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We theoretically investigate the pattern formation observed when a fluid flows over
a solid substrate that can dissolve or melt. We use a turbulent mixing description
that includes the effect of the bed roughness. We show that the dissolution instability
at the origin of the pattern is associated with an anomaly at the transition from a
laminar to a turbulent hydrodynamic response with respect to the bed elevation.
This anomaly, and therefore the instability, disappears when the bed becomes
hydrodynamically rough, above a threshold roughness-based Reynolds number. This
suggests a possible mechanism for the selection of the pattern amplitude. The most
unstable wavelength scales as observed in nature on the thickness of the viscous
sublayer, with a multiplicative factor that depends on the dimensionless parameters
of the problem.
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1. Introduction

Pattern formation often occurs in nature when a fluid, flowing above a solid
bed, can erode or transport some material of the bed. This mass transfer can be,
for example, associated with sediment transport, as for sand ripples and dunes
(Charru, Andreotti & Claudin 2013). It can also be of thermodynamical origin, with
melting, sublimation or dissolution of the bed (Meakin & Jamtveit 2010), which
this paper is devoted to. This occurs, for instance, in cave conduits, where the
limestone dissolves in the water flow, forming scallops (Blumberg & Curl 1974; Curl
1974; Thomas 1979). Similar scallop patterns form on meteorites with regmaglypts
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(a) (b) (c)

FIGURE 1. Pictures showing scallops (a) on marble (Korallgrottan cave; photo width
'0.5 m), (b) at the surface of a meteorite (Cabin Creek meteorite; width '0.4 m) and
(c) on ice (tunnel in Tarfala Valley; largest scallops '1 m).

(Lin & Qun 1986; Claudin & Ernstson 2004), on glaciers and snow fields with
suncups and ablation hollows (Rhodes, Armstrong & Warren 1987; Herzfeld et al.
2003), at the surface of firn walls and caves and icebergs (Sharp 1947; Leighly
1948; Richardson & Harper 1957; Kiver & Mumma 1971; Anderson et al. 1998;
Cohen et al. 2016) or in steel pipes under the action of corrosion (Lister et al.
1998; Villen, Zheng & Lister 2001). Water flows on ice can also produces ripples
(Carey 1966; Ashton & Kennedy 1972; Gilpin, Hirata & Cheng 1980; Gilpin 1981;
Ogawa & Furukawa 2002), in particular on icicles (Ueno & Farzaneh 2011; Chen
& Morris 2013). Other related studies concern the shape evolution of dissolving
objects (Nakouzi, Goldstein & Steinbock 2014; Huang, Moore & Ristroph 2015) or
the emergence of precipitation patterns in geothermal hot springs (Goldenfeld, Chan
& Veysey 2006). A few examples are shown in figure 1.

In all of these situations, the flow is influenced by the bed elevation or profile, and,
in turn, erosion or transport induced by the flow makes the solid surface evolve. This
feedback loop can lead to an instability, where bed perturbations are amplified. Several
linear stability analyses have been performed for these dissolution/melting problems,
in order to compute the growth rate of a perturbation of given wavenumber k and
determine the selected most unstable mode (Hanratty 1981; Ogawa & Furukawa 2002;
Ueno & Farzaneh 2011; Camporeale & Ridolfi 2012). In this paper, building on the
pioneering work of Hanratty (1981), we incorporate the effect of the bed roughness in
the hydrodynamical description, which is absent of previous analyses. This roughness
turns out to be of key importance, as the dissolution instability is found to disappear
when the bed becomes rough; that is, above a threshold corresponding to a value of
the roughness-based Reynolds number. We hypothesise that this restabilisation may
explain the amplitude selection of the pattern.

The model proposed in this paper is composed of several parts. The first one,
independent of the dissolution problem, deals with the description of a turbulent
flow over a solid surface, using a turbulent closure relating the stresses to the
velocity gradient (§ 2). We use here a standard mixing length approach, with two
specificities: we incorporate the role of the surface roughness and that of the pressure
gradient on the turbulent mixing. Dissolution or melting is described by means of the
advection–diffusion of a passive scalar (§ 3) that can represent the temperature or the
concentration of a dissolved species. It is coupled to the hydrodynamical part mainly
because the coefficient of diffusion is related to the turbulent mixing. To address the
development of an instability leading to the emergence of dissolution bedforms, we
investigate this model in the case of a sinusoidally perturbed surface. The equations
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are linearised in the limit of a small perturbation and coupled to an erosion law for
the bed evolution to derive the dispersion relation of the problem (§ 4). It provides the
growth rate and propagation velocity of the perturbation, and thus fully characterises
the instability. Finally, the results are presented and discussed in § 5, and compared
with experimental data.

