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Abstract

Network scholars commonly encounter multiple networks, each of which is possibly governed

by distinct generation rules while sharing a node group structure. Although the stochastic

blockmodeling—detecting such latent group structures with group-specific connection pro-

files—has been a major topic of recent research, the focus has been given to the assortative

group discovery of a single network. Despite its universality, concepts, and techniques for

simultaneous characterization of node traits of multilayer networks, constructed by stacking

multiple networks into layers, have been limited. Here, we propose a Bayesian multilayer

stochastic blockmodeling framework that uncovers layer-common node traits and factors

associated with layer-specific network generating functions. Without assuming a priori layer-

specific generation rules, our fully Bayesian treatment allows probabilistic inference of latent

traits. We extend the approach to detect changes in block structures embedded in temporal

layers of network time series. We demonstrate the method using synthetic multilayer networks

with assortative, disassortative, core-periphery, and overlapping community structures. Finally,

we apply the method to empirical social network datasets, and find that it detects significant

latent traits and structural changepoints. In particular, we uncover endogenous historical

regimes associated with distinct constellations of states in United States Senate roll call vote

similarity patterns.

Keywords: multilayer network, stochastic blockmodel, network changepoint detection, tensor de-

composition, network time series, hidden Markov model

1 Introduction

An observed network can be understood as a specific realization of a network

generating function coupled with latent node traits. More often than not, network

scholars encounter multiple realizations of networks, each of which is possibly

governed by distinct generation rules, while sharing key node traits. For example,

a romantic network and a friendship network exhibit strikingly different topolog-

ical characteristics. Romantic networks are mainly disassortative (i.e. heterophilic,

bipartite), whereas friendship networks tend to be assortative (i.e. homophilic).

Suppose the sex label is unknown, and we want to infer the information from
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the connection profiles of these two networks defined over an identical node set.

Simultaneously, estimating common node traits of these two networks obviously

provides us with a more statistically rigorous estimation of the unknown group

structure than studying each separately does. Prompted by this idea, we develop

a general statistical framework that allows a probabilistic inference of common

latent node traits (e.g. sex) and layer-specific network generation functions (e.g.

assortative or disassortative) from multilayer network data (e.g. romantic and

friendship networks).

Statistical inference of latent traits of networks has been a major topic of

methodological advance in network science. The majority of methods aim at

partitioning nodes into subsets with similar connection profiles. Various techniques

have been developed by imposing particular constraints, including assortative

grouping methods (community detection) (Bickel & Chen, 2009; Girvan & Newman,

2002; Hoff et al., 2002; Newman, 2006; Guimera & Amaral, 2005; Palla et al., 2007;

Ahn et al., 2010; Hoff, 2005; Mucha et al., 2010; Lancichinetti et al., 2011; Moody

& White, 2003) and assortativity constraint-free methods (stochastic blockmodel)

(Holland et al., 1983; Karrer & Newman, 2011; Nowicki & Snijders, 2001; Newman

& Leicht, 2007; Airoldi et al., 2009), and by incorporating specific optimization

schemes, including single metric maximization (Girvan & Newman, 2002; Guimera

& Amaral, 2005; Ahn et al., 2010; Mucha et al., 2010), spectral (Newman, 2006; Rohe

et al., 2011), random walk (Rosvall & Bergstrom, 2008), and probabilistic inference

(Hoff et al., 2002; Holland et al., 1983; Newman & Leicht, 2007; Handcock et al.,

2007; Hoff, 2005; Hofman & Wiggins, 2008; Airoldi et al., 2009; Lancichinetti et al.,

2011; Gopalan & Blei, 2013); for a comprehensive review, see Fortunato (2010).

Among available frameworks for recovering latent traits of networks, we focus

on the stochastic blockmodel (Holland et al., 1983; Karrer & Newman, 2011;

Nowicki & Snijders, 2001). The stochastic blockmodel is a generalized group-based

network formulation, which accommodates an arbitrary group-to-group connection

profile among node groups, including assortative, disassortative, core-periphery, and

overlapping community structures. While numerous techniques are available for the

single-layer network modeling, it remains as a fairly challenging task to recover

latent traits from multiple networks with the exception of recent studies.

Generally speaking, multilayer network1 data can be decomposed into two key

factors. The first factor is layer-common node traits indicating node group division

or role diversification common to multiple layers of networks. The second factor

is layer-specific generation rules, which indicate layer-specific functions linking node

traits with layer-specific network realizations. A generalized statistical framework

for multilayer network modeling requires the joint estimation of layer-common

node traits and layer-specific generation rules in a way that allows a probabilistic

inference of these estimates in order to account for the stochastic nature of the data

generating processes.

Considering these requirements, limitations of existing methods seem obvious.

Existing methods for latent trait recovery suffer from the lack of a capacity to

analyze non-assortative generation rules (Ahn et al., 2010; Mucha et al., 2010; Hoff

1 For general reviews of multilayer networks, see Boccaletti et al. (2014) and Kivelä et al. (2014).
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et al., 2002; Hoff, 2005; Hofman & Wiggins, 2008). Also, the most well-known

multilayer community detection method (Mucha et al., 2010) collapses layer-specific

factors by pulling all layer-specific connections into a combined set and conducting

the community detection process using a single objective function. As a result, this

method is incapable of detecting common group structures of nodes belonging to

multiple layers when each layer does not exhibit a homogeneous generation rule.

Moreover, the majority of existing tensor-based multilayer clustering algorithms (e.g.

Mucha et al. (2010) and Kolda & Bader (2009)) employ deterministic methods or

single-run stochastic algorithms, which do not allow probabilistic interpretation of

their estimates, thereby being vulnerable to over-fitting (Lancichinetti et al., 2011).

