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URN SAMPLING DISTRIBUTIONS GIVING
ALTERNATE CORRESPONDENCES BETWEEN
TWO OPTIMAL STOPPING PROBLEMS

MITSUSHI TAMAKI,∗ Aichi University

Abstract

The best-choice problem and the duration problem, known as versions of the secretary
problem, are concerned with choosing an object from those that appear sequentially. Let
(B, p) denote the best-choice problem and (D, p) the duration problem when the total
number N of objects is a bounded random variable with prior p = (p1, p2, . . . , pn) for
a known upper bound n. Gnedin (2005) discovered the correspondence relation between
these two quite different optimal stopping problems. That is, for any given prior p, there
exists another prior q such that (D, p) is equivalent to (B, q). In this paper, motivated
by his discovery, we attempt to find the alternate correspondence {p(m), m ≥ 0}, i.e.
an infinite sequence of priors such that (D, p(m−1)) is equivalent to (B, p(m)) for all
m ≥ 1, starting with p(0) = (0, . . . , 0, 1). To be more precise, the duration problem is
distinguished into (D1, p) or (D2, p), referred to as model 1 or model 2, depending on
whether the planning horizon is N or n. The aforementioned problem is model 1. For
model 2 as well, we can find the similar alternate correspondence {p[m], m ≥ 0}. We treat
both the no-information model and the full-information model and examine the limiting
behaviors of their optimal rules and optimal values related to the alternate correspondences
as n → ∞. A generalization of the no-information model is given. It is worth mentioning
that the alternate correspondences for model 1 and model 2 are respectively related to the
urn sampling models without replacement and with replacement.
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problem; Bruss extension

2010 Mathematics Subject Classification: Primary 60G40
Secondary 62L15

1. Introduction

In the best-choice problem, a version of the secretary problem (see, e.g. Samuels (1991) for
a survey), a fixed known number n of rankable objects appear one at a time in random order
with all n! permutations equally likely (1 being the best and n the worst). Each time an object
appears, we must decide either to select it and stop observing or reject it and continue observing,
based on the relative rank of the current object with respect to its predecessors. The objective
is to find a stopping rule that maximizes the probability of selecting the best of all n objects.
Evidently we can confine our selection to a relatively best object. For ease of description, we
often call an object a candidate if it is relatively best upon arrival.

As a different version of the secretary problem, Ferguson et al. (1992) considered the optimal
stopping problem, referred to as the duration problem, in the same framework described above.
We only select a candidate. Define Tk as the time of the first candidate after k if there is one,
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Alternate correspondences between two optimal stopping problems 727

and as n + 1 if there is none. Then the duration of holding a candidate selected at time k is
(Tk − k)/n (division by n is for normalization) and the objective of this problem is to find a
stopping rule that maximizes the expected duration of holding a candidate.

These two classical problems with fixed horizon n were generalized to the problems with
random horizon by introducing uncertainty about the number N of the available objects. The
selection must be made by time N . See, e.g. Presman and Sonin (1972), Irle (1980), Petruccelli
(1983), and Tamaki (2011) for the best-choice problem, and Gnedin (2004), (2005) and Tamaki
(2013) for the duration problem. Throughout this paper, we assume that the random variable
N , independent of the arrival order of the objects, is bounded by n and has a prior distribution
p = (p1, p2, . . . , pn), where pk = P{N = k} are such that

∑n
k=1 pk = 1 and pn > 0. It is also

assumed that n ≥ 2, unless otherwise specified. Define, for later use, π = (π1, π2, . . . , πn)

and σ = (σ1, σ2, . . . , σn) as functions of p where, for 1 ≤ k ≤ n,

πk = pk + pk+1 + . . . + pn, σk = πk + (n − k)pk.

When N has a prior p, we simply denote the best-choice problem by (B, p) and the duration
problem by (D, p). Though the objective of (B, p) is to select the best of all N objects, (D, p)

can be distinguished into two problems denoted by (D1, p) or (D2, p) depending on whether
the final stage of the planning horizon is N or n. That is, the duration of a candidate selected at
time k is defined as (Tk − k)/n, as before, but if no further candidate appears by time N , Tk is
interpreted as N + 1 for (D1, p) and as n + 1 for (D2, p). The problem (Dk, p), k = 1, 2, is
referred to as model k of the duration problem. We denote the optimal values of the problems
(B, p) and (Dk, p) by vB

n (p) and v
Dk
n (p), respectively, to make explicit the dependence on n

and p. Note that the classical problems occur if N degenerates to n (i.e. p = (0, . . . , 0, 1)), in
which case there exists no difference between (D1, p) and (D2, p).

A stopping rule is said to be simple if, for a given positive integer sn(≤ n), it passes over
the first sn − 1 objects and stops with the first, if any, candidate. The value sn is referred to as
the critical number of the simple rule. It is well known that the optimal rules of the classical
problems are simple. However, the form of the optimal rule depends on p, implying that it is
not necessarily simple. An example of p for which the optimal rule of (B, p) when n = 8 is not
simple is when p = (p1, p2, . . . , p8), where p1 = 0, p2 = 0.895, p3 = · · · = p7 = 0.001,
and p8 = 0.1, see Irle (1980) .

Define

p(0) = (0, . . . , 0, 1), p(1) =
(

1

n
, . . . ,

1

n
,

1

n

)

as two special priors. Then p(0) corresponds to the fixed horizon and p(1) to the random horizon
with N uniform on {1, 2, . . . , n}. Ferguson et al. (1992) recognized the equivalence between
(D1, p

(0)) and (B, p(1)). Extending this equivalence, Gnedin (2005) discovered the further
correspondences between model 1 of the duration problem and the best-choice problem (see
also Samuels (2004) and Porosiński (2002) for related works). According to Gnedin (2005,
Proposition 4.1 and Corollary 4.1), this discovery can be stated as follows for our framework.

