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ABSTRACT
The maximisation of control power is considered for an aircraft with multiple control sur-
faces, with the force and moment coefficients specified by polynomials of the control surface
deflections of degree two. The optimal deflections, which maximise and minimise any force
or moment coefficient, are determined subject to constraints on the range of deflection of each
control surface. The results are applied to a flying wing configuration to determine: (i/ii) the
pitch trim, at the lowest drag for the fastest climb, and at the highest drag for the steepest
descent; (iii) the maximum and minimum pitching moment; (iv) the maximum and minimum
yaw control power and the fraction needed to compensate an outboard engine failure for sev-
eral propulsion configurations; (v) the maximum and minimum rolling moment. The optimal
use of all control surfaces has significant advantages over using just one, e.g. the range of drag
modulation with pitch trim is much wider and the maximum and minimum available control
moments larger.
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NOMENCLATURE

AR aspect ratio
CD drag coefficient (opposite to the velocity; wind axis)
CL lift coefficient (normal to the velocity; wind axis)
CX longitudinal force coefficient (body axis)
CY side force coefficient (body axis)
CZ transverse force coefficient (body axis)
C� rolling moment coefficient (body axis)
Cm pitching moment coefficient (body axis)
Cn yawing moment coefficient (body axis)
δ1 body flap deflection
δ2 inner wing flap deflection
δ3 middle wing flap deflection
δ4 outer wing flap deflection
δ5 rudder flap deflection
i = 1,2,3,4,5 numbering of control surfaces
Cα component of force or moment
aα0 static polynomial coefficient of first degree for force/moment

coefficient α
bα0 static polynomial coefficient of second degree for force/

moment coefficient α
Cα0 static polynomial coefficient of zero degree for force/moment

coefficient α
aα i polynomial coefficient of first degree for control surface i and

force/moment coefficient α
bα i polynomial coefficient of second degree for control surface i

and force/moment coefficient α
� reference distance
c̄ mean aerodynamic chord
xref reference position
M Mach number
m mass
g acceleration of gravity
W weight
S wing area
ρ mass density of air
U speed

Abbreviations
c.g. centre of gravity
BWB blended wing body
FW flying wing
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1.0 INTRODUCTION
There is a substantial literature on the optimisation of the deflection of several control sur-
faces,(1–5) for example, to minimise trim drag in cruise; this is particularly relevant to the
flying wing (FW) configuration or blended wing body (BWB)(6–9) that has the whole span
available at the trailing-edge for control and high-lift surfaces, and also a large fraction of
the leading-edge. For example, the trailing-edge surfaces may consist of a body flap inner
and outer flaps and ailerons that may be used for lift, pitch or roll control. The present work
extends existing knowledge on the subject in two directions: (i) on theoretical side(10–13) by
allowing for the deflections of multiple control surfaces, that gives more options to obtain the
desired forces or moments with less risk of flow separation or aeroelastic effects; (ii) on the
application side(14–17) by considering not only minimum drag but also maximum drag (e.g.
for fast descent) and maximum control moments for emergencies, such an engine-out con-
dition. These applications are made to a FW, extending the scope of the literature(18–22) that
concentrates mostly on minimum drag for pitch trim in cruise. Thus the present paper is also
a contribution to the expanding literature on various aspects of the BWB aircraft. (23–26)

The theory concerns the maximisation of control power in low-speed flight for a FW air-
craft configuration and is considered as concerns several components of control forces and
moments. First a method of finding the minimum and maximum forces and/or moments is
presented (section 1); it finds the extrema (section 3) of forces and moments (section 2), tak-
ing into account the range of possible control surface deflections (section 4). The method is
presented first (sections 2 to 4) assuming (i) decoupled controls specified by (ii) polynomi-
als of second degree in the deflections. The theory can be generalised to remove these two
restrictions; since these generalisations are not needed in the present paper, they are omitted
for the sake of brevity and left for future work.

The theory (sections 2 to 4) is applied to a FW aircraft configuration (sections 5 to 11)
with five control surfaces: a body flap, wing inner, middle and outer flaps, and rudders. A
baseline low-speed straight and level steady flight condition (section 5) is considered in sev-
eral situations: (i) the minimum drag decrease (10%) to achieve pitch trim with highest climb
rate after take-off (section 6); (ii) maximum drag (section 7) increase (135%) with constant
lift and pitch trim to achieve the steepest descent to land; (ii) the maximum and minimum
pitching moment (section 8); (iv) the maximum and minimum yawing moment (section 9);
(vi) the implications for the worst case of outboard engine failure (section 10); (vii) the maxi-
mum and minimum rolling moment (section 11). The conclusion (section 12) summarises the
low-speed control capabilities which result from the optimisation method.

2.0 FORCES AND MOMENTS DUE TO MULTIPLE
CONTROL SURFACES

The forces and moments along the three axis are denoted (1b) by Cα with the index α running
(1a) from one to six:

α= 1, 2, . . . , 6 : Cα = {X , Y , Z, L, M , N} ; . . . (1a,b)

the index i numbers the N control surfaces.

i = 1, . . . , N = 5 : i = {body flap, inner flap, middle flap, outer flap, rudder} . . . . (2a,b)
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The forces and moments due to the deflection δi of a surface are assumed to: (a) depend
only on the deflection of that surface; (b) to be specified by a polynomial of the second degree:

Cα (δi)= Cα0 + aαiδi + bαi (δi)
2 , . . . (3)

Cα0 = Cα (δi = 0) , aαi = dCαi

dδi
, 2bαi = d2Cαi

dδ2
i

, . . . (4a-c)

which involves: (i) the static coefficient (4a); (ii) the control slope (4b); (iii) the control curva-
ture (4c). The assumptions (a) and (b) do not restrict the subsequent applications in this paper,
and the generalisation of the theory to remove these two restrictions is omitted for reasons of
brevity. The presentation of the method of maximisation of control power is thus made under
the assumptions (a) and (b). The control effect for the surface i is the deviation from the static
value:

�Cαi (δi)= Cαi (δi)− Cα0 = aαiδi + bαi (δi)
2 . . . . (5)

The sum over all control surfaces of (3)/(5) specifies:

Cα =
N∑

i=1

Cαi = Cα0 +
N∑

i=1

[
aαiδi + bαi (δi)

2
]

, . . . (6)

�Cα =
N∑

i=1

�Cαi =
N∑

i=1

[
aαiδi + bαi (δi)

2
]

, . . . (7)

the total force/moment (6) and the total control effect (7).

