for the
former. On the other hand, Theorem 7.4 might indicate that p-Halt= is ‘harder’
than p-Δ0-Truth. Also recall from the introduction that p-Halt= is trivially in
para-NP but not known to be solvable in time nf(k) while for p-Δ0-Truth it is the
other way around. The problems seem incomparable. In this subsection we verify
this intuition for our notion of reducibility.

Saying that a (parameterized) problem is reducible to another means that there is
an eventually definable reduction. Two problems are equivalent if they are reducible
to one another. The picture is as follows: an arrow indicates reducibility, ≡ means
equivalence.

p-Spec

↗ ↖
p-Halt= �≡ p-Δ0-Truth

↑
p-Halt

In particular, we show unconditionally that p-Halt= and p-Δ0-Truth are not
equivalent and both are reducible to yet another almost tally problem of central
importance to mathematical logic, namely the following parameterized version of
the spectrum problem:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

24 YIJIA CHEN ET AL.

p-Spec

Instance: n ∈ N in unary and a first-order sentence ϕ.
Parameter: |ϕ|.

Problem: Does ϕ have a model of size n?

Recall that having a model of size n means that n belongs to the spectrum of ϕ.
We start comparing p-Halt and p-Halt=. By Example 3.6, p-Halt is reducible

to p-Halt=. Concerning the converse we have the following.

Corollary 7.5. If p-Halt= is reducible to p-Halt, then NE ⊆ LINH.

Proof. By Theorem 7.4(i), p-Halt ∈
⋃
d XAC

0
d . If p-Halt= is reducible to

p-Halt, then p-Halt= ∈
⋃
d XAC

0
d by Lemma 7.2(ii). This implies NE ⊆ LINH

by Theorem 7.4(ii). �
Adapting a mode of speech from [8], call an almost tally problem (Q, κ) slicewise

monotone if (1n, x) ∈ Q implies (1m, x) ∈ Q for all x ∈ {0, 1}∗ and all n,m ∈ N with
n < m. One can show that p-Halt is the hardest such problem in para-NP. This is an
easy modification of the proof of Lemma 3.12 and strengthens [8, Proposition 11]:

Corollary 7.6. Every almost tally problem in para-NP that is slicewise monotone
is reducible to p-Halt.

We turn to p-Halt= and p-Δ0-Truth.

Corollary 7.7.

(i) If p-Δ0-Truth is reducible to p-Halt=, then NE �⊆ LINH.
(ii) If p-Halt= is reducible to p-Δ0-Truth, then NE ⊆ LINH.

(iii) p-Δ0-Truth and p-Halt= are not equivalent.

Proof. (iii) follows from (i) and (ii). For (i), assume p-Δ0-Truth is reducible to
p-Halt=. Then p-Δ0-Truth ∈ para-NP and NE �⊆ LINH follows by Theorem 1.3.

For (ii), assume p-Halt= is reducible to p-Δ0-Truth. Then p-Halt= ∈ XAC0 by
Proposition 7.3 and Lemma 7.2(i). This implies NE ⊆ LINH by Remark 3.10. �

Finally, we turn to p-Spec:

Proposition 7.8. Both p-Halt= and p-Δ0-Truth are reducible to p-Spec.

Proof. It is straightforward to compute from a nondeterministic Turing machine
M a first-order sentence ϕM that has a model of size n if and only if M accepts the
empty input in exactly n steps.

Concerning p-Δ0-Truth, by Lemma 4.1, it suffices to show that p-MC(Lr
ar) is

reducible to p-Spec: map an instance (1n, ϕ) of p-MC(Lr
ar) to (1n, ϕ ∧ �) where� is

an Lr
ar-sentence whose finite models are exactly those isomorphic to some standard

finite Lr
ar-structure. �

Observep-Spec can be solved in nondeterministic time nf(k) for some computable
f : N → N where k := |ϕ| is the parameter. Can the parameter be moved out of the
exponent? We find it worthwhile to explicitly point out the following direct corollary
of the previous proposition and Theorem 1.3:

Corollary 7.9. If p-Spec ∈ para-NP, then NE �⊆ LINH.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

A PARAMETERIZED HALTING PROBLEM, Δ0 TRUTH AND THE MRDP THEOREM 25

Acknowledgements. We thank the anonymous referees for their detailed com-
ments. A partial conference version of this article appeared as [13].

Funding. Yijia Chen is supported by the National Natural Science Foundation
of China (Project 62372291). Keita Yokoyama is partially supported by JSPS
KAKENHI grant numbers JP19K03601, JP21KK0045, and JP23K03193.