Proposition 1.1. (Equivalence between (D1, p) and (B, q).) For any given prior

p = (p1, p2, . . . , pn) on N,

there exists another prior q = (q1, q2, . . . , qn) defined from p as

q = π

E[N ] (1.1)
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such that (D1, p) is equivalent to (B, q) in the sense that these two problems have the same
optimal rules. Moreover, their optimal values only differ by the factor E[N ]/n; namely,

vD1
n (p) = E[N ]

n
vB
n (q). (1.2)

Remark 1.1. Note that (1.2) can be written as nv
D1
n (p) = E[N ]vB

n (q), and that Gnedin con-
sidered the left-hand side, i.e. nv

D1
n (p), as the optimal value of the duration problem, because

the duration is, in his setting, not normalized (see the symbolic expression below his Corol-
lary 4.1). It is also noted that Propositions 1.1 and 1.2, given below, hold not only for the no-
information model but also for a wide variety of stochastic processes including the generalized
no-information model in Section 2.2 and the full-information model in Section 3.

In order to show that the prior p(2) = (p
(2)
1 , p

(2)
2 , . . . , p

(2)
n ), for which (D1, p

(1)) is equiv-
alent to (B, p(2)), is given by

p
(2)
k = 2(n − k + 1)

n(n + 1)
, 1 ≤ k ≤ n,

from (1.1), Gnedin (2005) suggested a problem of finding iteratively an infinite sequence of
priors

p(m) = (p
(m)
1 , p

(m)
2 , . . . , p(m)

n ), m ≥ 1,

with p(0) = (0, . . . , 0, 1), such that (D1, p
(m−1)) is equivalent to (B, p(m)). In this paper we

are motivated by this suggestion. The set {p(m), m ≥ 0} is then referred to as the alternate
correspondence of type-1.

We have a similar correspondence between model 2 of the duration problem and the best-
choice problem, which can be stated as follows.

Proposition 1.2. (Equivalence between (D2, p) and (B, q).) For any given prior

p = (p1, p2, . . . , pn) on N,

there exists another prior q = (q1, q2, . . . , qn) defined from p as

q = σ

n
(1.3)

such that (D2, p) is equivalent to (B, q) in the sense that these two problems have the same
optimal rules and the same optimal values. Thus,

vD2
n (p) = vB

n (q).

Proof. We omit the proof because it is similar to the proof of Gnedin (2005, Proposition
4.1). �

Let p[0] = (0, . . . , 0, 1). Then the set {p[m] = (p
[m]
1 , p

[m]
2 , . . . , p

[m]
n ), m ≥ 0} is referred

to as the alternate correspondence of type-2 if (D2, p
[m−1]) is equivalent to (B, p[m]) for all

m ≥ 1. From (1.3), it is easy to see that

p
[1]
k = 1

n
, p

[2]
k = 2(n − k) + 1

n2 , 1 ≤ k ≤ n.
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Our main concerns are to find the explicit expressions of the two alternate correspondences
(type-k corresponds to model k of the duration problem, where k = 1, 2). We also examine the
optimal rules and the optimal values related to these alternate correspondences. It is of further
interest to derive the limiting values of vB

n (p(m)) and vB
n (p[m]) as n → ∞. These are discussed

in Section 2.1. In Section 2.2 we generalize the above problems by allowing the objects to appear
in accordance with Bernoulli trials. It is worth mentioning that the alternate correspondences
of type-1 and type-2 are respectively related to the urn sampling models without replacement
and with replacement.

In contrast to the above no-information model, in which the observations are the relative
ranks of the objects, the full-information model is the problem in which the observations are the
true values of N objects X1, X2, . . . , XN , assumed to be independent and identically distributed
(i.i.d.) random variables from a known continuous distribution, taken without loss of generality
to be the uniform distribution on the interval [0, 1]. We also assume that N is independent of
X1, X2, . . . . Let Lk = max{X1, X2, . . . , Xk} and call the kth object (or Xk) a candidate if it is
a relative maximum, i.e. Xk = Lk . Consider a class of stopping rules of the form

τN(a) = min{k : Xk = Lk ≥ ak} ∧ N,

where a = (a1, a2, . . . , an) is a given sequence of thresholds satisfying the monotone condition
1 ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ 0. This rule is said to be a monotone rule (with thresholds a). It is
well known that the optimal rules of the classical problems, i.e. problems with fixed horizon, are
monotone (cf. Gilbert and Mosteller (1966) and Ferguson et al. (1992)). This full-information
model is considered in Section 3.

2. Alternate correspondences

Propositions 1.1 and 1.2 show how to construct the distribution which makes the duration
problem equivalent to the best-choice problem, but they are of little help for specifying the
optimal rules and deriving the optimal values. Fortunately, we can give the explicit expressions
of these quantities for the alternate correspondences from the existing literature.

2.1. No-information model

If the optimal rule of (B, p)((Dk, p), k = 1, 2) is simple, we denote its (optimal) critical
number by sB

n (p)(s
Dk
n (p)). The following results give a sufficient condition for the optimal

rule to be simple for each of these problems and also give, when this condition is met, the
explicit expressions for the critical numbers and the optimal values.

Lemma 2.1. Define, for given n and positive vector t = (t1, t2, . . . , tn) satisfying the condition
that tk+j /tk is nonincreasing in k for each possible value of j ,

sn(t) = min

{
k ≥ 1 :

n∑
i=k

ti

i
≥

n∑
i=k+1

( i∑
j=k+1

1

j − 1

)
ti

i

}
,

and then

vn(t) = sn(t) − 1

n

n∑
i=sn(t)

( i∑
j=sn(t)

1

j − 1

)
nti

i
for sn(t) ≥ 2,

and vn(t) = ∑n
i=1 ti/i for sn(t) = 1.