3.0 EXTREMA (MAXIMUM AND MINIMUM) OF FORCES
AND MOMENTS

The extremum of a force or moment is obtained for the deflection which leads to a zero
derivative (8a):

0 = dCαi

dδi
= aαi + 2bαi δ̄i, δ̄i = − aαi

2bαi
. . . . (8a,b)

In the case of quadratic control polynomial (3) there is only one extremum (8b). If the
second-order derivative is positive/negative the extremum is a minimum/maximum:

d2Cαi

dδ2
i

= 2bαi =
{
> 0 implies δ̄i is minimum of Cαi,
< 0 implies δ̄i is maximum of Cαi.

. . . (9a,b)

The value of the extremum is:

C̄αi = Cαi

(
δ̄i

) = Cα0 + aαiδ̄i + bαi

(
δ̄i

)2 = Cα0 + aαi

(
− aαi

2bαi

)
+ bαi

(
− aαi

2bαi

)2

, . . . (10)
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which simplifies to (11b):

δimin ≤ δ̄i ≤ δimax : C̄αi ≡ Cα0 − (aαi)
2

4 bαi
. . . . (11a,b)

This extremum (11b) is achievable only if the value (8b) lies within the limits of deflection
of the control surface (11a). If not, then the extremum lies at one of the deflection limits, as
detailed next.

4.0 EXTREMA IN THE DEFLECTION RANGE OR AT THE
LIMITS

Consider first that a maximum of Cαi is sought. It will occur in the range of deflection if
(9b, 11a) are met:

δimin ≤ δ̄i = − aαi

2bαi
≤ δimax ; bαi < 0 : Cαimax = Cαi

(
δ̄i

) = Cα0 − (aαi)
2

4bαi
, . . . (12a-c)

if (12a) is not met the maximum (12c) is not achievable, because it lies outside the deflection
range; if (12b) is not met there is no maximum, and there is a minimum instead (9a). In both
cases the maximum will be at one of the extreme deflections. If the extreme defections are
symmetric (13a):

δimin = −δimax : Cαimax =
{

Cαi

(
δimax

)
if aαi > 0,

Cαi

(
δimin

)
if aαi < 0,

. . . (13a,b)

the maximum will be at: (i) the largest deflection (13a) for positive slope; (ii) the lowest
deflection (13b) for negative slope. The reason is that symmetric deflection (14a) implies
(14b).

δimin = −δimax : bαi

(
δimin

)2 = bαi

(
δimax

)2
, . . . (14a,b)

and thus:

Cαi

(
δimax

) − Cαi

(
δimin

) = aαi

(
δimax − δimin

)
. . . . (15)

Thus the maximum is at δimax if aαi > 0 and at δimim if aαi < 0.
In the case a minimum is sought similar reasonings apply. The minimum lies within

the range of deflection if (9a)=(16b) and (11a)=(16a) are met, and then takes the value
(11b)=(16c):

δimin ≤ δ̄i = −aαi/2bαi < δimax , bαi > 0 : Cαimin = Cαi

(
δ̄i

) = Cα0 − (aαi)
2 /4bαi.

. . . (16a-c)
If one of the conditions (16a,b) is not met, the minimum is at an extreme of the range of

deflection. In the case of symmetric maximum deflections the minimum is: (i) at the lowest
deflection (17a) for positive slope; (ii) at the largest deflection (17b) for negative slope:
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Table 1
Reference flight condition

Quantity Symbol Value Unit
Mach number M 0.2 –
Sound speed s 340 m/s
Airspeed U = sM 68 m/s
Air density ρ 1.293 kg m−3

Dynamic pressure q = (ρ/2)U2 2.989 × 103 N m−2

Wing area S 2052.0 m2

Chord at wing root c 5.896×10 m
Weight W 9.15 × 105 N
Vertical force coefficient CZ0 0.14916 –
Angle-of-attack α 2.7566 ◦
Angle-of-sideslip β 0.0 ◦
Pitching moment coefficient CM0 2.5555 × 10−2 –
Yawing moment coefficient CN0 −4.0213 × 10−6 –
Rolling moment coefficient Cl0 4.0140 × 10−5 –
Lateral force coefficient CY0 0.0 –
Horizontal force coefficient CX0 6.5745 × 10−6 –
Lift coefficient CL0 0.14917 –
Drag coefficient CD0 6.4451 × 10−3 –
Span b 99.60 m
Mean aerodynamic chord c̄ 20.60 m
Aspect ratio AR 4.834 –
Reference position for aero-

dynamic forces and moments xref 33.32 m

δimin = −δimax : Cαimin =
{

Cαi

(
δimin

)
if aαi > 0,

Cαi

(
δimax

)
if aαi < 0;

. . . (17a,b)

these conclusions follow from (15a–15c) mutatis mutandis.

5.0 REFERENCE LOW-SPEED FLIGHT CONDITION
The preceding method of optimisation of control power is particularly relevant to low-speed
flight for which low dynamic pressure requires larger control deflections. A straight and level
steady flight at M = 0.2 is assumed, for a reference large passenger BWB whose aerodynamic
and control data indicated in the Tables 1 to 3. The data in Table 1 leads to a lift coefficient
that balances the weight:

CL0 = 2W/ρSV 2 = W/qS = 0.14916. . . . (18a)

The static lift coefficient is given in Table 2 for zero side-slip angle:

β = 0 : CL0 = − 0.0117 + 3.3516α − 0.16966α2. . . . (18b)

For the value (18a) of the lift coefficient (18b) the angle-of-attack is a root of (19a):
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Table 2
Static force and moment coefficients Cα = cα0 + aα1 α + bα2 α2 at β = 0

Force/Moment cα0 aα1 bα2

CL −1.1700 × 10−2 3.3516 −1.6966 × 10−1

CD 5.1880 × 10−3 −6.8113 × 10−3 6.9799 × 10−1

CY 0.0 0.0 0.0
Cm 1.1630 × 10−2 2.8915 × 10−1 −1.8186 × 10−1

Cn 4.4050 × 10−7 −1.0404 × 10−4 2.8744 × 10−4

Cl 1.8360 × 10−5 3.8850 × 10−4 9.9777 × 10−4

Table 3
Flap force and moment coefficients

Flap number 1 2 3 4 5
Location Body Inner wing Middle wing Outer wing Rudder
Pitching moment
coefficients Cm

ami −0.07267 −0.00340 −0.01656 −0.01563 0.01885
bmi 0.00037 0.00590 0.00234 0.00158 0.00206