While not proposed in a Bayesian manner (Han et al., 2015) or not allowing the non-

assortative structure recovery (Paul & Chen, 2016), very recent studies incorporate

similar formulations to ours and provide consistency proofs for the multilayer

stochastic blockmodel inference.

In this article, we present a fully Bayesian approach to the multilayer extension

of the stochastic blockmodel by incorporating recent advances in Bayesian parallel

factor analysis (PARAFAC) for tensor (or array) data (Kolda & Bader, 2009; Hoff,

2011). Our method is capable of examining multiple forms of large-scale organiza-

tions (e.g. assortative, disassortative, core-periphery structures) by employing a mini-

mum level of null modeling and optimization constraints. The model produces layer-

specific estimates representing layer-specific network generating processes as well as

latent node traits common to a set of layers. Also, the Bayesian framework allows us

to incorporate additional levels of model complexity that account for interesting real-

world phenomena in network dynamics. An extension introduced in this article is the

multiple changepoint detection for latent structures in networks. Our approach pro-

vides probabilistic estimates for all quantities of interests, including regime-specific

latent node traits, layer-specific generation rules, and timings of structural changes.

2 Problem statement

Figure 1 graphically displays our goal. Panel A shows a two-layer multilayer network.

Note that the two layers have identical grouping of nodes despite the fact that

the first layer contains an assortative network and the second layer contains a

disassortative network. Connections among same group members are colored in

red and blue, and inter-group links are colored in gray. Dashed gray lines between

the two layers indicate node identity. The first two plots in the bottom row show

layer-specific adjacency matrices. The top figure of Panel B shows the objective of

the multilayer network analysis where identical groups and distinct generation rules

are properly identified. In contrast, the bottom figure of Panel B shows a simple

aggregation representation of the two networks where the aggregation collapses the

group structure of the original multilayer network.

We aim to extract latent traits of a node-aligned multilayer network A ≡ [At|t ∈
T ] = [Aijt|i, j ∈ V , t ∈ T ]. We denote A as a tensor with tth layer consisting of

an adjacency matrix At. A can be represented by an adjacency tensor, which is

a three-order array data: A ∈ �N×N×|T | where T is a set consisting of the array

index and the number of nodes N ≡ |V | in the node set V . In the article, we focus

on symmetric network layers where a network in each layer contains undirected
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Fig. 1. Motivation for the multilayer representation. (A) A node-aligned multilayer network

consisting of two layers, where the first layer is an assortative network whereas the second

layer is a disassortative network. Networks in the two layers have identical grouping of

nodes. Connections among same group members are colored in red and blue and inter-group

links are colored in gray. Dashed gray lines between the two layers indicate node identity.

Matrices in the bottom represent layer-specific-adjacency-matrices. (B) Simple aggregation

representation of the two layer networks. The adjacency matrix in the bottom demonstrates

that the aggregation collapses the group structure of the original multilayer network. (Color

online)

links: Aijt = Ajit ∀i, j, t. By node-aligned, we indicate that each layer of a multilayer

network has an identical set of nodes V to each other.

Latent traits include key underlying variables that serve as layer-common node-

specific traits as well as layer-specific functions of network generation (Faust, 1988;

Handcock et al., 2007; Hoff et al., 2002; Hoff, 2005). For the case of a single-

layer-network, when projected on a one-dimensional trait space, a network A can

be approximated using a generating function g(· , λ) and a latent node trait vector

u. A statistical modeling procedure reverse-engineers unobserved u and g(· , λ) from

A where A ≈ g(u, λ). It is well known that existing latent space modeling schemes

can be categorized into two groups following the scale of u (Hoff, 2008). On the

one hand, the latent position models assume a continuous-valued latent space and

recover latent node positions in a continuous scale. Models belonging to this group

can be classified into different classes depending on the shape of its kernel function

(i.e. similarity metric). For example, the latent distance model assumes Aij as a

function of a metric distance between ui and uj (Hoff et al., 2002), and the random

dot product model assumes Aij as a function of uiuj (Hoff, 2005). The second group

of the latent space modeling scheme is the latent class model, in which each element
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of u is a categorical variable denoting the membership of each node (Holland et al.,

1983; Karrer & Newman, 2011; Nowicki & Snijders, 2001; Newman & Leicht, 2007).

In practice, most well-known latent class models uncover latent node positions

first and, by using the estimated low-dimensional positional coordinates, examine

the possibility of a group structure (Krzakala et al., 2013; Newman, 2006; Ng et al.,

2002; Riolo & Newman, 2014; Rohe et al., 2011; Sussman et al., 2012; Lei &

Rinaldo, 2014). In this step-by-step estimation procedure, the goal of the group

label inference is to map h(ui) → ci where ci is the group label of node i and h is a

conversion function for clustering. Taken together with u, layer-specific generating

function g(· , · , λt) recovers the latent block diagram of network at tth layer. We

adopt this step-by-step procedure.

By definition, the stochastic blockmodel assigns an identical connection probability

to node pairs (i, k) and (j, k) ∀k, if nodes i and j belong to the same group (i.e. block).

As a result, nodes from an identical group take an equivalent role in generating a

network, and they have identical expected degrees. In order to account for the degree

heterogeneity of nodes belonging to a common group, as found in most empirical

networks, we adopt a degree correction procedure which will be introduced in the

next section.

If the traits are almost identical across the entire set of layers, the estimation of

common latent traits is straightforward. However, layer-specific networks may not

always have similar node traits across all layers (Holme & Saramäki, 2012). One

special case is changes in the block structures of a temporal network. In this case,

one needs to divide layers into proper subsets to identify state-specific (i.e. regime-

specific) node traits that are assumed to be constant in each subset of layers. We call

the layer subsets, each corresponding to a unique state, as hidden network regimes,

and model their transitions to follow a non-ergodic discrete-time discrete-space

Markov process (Chib, 1998). The method is applicable to an arbitrary multilayer

network with sequentially ordered layers (i.e. Tt < Tt+1 for 1 � t � |T | − 1).