The (B, p)-problem. (i) A sufficient condition for the optimal rule to be simple is that
pk+j /pk is nonincreasing in k for each possible value of j .
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(ii) Suppose that the optimal rule is simple. Then the corresponding critical number and the
optimal value are respectively

sB
n (p) = sn(p), (2.1)

vB
n (p) = vn(p). (2.2)

The (D1, p)-problem. (iii) A sufficient condition for the optimal rule to be simple is that
πk+j /πk is nonincreasing in k for each possible value of j .

(iv) Suppose that the optimal rule is simple. Then the corresponding critical number and the
optimal value are given as

sD1
n (p) = sn(π), (2.3)

vD1
n (p) = 1

n
vn(π).

The (D2, p)-problem. (v) A sufficient condition for the optimal rule to be simple is that
σk+j /σk is nonincreasing in k for each possible value of j .

(vi) Suppose that the optimal rule is simple. Then the corresponding critical number and the
optimal value are given as

sD2
n (p) = sn(σ ), vD2

n (p) = 1

n
vn(σ ).

Proof. See the proof of Theorem 2.3 because the (D2, p)-problem is a special case of the
Bruss extension (corresponding to a = (1, 1

2 , 1
3 , . . . , 1/n) ∈ A∗). For more detail, see Tamaki

(2011) and (2013). �
The following theorem gives the main results concerning the alternate correspondences.

Theorem 2.1. (i) Alternate correspondence of type-1. Let p(0) = (0, . . . , 0, 1) and

p
(m)
k =

(
n + m − 1 − k

m − 1

)/(
n + m − 1

m

)
, 1 ≤ k ≤ n, (2.4)

for m ≥ 1. Then {p(m), m ≥ 0} is the alternate correspondence of type-1. The optimal rule is
simple for both (D1, p

(m)) and (B, p(m)), and we have the following relations for m ≥ 0:

sD1
n (p(m)) = sB

n (p(m+1)), (2.5)

vD1
n (p(m)) = m + n

(m + 1)n
vB
n (p(m+1)). (2.6)

(ii) Alternate correspondence of type-2. Let p[0] = (0, . . . , 0, 1) and

p
[m]
k =

(
n − k + 1

n

)m

−
(

n − k

n

)m

, 1 ≤ k ≤ n, (2.7)

for m ≥ 1. Then {p[m], m ≥ 0} is the alternate correspondence of type-2. The optimal rule is
simple for both (D2, p

[m]) and (B, p[m]), and we have the following relations for m ≥ 0:

sD2
n (p[m]) = sB

n (p[m+1]), (2.8)

vD2
n (p[m]) = vB

n (p[m+1]). (2.9)
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Proof. For convenience, when N has a prior p(m) (p[m]), denote the corresponding N , π ,
and σ by N(m), π (m), and σ (m) (N [m], π [m], and σ [m]), respectively.

(i) We first show that, for each m,

p(m+1) = m + 1

m + n
π (m) = 1

E[N(m)]π
(m). (2.10)

Dividing both sides of the well-known identity

(
n + m − k

m

)
=

n∑
j=k

(
n + m − j − 1

m − 1

)

by
(
n+m−1

m

)
immediately yields

m + n

m + 1
p

(m+1)
k = π

(m)
k . (2.11)

Summing up with respect to k on both sides yields

m + n

m + 1
= E[N(m)], (2.12)

owing to E[N(m)] = ∑n
k=1 π

(m)
k . Then (2.10) is obtained from (2.11) and (2.12).

In order to show that the optimal rule is simple, it suffices to show from Lemmas 2.1(i)
and 2.1(iii) that p

(m)
k+j /p

(m)
k and π

(m)
k+j /π

(m)
k , for m ≥ 1, are both nonincreasing in k

for each j . For this, see Tamaki (2016, Appendix B, Example (e)) together with the
property p

(m)
k+j /p

(m)
k = π

(m−1)
k+j /π

(m−1)
k obtained from (2.10). Equations (2.5) and (2.6)

are immediate consequences from Proposition 1.1 because (2.10) is just (1.1) by taking
p(m) as p and p(m+1) as q, respectively ((2.5) holds because the same optimal rules have
the same critical numbers).

(ii) We have, for each m,

p[m+1] = 1

n
σ [m] (2.13)

because

π
[m]
k =

n∑
j=k

p
[m]
j =

(
n − k + 1

n

)m

(2.14)

and, hence,

σ
[m]
k = π

[m]
k + (n − k)p

[m]
k

=
(

n − k + 1

n

)m

+ (n − k)

[(
n − k + 1

n

)m

−
(

n − k

n

)m]

= n

[(
n − k + 1

n

)m+1

−
(

n − k

n

)m+1]

= np
[m+1]
k .

In order to show that the optimal rule is simple, it suffices to show from Lemmas 2.1(i)
and 2.1(v) that p

[m]
k+j /p

[m]
k and σ

[m]
k+j /σ

[m]
k , for m ≥ 1, are both nonincreasing in k for
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each j . For this, see Tamaki (2016, Appendix B, Example (d)) together with the property
p

[m]
k+j /p

[m]
k = σ

[m−1]
k+j /σ

[m−1]
k obtained from (2.13). Equations (2.8) and (2.9) are then

immediate consequences from Proposition 1.2 because (2.13) is just (1.3) by taking p[m]
as p and p[m+1] as q, respectively.