Lift coefficients CL aLi 0.23344 0.19079 0.12024 0.05995 −0.05101
bLi −0.00455 −0.02808 −0.00674 −0.00478 −0.00246

Drag coefficients CD aDi 0.00537 0.003745 0.00067 −0.00005 −0.00093
bDi 0.01867 0.01283 0.00930 0.00596 0.00824

Side force
coefficients CY

aYi −0.02489 0.00433 0.00338 0.00197 0.05493
bYi −0.00538 −0.00416 −0.00401 −0.00247 −0.00132

Yawing moment
coefficients Cn

aNi −0.01396 0.00464 0.00136 0.00066 0.03454
bNi −0.00537 −0.00821 −0.00966 −0.00814 −0.00209

Rolling moment
coefficients C�

a�i 0.01866 0.09317 0.0915 0.06039 −0.01552
b�i 0.00122 −0.00997 −0.00900 −0.00597 −0.00093

α2 − 19.7548α + 0.94813 = 0; α = 4.8112 × 10−2 rad = 2.7566◦, . . . (19a,b)

the only root with a reasonable value is (19b). The value (19b) of the angle-of-attack leads
to the drag (20a), side force (20b), pitching (20c), yaw (20d) and rolling (20e) moment
coefficients:

CD0 = 6.4760 × 10−3, CY0 = 0.0, Cm0 = 2.5121 × 10−2,

Cn0 = −3.8997 × 10−6, Cl0 = 3.9361 × 10−5, . . . (20a-e)

that are calculated from the formula:

Cα0 ≡ Cα (δi = 0)= c0α + a1α α + b2α α
2, . . . (21)

using the static coefficients in Table 2.
The horizontal and vertical force coefficients in body axis are specified by the lift and drag

coefficients (Fig. 1) by:

[
CZ0

CX 0

]
=

[
cos α sin α

− sin α cos α

] [
CL0

CD0

]
=

[
1.4930 × 10−1

− 7.0507 × 10−4

]
. . . . (22a,b)
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Figure 1. Relations between lift L and drag D in wind axis and longitudinal X and transverse Z forces in
body axis.

The lift coefficient (18a) and the vertical force coefficient (22a) are close because the
angle-of-attack is small; the horizontal force coefficient (22b) is much smaller than the drag
coefficient (20c) and with opposite sign. The pitch trim is considered with: (i) the weight
applied at the c.g. at quarter chord (23a); (ii) the pitching moment, as all other aerodynamic
forces at the reference point (23b); (iii) relative distance is (23c):

xcg = 0.25 c = 14.74m, xref = 0.565 c = 33.31m,

x̄ = xref − xcg = 0.315 c = 18.57 m. . . . (23a-c)

The balance of pitching moment for lift equal to weight (24a) is (24b):

L = W : M = M0 − W x̄, Cm = Cm0 − 2Wx̄/ρSU2�≡ Cm0 +�Cm, . . . (24a-c)

corresponding to (24c) the reference length is (25a). It leads to the pitching moment
coefficient (25b):

�= 36.416m;�Cm = −2W x̄/ρSU2�= −7.6064 × 10−2, . . . (25a,b)

using also the values from Table 1. From (20c) and (25b) it follows that the pitching moment
coefficient to be trimmed is

Cm = Cm0 +�Cm = −5.0943 × 10−2, . . . (26)

that is a pitch down.
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6.0 PITCH TRIM WITH MINIMUM DRAG
The pitching moment coefficient (25b) must be balanced by deflection of the control surfaces:

− 7.6064 × 10−2 =
5∑

i=1

aMiδi + bMiδ
2
i , . . . (27)

where δi is the deflection of each flap, and all flap coefficients aαi and bαi are listed in Table 3;
they were calculated from tables for zero angle-of-sideslip (β = 0) and angles-of-attack
α = 4◦ and α = 6◦, interpolating linearly for the angle-of-attack (19b). These interpolated
polynomial coefficients are then used to calculate forces and moments coefficients, e.g. the
pitching moment (27) for the exact angle-of-attack (19b). The (i) linear interpolation of force
and moment coefficients would have given an error O

(
α2

)
equivalent to neglecting the second-

order term; the (ii) interpolation of the polynomial coefficients should give in the force and
moment with an error O

(
α3

)
, consistent with retaining the second-order term and omitting

the third-order term. The former (i) would represent a degradation in accuracy whereas the
latter (ii) does not, and hence is adopted in the present calculation. The trimming should not
change the lift (28a)

0 =
5∑

i=1

(
aLiδi + bLiδ

2
i

)
, (CD)min =

5∑
i=1

(
aDiδi + bDiδ

2
i

)
, . . . (28a,b)

and should minimise the drag (28b). The choice of minimisation drag while keeping lift and
pitch trim is intended to avoid flight path changes that can be dangerous in low-speed flight
near the ground. Using the values in Table 3, the optimisation problem is: (i) to keep constant
the lift (29) and pitching moment (30):

0 =�CL = 0.23344δ1 − 0.00455(δ1)
2 + 0.19079δ2 − 0.02808(δ2)

2 + 0.12024δ3

− 0.00674(δ3)
2 + 0.05995δ4 − 0.00478(δ4)

2 − 0.05101δ5 − 0.00246(δ5)
2 ; . . . (29)

Cm = 2.5121 × 10−2 − 0.07267δ1 + 0.00037(δ1)
2 − 0.00340δ2 + 0.00590(δ2)

2 − 0.01656δ3

+ 0.00234(δ3)
2 − 0.01563δ4 + 0.00158(δ4)

2 + 0.01885δ5 + 0.00206(δ5)
2 ; . . . (30)

(�CD)min = 0.00537δ1 + 0.01867(δ1)
2 + 0.003745δ2 + 0.01283(δ2)

2 + 0.00067δ3

+ 0.00930(δ3)
2 − 0.00005δ4 + 0.00596(δ4)

2 − 0.00093δ5 + 0.00824(δ5)
2 .
(31)

(ii) to minimise the drag (31). Eight methods of optimisation with constraints were pre-
sented in an earlier paper(6); of these, method VIII offered the best combination of accuracy,
simplicity and clarity of interpretation. It is based on selecting the most effective control
surfaces to generate each component of the aerodynamic force or moment of interest. This
method is used in the sequel with suitable adaptations.