3 Multilayer extension of stochastic blockmodel

3.1 Model

Let N be the total number of nodes and G denote the total number of groups. Also,

let C be an N × G matrix of node group membership underlying the generation of

multiple networks. Then, our final goal is to approximate each layer of A = [At]

using a common C for t ∈ T . Each row vector indicates the corresponding node’s

membership so that Cik = 1 denotes that node i belongs to group k. Since we only

allow a single group membership, Cik ∈ {0, 1} and
∑

k Cik is 1.

Before clustering nodes to obtain the group membership matrix C, we first need

to infer positional coordinates of nodes in a low-dimensional continuous space.

Suppose we have a one-dimensional trait space. Following the previous approaches

incorporating null models for the block structure detection (Newman, 2006; Karrer

& Newman, 2011), the network in each layer can be understood by using a specific

realization of the following model:

Aijt = g(ui, uj , λijt) + Pijt (1)
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where ui and uj indicate node-specific variables assigned to i and j respectively, t

is layer index, and λijt is a pair-specific factor that is not node-specific. Pijt is the

expected number of edges calculated using a null model. For a network induced

by the blockmodel, since this formulation controls for the degree heterogeneity

by introducing the null model P, g(ui, uj , λijt) explains the tie formation tendency

between nodes i and j, which attributes to their block memberships.

Here, we adopt a random dot product formulation as a specification of Equation

(1), so that

Aijt = g(ui, uj , λijt) + Pijt

= λijtuiuj + Pijt (2)

(De Lathauwer et al., 2000; Kolda & Bader, 2009; Hoff, 2011). Note that for a

single-layer network, this representation is equivalent to the spectral decomposition

of A − P.

We assume that λijt is constant for every node pair in network layer t: λijt = λt
∀i, j.2 The value of λt is estimated in a continuum. Controlling for Pijt, as a node

pair becomes close in the u space, a positive λt implies a higher probability of link

formation between i and j, whereas a negative λt implies a lower probability of

link formation. Proximal positions in the u space imply similar connection profiles.

According to the social network terminology, this relationship among proximal

nodes refers to the structural equivalence in network formation (Faust, 1988).

After computing u, we aim to find a common C for At t ∈ T , which satisfies

At ≈ CZtC
T + Pt (3)

where G × G matrix Zt is a symmetric group-to-group connection profile matrix

with Zlmt representing the expected edge weight between a node pair belonging to

groups l and m, controlling for Pt.

A clear advantage of employing this step-by-step procedure, instead of incorpo-

rating a direct discrete classification approach, is that we do not need to specify

the number of groups and the structures of block diagrams before conducting the

analysis. Instead of having the group label formulation, using the low-dimensional

embedding approach reduces a substantial amount of the computational load. This

is due to the fact that the low-dimensional coordinates and layer-specific parameters

produced by our random dot formulation endogenously determine the shapes of

block diagrams. This becomes an enormous advantage especially in the case when

there are many free parameters to estimate, including the changepoint extension we

will introduce shortly.

3.2 Bayesian computation

Our computational scheme heavily relies on recent advances in Bayesian parallel

factor analysis (PARAFAC) for tensor data (Kolda & Bader, 2009; Hoff, 2009,

2011). In Hoff (2009, 2011)’s Bayesian method for factor decomposition of tensor

data, recovered node traits are random error components required primarily for

2 In the R-dimensional case, λt becomes an R-dimensional vector: 〈λ1
t , · · · , λRt 〉.
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the consistent estimation of regression slopes (Ward et al., 2013). Thus, estimates

of recovered node traits are sensitive to the specification of regression covariates

and there is no guarantee that estimates of recovered node traits fully represent

topological characteristics of multiple networks. We will show that, instead of

incorporating exogenous covariates, adopting a degree correction null model in the

estimation stage makes it possible to recover a trait space that can be interpreted as

a structural equivalence space (Faust, 1988; Hoff et al., 2002; Hoff, 2005).

Let Bt ≡ At − Pt and B ≡ [Bt|t ∈ T ]. Now assume a generalized latent space

with R dimensions. To infer N × R vector array U and R × R diagonal matrix

Λt = diag(λ1
t , · · · , λRt ), using a layer specific null model Pt,

Bt = At − Pt

Bt = UΛtU
T + Et

Et ∼ matrix normal(0, σ2IN, IN).

Note that the subsequent Bayesian analysis is based on the weighted matrix Bt, not

directly on At. Thus, the method is applicable to both discrete (binary, ordinal, or

count) and continuous network data.

For Bayesian estimation, we adopt Hoff (2011)’s hierarchical Bayesian scheme for

the three mode (U,V,W) array data where W = U, due to the symmetry condition

of A, and V is a |T | by R matrix containing λt = (λ1
t , · · · , λRt ) in each row. The prior

distributions of the hierarchical model are as follows:

{uk1, , . . . , ukN} ∼ multivariate normal(μk,Ψk)

μk|Ψk ∼ multivariate normal(μ0,k ,Ψk/κ0)

Ψk ∼ inverse Wishart(W0,k , v0,k)

U(k) ∼ matrix normal(M = 1μT
k , IN,Ψk)

σ2 ∼ inverse gamma(c0, d0).

where ui is the ith (1 × R) row vector, multivariate normal (μk,Ψk) is the R-

dimensional Gaussian distribution with mean vector μk and variance matrix Ψk ,

inverse Wishart (W0,k , v0,k) is the inverse Wishart distribution, which is a conjugate

prior for the covariance matrix of a multivariate normal distribution, and inverse

gamma(c0, d0) is the inverse gamma distribution, which is a conjugate prior for the

variance parameter σ2. Due to their conjugacy, we can construct a Gibbs sampling

algorithm for the estimation of the parameters of interest.