This completes the proof. �

Remark 2.1. The critical numbers and the optimal values in (2.5), (2.6), (2.8), and (2.9) are
computed from Lemma 2.1. It is noted that the validity of (2.5), (2.6), (2.8), and (2.9) can be,
in turn, ascertained directly from Lemma 2.1. For example, we obtain (2.5) through

sD1
n (p(m)) = sn(π

(m)) from (2.3)

= sB
n (π (m)) from (2.1)

= sB
n

(
m + n

m + 1
p(m+1)

)
from (2.10)

= sB
n (p(m+1)),

where the last equality follows from sn(ct) = sn(t) for any positive constant c. We obtain (2.6)
in a similar manner, taking account of the property vn(ct) = cvn(t). Equations (2.8) and (2.9)
are also obtained similarly. The study of the uniqueness of the optimal rule, as touched on by
Szajowski (1992), (1993), might be interesting.

Remark 2.2. The two random variables N(m) and N [m] can be related to sampling balls from
an urn without replacement and with replacement, respectively. Suppose that there exists an
urn containing n + m − 1 balls numbered 1, 2, . . . , n + m − 1. We draw m balls randomly
from the urn without replacement. Then N(m) denotes the smallest of the m numbers drawn.
Suppose that there exists an urn containing n balls numbered 1, 2, . . . , n. We draw m balls one
at a time randomly from the urn with replacement. Then N [m] denotes the smallest of the m

numbers drawn.

To obtain the further properties of N(m) and N [m], we briefly review the concept of ‘stochasti-
cally larger’and the distribution of the smallest value from the uniform sample. We say that N(m)

is stochastically larger than N [m], written as N(m) ≥st N [m], if P{N(m) ≥ k} ≥ P{N [m] ≥ k},
or, equivalently,

π
(m)
k ≥ π

[m]
k , 1 ≤ k ≤ n. (2.15)

Let Y1, Y2, . . . , Ym be independent random variables each uniformly distributed on (0, 1). Then
it is known that Vm = min{Y1, Y2, . . . , Ym} representing the smallest of these m random
variables has a density fVm(v) = m(1 − v)m−1, 0 ≤ v ≤ 1, with E[Vm] = 1/(m + 1).

Corollary 2.1. (i) We have, for m ≥ 1,

N(m) ≥st N [m].

(ii) If, for a given m, we let n, k → ∞ in such a way that k/n → v, then, for 0 ≤ v ≤ 1,

np
(m)
k → fVm(v), (2.16)

np
[m]
k → fVm(v). (2.17)
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Proof. (i) We show (2.15) by induction on m. This is obvious for m = 1. Assume that
(2.15) holds for some m ≥ 1. Then, using the recursive relations

π
(m+1)
k = n − k + 1 + m

n + m
π

(m)
k , π

[m+1]
k = n − k + 1

n
π

[m]
k ,

which are straightforward from (2.4), (2.10), and (2.14), and the fact that

n − k + 1 + m

n + m
≥ n − k + 1

n
,

we have

π
(m+1)
k − π

[m+1]
k ≥ n − k + 1

n
[π(m)

k − π
[m]
k ],

thus completing the induction.

(ii) From (2.4) and (2.7), we can write

np
(m)
k = m

(
1 − k

n + 1

)(
1 − k

n + 2

)
· · ·

(
1 − k

n + m − 1

)
,

np
[m]
k = m

(
1 − k

n

)m−1

+
m−2∑
j=0

1

nm−1−j

(
m

j

)(
1 − k

n

)j

, (2.18)

verifying (2.16) and (2.17) by letting k/n → v, because the second term on the right-hand side
of (2.18) vanishes as n → ∞. �
Remark 2.3. As a result of N(m) ≥st N [m], we have E[N(m)] ≥ E[N [m]], or, equivalently,
(m + n)/(m + 1) ≥ ∑n

k=1(k/n)m from (2.12) and (2.14). From Corollary 2.1(ii) we see that, as
n → ∞, the difference fades away between the two urn sampling schemes without replacement
and with replacement, implying that both N(m)/n and N [m]/n converge in distribution to Vm.

Now we examine the limiting properties of the optimal values and the optimal rules as
n → ∞. The duration problems are solved through the corresponding best-choice problems,
so we concentrate on the study of the best-choice problems. First we consider the alternate
correspondence of type-1. Let, for m ≥ 0,

s(B,m) = lim
n→∞

sB
n (p(m))

n
, v(B,m) = lim

n→∞ vB
n (p(m)).

It is well known that s(B,0) = v(B,0) = e−1 (see, e.g. Gilbert and Mosteller (1966)) and s(B,1) =
e−2 and v(B,1) = 2e−2 (see, e.g. Presman and Sonin (1972)). We have the following results for
m ≥ 2.

Theorem 2.2. For m ≥ 2, s(B,m) and v(B,m) are calculated as follows.

(i) The value of s(B,m) is given as a solution x ∈ (0, 1) to

1

2
log2 x + (1 + hm−1) log x +

m−1∑
j=1

1 + hm−1 − hj−1

j
(1 − x)j = 0, (2.19)

where hk = ∑k
j=1 1/j, k ≥ 1 and h0 = 0.
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(ii) The value of v(B,m) is given by

v(B,m) = ms

∞∑
j=m

(1 − s)j

j
= −ms

(
log s +

m−1∑
j=1

(1 − s)j

j

)
, (2.20)

where, for ease of notation, s(B,m) is abbreviated to s.