2. Reynolds averaged description and turbulent closure

We consider a fluid flow along the x direction over a bed of elevation denoted by
Z. Here, z is the crosswise axis normal to the main bed and y is spanwise. Following
the standard separation between average quantities and fluctuating ones (denoted by a
prime), the equations governing the mean velocity field ui and the pressure p can be
written as

∂iui = 0 and ρ∂tui + uj∂jui = ∂jτij − ∂ip, (2.1a,b)

where τij contains the Reynolds stress tensor −ρu′iu′j. Here, ρ is the density of the
fluid, assumed to be constant. We use a first-order turbulence closure to relate the
stress to the velocity gradient. It involves a turbulent viscosity resulting from the
product of a mixing length and a mixing frequency, representing the typical eddy
length and time scales (Pope 2000). The mixing length ` depends explicitly on the
distance from the bed. The mixing frequency is given by the strain rate modulus
|γ̇ | =

√
1/2γ̇ijγ̇ij, where we have introduced the strain rate tensor γ̇ij= ∂iuj+ ∂jui. In a

homogeneous situation along the x-axis, the strain rate reduces to ∂zux. For a constant
shear stress associated with a shear velocity u∗, we write

τxz = ρ`
2
|∂zux|∂zux + ρν∂zux = ρ|u∗|u∗, (2.2)

where ν is the kinematic fluid viscosity. In order to account for both smooth and rough
regimes, we adopt here a van Driest-like mixing length (Pope 2000),

`= κ(z+ rd− Z)
[

1− exp
(
−
(τxz/ρ)

1/2(z+ sd− Z)
νRt

)]
. (2.3)

In this expression, κ = 0.4 is the von Kármán constant, d is the sand equivalent
bed roughness size and Rt is the van Driest transitional Reynolds number, equal
to R0

t ' 25 in the homogeneous case of a flat bed (Pope 2000). The exponential
term suppresses turbulent mixing within the viscous sublayer, close enough to the
bed, z = Z. The dimensionless numbers r = 1/30 and s = 1/3 are calibrated with
measurements of velocity profiles over varied rough walls (Schultz & Flack 2009;
Flack & Schultz 2010). Here, rd corresponds to the standard Prandtl hydrodynamical
roughness extracted by extrapolating the logarithmic law of the wall at vanishing
velocity. On the other hand, and this is more original, sd controls the reduction of
the viscous layer thickness upon increasing the bed roughness.

Following the work of Hanratty (1981), Rt cannot be taken as constant but depends
on a dimensionless number H that lags behind the pressure gradient following a
relaxation equation,

a
ν

u∗
∂xH=

ν

u3
∗

∂x(τxx − p)−H, (2.4)

where a is the multiplicative factor in front of the space lag. We also introduce
b = 1/R0

t dRt/dH > 0 as the relative variation of Rt due to the pressure gradient.
The values of these empirical parameters have been set to a = 2000 and b = 35, as
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FIGURE 2. Basal shear stress coefficients (a) A and (b) B computed by the model as
functions of kν/u∗. The different colours code for the value of the parameter Rd (see
legend). The laminar–turbulent transition (around kν/u∗' 10−3) gradually disappears when
Rd increases.

calibrated on the behaviour of the basal shear stress over a modulated bed (Charru
et al. 2013). Their values control the amplitude and location of the anomaly at the
transition from a laminar to a turbulent response with respect to the bed elevation, as
illustrated below.

We shall focus here on quasi two-dimensional situations, i.e. on geometries invariant
along the y direction. This simplification is a limitation for the study of non-transverse
patterns, such as these scallops which have a kind of chevron shape, but is certainly
enough to capture the physics of the instability. We can generally write the stress
tensor as

τij = ρ(`
2
|γ̇ | + ν)γ̇ij −

1
3ρχ

2`2
|γ̇ |2δij, (2.5)

where δij is the Kronecker symbol (see Fourrière, Claudin & Andreotti (2010) and
references therein). The typical value of the phenomenological constant χ is in the
range 2–3, but is of no importance here as we shall see that only the normal stress
difference τxx − τzz matters. This closed model allows us to compute the velocity and
stress profiles for given boundary conditions, as illustrated in § 4.