For a first iteration only terms linear in the deflections are considered. Concerning the drag
it is reduced (Table 3) by: (i) negative deflection of the first three flaps, with the body flap
being most effective; (ii) positive deflection or the outer flap and rudder, with the rudder
being most effective. As concerns drag control the least effective surfaces are the middle and
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outer flaps; thus the optimisation is performed most accurately if the deflections δ4 and δ3

are eliminated from the system of equations (29–31), as follows: (i) the linear form of (29) is
used to express approximately the deflection of the outer wing flap in terms of the others:

δ4 = − 3.8939δ1 − 3.1825δ2 − 2.0057δ3 + 0.8509δ5; . . . (32)

(ii) this is substituted in the remaining constraint, i.e. constant pitching moment (30; 26), and
the objective, i.e. minimum drag (31), which became independent of δ4:

− 7.6064 × 10−2 = −0.01181δ1 + 0.04634δ2 + 0.01479δ3 + 0.005550δ5, . . . (33a)

�CD = 0.005565δ1 + 0.003904δ2 + 0.0007703δ3 − 0.0009725δ5; . . . (33b)

(iii) the deflection δ3 of the next least effective control surface is expressed in terms of the
remaining more effective using the second constraint (33a) of constant pitching moment:

δ3 = − 5.1429 + 0.7985δ1 − 3.1332δ2 − 0.3753δ5; . . . (34)

(iv) substituting (34) into (33b) specifies the drag, satisfying both constraints on lift and
pitching moment, in terms of the deflections of the three most effective control surfaces:

�CD = − 0.003969 + 0.006180δ1 + 0.001490δ2 − 0.001262δ5; . . . (35)

(v) the quadratic terms are re-introduced in the drag in the same proportion to the linear terms
as before in (31):

�CD = − 0.0003969 + 0.006180δ1 (1 + 3.4767δ1)

+ 0.001490δ2 (1 + 3.4259δ2)− 0.001262δ5 (1 − 8.8602δ5) , . . . (36)

leaving a formula for minimisation without constraints, with three independent variables.
The next steps are: (vi) the deflections of the body δ1 and inner δ2 flaps must be negative

to minimise the drag, whereas the deflection of the rudder must be positive to further reduce
drag, as follows from (8b):

δ̄1 = − 1/(2 × 3.4767)= −0.14381 rad = −8.2399◦, . . . (37a)

δ̄2 = − 1/(2 × 3.4259)= −0.14595 rad = − 8.3621◦, . . . (37b)

δ̄5 = 1/(2 × 8.8602)= 0.056432 rad = 3.2333◦; . . . (37c)

(vii) the substitution of (37a–c) in (34) and (32) would lead to the deflection of the two least
effective surfaces,

δ̄3 = − 4.8216 rad = − 276.26◦, δ̄4 = 10.325 rad = 591.59◦; . . . (37d,e)

(viii) the values (37d,e) exceed the limit δ0 = 25◦; (ix) since these are the least effective control
surfaces, the values (37d,e) are discarded, viz. these surface are not used δ3 = 0 = δ4, so the
deflections are:

δ̄i = (− 0.14381, − 0.14595, 0, 0, +0.056432) rad = (− 8.2399, − 8.362, 10, 0, +3.2333)◦ ;
. . . (38)
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(viii) the corresponding drag (31) is (39a):

(�CD)min ≡�C̄D =�CD

(
δ̄i

) = −6.8567 × 10−4, (�CD)min /CD0 = −0.10588,
. . . (39a,b)

and thus the pitch trim decreases drag (20a) by 10.6% in (39b) to the value:

CDmin = CD0 + (�CD)min = 6.4760 × 10−3 − 5.7903 × 10−4 = 5.7903 × 10−3, . . . (39c)

(x) the comparison with pitch trim by the body flap alone (40a) i.e. the first term of (30) with
unchanged Cm leads (40b) to a large deflection (40c), close to the limit ±25◦:

¯̄δ2 = ¯̄δ3 = ¯̄δ4 = ¯̄δ5 = 0 :
( ¯̄δ1

)2 − 196.41 ¯̄δ1 + 67.895 = 0, ¯̄δ1 = −0. 34633 rad = − 19.84◦;

. . . (40a-d)

(xi) the associated drag would be a penalty (40e) instead of a reduction for the optimal solution
(39b), that is as increase (40f) of 63.3% instead of a reduction (39b) of 10.6%:

� ¯̄CD =�CD

( ¯̄δi

)
= 0.00537 ¯̄δ1 + 0.01867

( ¯̄δ1

)2 = 4.098 × 10−3,� ¯̄CD/CD0 = 0.63286.

. . . (40e,f)
(xii) full pitch trim (30) with (26) would require (40g) a deflection of the body flap (40h) not
possible within the 25o limit:

(
δ̃1

)2 − 196.41δ̃1 + 205.58 = 0, δ̃1 = 1.0523 rad = 60.294◦ > 25◦. . . . (40g,h)

In conclusion A1 the optimal pitch trim (38) compared with deflection of body flap alone
(40a,c) gives: (a) smaller deflections of control surfaces (38) vs. (40d); (b) lower trim drag
(39a) vs. (40e) by a difference (41a) that corresponds (41b) to 73.9% of the drag;

�C̄D −� ¯̄CD = −4.7837 × 10−3,
(
�C̄D −� ¯̄CD

)
/CD0 = 0.73868; . . . (41a,b)

(c) a trim drag reduction of 10.6% in (39b) the optimal case vs. a drag penalty of 63.3% in
(40f) using the body flap alone; (d) in the comparison (a–c) it is assumed (26) constant, since
full pitch trim is not possible (40g,h) with body flap alone.