The posterior distribution is augmented by hierarchical parameters:

p(U,V, σ2|B) =

∫
p(U,V, μu,Ψu, μv,Ψv, σ

2|B)dμudΨudμvdΨv (4)

The parameters of the integral kernel can be sampled from the following blocked

Gibbs sampler (Liu, 1994; Hoff, 2011):

1. Sample p(U, μu,Ψu|B,V, μv,Ψv, σ
2) using the following equality:

p(U, μu,Ψu|B,V, μv,Ψv, σ
2) =p(U|μu,Ψu,B,V, μv,Ψv, σ

2)

p(μu|Ψu,B,V, μv,Ψv, σ
2)

p(Ψu|B,V, μv,Ψv, σ
2)

(5)
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2. Sample p(V, μv,Ψv|B,U, μu,Ψu, σ
2) using the following equality:

p(V, μv,Ψv|B,U, μu,Ψu, σ
2) =p(V|μv,Ψv,B,U, μu,Ψu, σ

2)

p(μv|Ψv,B,U, μu,Ψu, σ
2)

p(Ψv|B,U, μu,Ψu, σ
2)

(6)

3. Sample p(σ2|B,U, μu,Ψu,V, μv,Ψv).

The samples of this iterative simulation are simulation equivalent to direct samples

from p(U,V, σ2|B) after integrating out augmented parameters (Gelfand & Smith,

1990; Smith & Roberts, 1993). The detailed sampling algorithms are discussed in

Supplementary Information.

3.3 Degree correction

A crucial weakness of the naive stochastic blockmodel framework, lacking the degree

correction component P, is that nodes belonging to same group have identical

expected degree, thereby not allowing degree heterogeneity within a group (Karrer

& Newman, 2011; Chaudhuri et al., 2012). One way to resolve this problem is

to employ the degree correction approach, which is similar in spirit to extracting

covariance structure in the factor analysis (Karrer & Newman, 2011; Fortunato,

2010).

The development of null models for degree correction (i.e. the specification of P

for a single-layer network) has gained a particular attention among scholars studying

clustering techniques for networks (Fortunato, 2010). A core component of such null

models is to compute the baseline expected number of edges for a pair of nodes.

When inferring a group structure from a latent node trait distribution, node degree

can be a reasonable element predicting the baseline edge weight for a node pair.

Popular models such as modularity approach (Newman, 2006) and degree corrected

stochastic blockmodel (Karrer & Newman, 2011) utilize this idea. For example, an

element in the modularity null function is defined as

Pmodul
ij = kikj/2e (7)

where ki is the degree of node i and e is the total number of edges, corresponding

to the expected number of links between two nodes given degree values. It is proven

that several well-known null models are approximately equivalent to modularity

(Newman, 2013). As a result, they are interchangeable in most cases without the

loss of generality. For example, when using the spectral elements of A for the block

structure inference, by excluding its principal eigenvalue (λprinc = λ(A)max) and the

associated eigenvector (uprinc), we can define

Pprinc = λprincuprincuprincT (8)

While developed under the emphasis on the assortative structure recovery, studies

on spectral properties of the adjacency matrix A and graph Laplacians suggest

that eigenspectra of these matrices not only recover assortative structures but

also recover arbitrary block structures of networks (Hoff, 2008; Nadakuditi &

Newman, 2013; Peixoto, 2013; Rohe et al., 2011). The assortativity constraint in

Zt corresponds to non-negativity constraint in λr (Lee & Seung, 1999). Hence, in
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order to accommodate general classes of block diagrams for Zt, an algorithm needs

to allow positional coordinates ur corresponding to negative λr . In this way, one

can succeed in the simultaneous estimation of a common node group structure

underlying the generation of a multilayer network consisting of an assortative

network layer and a disassortative network layer. Accordingly, in practice, selecting

a stack of ur corresponding to the largest |urT (A − P)ur| sequentially yields recovery

not limited to assortative structures (Rohe et al., 2011; Peixoto, 2013), in which

the corresponding {ur}R are the positional coordinates corresponding to the largest

{|λr|}R . Due to this setting, our approach does not impose any restriction on the sign

of diagonal elements in Λt and infers an arbitrary block diagram with symmetric

group-to-group interactions.

3.4 Rank selection

An important procedure required for the valid estimation of node traits or a block

structure is to choose a proper number of dimensions R for the stack of latent node

trait vectors U. This procedure is not required if a researcher knows the rank of

group-to-group connection profiles matrix Z a priori. However, this parameter is

usually unknown (Fishkind et al., 2013), and one should infer a rank value from the

result of an analysis.

One feasible way to resolve this problem is via Bayesian model comparison

by selecting a number which minimizes Deviance Information Criterion (DIC)

(Spiegelhalter et al., 2002; Hoff, 2011). DIC is an approximated version of the

average out-of-sample deviance for the estimates of a parametric model. Accordingly,

calculating this value helps one to examine the performance of a model controlling

for its over-parameterization. DIC is defined as

DIC = D̄ + p̃ (9)

where D̄ is the average of −2 ln p(y|θ) obtained through Markov chain Monte Carlo

(MCMC) for the recovered parameters θ = {B, σ2
t |t ∈ T }, p̃ is the effective number

of parameters which is equal to D̄ + 2 ln p(y|θ), and θ̂ is the posterior mean of θ.

In words, R corresponding to the minimum value of DIC is the optimal number

of dimensions derived by simultaneously considering the model fit and the model

complexity.