Proof. It is noted that, as is easily suggested from (2.2), the probability of selecting the best
for (B, p(m)) by using a simple rule with critical number i is given by

vB
n,i(p

(m)) = i − 1

n

n∑
k=i

( k∑
j=i

1

j − 1

)
np

(m)
k

k
. (2.21)

If we let n → ∞ and write x, y, and v as the limits of i/n, j/n, and k/n, respectively,
vB
n,i(p

(m)), combined with (2.16), becomes a Riemann approximation to an integral

v(m)(x) = x

∫ 1

x

(∫ v

x

1

y
dy

)
m(1 − v)m−1

v
dv, x ∈ (0, 1). (2.22)

In Appendix A we show that v(m)(x) can be simplified to

v(m)(x) = mxg(m)(x), (2.23)

where

g(m)(x) = 1

2
log2 x + hm−1 log x +

m−1∑
j=1

hm−1 − hj−1

j
(1 − x)j . (2.24)

(i) The value of x that maximizes v(m)(x) is easily found by setting the derivative with
respect to x equal to 0 and then solving for x. The value obtained in this manner is
obviously s(B,m). Thus, dv(m)(x)/dx = 0, or, equivalently,

g(m)(x) + x
dg(m)(x)

dx
= 0 (2.25)

from (2.23) yields (2.19), because a straightforward calculation from (2.24) gives

dg(m)(x)

dx
= 1

x

(
log x +

m−1∑
j=1

(1 − x)j

j

)
. (2.26)

(ii) Considering that v(B,m) in (2.20) is obtained as v(m)(s(B,m)) and that (2.25) holds for
x = s(B,m), we immediately have (2.20) through (2.23) and (2.26).

This completes the proof. �
Note that (2.19) and (2.20) in Theorem 2.2 are still valid for m = 1 since the vacuous sum

is 0. In Table 1 we present some numerical values of s(B,m) and v(B,m).
The following corollary gives the additional limiting relations if we let, for m ≥ 0,

s[B,m] = lim
n→∞

sB
n (p[m])

n
, v[B,m] = lim

n→∞ vB
n (p[m]), s(D1,m) = lim

n→∞
s
D1
n (p(m))

n
,

v(D1,m) = lim
n→∞ vD1

n (p(m)), s[D2,m] = lim
n→∞

s
D2
n (p[m])

n
, v[D2,m] = lim

n→∞ vD2
n (p[m]).
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Table 1: Values of s(B,m) and v(B,m) for several m.

m

0 1 2 3 4 5 10

s(B,m) 0.3679 0.1353 0.0775 0.0539 0.0412 0.0334 0.0171
v(B,m) 0.3679 0.2707 0.2535 0.2469 0.2435 0.2414 0.2372

Corollary 2.2. We have the following relations for m ≥ 0:

(i) s[B,m] = s(B,m), v[B,m] = v(B,m);

(ii) s(D1,m) = s(B,m+1), v(D1,m) = (m + 1)−1v(B,m+1);

(iii) s[D2,m] = s[B,m+1], v[D2,m] = v[B,m+1];

(iv) s[D2,m] = s(D1,m), v[D2,m] = (m + 1)v(D1,m).

Proof. Corollary 2.2(i) is obvious because the same argument as in the proof of Theorem 2.2
applies if (2.17) is used instead of (2.16) in (2.21). Of course, this coincidence is intuitively
clear from Remark 2.3. Corollaries 2.2(ii) and 2.2(iii) follow from (2.5), (2.6), (2.8), and (2.9).
Corollary 2.2(iv) follows from Corollaries 2.2(i)–2.2(iii). �

Remark 2.4. From Corollary 2.2(iv) we see remarkable features between the two models of the
duration problem with alternate correspondences. From the first expression in Corollary 2.2(iv)
we see that the critical numbers of the two models are asymptotically the same. This does not
hold in general (compare, e.g. Lemma 3.2 with Lemma 4.2 for the generalized uniform prior in
Tamaki (2013)). The second expression says that the optimal value of model 2 is just m+1 times
as large as that of model 1 asymptotically. This may be viewed in a sense as the equivalence
between two models, because it can be written as v[D2,m] = v(D1,m)/E[Vm] and the right-hand
side is interpreted as the normalized value of model 1.

2.2. Bruss extension

Here we attempt to generalize the no-information model by allowing the objects to appear
in accordance with Bernoulli trials. A total number N of objects appear one at a time and each
object is judged either to be a candidate or not upon arrival. Let Ik, 1 ≤ k ≤ n, be the indicator
of the event that the kth object is a candidate and suppose that I1, I2, . . . , In is a sequence of
independent Bernoulli random variables with P{Ik = 1} = ak, 1 ≤ k ≤ n, where 0 < ak ≤ 1
for simplicity. Here the best-choice problem must be considered as a problem of choosing the
last candidate prior to N . It is easy to see that the no-information model occurs as a special
case if ak = 1/k, 1 ≤ k ≤ n (this case satisfies ak+1 = ak/(1 + ak), 1 ≤ k ≤ n, starting with
a1 = 1, implying that Theorem 2.3 below is applicable).

This generalization was introduced by Bruss (2000) to describe the celebrated odds theorem.
Though the optimal rule of the best-choice problem with fixed horizon is simple, the form of the
optimal rule depends both on p and a = (a1, a2, . . . , an). Note that, as in the no-information
model, the stopping rule is said to be simple with critical number sn if it passes over the first sn−1
objects and stops with the first candidate, if any. Let bk = 1 − ak and rk = ak/bk, 1 ≤ k ≤ n,
and define

Bk,i = bk+1bk+2 · · · bi, 0 ≤ k < i ≤ n,
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with Bk,k = 1 for convenience. For given p and a, denote simply the best-choice problem by
(B, p, a) and model k of the duration problem by (Dk, p, a), k = 1, 2. The optimal values of
these problems are denoted by vB

n (p, a) and v
Dk
n (p, a), and the critical numbers of the optimal

rules are denoted by sB
n (p, a) and s

Dk
n (p, a) if they are simple. The following theorem gives

a sufficient condition (on a) for the optimal rule to be simple for the alternate correspondences
of type-1 and type-2.