7.0 MAXIMUM DRAG FOR GREATEST RETARDATION
The minimum drag for pitch trim is desirable for the fastest climb after take-off; the reverse,
the maximum drag with pitch trim, may be desirable for the steepest descent to land. The pre-
ceding analysis applies because in both cases lift balance and pitch trim must be maintained,
and the most effective control surfaces should be used, leading to the total drag (36) without
constraint. Maintaining lift and pitch trim avoids flight path corrections, which may be a risk
in low-speed flight near the ground, due to control surface and/or engine throttle delays. The
only difference is that (36) should be maximised rather than minimised: (i) since (δ1, δ2) lead
to a minimum (37a, 37b), the maximum is at maximum positive deflection, taken to be 25◦ in
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Table 4
Effect of pitch trim on drag

Drag (kN) Deflection of body Optimal deflection
flap alone of all surfaces

Untrimmed drag
Drag due to trim 41.382 kN 41.382 kN
- minimum +26.189 kN − 4.381 kN
- maximum +40.827 kN +61.287 kN

Percentage of untrimmed drag:
- minimum +63.29 % − 10.6 %
- maximum +98.66 % +139.88 %
- ratio +1.56 −15.10 %

Total trimmed drag:
- minimum 67.571 kN 37.000 kN
- maximum 82.209 kN 102.67 kN
- ratio 1.217 2.775

Deflections of control surfaces:
- minimum drag (−19.84, 0, 0, 0, 0)◦ (−8.24, −8.36, 0, 0, +3.23)◦
- maximum drag (+25, 0, 0, 0, 0)◦ (25, 25, 0, 0, −25)◦

(42a,b); (ii) conversely the maximum drag for δ5 is at the smallest deflection in (42c):

{
δ̃1, δ̃2, δ̃3, δ̃4, δ̃5

}
= {25◦, 25◦, 0, 0, −25◦} = 0.43633rad {1, 1, 0, 0, −1} ≡ {δ0, δ0, 0, 0, −δ0} ;

. . . (42a-c)

(iii) the two least effective control surfaces are not used in the drag difference (36) leading
to (43):

(�CD)max = −0.0003969 + 0.006408δ0 + 0.03777δ2
0 = 9.5909 × 10−3; . . . (43)

(iv) the maximum extra drag (43) with a limit of 25◦ on deflection is (44a) more than the
baseline drag (20a):

(�CD)max /CD0 = 1.481, (�CD)max /(�CD)min = 13.988, . . . (44a,b)

and is over 13 times (44b) the minimum drag (39a) for pitch trim; (v) thus the maximum
trimmed drag is more than twice the untrimmed drag (45):

0.89412 ≤ CDmin/CD0 ≤ CD/CD0 ≤ CDmax/CD0 ≤ 2.481 ≡ k; . . . (45)

(vi) this shows the range of possible trimmed drag coefficients:

5.7903 × 10−3 ≤ CDmin ≤ CD ≤ CDmax ≤ 1.6067 × 10−2. . . . (46)

In conclusion (Table 4), there is a wide range of trimmed drag variations obtained by optimiz-
ing control surface deflections, from a reduction of 10.6% in (39b) to an increase of 139.9%
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in (44a). If the body flap alone had been used at maximum deflection (47a) the drag increase
(36) would be smaller (47b):

˜̃
δ1 = 25◦; ˜̃

δ5 = ˜̃
δ2 = 0 :� ˜̃CD =�CD

( ˜̃
δi

)
= 6.3892 × 10−3,� ˜̃CD/CD0 = 0.9866,

. . . (47a-c)
viz. 98.7% in (47b) instead of 139.9% in (44a). Thus maximum deflection of the body flap
alone would have less than doubled the trim drag (47a), whereas optimal deflections more
than doubles it (44a). The range of drag modulation using optimal controls is much larger
than using body flap alone because: (i) the minimum trimmed drag is smaller (48a) and the
maximum trimmed drag is larger (48b):

k1 ≡� ¯̄CD/(�CD)min = −9.3181; k2 ≡ (�CD)max /�
¯̄CD = 1.501; k1 k2 = −13.988;

. . . (48a-c)
(ii) the product (48c) ≡(44b) shows that the range of drag modulation with optimal controls is
more than 13 times larger than with body flap alone. This demonstrates the contrast between:
(a) choosing “à priori” single control surface, even the most effective (body flap), which
requires a large deflection (40d) for constant (26) with minimum drag, and would became
saturated for not much larger drag, giving a small range of drag modulation and cannot pro-
vide full bitch trim (40g, h), (b) usingoptimal deflections of all control surfaces, which allows
pitch trim with a drag reduction (39b), and can also lead to a large drag increase (44a), pro-
viding a wide range of drag modulation (46). A wide range of drag is useful for steep descent
allowing a continuous adaptation of the trajectory. The results on the range of possible drag
modulation with pitch trim are compared in the Table 4 using total drag or thrust instead of
drag coefficient by multiplying by:

D/CD = 1

2
ρSU2 = 6.1343 × 106 N . . . . (49)

It demonstrates the superiority of pitch control by optimal deflection of all surfaces versus
body flap alone.

8.0 MAXIMUM AND MINIMUM ACHIEVABLE PITCHING
MOMENT

The maximum and minimum pitching moment (section 8) determines the extremes of the c.g.
range, which can be trimmed for several possible engine positions in the vertical plane relative
to the aircraft datum. The aim next is to find the maximum and minimum of the pitching
moment (50a) keeping constant the lift (18a) ≡ (50b) and drag (20a) ≡ (50c) coefficients
(50b,c):

Cm max,min : CL = CL0 = 0.14916, CD = CD0 = 6.4760 × 10−3. . . . (50a-c)

The Table 3 shows that the least effective control surfaces for the pitching moment (30)
are the inner δ2 and outer δ4 wing flaps; thus these are eliminated using the constraints. The
sequence of steps is as follows: (i) the deflection δ2 of the least effective control surface is
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expressed in terms of all the other deflections from the condition (50b) of constant lift in the
linearised form of (29):

δ2 = − 1.22350δ1 − 0.63022δ3 − 0.31422δ4 + 0.26736δ5; . . . (51)

(ii) substitution of the condition (51) of constant lift in the drag (31; 39a) and in the pitching
moment (30), eliminates the deflections δ2, and leaves the remaining deflections:

−6.8567 × 10−4 = 0.00078799δ1 − 0.0016902δ3 − 0.0012268δ4 + 0.000071039δ5,
. . . (52a)

Cm = 0.025121 − 0.068510δ1 − 0.014417δ3 − 0.014562δ4 + 0.017941δ5;
. . . (52b)

(iii) the condition of constant drag (52a) is used to express the deflection δ4 of the second
least effective pitch control surface in terms of the remaining deflections.