Before addressing the linear stability analysis, it is useful to discuss and show the
effect of the bed roughness on the hydrodynamical quantities, here taking the shear
stress as a typical example. Anticipating § 4, where a sinusoidally modulated bed
Z(x)= ζeikx of wavenumber k is considered, these hydrodynamical equations can be
linearised with respect to the small parameter kζ . In this case, the shear stress is also
modulated and correspondingly takes the generic form τxz = ρu2

∗
(1 + kζeikxSt) + c.c.,

where St(η) is a dimensionless function of the rescaled vertical coordinate η= kz. We
define the two coefficients A and B by St(0)=A+ iB; these are computed as outputs
of the hydrodynamic model. The basal shear stress is then a sinusoidal function of x
and these coefficients encode the in-phase and in-quadrature components in response
to the bed modulation. The coefficients A and B are functions of k, as displayed
in figure 2. The main point, which is the hydrodynamical novelty of this study, is
that they are also found to strongly depend on the bed roughness-based Reynolds
number Rd = du∗/ν. As described and discussed by Charru et al. (2013), these
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coefficients present, in the smooth limit (Rd < 1), a marked transition between the
turbulent regime associated with small wavenumbers kν/u∗ . 10−4 and the laminar
regime, typically for kν/u∗ & 10−2. This transition, evidenced by the experimental
data of Hanratty and his co-workers (Zilker, Cook & Hanratty 1977; Frederick &
Hanratty 1988), resembles a ‘crisis’, with sharp variations of A and B, allowing,
in particular, for negative values of B. The coefficients a and b introduced above
have been adjusted to fit these data (Charru et al. 2013). Crucially, this transition
progressively disappears upon increasing the roughness Reynolds number, recovering
the reference rough behaviour above Rd & 100 (Fourrière et al. 2010). Beyond the
phenomenology, a detailed physical understanding of this laminar–turbulent transition
remains a pending hydrodynamical open problem.

3. Scalar transport

We wish now to describe a passive scalar φ, e.g. the concentration of a chemical
species or the temperature, which is transported by the flow. We model its dynamics
by a simple advection–diffusion equation,

∂tφ + ∂xqx + ∂zqz = 0, (3.1)

where the flux q is the sum of a convective and a diffusive term, q=φu−D∇φ. Here,
we take a diffusion coefficient proportional to the turbulent viscosity and write

D=
`2
|γ̇ |

βt
+
ν

βν
, (3.2)

where βt and βν are the turbulent and viscous Schmidt numbers (or Prandtl numbers
for temperature), here taken as constants. A typical value for liquids as well as gasses
is βt = 0.7 (Gualtieri et al. 2017). For the molecular diffusivity, βν can be estimated
from the Stokes–Einstein relation, ν/βν = kBT/6πρνrm, where kB is the Boltzmann
constant, T is the temperature and rm is the molecular effective radius. The order of
magnitude of molecular diffusion for ions or for dissolved CO2 in water is βν = 103;
for the diffusion of particles in an ideal gas, a typical value is βν = 1.

In the base state for which the bed is homogeneous in x, we can assume that
the solid bed dissolves or melts at a small constant velocity and then perform the
computation in the moving frame of reference. Equation (3.1) reduces to ∂zqz= 0, so
that the flux is constant,

qz =−D∂zφ = q0. (3.3)

With the above expression (3.2) for D, we obtain the equation for the vertical profile
of the scalar field φ, (

`2
|γ̇ |

βt
+
ν

βν

)
∂zφ =−q0. (3.4)

To solve this equation, a condition on the bed must be specified. It depends on
the nature of the scalar field, but can be formally written in a unique general way.
For thermal problems, we impose the bed temperature, φ0 = T0. For dissolution or
sublimation problems, we write a Hertz–Knudsen type of law (Eames, Marr & Sabir
1997), with a flux of matter that depends on the concentration at the surface,

q0 = α(φsat − φ0). (3.5)

Because this condition applies on the bed, where the velocity vanishes, no convective
contribution to the flux is involved. In the above expression, φsat is the concentration at
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saturation, and α is a reaction kinetic constant, here expressed as a velocity scale. For
simplicity, we take it constant. In the case of sublimation or evaporation, α is given
by the thermal velocity times a desorption probability (Eames et al. 1997), leading
to α in the range 1–10 m s−1. In dissolution problems, however, we expect α to
take much smaller values, of the order of 10−5 m s−1 (Falter, Atkinson & Coimbra
2005). Equation (3.5) can be re-expressed as φ0 = φsat − q0/α, so that in both cases
φ0 is given. Finally, as buoyancy effects are usually negligible in such problems, we
consider that the momentum equation is not coupled to the scalar field.

4. Linearised equations

We can now proceed to the linear stability analysis, to compute the dispersion
relation.