3.5 Ex-post clustering

After obtaining the continuous latent trait values of nodes on the structural

equivalence space, one needs to cluster nodes into groups. Clustering techniques for

nodes in the low-dimensional trait space have been extensively studied in statistics

(Lei & Rinaldo, 2014; Rohe et al., 2011; Sussman et al., 2012). Sussman et al.

(2012) and Lei & Rinaldo (2014) show that, when applying the k-means clustering,

the spectral components of an adjacency matrix perfectly recover the true node

group structure if the size of a network is sufficiently large and its maximum

expected degree is as small as logN. Rohe et al. (2011) derive similar results for a

graph Laplacian. Peixoto (2013) also obtains a similar result for a general matrix

representation of networks using the random matrix approach.
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There are multiple options for the specification of h(ui) → ci, including k-means

clustering of R + 1 groups (Ng et al., 2002) on R-dimensional space. Another idea

recently proposed to cluster nodes in a latent space is multiway partitioning which

clusters each node on the basis of the proximity of its location to transformed R+1

simplex vectors (Riolo & Newman, 2014). A straightforward implementation of this

approach for R = 1 is to bisect node set based on their signs in u (Newman, 2006).

In Supplementary Information, we introduce the clustering procedure.

To summarize, our statistical model to uncover group structures consists of the

following two steps:

1. Recover common U ∈ �N×R .

2. Cluster U and find C ∈ {0, 1}N×R .

In the following section, we will discuss a detailed algorithmic procedure for the

changepoint detection which adds the regime inference stage as oppose to the

zero-changepoint case discussed so far.

3.6 Detecting changes in block structures

In many occasions, layer labels of multilayer network are sequentially ordered. In this

case, researchers often wish to detect dramatic changes in the block structures. For

example, the evolution of alliance networks in international politics may experience

several breaks in the block structure due to World Wars or the end of the Cold War.

However, there have been very few statistical methods for the network changepoint

detection. Moreover, a majority of methods for network changepoints identify breaks

in global-level network metrics such as the diameter or the average clustering

coefficient (Akoglu et al., 2015), missing important information of changes in node-

level traits. In our Bayesian framework, it is straightforward to incorporate the

estimation of breaks, corresponding to the transitions of node-level traits, and

the estimation of time-varying node traits and time-varying network generation

rules.

Our task is to infer the locations of M changepoints and estimate regime-specific

node traits and layer-specific network generating factors given the M changepoints

(i.e. M + 1 regimes). Let s(t) : t → regime be a function mapping the layer t to

a corresponding regime. In the changepoint model with the R-dimensional latent

space, Aijt = g(u(s(t))i, u(s(t))j , λ
r
t |1 � r � R) consisting of regime-specific U(s(t)) and

layer-specific 〈λ1
t , . . . , λ

R
t 〉. We aim to endogenously determine s(t), U(s(t)) and Λt for

each t.

A changepoint problem is identical to the problem of identifying a transition

matrix for hidden regimes. In order to account for multiple changepoints, it is

computationally efficient to assume a non-ergodic Markov process for the transition

of hidden regimes (Chib, 1998). Due to the non-ergodic Markov process assumption,

in our model, we assume that the process converges surely to the final regime as it

reaches the last layer. To be specific, the transition matrix Γ is an (M +1) × (M +1)

matrix in which elements other than γm,m and γm,m+1 are equal 0 for 1 � m � M and
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γM+1,M+1 = 1.3 The resulting model is as follows:

Bt = UStΛtU
T
St

+ Et

St|St−1,Γ ∼ Markov(Γ, π0)

γi,i ∼ Beta(a0, b0)

Et ∼ matrix normalN×N(0, σ2IN, IN).

The MCMC algorithm for the above model is similar with that in the previous case

except the fact that now we sample St and then sample U,V from the subset of data

partitioned by hidden states. Note that all the U-related parameters (U, μu,Ψu) are

now state-dependent unlike the previous model: (Um, μu,m,Ψu,m). The simulation of

hidden states can be done using Chib (1996)’s recursive method. The computational

cost of the proposed algorithm scales linearly with the squared value of the number

of nodes and the number of layers. See Supplementary Information for more

information.

While the proposed approach is similar in spirit to existing algorithms for

anomaly detection in dynamic graphs, in particular to the tensor decomposition-

based event detection and clustering-based event detection methods (Akoglu et al.,

2015), there are notable differences. The anomaly detection algorithms treat each

layer separately and hence do not provide common estimates of node traits within

the same regime (Araujo et al., 2014). Also, sliding-window-based hierarchical

random graph approach is only capable of modeling assortative structures, lacking

layer-specific estimates of generation rules (Peel & Clauset, 2015). In contrast, our

approach generates regime-specific estimates of node traits coupled with layer-

specific factors. Moreover, existing methods explore parameter changes over time,

lacking a statistically valid criterion to identify hidden regime changes (Kolar et al.,

2010). Our changepoint model allows a probabilistic assessment of hidden regime

transitions in network time series data. Our approach is different to the layer-

clustering method of Stanley et al. (2016), as they infer equivalent layers of a

non-ordered multilayer network, based on latent node traits, without assuming a

Markov transition process, which is an essential assumption to have for the time

series analysis. Similarly, while Peixoto (2015) introduces an extensive network time

series analysis method, it does not accommodate the Markov transition assumption

so that the algorithm does not provide parametric estimates of fundamental changes

in latent traits.