δ4 = 0.55891 + 0.64224δ1 − 1.3777δ3 + 0.0057874δ5; . . . (53)

(iv) substitution of (53) in (52b) eliminates the deflection of the two least effective control
surfaces:

Cm = 0.016982 − 0.077862δ1 + 0.0056451δ3 + 0.017857δ5, . . . (54)

from the pitching moment (54), which is thus unconstrained.
Next (v) the non-linear terms in the pitching moment are restored in the same proportion

as in (30), leading to:

Cm = 0.016962 − 0.077862δ1(1 − 0.0050915δ1)

− 0.0056451δ4 (1 − 0.10109δ4)+ 0.017857δ5 (1 + 0.10928δ5) ; . . . (55)

(vi) the extrema of the pitching moment relative to the three most effective pitch control
surfaces (with the other two implicitly included through the constraints) are minima at the
deflections (8b), leading to the values:

{
δ̄1, δ̄3, δ̄5

} = {98.203, 4.9461, − 4.5754} ; . . . (56)

(vii) these values (56) are far outside the range of possible deflections (57a):

|δi| ≤ 25◦ = 0.43633 rad = δ0; δ0 = − δ̂1 = − δ̂4 = δ̂5; δ0 = δ̆1 = δ̆4 = −δ̆5, . . . (57a-c)

thus the maximum (minimum) pitching moment occur respectively for the deflections (57b)
and (57c); (viii) these correspond to:

(Cm)max = Cm

(
δ̂î

)
= 6.2462 × 10−2, (Cm)min = Cm

(
δ̆i

)
= −2.5992 × 10−2, . . . (58a,b)

the maximum (58a) and minimum (58b) pitching moment.
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9.0 MAXIMUM AND MINIMUM ACHIEVABLE YAWING
MOMENT

The engine position relative to the horizontal datum and the maximum and minimum pitching
moment (section 8) determine the trimmable c.g. range. The compensation of an outboard
engine failure (section 10) depends on the maximum and minimum yawing moment (section
9), which are calculated next. The yawing moment coefficient is given by the data in Table 3:

Cn = −0.01396δ1−0.00537(δ1)
2 + 0.00464δ2 − 0.00821(δ2)

2 + 0.00136δ3 − 0.00966(δ3)
2

+ 0.00066δ4 − 0.00814(δ4)
2 + 0.03454δ5 − 0.00209(δ5)

2 . . . . (59)

The maximum and minimum are sought at constant lift (18a)≡(60a), drag (20a)≡(60b) and
pitching moment (26)≡(60c).

CL0 = 0.14916, CD0 = 0.0064760, Cm0 = −0.050943. . . . (60a-c)

The three least effective yaw control surfaces are the outer δ4, middle δ3 and inner δ2 flaps;
the optimal deflections of the two most effective control surfaces (δ1, δ5) follow from (8b), and
are given by (68a,b). Since they exceed the limit deflection (57a), the latter is used to calculate
the maximum and minimum pitching moment (69–70a,b). As a preliminary illustration their
deflections will be eliminated from the yawing moment (59) using the constraints (60a–c) of
constant lift, drag and pitching moment. The sequence of steps is as follows: (i) the constraint
of constant lift (60a) in linearised form (29) is used to specify the deflection of the least
effective yaw control surface (the outer flap) in terms of the others:

δ4 = −3.8939δ1 − 3.1825δ2 − 2.0057δ3 + 0.85088δ5; . . . (61)

(ii) the deflection of the least effective yaw control surface is eliminated from the drag
(31,39a) ≡ (62a), pitching (30,25b) ≡ (62b) and yawing (59) ≡ (62c) moment:

−6.8567 × 10−4 = 0.0055647δ1 + 0.0039041δ2 + 0.0007703δ3 − 0.0009729δ5, . . . (62a)

−0.076064 = −0.011808δ1 + 0.046343δ2 + 0.014789δ3 + 0.0055507δ5, . . . (62b)

Cn = −0.01653δ1 + 0, 0025396δ2 + 0.000362δ3 + 0.035102δ5; . . . (62c)

using (61).
The next step (iii) is to express the deflection δ3 of the second least effective yaw control

surface (middle flap) in terms of the remaining deflections, e.g. using (62a):

δ3 = −0.89013 − 7.2241δ1 − 5.0683δ2 + 1.2630δ5; . . . (63)

(iv) substitution of (63) eliminates the deflections of the two least effective yaw control sur-
faces from the condition of constant pitching moment (62b) and from the yawing moment
(62c):

−0.0629 = −0.11865δ1 − 0.028612δ2 + 0.024229δ5; . . . (64a)

Cn = −0.0003222 − 0.019145δ1 + 0.0007049δ2 + 0.035559δ5; . . . (64b)
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(v) the deflection of the third least effective yaw control surface (inner flap) is expressed in
terms of the remaining two using (64a).

δ2 = 2.1984 − 4.1469δ1 + 0.84681δ5; . . . (65)

(vi) substitution of (65) in (64b) specifies the yawing moment in terms of the deflections of
the two most effective yaw control surfaces:

Cn = 0.0012275 − 0.022068δ1 + 0.036157δ5; . . . (66)

(vii) the non-linear terms in the yawing moment (59) are restored in the same proportion to
the linear terms:

Cn = 0.0012275 − 0.02068δ1(1 + 0.38467δ1)+ 0.036157δ5(1 − 0.06051δ5); . . . (67)

(viii) the extrema are (8b) a minimum yawing moment for the deflection of the body flap
(68a) and a maximum for the deflection of the rudder (68b):

δ̄1 = −1.29981, δ̄2 = 8.26316; . . . (68a,b)

(ix) the values (68a,b) are far outside the range of possible deflections, so the maximum and
minimum yawing moments are obtained:

δ1 = −δ5 = 25◦ = 0.43633 rad : (Cn)min = − 0.025504, . . . (69a,b)

−δ1 = δ5 = 25◦ = 0.43633 rad : (Cn)max = + 0.024096, . . . (69c,d)

at the extreme opposite deflections of rudder and body flap.

10.0 YAWCONTROLMARGINWITH OUTBOARD ENGINE
FAILURE

The worst case scenario for yaw control is an outboard engine failure. For an aircraft with n
identical engines with thrust T, and the outer engine at a distance y from the aircraft axis, the
engine-out yawing moment is (70b):

D = nT : N = yT = yD/n, . . . (70a,b)

where the total thrust (70a) is assumed to equal the reference drag; this corresponds to the
yawing moment coefficient.