4.1. Definitions and base state
For small enough amplitudes, we can consider a bottom profile of the form

Z(x)= ζeikx (4.1)

without loss of generality (real parts of expressions are understood). Here, λ= 2π/k
is the wavelength of the bottom and ζ is the amplitude of the corrugation. The case
of an arbitrary relief can be deduced by a simple superposition of Fourier modes.
We introduce the dimensionless variable η = kz, η0 = kd and the wavenumber-based
Reynolds number R= u∗/kν. Primed quantities in this section denote derivatives with
respect to η. With these notations and following (2.3), the mixing length in the base
state can be expressed in a dimensionless form as

k`≡Υ (η)= κ(η+ rη0) (1− exp(−R(η+ sη0)/R0
t )). (4.2)

We define the function U(η) giving the wind profile in the base state as ux ≡ u∗U .
From (2.2), we see that it must verify the following equation:

Υ 2
|U ′|U ′ +R−1U ′ = 1, or equivalently U ′ =

−1+
√

1+ 4Υ 2R2

2Υ 2R
, (4.3a,b)

which must be solved with the boundary condition U(0)= 0 corresponding to the no-
slip condition of the wind at the solid interface. Similarly, we define the function P(η)
for the passive scalar in the base state as φ − φ0 ≡ q0P/u∗. From (3.4), it obeys(

Υ 2
|U ′|
βt
+

R−1

βν

)
P ′ + 1= 0. (4.4)

The boundary condition is P(0) = 0, corresponding to the condition φ = φ0 on the
bed.

4.2. Linear expansion
The aim of this subsection is to derive a set of closed equations (4.11)–(4.16), which,
once integrated with given boundary conditions, provide as outputs the basal stresses,
scalar concentration and flux, in order to compute the dispersion relation of the
problem. Although technical, the principle of the calculation is simple and relies on
the linearisation of the governing equations with respect to the small parameter kζ ,
which is proportional to the aspect ratio of the bed modulation. As in Fourrière et al.
(2010), all quantities are generically written as the sum of their homogeneous term
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(along x) plus a linear correction generically written as ckζeikxC(η). The scaling factor
c encodes the physical dimension, whereas C is a non-dimensional mode function
which describes the vertical profile of the correction. Scaling velocities with u∗ and
stresses with ρu2

∗
, we define the mode functions U(η) and W(η) for ux and uz, and

the functions St(η), Sn(η), Sxx(η) and Szz(η) for τxz, p − τzz, τxx and τzz respectively.
For the dimensionless mixing length k`, we write its mode function L. The scalar
concentration is scaled by q0/u∗ and its mode function is Φ; its flux is scaled by
q0 and its mode function is defined as −F. Finally, we call ∆ the mode function of
the coefficient of diffusion. These functions are not all independent, and with these
notations, we can in particular express the coefficient of diffusion as

D=
u∗
k

[(
U ′Υ 2

βt
+

R−1

βν

)
+

1
βt
[(U′ + iW)Υ 2

+ 2Υ LU ′]kζeikx

]
. (4.5)

Following (2.5), we express the stress functions as follows:

St = (R−1
+ 2Υ 2U ′)(U′ + iW)+ 2ΥU ′2L, (4.6)

Sxx − Szz = 4(R−1
+Υ 2U ′)iU =

4iU
U ′
, (4.7)

where we have used (R−1
+ Υ 2U ′) = 1/U ′ at the zeroth order (equation (4.3)).

Linearising the Hanratty equation (2.4), one obtains

(R+ ia)H= i(Sxx − Szz − Sn)=−
4U
U ′
− iSn. (4.8)

The linear expansion of the scalar equation gives

F′ = iPU +
(

iU +
Υ 2
|U ′|
βt
+

R−1

βν

)
Φ, (4.9)

with F=
(
Υ 2
|U ′|
βt
+

R−1

βν

)
Φ ′ +

1
βt
P ′
[
Υ 2(U′ + iW)+ 2Υ LU ′

]
−WP . (4.10)

Combining these equations with the linearised Navier–Stokes equations, we finally
obtain six closed equations,

U′ =−iW +
St − 2ΥU ′2L
R−1 + 2Υ 2U ′

, (4.11)

W ′ =−iU, (4.12)

S′t =
(

iU +
4
U ′

)
U + U ′W + iSn, (4.13)

S′n =−iUW + iSt, (4.14)

Φ ′ =

[
F+WP −

P ′
(
Υ 2St + 2Υ LU ′

(
R−1
+Υ 2U ′

))
βt
(
R−1 + 2Υ 2U ′

) ]/[
Υ 2
|U ′|
βt
+

R−1

βν

]
, (4.15)

F′ = iPU +
(

iU +
Υ 2
|U ′|
βt
+

R−1

βν

)
Φ, (4.16)

where the disturbance to the rescaled mixing length reads

L = κ

{
−1+ e−(R/R

0
t )(η+sη0)