4 Simulation studies and empirical analysis

4.1 Simulation studies

In order to demonstrate the performance of the proposed approach, we generate

multilayer network data from simple block diagrams, in which two nodes belonging

to the same cluster have pin chance of connection whereas two nodes belonging to

different clusters have pout chance of connection. The number of clusters is set to

be 3. The top panels (A and B) of Figure 2 show adjacency matrices of synthetic

3 pm,n is the probability of moving from regime m to regime n and γm,m+1 = 1 − γm,m.
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Fig. 2. R = 2 Bayesian rank reduction results of the synthetic two-layer example. (A) An

assortative network A1 with three node groups having pin = 0.37 and pin = 0.02. (B) A

disassortative network A2 with three node groups having pin = 0.02 and pin = 0.37. After

conducting the joint Bayesian analysis of B = {A1 − Pmodul
1 ,A2 − Pmodul

2 }, we obtain common

node positions with confidence regions and layer-specific λ. (C) Recovered estimates of A1

through 20, 000 MCMC simulations with 10, 000 burn-in trials. Vector fields indicate the

magnitude and the direction of λrt on each axis of the latent space. Arrows pointing outward

indicate the assortative tendency of link formation on both axes. Gray lines indicate links

between node groups. λ1
1 and λ2

1 are mean posterior estimates. (D) Recovered estimates of A2.

Arrows pointing inward indicate the disassortative tendency of link formation on both axises.

(Color online)

two-layer networks with planted block structures. Panel A displays an assortative

network (pin � pout) with three node groups and Panel B displays a disassortative

network (pin � pout) with three node groups. Both networks are undirected and

unweighted, and planted group labels are identical.

The results of our analysis are presented in the bottom panel of Figure 2. For the

synthetic networks with three groups corresponding to rank-3 blocks in Figure 2,

the minimum DIC is observed at R = 2 (Table 1). This result is consistent with
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Table 1. DIC for the multilayer network depicted in Figure 2.

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

DIC 212666.5 201067.9 201170.9 201151.0 201279.5 201365.3

asymptotic findings in the spectral decomposition literature, which states that a

stochastic network induced by a block diagram with rank R + 1 is sufficient to have

R dimensions for its representation in a dot-product space when its degree-related

information is excluded (Hoff, 2008; Peixoto, 2013).4

By applying the proposed Bayesian method on B = {A1 − Pmodul
1 ,A2 − Pmodul

2 },
we obtain MCMC samples of common node positions and layer-specific generation

rules. In order to visually convey the properties of λt, we employ a vector velocity

representation. For a layer-specific-network with λ1 for the first dimension and

λ2 for the second dimension, the vector field function is given by λ1ê1 + λ2ê2.

In Figure 2(C), vectors point outward in both dimensions, indicating assortative

tendencies in both axes. In contrast, vectors in Figure 2(D) point inward, representing

disassortative tendencies on both axes. The recovered node positions and their

probabilistic distributions are drawn by contour plots in Figures 2(C) and (D). Dark

colors denote regions with a higher posterior probability than lighter colors do.

The distribution of the contours corresponds to the conditional distribution of node

positions given the data: p(U|B). The gray lines indicate links between nodes.

Next, we test our method to detect changes in the network block structure using

synthetic network time series data. We test our method for four generic types of

network changes: cluster merging, disassortative to assortative transition, modular

to core-periphery transition (Borgatti & Everett, 2000), and gradual cluster overlap

(Ahn et al., 2010; Palla et al., 2007). Each type of block structure changes is

graphically displayed in the top of each panel in Figure 3.

We generated 40-layer time series network data for each type. In Panel A, 30-node-

networks consisting of three 10-node-clusters transform into two-cluster networks.

The parameter p1 is the merging parameter, indicating the probability of inter-group

connections between red and yellow nodes. p1 (dotted black line) changes from 0.05

to 0.5. In Panel B, 30-node-networks consisting of three 10-node-groups change from

disassortative to assortative structures. The parameter p2 (dotted black line) is the

assortative transition parameter, which becomes 0 when pout = 0.5 and pin = 0.05,

and 1 when pout = 0.05 and pin = 0.5. In other words, p2 = pin−pout+0.45
0.9

. In Panel

C, 20-node-networks consisting of two 10-node-groups with assortative connections

transform into core-periphery networks in which intra-group connection probability

between the blue nodes p3 (dotted black line) drops from 0.5 to the baseline

connection probability 0.1. In Panel D, 20-node-networks consisting of two 10-node-

groups with assortative connections transform into a densely overlapping community

structure. In this example, the parameter p4 (dotted black line) denotes the size of

each cluster to the size of the whole network. As a result, for the 20 nodes case

4 The degree correction procedure eliminates the degree-related dimension in the recovered latent space.
For example, the principal eigenvector of an adjacency matrix for a single-layer network is a type of
eigenvector centrality and the first-order approximation of the principal eigenvector corresponds to
node degree (Krzakala et al., 2013; Peixoto, 2013).
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Fig. 3. Changepoint detection results for synthetic planted times series. For each panel, the structures of representative layers of the 40-layer network

are depicted on the top. Below, inferred node positions for each regime are plotted. Each right middle subplot indicates the mean λrt estimate on each

dimension. Each right bottom subplot shows the regime probability drawn from the changepoint analysis. Black dashed lines indicate the values of the

planted single parameters, {p1, p2, p3, p4}, for the synthetic time series network data over time. Each time series represents a specific type of network structural

changes: (A) cluster merging, (B) disassortative to assortative block structure transition, (C) community structure to core-periphery structure transition, and

(D) non-overlapping community structure to overlapping community structure transition, respectively. For detailed explanation of the figure, please see the

main text. We conduct 20, 000 MCMC simulations and 10, 000 burn-in trials for each example. (Color online)
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depicted here, p4 = 0.5 corresponds to a non-overlapping structure with 10 nodes

for each cluster, whereas p4 = 0.75 refers to a network consisting of 10 nodes

with overlapping cluster memberships and 10 nodes with non-overlapping cluster

memberships. We employed modularity as a null function in the estimation.