REFERENCES

[1] E. Allender, R. Beigel, U. Hertrampf, and S. Homer, Almost-everywhere complexity hierarchies
for nondeterministic time. Theoretical Computer Science, vol. 115 (1993), no. 2, pp. 225–241.

[2] E. Allender and V. Gore, On strong separations from AC0, Advances in Computational Complexity
Theory (Jin-Yi Cai, editor), DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
13, DIMACS/AMS, 1990, pp. 21–38.

[3] S. Arora and B. Barak, Computational Complexity–A Modern Approach, Cambridge University
Press, Cambridge, 2009.

[4] Y. Aumann and Y. Dombb, Fixed structure complexity, 3rd International Workshop on Parameter-
ized and Exact Computation (IWPEC’08), LNCS 5018, Springer, Berlin Heidelberg, New York, 2008,
pp. 30–42.

[5] J. L. Balcázar and U. Schöning, Bi-immune sets for complexity classes. Mathematical Systems
Theory, vol. 18 (1985), no. 1, pp. 1–10.

[6] D. A. M. Barrington, N. Immerman, and H. Straubing, On uniformity within NC1. Journal of
Computer and System Sciences, vol. 41 (1990), no. 3, pp. 274–306.

[7] Y. Chen and J. Flum, A logic for PTIME and a parameterized halting problem, Proceedings of the
24th Annual IEEE Symposium on Logic in Computer Science, (LICS’09), IEEE Computer Society, Los
Alamitos, 2009, pp. 397–406.

[8] ———, On slicewise monotone parameterized problems and optimal proof systems for TAUT,
Proceedings of the 24th International Workshop Computer Science Logic (CSL’10), LNCS 6247, Springer,
Berlin Heidelberg, New York 2010, pp. 200–214.

[9] ———, On the complexity of Gödel’s proof predicate. The Journal of Symbolic Logic, vol. 75 (2010),
no. 1, pp. 239–254.

[10] ———, From almost optimal algorithms to logics for complexity classes via listings and a halting
problem. Journal of the ACM, vol. 59 (2012), no. 4, pp. 1–34.

[11] ———, Some lower bounds in parameterized AC0. Information and Computation, vol. 267 (2019),
pp. 116–134.

[12] Y. Chen, J. Flum, and M. Müller, A surprising relationship between descriptive complexity and
proof complexity. Bulletin of the EATCS, the Logic in Computer Science Column by Yuri Gurevich, vol.
138 (2022), p. 2022.

[13] Y. Chen, M. Müller, and K. Yokoyama, A parameterized halting problem, the linear time
hierarchy, and the MRDP theorem, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS’18), ACM, New York, 2018, pp. 235–244.

[14] M. Davis, Hilbert’s tenth problem is unsolvable. The American Mathematical Monthly, vol. 80
(1973), no. 3, pp. 233–269.

[15] R. G. Downey and M. R. Fellows, Parameterized Complexity, Monographs in Computer
Science, Springer, Berlin Heidelberg, New York, 1999.

[16] ———, Fundamentals of Parameterized Complexity, Texts in Computer Science, Springer, 2013.
[17] H.-D. Ebbinghaus and J. Flum, Finite Model Theory, Perspectives in Mathematical Logic,

Springer, Berlin Heidelberg, New York, 1995.
[18] M. Elberfeld, C. Stockhusen, and T. Tantau, On the space and circuit complexity of

parameterized problems: Classes and completeness. Algorithmica, vol. 71 (2015), no. 3, pp. 661–701.
[19] J. Flum and M. Grohe, Describing parameterized complexity classes. Information and

Computation, vol. 187 (2003), no. 2, pp. 291–319.
[20] ———, Parameterized Complexity Theory, Texts in Theoretical Computer Science. An EATCS

Series, Springer, Berlin Heidelberg, New York, 2006.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

26 YIJIA CHEN ET AL.

[21] L. Fortnow and R. Santhanam, New non-uniform lower bounds for uniform classes, Proceedings
of the 31st Conference on Computational Complexity (CCC’16), LIPIcs, 50, Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2016, pp. 19:1–19:14.

[22] H. Gaifman and C. Dimitracopoulos, Fragments of arithmetic and the MRDP theorem, Logic
and Algorithmic, Monographie de L’Enseignement Mathematique, 30, Université de Genève, Geneva,
1982, pp. 187–206.