Cn = 2N/
(
ρU2S�

) = (y/� n)
(
2D/ρU2S

) = CDy/�n; . . . (71a)

using the values (20a) and (25a) leads to:

Cn = 2N/
(
ρU2S�

) = (y/� n)
(
2D/ρU2S

) = (CD0 /�) y/n = 1.7783 × 10−4y/n, . . . (71b)

showing that the yawing moment: (i) increases with the distance of the outboard engine from
the centreline; (ii) decreases with the number of engines, since for the same total drag, each
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Figure 2. Blended wing body (BWB) with five engine configurations: (O4) four engines above the body with
twin fins for noise shielding; (O2) two engines above the body; (M) one engine above the body and two un
underwing nacelles; (U2) two engines in underwing nacelles; (U4) four engines in underwing nacelles.

engine has less thrust. A total of 5 engine configurations (Fig. 2) are considered: (i) four
engines (72a) above the centre-body (O4) with failure of outboard engine at distance (72b)
from centreline leads to a yawing coefficient (72c):

04 : n = 4, y− = 8m : Cn = 3.5567 × 10−4, Cn/ (Cn)max = 0.01476,

Cn/ (Cn)min = − 0.013946, . . . (72a-e)

which is less than 1.5% of the maximum available yaw control power; (ii) for two engines
(73a) at the same outboard position over the centre-body (O2):

02 : n = 2, y− = 8m : Cn = 7.1134 × 10−4, Cn/(Cn)max = 0.029521, Cn/(Cn)min = − 0.02891,
. . . (73a-e)

the yawing moment is doubled, because each engine has double thrust, and less than 3.0%
of the maximum yaw control power is used; (iii) for four underwing engines (U4) and
failure of the outboard engine at a distance (74b) from the axis:

U4 : n = 4, y+ = 30m : Cn = 1.3338 × 10−3, Cn/(Cn)max = 0.055352,

Cn/(Cn)min = −0.052296, . . . (74a-e)
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Table 5
Yaw trim compensate outboard engine failure

Configuration with
outboard engine out

Yawing
moment

Percentage of maximum yaw control
power need for compensation
with optimal controls with rudders alone

O4- four above centre-body 3.5567 × 10−4 −1.39 %, +1.48 % −2.30 %, +2.42 %
n = 4, y− = 8 m
O2- two above centre-body 7.1134 × 10−4 −2.89 %, +2.95 % −4.60 %, +4.85 %
n = 2, y− = 15 m
U4- four underwing 1.3338 × 10−3 −5.23 %, +5.53 % −8.62 %, +9.09 %
n = 4, y+ = 30 m
M – one over centre-body 2.6675 × 10−3 −10.46 %, +11.07 % −17.24 %, +18.18 %

and two underwing
y+ = 30 m
U2- two underwing 1.7783 × 10−3 −6.97 %, + 7.38 % −11.50 %, +12.12 %
n = 2, y+ = 30 m

the yawing moment is less than 5.6% of the maximum available; (iv) for two underwing
engines (U2) at the same outboard position:

U2 : n = 2, y+ = 30m : Cn = 2.6675 × 10−3,Cn/(Cn)max = 0.11070, Cn/(Cn)min = − 0.10459,
. . . (75a-e)

the yawing moment is still less than 11 .1% of the maximum available, though this would be
an extreme case of two very powerful engines far outboard; (v) for a mixed configuration (M)
with one engine over the centre-body and two under the outer wings at the same distance from
the axis, the yawing moment would be intermediate between the two preceding cases:

M : n = 3, y+ = 30m : Cn = 1.7783 × 10−3, Cn/(Cn)max = 0.073802,

Cn/(Cn)min = − 0.069728, . . . (76a-e)

i.e. use less than 7.4% of the available control power. The results for the five engine
configurations are summarised in Table 5.

If rudder alone had been used, then the maximum and minimum yawing coefficient would
have been (59) given by:

C±
n = ± 0.03454δ0 − 0.00209δ2

0 = (+1.4673, −1.5469)× 10−2; . . . (77)

the fraction of available yaw control power needed to compensate an outboard engine failure
in the five cases would be:

O4, O2, U4, M , U2 : Cn/C
+
n = {0.02424, 0.04848, 0.090902, 0.1818, 0.1212}, . . . (78a)

Cn/C
−
n = − {0.022992, 0.045985, 0.086334, 0.17244, 0.11496}. . . . (78b)

In all cases the percentage of available yaw control power needed to compensate an out-
board engine out condition is smaller for optimal controls than for rudders alone, because the
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yaw control authority:

(Cn)max /C
+
n = 1.6422, (Cn)max /C

−
n = 1.4248, . . . (79a,b)

is increased by a factor of about 1.5 by the use of optimal controls, and thus there is a larger
safety margin to cope with other events.

11.0 MAXIMUM AND MINIMUM ROLLING MOMENT
Whereas the pitching moment (section 8) determines the c.g. range, and the yawing moment
(section 9) the ability to compensate and engine out condition (section 10), the rolling moment
(section 11) relates to the compensation of a vortex-wake encounter.

The rolling moment is specified by the data in Table 3:

Cl =0.01866δ1 + 0.00122 (δ1)
2 + 0.09317δ2 − 0.00997 (δ2)

2 + 0.09150δ3 − 0.00900 (δ3)
2

+ 0.06039δ4 − 0.00597 (δ4)
2 − 0.01552δ5 − 0.00093 (δ5)

2 . . . . (80)

The maximum and minimum rolling moment will be sought at constant lift, drag and
pitching moment (60a-c) ≡ (81a-c) and no yawing moment (81d):

CL0 = 0.14916, CD0 = 0.0071036, Cm0 = −0.050943, Cn0 = 0, . . . (81a-d)

so that the flight path is not disturbed. The least effective roll control surfaces are the rudders
(δ5) and the body flap (δ1); the outer flap (δ4) is less effective than the middle flap (δ3) and the
inner flap (δ2) marginally more effective. The most effective control surface δ2 has (8b) opti-
mal deflection (90a), which exceeds the limit (57a); the latter limit is thus taken to calculate
the maximum and minimum rolling moment (90b,c). As a preliminary the deflections of the
first four least effective control surfaces will be eliminated in this order using the constraints:
(i) the rudder deflection δ5 is expressed in terms of the remaining using the condition (81d)
of zero yawing moment in linearised form (59), leading to (82):