Overall, our method correctly uncovers planted parameter changes in all four cases

(Figure 3 bottom right subplots). Two scatter plots in the bottom left of each panel

show estimates of latent node traits (Um) before and after the breaks. The planted

block structures are well identified by our method. Note that our method correctly

identifies the intermediate transition period, consisting of random networks, in Panel

B, uncovering three hidden regimes instead of two. Two plots in the bottom right

of each panel display changes in layer-specific λrt (top right) and estimated regime

probabilities (bottom right), respectively. In Figure 3(A), for example, we observe a

significant drop of λ2
t reaching 0 in the second regime, as a result of the transition

from three-cluster networks to two-cluster networks. Similarly, in Figure 3(C), the

transition of the blue cluster into the peripheral node group, by losing its modular

structure, yields a notable drop in both λ1
t and λ2

t . The R-implemented version

of the algorithm, used in the study, is reasonably fast, producing 100 samples in

30 seconds on a laptop for the simulated examples analyzed. It is still affordable for

larger networks with 1,000 nodes, producing 100 samples within an hour. We expect

that C/C++ implementation of the algorithm will yield a substantial improvement

in its computational speed.

4.2 Amplifying resolution by joint modeling of multiple networks

Existing studies on spectral graph theory suggest that most graph clustering

techniques for a single-layer network suffer from the resolution limit problem. That

is, for a sufficiently dense network, it is impossible to identify node groups when

|cin − cout| < q
√
c where cin/N and cout/N denote the probabilities of within-block

and without-block link formation, respectively, and c = {cin + (q − 1)cout}/q denotes

the average degree for a network with q equal size groups (Krzakala et al., 2013;

Fortunato & Barthelemy, 2007; Nadakuditi & Newman, 2013; Peixoto, 2013). Yet,

in practice, given the stochastic nature of the data generating process, well-known

detection methods perform worse than the theoretical expectation for finite size

networks (Figure 4).

A feasible solution for this problem is to extend the number of observations

sharing a node set and group labels. Figure 4 illustrates that our multilayer extension

powers up the quality of classification practice. Each network layer in Figure 4 is

a realization of a stochastic blockmodel having the same structure (i.e. the three-

group homophilic block diagram) with the homophilic network (N = 300 and

c = 15) depicted in Figure 1 (A). As the number of network layers sharing the same

group structure increases, the quality of node group labeling improves.

After the identification of the stack of the common node position vectors U, we

group the nodes using k-means clustering. Variation of information (Meila, 2003)

measured between the recovered labels and the planted labels reaches 0 when these

two group label vectors become identical. We observe that, for the single layer case,

variation of information is greater than 0 (i.e. the two label vectors are identical)

over the entire range of cin − cout, despite the fact that the majority of cin − cout
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Fig. 4. Impact of the number of layers on the clustering quality. |T | is the number of layers

used for the estimation. Pprinc is used as the null model Krzakala et al. (2013). Variation of

Information is a normalized dissimilarity index which becomes 0 when the group label inferred

from the recovered node trait is identical to the planted group labels Meila (2003). Network

on each layer is a realization of a three-group homophilic block diagram with the average

degree c ≈ 15 and 100 nodes for each group. Black dashed line indicates the theoretical

resolution limit 3
√

15 (Krzakala et al., 2013; Fortunato & Barthelemy, 2007; Nadakuditi &

Newman, 2013; Peixoto, 2013). We conduct 20, 000 MCMC simulations and 10, 000 burn-in

trials for each case. (Color online)

values exceed the resolution limit. In contrast, increasing the number of layers does

diminish variation of information for every cin − cout value, and having five layers

guarantees a perfect recovery of the planted node groups above a certain value

of cin − cout.

4.3 Multilayer social networks online and offline

We analyze real-world multilayer network data among 61 employees (professors,

postdoctoral researchers, PhD students, and administration staff) of the Department

of Computer Science at Aarhus University (Magnani et al., 2013). The dataset records

five types of online and offline social ties covering current working relationships,

repeated leisure activities, regularly eating lunch together, co-authorships, and

friendships on Facebook, respectively.

Our goal is to identify latent social groups of 61 employees across the five layers,

based on the assumption that common latent social groups breed connections on

each layer via layer-specific generation rules. We conduct R = 2 rank reduction on

the five-layer network, the results of which are reported in Figure 5. Top panels

indicate group-to-group connection matrices, where the number on each block

represents the number of links between the corresponding group pair. Bottom left

panel shows the recovered node traits with the vector field representing λrt for the

network of dyads having lunch together. Bottom right panel shows two-dimensional

λrt of each layer. The three groups identified using Riolo & Newman (2014)’s method

are denoted as {R,G,B}, respectively in the bottom left. All networks exhibit clear

homophilous structures.

The distribution of node positions on the orthogonal axes helps us find differential

factors affecting the generation of multiple types of relationships. Given the common
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Fig. 5. Common social groups inferred from five-layer online and offline interaction records

among 61 members of a computer science department. The top panels indicate group-to-

group connection matrices, where the number on each block represents the number of links

between the corresponding group pair. The bottom left panel shows the recovered node traits

with vector fields representing λrt for the network of dyads having lunch together. The bottom

right panel shows two-dimensional λrt of each layer. We conduct 20, 000 MCMC simulations

and 10, 000 burn-in trials. (Color online)

node coordinates, λ1
t is larger than λ2

t for most layers (plots in the bottom right).

A notable outlier is Facebook friend relationships (FB), the only online interaction

records included in the study. We can conclude that while the proximity in offline

relationships is largely explained by the variation of node positions on the first

dimension, online relationships are more likely to be explained by the second-

dimensional coordinates.