[
1−

R
R0

t

(η+ rη0)

+
R
R0

t

(η+ sη0)(η+ rη0)

(
1
2

St +
b

R+ ia

(
4U
U ′
+ iSn

))]}
. (4.17)
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4.3. Boundary conditions
Six boundary conditions must be specified to solve the system (4.11)–(4.16), labelled
(i)–(vi) below. The upper boundary corresponds to the limit η→∞, in which the
vertical fluxes of mass and momentum vanish asymptotically. This means that the first-
order corrections to the shear stress and to the vertical velocity must tend to zero: (i)
W(∞)= 0 and (ii) St(∞)= 0. In practice, we introduce a finite height H (or ηH ≡ kH)
at which we impose a null vertical velocity and a constant tangential stress −ρu2

∗
, so

that W(ηH)= 0 and St(ηH)= 0. Then, we consider the limit H→+∞, i.e. when the
results become independent of H. On the bed, z= Z, both velocity components must
vanish, which gives (iii) U(0)=−U ′(0) and (iv) W(0)= 0. Using (4.3) and (4.2), we
can express

U(0)=
1−
√

1+ 4Υ (0)2R2

2Υ (0)2R
=

1−
√

1+ 4[κrη0(1− exp(−sη0R/R0
t ))]

2R2

2[κrη0(1− exp(−sη0R/R0
t ))]

2R
. (4.18)

Regarding the passive scalar, we hypothesise that its flux through the upper boundary
remains constant, which gives (v) F(ηH)= 0. Finally, on the bed, the dissolution-like
condition qz = α(φsat − φ), associated with its zeroth order (3.5), leads to (vi) F(0)=
α/u∗[P ′(0)+Φ(0)], where P ′(0) is known from (4.4). Other quantities like St(0) and
Sn(0) come as results of the calculation.

As both F(0) and φ(0) must remain bounded to be compatible with the bulk
equations, we expect two simple asymptotic regimes: in the limit of small α/u∗, the
scalar modulation Φ(0) results from the mixing of the base profile and is independent
of α; the flux modulation F(0) follows and must vanish linearly in α/u∗. Conversely,
at large α/u∗, the situation is opposite: the substrate is so erodible that any disturbance
in concentration at the surface would lead to a diverging flux resorbing it. As Φ(0)
vanishes as u∗/α, the flux F(0) results from the mixing of the base state and is
therefore constant.

4.4. Interface growth rate
To compute the temporal evolution of the bed elevation, we proceed with Z(x, t) =
ζeσ t+iωt+ikx, where σ(k) is the growth rate and ω(k) is the angular frequency of the bed
pattern along x. The phase propagation speed is therefore −ω/k with these notations.
As the equations are linear in φ, one can always define the relevant scalar with the
appropriate factor so that the evolution equation for the bottom reads ∂tZ= q0− qz(Z).
At the linear order, this gives the dispersion relation,

σ + iω= q0kF(0). (4.19)

5. Results and discussion

The dispersion relation (4.19) is displayed in figure 3, in the limit of small α/u∗
and at vanishing Rd (smooth case). Following the asymptotic behaviour of F(0) in
this limit, the relevant rescaling factor for σ is q0α/ν. We see in (a) a range of
unstable wavenumbers with a positive growth rate, in which σ reaches a maximum
value σm at km. In this range, the propagation velocity changes sign (b), showing that
the instability is absolute and not convective. As shown in figure 4(a), the key result is
that the unstable band disappears above a critical value Rc of the roughness Reynolds
number.
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FIGURE 3. The dispersion relation for the dissolution instability in the limit of small
α/u∗, for βν = 103 and Rd = 10. (a) Growth rate σ . (b) Angular frequency ω. Solid lines
represent positive values. For negative values, −σ or −ω is plotted (dotted lines). The
grey region corresponds to the unstable (σ > 0) range of wavenumbers.
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FIGURE 4. (a) Stability diagram in the plane (Rd, kν/u∗), computed in the limit of small
α/u∗ and for βν = 103. Solid line: marginal stability curve (σ = 0). Grey: unstable zone
(σ > 0). Dotted line: location of the most unstable modes (σm). (b) Experimental data
of Ashton & Kennedy (1972) on ice ripples: mean wavelength versus inverse of mean
flow velocity. The linear fit λ ' 0.1/U (solid line) corresponds to the red arrow in (a).
(c) Histogram of the ripple aspect ratio in these experiments. The black arrow corresponds
to the aspect ratio giving Rd =Rc.