δ5 = 0.40417δ1 − 0.13434δ2 − 0.039375δ3 − 0.019108δ4; . . . (82)

(ii) the deflection of the least effective roll control surface (rudder) is eliminated by replac-
ing (82) in the conditions of constant lift (29) ≡ (83a), drag (31; 39a) ≡ (83b) and pitching
moment (30, 25b) ≡ (83c):

0 = 0.21282δ1 + 0.19764δ2 + 0.12225δ3 + 0.060925δ4; . . . (83a)

−6.8567 × 10−4 = 0.0049941δ1 + 0.0038699δ2 + 0.0007066δ3 − 0.0000322δ4; . . . (83b)

−0.076064 = −0.065051δ1 − 0.0059323δ2 − 0.017302δ3 − 0.01599δ4; . . . (83c)

Cl = 0.012387δ1 + 0.095255δ2 + 0.092111δ3 + 0.060687δ4; . . . (83d)

and also in the rolling moment (80) ≡ (83d); (iii) the deflection δ1 of the second least effective
control surface (body flap) is expressed in terms of the remaining from the lift (83a) ≡ (84):

δ1 = −0.92876δ2 − 0.57448δ3 − 0.28627δ4; . . . (84)
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(iv) substitution in the drag (83b), pitch (83c) and rolling moment (83d) coefficients
eliminates the deflections of the two least effective roll control surfaces:

− 6.8567 × 10−4 = −0.00076833δ2 − 0.0021624δ3 − 0.0014618δ4, . . . (85a)

− 0.076064 = 0.0544784δ2 + 0.020068δ3 + 0.0026319δ4, . . . (85b)

Cl = 0.08375δ2 + 0.084994δ3 + 0.057134δ4; . . . (85c)

(v) the deflection δ4 of the third least effective roll control surface (outer flap) is expressed in
terms of the remaining from the condition (85a) of constant drag:

δ4 = 0.46906 − 0.52558δ2 − 1.4793δ3; . . . (86)

(vi) substitution of (86) leaves the deflections of the two most effective roll control surfaces
in the pitching (85b) ≡ (87a) and rolling moment (85c) ≡ (87b):

−0.077299 = 0.053101δ2 + 0.016175δ3, Cl = 0.026799 + 0.053722δ2 + 0.00047567δ3;
. . . (87a,b)

(vii) the deflection of the fourth least effective roll control surface (middle flap) is expressed
from the pitching moment (87a) as a function (88a) of the deflection of the most effective:

δ3 = −4.7789 − 3.2829δ2; Cl = 0.024526 + 0.05216δ2; . . . (88a,b)

(viii) this specifies the rolling moment in terms of (88b) the most effective roll control surface
(inner flap); (ix) the non-linear terms are restored to the rolling moment coefficient (88b) in
the same proportion to the linear terms as in (80) leading to (89):

Cl = 0.24526 + 0.05216δ2 (1 − 0.10701δ2); . . . (89)

(xi) the extremum of (89) corresponds (8b) to a deflection (90a) far outside the range of
possible values:

δ̄2 = 4.6725, δ̄0 = 60◦ = 1.0472rad, Cl max,l min = Cl

(± δ̄0
) = (− 0.036217, 0.073027);

. . . (90a-d)

(xii) the maximum and minimum rolling moments (90b,c) thus occur at the extreme
deflections, that are taken to be (90b).

12.0 CONCLUSION
The control limits of a FW configuration were explored in low-speed flight. The method used
can maximise or minimise (section 3) any component of the aerodynamic forces or moments
(section 2) within the range of possible deflections of each control surface (section 4); other
components can be left free or constrained, e.g. by equilibrium conditions. Applying this
method to a BWB in (section 5) a low-speed (M = 0.2) configuration: (i) shows that pitch
trim can be obtained with a minimum drag reduction of 11%, which has beneficial effect on
climb performance after take-off (section 6); (ii) conversely a maximum drag increase of 61%
can be obtained with the same angle-of-attack and pitch trim for the steepest descent to land
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(section 7); (iii) the maximum and minimum pitching moment (section 8) using all control
surfaces can be modulated over a wider range of values than using only the body flap, and sim-
ilar results concern the broader range of achievable drag at constant lift with pitch trim (Table
4); (iv) the maximum and minimum yawing moment (section 9) specifies the yaw control
authority available in the worst scenario of failure of an outboard engine (section 10) showing
that the use of all available control surfaces is more effective than rudders alone (Table 5) leav-
ing a greater safety margin; (v) the maximum and minimum rolling moment (section 11) also
benefit from the use of all available control surfaces to achieve a broader range of values. The
introduction (section 1) outlines the problem, and the conclusion (section 12) summarises the
results. Some aspects of the maximisation or minimisation with constraints are discussed in
the appendix. Modern “big data” methods can quickly explore many configurations to arrive
at an optimum without giving much explanation about the result. The analytical methods are
a good complement to numerical methods using massive computing to give a better insight on
the meaning of the results, besides proving an independent check and indication of accuracy.
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APPENDIX: HIGHER-ORDER ITERATIONS OF THE
OPTIMISATION METHOD
The optimisation problem can be considered in the five-dimensional space of deflections,
where the limit values specify a hypercube:

Hδ ≡ {i = 1, 2, 3, 4, 5 : −0.4363 rad ≤ δi ≤ +0.4363 rad} . . . . (A.1)

The aim is to minimise the drag (31) subject to constraints of constant lift (29) and pitching
moment (33a). These constraints are, via the approximation (32) and (34), included in the
drag (36); thus the latter can be optimised without constraints. The equation (36) specifies
a family of sub-spaces, one for each value of �CD. The optimal solution is the sub-space
for which �CD is smallest, while intersecting the hypercube (A.1) at least at one point. The
solution procedure, or iteration method, searches for this point. The sub-space varies for: (i)
each force or moment (drag, pitch, yaw or roll) to be optimised (maximised or minimised);
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(ii) each set of constraints (constant lift or other control moments). The solution must always
lie in the same hypercube, and the optimum point depends on where the intersections with
the sub-spaces lie, and in which direction the optimum should be sought. The condition of
neglecting the least effective control surfaces and concentrating on the most effective is a way
of proceeding in the direction which leads faster and more accurately to the optimum.
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