4.4 Changepoint analysis of congressional voting records

The historical roll call voting record of United States (U.S.) Senate is an attractive

dataset to study transitions in network generating processes over time. One of the

most important scholarly debates in American politics is whether and when the

voting similarity of legislators between and within parties has changed dramatically.

We conduct a changepoint analysis, using voting profile similarity network data of

U.S. Senate members from 1911 to 2009. The analysis unveils endogenous historical

regimes representing distinct constellations of ideological coalitions among U.S.

states.

Each network layer represents a roll call voting similarity profile among 48 states

in a given session. We build statewise voting agreement intensity networks for 49

sessions by taking the state average of voting agreement scores among Senators.

Specifically, we compute voting agreement intensity scores for each senator pair at

session t (Wijt) by defining Wijt =
∑

k DiktDjkt/(
∑

l Dlkt − 1) where Dikt = 1 if and

only if person i voted yea to kth bill and otherwise Dikt = 0. Then, we take the

state average of Wijt to construct the statewise voting agreement intensity network:

Asi,sj ,t = 1
4

∑
k∈si,l∈sj Wk,l,t where si indicates the state i belongs to.

Our changepoint analysis finds three regimes as shown in Figure 6. Matrices in

the top panel denote regime-specific voting similarities among 48 states weighted

by regime probabilities of each session. States are realigned based on their voting
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Fig. 6. Endogenous regime changes in the U.S. Senate voting records. For 49 sessions ranging

from the 62nd to the 110th Senate sessions, we construct a 48 by 48 network for each layer

representing the roll call voting similarity profiles among Senators from 48 states, excluding

Alaska and Hawaii. Matrices in the top panel denote regime-specific voting similarities

among 48 states weighted by regime probabilities of each session. The red color in the

matrices indicates a high level of the voting overlap among the states whereas the blue color

indicates a low level of voting overlap. Black lines indicate group boundaries inferred by

applying the k-means clustering on two-dimensional regime-specific node trait distributions.

State names are omitted due to the space limitation. We conduct 20, 000 MCMC simulations

and 10, 000 burn-in trials for the changepoint detection. (Color online)

similarity for a presentational purpose. As clearly shown by the clustering of high

values near the diagonal of the agreement matrices, positive λrt for every dimension

of the multilayer networks indicates the presence of assortative associations within

coalitions over the entire time period. The plot in the bottom panel displays regime

change probabilities. The three regimes can be labeled as the pre-New-Deal regime,

the southern realignment regime, and the two-party polarization regime, respectively.

The timings of regime changes are highly consistent with historical periods identified

by scholars in American politics (McCarty et al., 2006). These changes are strongly

associated with the historical trend of southern realignment.

The transition from the first to the second regime coincides with the time when the

mean ideological difference between southern Democrats and northern Democrats

started to grow (McCarty et al., 2006). The transition from the second to the third

regime corresponds to the period when their mean ideological difference reached its

maximum value and started to fall. Also, these two breaks respectively correspond

to the beginning of the declining phase of the party polarization (i.e. the level of

disagreement between Democrats and Republicans) and the period from which the

party polarization level started to grow rapidly.

Another striking observation is on the coalitional origin of the extreme party

polarization in the recent Congress, illustrated by the final regime probability of

each session. While the extreme party polarization is observed in the very recent
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sessions (McCarty et al., 2006), its corresponding state coalition structure started to

emerge after the 80th session (1947–1949) and became a dominant group structure

explaining the majority of roll call voting patterns among the Senators around the

90th session (1967–1969). On the basis of this result, we can argue that there has

not been a significant change in the state coalition structure over the last 40 years,

but there has been a fixation of the group structure leading to an extreme level

of party polarization in the contemporary Congress. While these results provide

more direct statistical evidence of changes than Mucha et al. (2010), in which they

provided descriptive results without parametric modelings of the timing of changes

and changes in the data generating process, do, Figure 6 and Mucha et al. (2010)’s

findings are largely in accordance with each other. The largest changes in community

assignments of Mucha et al. (2010) took place around the structural breaks depicted

in Figure 6.

5 Summary and discussion

Although there have been significant advances in techniques to discover large-

scale organizations of complex networks, a practical statistical scheme for the

stochastic blockmodeling of multilayer networks and the network times series

analysis has been missing. In this article, we discuss a Bayesian framework for

the stochastic blockmodeling of multiple networks, and introduce a technique to

discover changepoints in multilayer networks with ordered layers.

While empirical examples in the study consist of social and political data, our

methodology can be applied to any natural or artificial network with multiple

layers. For instance, in order to know the organizational principle of a neural

network, one can apply the multilayer approach to analyze a two-layer network of a

connectome, in which each layer consists of an excitatory synaptic network and an

inhibitory synaptic network, respectively. Also, one can use the method to examine

the geographical role differentiation in a traffic network time series dataset where

the network on each layer represents traffic flows between geographical regions at a

given time point.

Many real-world networks may contain node centrality distributions and other

non-group-based properties as their key attributes. Although our study focuses

on the stochastic blockmodel recovery, a different specification of the null model

recovers substances other than group related traits. For example, setting Pt =

0 allows the first dimension of the recovered trait space to represent the node

centrality. If the changepoint detection algorithm is added, the model detects changes

in node centrality ranking over time. Other representations of networks, such as

graph Laplacians and modified modularity matrices (Expert et al., 2011), can be

implemented as Bt in the Bayesian rank reduction process.

Technical development of the multilayer modeling framework is a promising area

for a further scrutiny. An immediate improvement of the present algorithm can be

made by generalizing it for the directed network trait recovery. Also, instead of

fixing the number of changepoints, an algorithm can be developed to endogenously

determine the number of changepoints. Not limited to these examples, establishing

statistical criteria for understanding interconnectivity between layers would provide

a useful means to understand hyper-dimensional network datasets.
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