Theorem 2.3. Let

A∗ =
{
a : ak+1 ≤ ak

1 + ak

, 1 ≤ k < n with 0 < a1 ≤ 1

}
.

Then the optimal rules of the problems (B, p(m), a), (B, p[m], a), (D1, p
(m), a), and (D2, p

[m],
a) are simple if a ∈ A∗. Moreover, for a ∈ A∗, we have the following.

(i) Alternate correspondence of type-1. We have

sD1
n (p(m), a) = sB

n (p(m+1), a), vD1
n (p(m), a) = m + n

(m + 1)n
vB
n (p(m+1), a).

(ii) Alternate correspondence of type-2. We have

sD2
n (p[m], a) = sB

n (p[m+1], a), vD2
n (p[m], a) = vB

n (p[m+1], a).

These values are computed via the following formulae for the problem (B, p, a) with simple
optimal rule:

sB
n (p, a) = min

{
k ≥ 1 :

n∑
i=k

piBk,i ≥
n∑

i=k+1

( i∑
j=k+1

rj

)
piBk,i

}
(2.27)

and

vB
n (p, a) =

n∑
i=sn

( i∑
j=sn

rj

)
piBsn−1,i , (2.28)

where sn is understood to be sB
n (p, a).

Proof. For given p and a, define, for j = 0, 1, 2,

G(j)(k) = α
(j)
k − rk+1

n∑
i=k+1

Bk,iα
(j)
i , 1 ≤ k < n, (2.29)

where α
(0)
i = pi , α

(1)
i = πi , and α

(2)
i = σi , for each i. Then Tamaki (2013, Remark 4.1) states

that these functions give a unified approach to the three problems to determine whether their
optimal rule is simple or not (‘j = 0’ corresponds to the best-choice problem and ‘j 	= 0’
to model j of the duration problem). That is, a sufficient condition for the optimal rule to be
simple for problem ‘j ’ is that G(j)(k), as a function of k, changes its sign from negative to
positive at most once. This condition is clearly met if

U(j)(k) =
n−k∑
i=1

Qk,i

(
α

(j)
k+i

α
(j)
k

)
(2.30)
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is nonincreasing in k, where Qk,i = ak+1Bk+1,k+i = ak+1bk+2 · · · bk+i , because (2.29) can be
written as

G(j)(k) = α
(j)
k [1 − U(j)(k)].

To prove that U(j)(k) is nonincreasing in k, it suffices to show that the following two properties
are satisfied:

(i) Qk,i is nonincreasing in k for each i;

(ii) α
(j)
k+i/α

(j)
k is nonincreasing in k for each i

because each term on the right-hand side of (2.30) is nonnegative, so removing it does not
increase the sum. For the alternate correspondences, (ii) has already been shown to hold in
Theorem 2.1 (exactly speaking, (ii) is shown for j = 0, 1 for type-1 and for j = 0, 2 for
type-2). Property (i) is equivalently written as Qk−1,i ≥ Qk,i or

akbk+1

ak+1
≥ bk+i for each possible i. (2.31)

Hence, it holds that a satisfies (2.31) if a ∈ A∗ because ak+1 ≤ ak/(1 + ak) is equivalent to
akbk+1/ak+1 ≥ 1 and because bk+i ≤ 1. Considering that, for p and a satisfying (i) and (ii),
(2.27) and (2.28) are given by Tamaki (2011, Equations (2.26) and (2.27)), with m = 1, and

sD1
n (p, a) = sB

n (π , a), vD1
n (p, a) = 1

n
vB
n (π , a),

sD2
n (p, a) = sB

n (σ , a), vD2
n (p, a) = 1

n
vB
n (σ , a)

hold from Tamaki (2013, Section 3, Equations (3.11) and (3.12)) and Tamaki (2013, Section 4),
respectively, we immediately obtain Theorems 2.3(i) and 2.3(ii) from Propositions 1.1 and 1.2
in a similar manner as in Theorem 2.1. �

3. Full-information model

For the full-information model, the following results give a sufficient condition for the
optimal rule to be monotone for each of the three problems and also give, when this condition
is met, the explicit expressions for the optimal monotone thresholds and the optimal values.

Lemma 3.1. For given n and positive vector t = (t1, t2, . . . , tn) satisfying the condition that
tk+j /tk is nonincreasing in k for each possible value of j , let, depending on t , r(t) = min{i : ti ≥∑n−i

j=1 ti+j /j} and define
a(t) = (a1(t), a2(t), . . . , an(t))

as a vector of monotone thresholds such that ak(t) is a unique root x ∈ (0, 1) to

n∑
i=k

tix
i =

n−1∑
i=k

tix
i

n−i∑
j=1

ti+j

ti

1 − xj

j
, 1 ≤ k < r(t), (3.1)

and ak(t) = 0 for r(t) ≤ k ≤ n. Define also

vn(t) =
n∑

i=1

ti

i

[
1 +

i−1∑
k=1

i−1∑
j=k

(
1

j
+ 1

i − j

)
a

j
k −

i∑
k=1

(1 + hi−k)a
i
k

]
, (3.2)

where ak(t) is abbreviated to ak .
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The (B, p)-problem. (i) A sufficient condition for the optimal rule to be monotone is that
pk+j /pk is nonincreasing in k for each possible value of j .