As illustrated in figure 5, one can understand the instability mechanism as
follows. The erosion of the bed is driven by the mass flux qz, itself controlled
by the concentration gradient and the coefficient of diffusion (equation (3.3)). The
concentration profile, enforced by the base state, is non-homogeneous, decreasing
away from the surface. The crests of a modulated bed profile come closer to regions
of lower concentration, enhancing the gradient with respect to the surface where
φ is imposed. For a constant D, this peak effect increases the flux and thus the
erosion at the crests, and this stabilising situation is what happens at large kν/u∗,
when the wavelength is much smaller than the viscous sublayer. When turbulence
is dominant, D is not constant any more, but is controlled by turbulent mixing.
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FIGURE 5. (a) Isocontours of the diffusion coefficient above a modulated bed (in white),
with a wavenumber close to the most unstable mode, kν/u∗ = 5 × 10−4. The other
parameter values are Rd = 0.1, α/u∗ = 0.01, ηH = 10 and βν = 103. Red (blue) regions
correspond to a strong (weak) mixing. (b) Corresponding isocontours of the concentration
φ. Strong mixing leads to a large vertical flux which reduces φ. (c) The same as (a), but
for a smaller wavenumber, kν/u∗ = 5× 10−5. (d) Isocontours of the concentration φ at a
larger wavenumber, kν/u∗ = 5× 10−2. In all panels, the flow is from left to right.

At small kν/u∗, turbulence is enhanced slightly upstream of the crests, and hence there
is stabilising erosion again. For wavenumbers in the intermediate range corresponding
to the laminar–turbulent transition, however, turbulence is shifted downstream by
means of the adverse pressure gradient (2.4), enhancing mixing and thus erosion in
the troughs, which a is destabilising (amplifying) situation. The opposite behaviour
of the in-phase modulations of D and φ is displayed in figure 6 for the whole range
of wavenumbers, showing a change of sign corresponding to enhanced mixing in
troughs in the presence of the laminar–turbulent transition only.

Changing the molecular diffusivity, this phenomenology with a range of unstable
modes (figure 4a) remains, but with consequently varying values of Rc and kc

(figure 7a). For Rc, we clearly identify a low-βν regime where Rc ∝ 1/βν and a
plateau at large βν . This means that diffusive processes are controlled by whatever
is dominant between the diffusion of momentum (ν) and that of dissolved species
(ν/βν). Moreover, kc is found to be pretty constant, independent of βν , with a typical
value of around 10−3u∗/ν. This relative invariance is what one can expect for a
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FIGURE 6. In-phase components of the modulation of the diffusion coefficient 1(0) in
red and of the basal concentration Φ(0) in blue, for Rd = 10 (a) and Rd = 100 (b), as
functions of kν/u∗. Dashed lines represent negative values. The grey region is the unstable
range of wavenumbers.
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FIGURE 7. (a) Critical value Rc, at which the instability disappears, as a function of
βν (solid line, left axis), in the limit of small α/u∗. Right axis, dotted line: corresponding
critical wavenumber kc. (b) Maximum growth rate (solid line, left axis) and corresponding
wavenumber (dotted line, right axis) as functions of α/u∗, computed for βν = 103 and
Rd→ 0.

bandpass instability. Exploring a broad range of the ratio α/u∗ in figure 7(b), but
now rescaling the growth rate by q0u∗/ν, we see that σm becomes independent of it,
with a crossover at around α/u∗' 10−3. These regimes correspond to those discussed
for F(0), in relation to (4.19). Meanwhile, the most unstable wavenumber km switches
from a plateau value to another value, with a small relative change, emphasising again
that relevant wavenumbers are fairly insensitive to all parameters.

The development of the instability actually increases the bed roughness, suggesting
that the pattern eventually selects the wavenumber kc nonlinearly. As a matter of fact,
converting the amplitude of the bed perturbation to a sand equivalent roughness size
d (Flack & Schultz 2010), the value Rd ' 80 is reached with a pattern aspect ratio
2ζ/λ of the order of 5 % for these values of k, i.e. typically kζ ' 0.16. This value is
clearly the upper bound for the linear expansion to make sense, but still reasonably
small.
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Thomas (1979) has gathered measurements from various experiments that provide
evidence of the global scaling of the selected scallop wavenumber with the viscous
length. The fit of these data gives k ' 6 × 10−3u∗/ν. This is in fair agreement
with our results, but to be more quantitative, we must emphasise two difficulties
when looking in more detail at specific experiments. A first ambiguity lies in the
definition of the wavelength for three-dimensional objects like scallops. For example,
in the study of a dissolution pattern on plaster by Blumberg & Curl (1974), λ
is identified as the ratio 〈Λ3

〉/〈Λ2
〉, where the angle brackets denote an average

over measurements of longitudinal scallop sizes Λ. With this definition, a selected
wavenumber k ' 3 × 10−3u∗/ν is reported. Another issue in computing the value of
kν/u∗ from experimental data is the difficulty of relying on an accurate estimate of
the shear velocity, as also discussed by Blumberg & Curl (1974). Usually, the mean
flow velocity is actually measured, and u∗ is computed assuming a velocity profile,
typically the logarithmic law of the wall, which leads to u∗ ' κU/ ln H/z0, where
H is the flow depth and z0 is the hydrodynamical roughness, itself related to the
bedform amplitude as z0 = rd.