[23] J. G. Geske, D. T. Huynh, and J. I. Seiferas, A note on almost-everywhere-complex sets and
separating deterministic-time-complexity classes. Information and Computation, vol. 92 (1991), no. 1,
pp. 97–104.

[24] Y. Gurevich, Logic and the challenge of computer science, Current Trends in Theoretical Computer
Science, (E. Börger, editor), Computer Science Press, New York, 1988, pp. 1–57.

[25] P. Hájek and P. Pudlák, Metamathematics of First-Order Arithmetic, Perspectives in Mathemat-
ical Logic, Oxford University Press, Oxford, 1998. Second printing.

[26] N. Immerman, Descriptive Complexity. Graduate Texts in Computer Science, Springer, Berlin
Heidelberg, New York, 1999.

[27] R. Kaye, Diophantine induction. Annals of Pure and Applied Logic, vol. 46 (1990), pp. 1–40.
[28] ———, Models of Peano Arithmetic, Oxford Logic Guides, Springer, Berlin, 1991.
[29] J. Krajı́ček, Exponentiation and second order bounded arithmetic. Annals of Pure and Applied

Logic, vol. 48 (1990), no. 3, pp. 261–276.
[30] J. Krajı́cek and P. Pudlák, Propositional proof systems, the consistency of first order theories and

the complexity of computations. The Journal of Symbolic Logic, vol. 54 (1989), no. 3, pp. 1063–1079.
[31] E. Mayordomo, Almost every set in exponential time is p-bi-immune. Theoretical Computer

Science, vol. 136 (1994), no. 2, pp. 487–506.
[32] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Boston, 1994.
[33] R. Parikh, Existence and feasibility in arithmetic. The Journal of Symbolic Logic, vol. 36 (1971),

pp. 494–508.
[34] J. B. Paris and C. Dimitracopoulos, Truth definitions for 	0 formulae, Logic and Algorithmic,

Monographie de L’Enseignement Mathematique, 30, Université de Genève, Geneva, 1982, pp. 317–329.
[35] N. Schweikardt, Arithmetic, first-order logic, and counting quantifiers. ACM Transactions on

Computational Logic, vol. 6 (2005), no. 3, pp. 634–671.
[36] A. J. Wilkie, Applications of complexity theory to
0-definability problems in arithmetic, Model

Theory of Algebra and Arithmetic, (L. Pacholski and J. Wierzejewski, editors), Lecture Notes in
Mathematics 834, Springer, Berlin Heidelberg, New York, 1980, pp. 363–369.

[37] M. Zimand, Large sets in AC0 have many strings with low Kolmogorov complexity. Information
Processing Letters, vol. 62 (1997), no. 3, pp. 165–170.

DEPARTMENT OF COMPUTER SCIENCE
SHANGHAI JIAO TONG UNIVERSITY

SHANGHAI, CHINA
E-mail: yijia.chen@cs.sjtu.edu.cn

FACULTY OF COMPUTER SCIENCE AND MATHEMATICS
UNIVERSITY OF PASSAU

PASSAU, GERMANY

E-mail: moritz.mueller@uni-passau.de

MATHEMATICAL INSTITUTE
TOHOKU UNIVERSITY

SENDAI, JAPAN
E-mail: keita.yokoyama.c2@tohoku.ac.jp

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.44
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 11 Feb 2025 at 03:22:17, subject to the Cambridge Core terms of use, available at

mailto:yijia.chen@cs.sjtu.edu.cn
mailto:moritz.mueller@uni-passau.de
mailto:keita.yokoyama.c2@tohoku.ac.jp
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.44
https://www.cambridge.org/core

	1 Introduction
	1.1 Parameterized complexity
	1.2 The parameterized halting problem
	1.3 Δ0 truth
	1.4 The MRDP theorem
	1.5 AC0-bi-immunity
	1.6 Outline

	2 Preliminaries
	2.1 Classical complexity
	2.2 Parameterized complexity
	2.3 Formal arithmetic
	2.4 Descriptive complexity

	3 p-Halt and NE versus LINH
	3.1 Eventually definable reductions
	3.2 The complexity of p-Halt=
	3.3 Almost tally problems
	3.4 Variants

	4 On the parameterized complexity of p-Δ0-Truth
	4.1 Model-checking arithmetic
	4.2 A lower bound
	4.3 Upper bounds

	5 Provability of the MRDP theorem
	6 p-Halt and a universal AC0-easy set in NP
	7 Problem comparison
	7.1 The role of uniformity
	7.2 Reducibilities