(ii) Suppose that the optimal rule is monotone. Then the corresponding thresholds aB(p) and
the optimal value vB

n (p) are given as
aB(p) = a(p), (3.3)

vB
n (p) = vn(p). (3.4)

The (D1, p)-problem. (iii) A sufficient condition for the optimal rule to be monotone is that
πk+j /πk is nonincreasing in k for each possible value of j .

(iv) Suppose that the optimal rule is monotone. Then the corresponding thresholds aD1(p) and
the optimal value v

D1
n (p) are given as

aD1(p) = a(π), (3.5)

vD1
n (p) = 1

n
vn(π). (3.6)

The (D2, p)-problem. (v) A sufficient condition for the optimal rule to be monotone is that
σk+j /σk is nonincreasing in k for each possible value of j .

(vi) Suppose that the optimal rule is monotone. Then the corresponding thresholds aD2(p) and
the optimal value v

D2
n (p) are given as

aD2(p) = a(σ ), (3.7)

vD2
n (p) = 1

n
vn(σ ). (3.8)

Proof. Define, depending on t ,

fi(t) = hi +
i∑

k=1

i∑
j=k

1

j
(hi−j − hj−k − 1)a

j
k ,

gi(t) = 1 − ai
1

i
+

i−1∑
j=1

[ j∑
k=1

a
j
k

j (i − j)
−

j∑
k=1

ai
k

i(i − j)
− ai

j+1

i

]
for 1 ≤ i ≤ n,

where ak(t) is abbreviated to ak as before. Then it is a simple matter to show that

gi+1(t) = fi+1(t) − fi(t), 0 ≤ i < n, (3.9)

with f0(t) = 0. Observe also that (3.2) is written as

vn(t) =
n∑

i=1

tigi(t).

First we dispose of the (D1, p)-problem. Lemma 3.1(iii) and (3.5) are just Tamaki (2016,
Corollary 3.1 and Theorem 3.1). We have the expression of

vD1
n (p) = 1

n

n∑
i=1

pifi(π)
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from Tamaki (2016, Lemma 3.2 and Theorem 3.1) (notations are not consistent). To show (3.6),
it suffices to show that

n∑
i=1

pifi(π) =
n∑

i=1

πigi(π)

because of vn(π) = ∑n
i=1 πigi(π). Putting pi = πi − πi+1 and then using (3.9), we have

n∑
i=1

pifi(π) =
n∑

i=1

πifi(π) −
n−1∑
i=1

πi+1(fi+1(π) − gi+1(π)) =
n∑

i=1

πigi(π),

where the last equality follows from f1(π) = g1(π). This is the desired result. Note that, in a
similar manner, we also have

n∑
i=1

pifi(σ ) =
n∑

i=1

πigi(σ ). (3.10)

We now turn to the (D2, p)-problem. Lemma 3.1(v) and (3.7) are just Tamaki (2016,
Corollary 4.1 and Theorem 4.1). To show (3.8), observe that

vD2
n (p) = 1

n

n∑
i=1

pi[fi(σ ) + (n − i)gi(σ )] = 1

n

n∑
i=1

σigi(σ ),

where the first equality follows from Tamaki (2016, Lemma 4.2 and Theorem 4.1) and the
second from (3.10). Then the desired result is immediate because vn(σ ) = ∑n

i=1 σigi(σ ).
Finally we dispose of the (B, p)-problem. Equations (3.3) and (3.4) follow from Porosiński

(1987, Theorem 2). More specifically, (3.4) is just Porosiński (1987, Equation (19)) and
(3.3) follows because aB

k (p) is the solution x of the Porosiński’s equation c(k, x) = 0, or,
equivalently,

n∑
i=k

pix
i−k −

n∑
i=k+1

xi−k−1
∫ 1

x

( n∑
j=i

pj y
j−i

)
dy = 0,

which reduces to (3.1) with ti replaced by pi . The sufficient condition Lemma 3.1(i) is derived
in a similar manner as for the duration problem (see, e.g. Tamaki (2016, Lemma 3.1 and
Corollary 3.1)). �

Since Propositions 1.1 and 1.2 hold for the full-information model as well, we can give the
following results analogous to Theorem 2.1.

Theorem 3.1. (i) Alternate correspondence of type-1. The optimal rule is monotone for both
(D1, p

(m)) and (B, p(m)), and we have the following relations for m ≥ 0:

aD1(p(m)) = aB(p(m+1)), (3.11)

vD1
n (p(m)) = m + n

(m + 1)n
vB
n (p(m+1)). (3.12)

(ii) Alternate correspondence of type-2. The optimal rule is monotone for both (D2, p
[m]) and

(B, p[m]), and we have the following relations for m ≥ 0:

aD2(p[m]) = aB(p[m+1]), vD2
n (p[m]) = vB

n (p[m+1]). (3.13)

Note that, for consistency with the propositions, we use the same notation vB
n (p) and v

Dk
n (p)

to denote the optimal values for the full-information model if no confusion occurs.
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Remark 3.1. We can give the full-information analogue of Remark 2.1. The optimal thresholds
and the optimal values in (3.11)–(3.13) are computed from Lemma 3.1 and the validity of (3.11)–
(3.13) can in turn be ascertained from Lemma 3.1. For example, we obtain (3.11) through

aD1(p(m)) = a(π (m)) from (3.5)

= aB(π (m)) from (3.3)

= aB

(
m + n

m + 1
p(m+1)

)
from (2.10)

= aB(p(m+1)),

where the last equality follows from a(ct) = a(t) for any positive constant c. We obtain (3.12)
in a similar manner, taking account of the property vn(ct) = cvn(t). The equations in (3.13)
are also obtained similarly.