Closer to the two-dimensional situation that we consider here, we have more
quantitatively investigated the data of Ashton & Kennedy (1972) for ice ripples.
These authors report a clear linear law, λ∼ 1/U (figure 4b). They have also measured
the ripple aspect ratio. This quantity is widely distributed (figure 4c), showing a
population of emerging bedforms with small aspect ratios, and another one of mature
ripples, with an aspect ratio centred around 6 % (figure 4c). Computing u∗ from U as
discussed above, we obtain for these data kν/u∗' 8× 10−4, in quantitative agreement
with the value of kc (figure 4a). Further experimental studies are needed to investigate
the emergence and development of this instability in more detail, and in particular to
follow the evolution of the bed roughness over time (Villen, Zheng & Lister 2005).
Another direction of research is the investigation of fast flows in order to connect
scallops generated by water flows with those on meteorites, for which supersonic
effects are expected.

Acknowledgements

We thank F. Charru and G. Vignoles for discussions and L. Tuckerman for a critical
reading of the manuscript.

References

ANDERSON, C. H., BEHRENS, C. J., FLOYD, G. A. & VINING, M. R. 1998 Crater firn caves of
Mount St. Helens, Washington. J. Cave Karst Studies 60, 44–50.

ASHTON, G. D. & KENNEDY, J. F. 1972 Ripples on the underside of river ice covers. J. Hydraul.
Div. ASCE 98, 1603–1624.

BLUMBERG, P. N. & CURL, R. L. 1974 Experimental and theoretical studies of dissolution roughness.
J. Fluid Mech. 65, 735–751.

CAMPOREALE, C. & RIDOLFI, L. 2012 Ice ripple formation at large Reynolds numbers. J. Fluid
Mech. 694, 225–251.

CAREY, K. L. 1966 Observed configuration and computed roughness of the underside of river ice,
St Croix River, Wisconsin. US Geol. Survey Prof. Paper 550, B192–B198.

CHARRU, F., ANDREOTTI, B. & CLAUDIN, P. 2013 Sand ripples and dunes. Annu. Rev. Fluid Mech.
45, 469–493.

CHEN, A. S.-H. & MORRIS, S. W. 2013 On the origin and evolution of icicle ripples. New J. Phys.
15, 103012.

832 R2-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.711


Dissolution instability and roughening transition

CLAUDIN, F. & ERNSTSON, K. 2004 Regmaglypts on clasts from the Puerto Mínguez ejecta, Azuara
multiple impact event (Spain). From www.impact-structures.com/article%20text.pdf.

COHEN, C., BERHANU, M., DERR, J. & COURRECH DU PONT, S. 2016 Erosion patterns on dissolving
and melting bodies. Phys. Rev. Fluids 1, 050508.

CURL, R. L. 1974 Deducing flow velocity in cave conduits from scallops. NSS Bull. 36, 1–5.
EAMES, I. W., MARR, N. J. & SABIR, H. 1997 The evaporation coefficient of water: a review. Intl

J. Heat Mass Transfer 40, 2963–2973.
FALTER, J. L., ATKINSON, M. J. & COIMBRA, C. F. M. 2005 Effects of surface roughness and

oscillatory flow on the dissolution of plaster forms. Limnol. Oceanogr. 50, 246–254.
FLACK, K. A. & SCHULTZ, M. P. 2010 Review of hydraulic roughness scales in the fully rough

regime. Trans. ASME J. Fluids Engng 132, 041203.
FOURRIÈRE, A., CLAUDIN, P. & ANDREOTTI, B. 2010 Bedforms in a turbulent stream: formation

of ripples by primary linear instability and of dunes by nonlinear pattern coarsening. J. Fluid
Mech. 649, 287–328.

FREDERICK, K. A. & HANRATTY, T. J. 1988 Velocity measurements for a turbulent non-separated
flow over solid waves. Exp. Fluids 6, 477–486.

GILPIN, R. R. 1981 Ice formation in a pipe containing flows in the transition and the turbulent
regimes. Trans. ASME J. Heat Transfer 103, 363–368.

GILPIN, R. R., HIRATA, T. & CHENG, K. C. 1980 Wave formation and heat transfer at an ice–water
interface in the presence of a turbulent flow. J. Fluid Mech. 99, 619–640.

GOLDENFELD, N., CHAN, P. Y. & VEYSEY, J. 2006 Dynamics of precipitation pattern formation at
geothermal hot springs. Phys. Rev. Lett. 96, 254501.

GUALTIERI, C., ANGELOUDIS, A., BOMBARDELLI, F., JHA, S. & STOESSER, T. 2017 On the values
for the turbulent Schmidt number in environmental flows. Fluids 2, 17.

HANRATTY, T. J. 1981 Stability of surfaces that are dissolving or being formed by convective
diffusion. Annu. Rev. Fluid Mech. 13, 231–252.

HERZFELD, U. C., MAYER, H., CAINE, N., LOSLEBEN, M. & ERBRECHT, T. 2003 Morphogenesis of
typical winter and summer snow surface patterns in a continental alpine environment. Hydro.
Proces. 17, 619–649.

HUANG, J. M., MOORE, M. N. J. & RISTROPH, L. 2015 Shape dynamics and scaling laws for a
body dissolving in fluid flow. J. Fluid Mech. 765, R3.

KIVER, E. P. & MUMMA, M. D. 1971 Summit firn caves, Mount Rainier, Washington. Science 173,
320–322.

LEIGHLY, J. 1948 Cuspate surfaces of melting ice and firn. Geograph. Rev. 38, 301–306.
LIN, T. C. & QUN, P. 1986 On the formation of regmaglypts on meteorites. Fluid Dyn. Res. 1,

191–199.
LISTER, D. H., GAUTHIER, P., GOSZCZYNSKI, J. & SLADE, J. 1998 The accelerated corrosion of

CANDU primary piping. In Proceedings Japan Atomic Indus. Forum Int. Conf. on Water
Chemistry in Nuclear Power Plants, 442.

MEAKIN, P. & JAMTVEIT, B. 2010 Geological pattern formation by growth and dissolution in aqueous
systems. Proc. R. Soc. Lond. A 466, 659.

NAKOUZI, E., GOLDSTEIN, R. E. & STEINBOCK, O. 2014 Do dissolving objects converge to a
universal shape? Langmuir 31, 4145.

OGAWA, N. & FURUKAWA, Y. 2002 Surface instability of icicles. Phys. Rev. E 66, 041202.
POPE, S. B. 2000 Turbulent Flows. Cambridge University Press.
RHODES, J. J., ARMSTRONG, R. L. & WARREN, S. G. 1987 Mode of formation of ablation hollows

controlled by dirt content of snow. J. Glaciol. 33, 135–139.
RICHARDSON, W. E. & HARPER, R. D. M. 1957 Ablation polygons on snow – further observations

and theories. J. Glaciol. 3, 25–27.
SCHULTZ, M. P. & FLACK, K. A. 2009 Turbulent boundary layers on a systematically varied rough

wall. Phys. Fluids 21, 015104.
SHARP, R. P. 1947 The Wolf Creek Glaciers, St. Elias Range, Yukon Territory. Geograph. Rev. 37,

26–52.
THOMAS, R. M. 1979 Size of scallops and ripples by flowing water. Nature 277, 281–283.

832 R2-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://www.impact-structures.com/article%20text.pdf
https://doi.org/10.1017/jfm.2017.711


P. Claudin, O. Durán and B. Andreotti

UENO, K. & FARZANEH, M. 2011 Linear stability analysis of ice growth under supercooled water
film driven by a laminar airflow. Phys. Fluids 23, 042103.

VILLEN, B., ZHENG, Y. & LISTER, D. H. 2001 The scalloping phenomenon and its significance in
flow-assisted corrosion. In Proceedings 26th Annual CNS–CNA Student Conf., Toronto.

VILLEN, B., ZHENG, Y. & LISTER, D. H. 2005 Surface dissolution and the development of scallops.
Chem. Engng Commun. 192, 125–136.

ZILKER, D. P., COOK, G. W. & HANRATTY, T. J. 1977 Influence of the amplitude of a solid wavy
wall on a turbulent flow. Part 1. Non-separated flows. J. Fluid Mech. 82, 29–51.

832 R2-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

71
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.711

	Dissolution instability and roughening transition
	Introduction
	Reynolds averaged description and turbulent closure
	Scalar transport
	Linearised equations
	Definitions and base state
	Linear expansion
	Boundary conditions
	Interface growth rate

	Results and discussion
	Acknowledgements
	References