We now consider the limiting optimal values as n → ∞. Let, for m ≥ 0,

v(B,m) = lim
n→∞ vB

n (p(m)), v[B,m] = lim
n→∞ vB

n (p[m]),

v(D1,m) = lim
n→∞ vD1

n (p(m)), v[D2,m] = lim
n→∞ vD2

n (p[m]).

Then, from Theorem 3.1, we obviously have the following results analogous to Corollary 2.2.

Corollary 3.1. We have the following limiting relations for m ≥ 0:

(i) v[B,m] = v(B,m);

(ii) v(D1,m) = (m + 1)−1v(B,m+1);

(iii) v[D2,m] = v[B,m+1];

(iv) v[D2,m] = (m + 1)v(D1,m).

The explicit expressions of v(D1,m) and v[D2,m] were obtained in Tamaki (2016), however,
v(D1,m) appeared as v

(1)
m in Theorem 3.2 and v[D2,m] as v

(2)
m in Theorem 4.2 (the derivation is

based on a planar Poisson process approach developed by Gnedin (1996), (2004) or Samuels
(2004)). Since v(B,m) = mv(D1,m−1), for m ≥ 1, from Corollary 3.1(ii), if we let

I (c) =
∫ ∞

c

e−x

x
dx, J (c) =

∫ c

0

ex − 1

x
dx,

and introduce the additional functions

Im(c) =
∫ ∞

c

m! e−x

xm+1 dx, Km(c) =
∫ c

0

xmex

m! dx, Lm(c) =
∫ c

0

m! e−x

xm+1 Km(x) dx,

for m ≥ 0, we can state v(B,m) as follows.

Theorem 3.2. For m ≥ 1, let cm be a unique root c of

m−1∑
k=0

(−c)k

k! (1 − Lk(c)) = e−c(1 − J (c)).
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Then

v(B,m) = m

(
(m − 1)! Km−1(c)

cm−1 − cecLm−1(c)

m + c

)(
cm−1Im−1(c)

(m − 1)! − cmIm(c)

m!
)

+ m

m + c
Lm−1(c),

where cm is abbreviated to c. For m = 0,

v(B,0) = e−c0 + (ec0 − c0 − 1)I (c0) ≈ 0.580 16,

where c0 ≈ 0.804 35 is a unique root c of J (c) = 1.

Proof. See Tamaki (2016, Theorem 3.2) for m ≥ 1 (note that his cm−1 is equal to our cm),
and see Samuels (1991) or Berezovskiy and Gnedin (1984) for m = 0. �

In Table 2 we present some numerical values of cm and v(B,m).

Appendix A.

It is easy to see that

1

2
log2 x =

∞∑
k=1

hk

k + 1
(1 − x)k+1 (A.1)

from the power series expansion for log x = −∑∞
k=1(1 − x)k/k. We first show that, as a

generalization of this identity,

∞∑
k=1

hk

k + m
(1 − x)k+m = 1

2
log2 x −

(
hm−1 −

m−1∑
k=1

1

k
(1 − x)k

)
log x

−
m−1∑
k=1

hm−1 − hk−1

k
(1 − x)k for m ≥ 1, (A.2)

which can be proved by induction on m. For m = 1, (A.2) reduces to (A.1). Suppose that (A.2)
holds for some m. Considering that hk = hk+1 − 1/(k + 1), we have

∞∑
k=1

hk

k + m + 1
(1 − x)k+m+1 =

∞∑
k=1

hk

k + m
(1 − x)k+m −

∞∑
k=1

1

k(k + m)
(1 − x)k+m. (A.3)

Table 2: Values of cm and v(B,m) for several m.

m

0 1 2 3 4 5 10

cm 0.8044 2.1198 3.6925 5.3520 7.0411 8.7423 17.3014
v(B,m) 0.5802 0.4352 0.4045 0.3926 0.3865 0.3827 0.3753
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The second term is written as

1

m

∞∑
k=1

(
1

k
− 1

k + m

)
(1 − x)k+m

= 1

m

[
(1 − x)m

∞∑
k=1

(1 − x)k

k
−

∞∑
k=m+1

(1 − x)k

k

]

= 1

m

[
−(1 − x)m log x −

(
− log x −

m∑
k=1

(1 − x)k

k

)]
. (A.4)

Substituting (A.2) (from the induction hypothesis) and (A.4) into the right-hand side of (A.3)
yields, after some rearrangements, the right-hand side of (A.2) with m replaced by m+1. Thus,
the induction is complete.

We are ready to prove (2.23). From (2.22),

v(m)(x)

mx
=

∫ 1

x

(∫ v

x

1

y
dy

)
(1 − v)m−1

v
dv

=
∫ 1

x

log v
(1 − v)m−1

v
dv − log x

∫ 1

x

(1 − v)m−1

v
dv

=
∫ 1−x

0

um−1

1 − u
log(1 − u) du − log x

∫ 1−x

0

um−1

1 − u
du. (A.5)

The second integral can be expressed as

∫ 1−x

0

um−1

1 − u
du =

∫ 1−x

0
um−1

( ∞∑
j=0

uj

)
du =

∞∑
k=m

(1 − x)k

k
= − log x −

m−1∑
k=1

(1 − x)k

k
.

(A.6)

The first integral becomes

∫ 1−x

0

um−1

1 − u
log(1 − u) du = −

∫ 1−x

0
um−1

( ∞∑
j=0

uj

)( ∞∑
i=1

ui

i

)
du

= −
∫ 1−x

0
um−1

( ∞∑
k=1

hku
k

)
du

= −
∞∑

k=1

hk

k + m
(1 − x)k+m. (A.7)

Substituting (A.6) and (A.7), combined with (A.2), into (A.5) immediately shows that

v(m)(x)

mx
= g(m)(x)

as desired, where g(m)(x) is defined in (2.24). �
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