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Turbulent flow of a fluid with
anisotropic viscosity
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We ask if and how the large-scale structure of a turbulent flow depends on anisotropies
introduced at the smallest scales. We generate such anisotropy on the viscous scale in
a paramagnetic colloid whose rheology is modified by an external, uniform magnetic
field. We report measurements in a high Reynolds number turbulence experiment
(Rλ=120). Ultrasound velocimetry provides records of tracer particle velocity. Distinct
changes in the velocity statistics can be observed from the dissipative scales up to
the mean flow topology.
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1. Introduction
Our current understanding of fluid turbulence is based fundamentally on the work

of Richardson (1922) and Kolmogorov (1941). They laid the foundations for the
modelling of physical processes, with the k−5/3 power-law scaling of the energy
spectrum being the most important prediction.

Richardson’s idea of an energy cascade is such that energy is transferred from the
large scales through a multi-stage process to the smallest scales, where it is eventually
dissipated by viscous processes. But this is not strictly true as energy may also travel
from the small to the large scales. Kraichnan (1967) showed that there is an inverse
cascade in two-dimensional turbulence, and Piomelli et al. (1991) observed backward
transfer even in isotropic three-dimensional turbulence.

Kolmogorov’s theory is based on the hypothesis that the small scales are statistically
isotropic and independent of the large-scale forcing. Deviations from Kolmogorov’s
hypotheses were found in numerical simulations (Yeung & Brasseur 1991; Ishihara,
Yoshida & Kaneda 2002; Elsinga & Marusic 2016) and experiments (Shen & Warhaft
2000; Voth et al. 2002). The Kolmogorov postulate of local isotropy may be violated
and is believed not to apply even at high Reynolds numbers (Shen & Warhaft 2000).
Yeung & Brasseur (1991) conclude that small-scale anisotropy is generated by direct
interaction of low and high-wavenumber modes due to non-local triad interactions.

We investigate the coupling of different scales of motion by generating a defined
anisotropy at the smallest (molecular) scales and probing the resulting velocity
statistics at the larger scales. Anisotropy is generated using a paramagnetic colloid
whose viscosity depends both on the direction and magnitude of an external
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FIGURE 1. Sketch of the experimental set-up. The magnetic field is applied in the
transverse direction along x1.

magnetic field. Our approach is thus fundamentally different from other experiments
studying anisotropic turbulence where anisotropy is produced for example by rotation
(Lamriben, Cortet & Moisy 2011), mean velocity gradients (Shen & Warhaft 2000) or
by modulation of many mixers inside a flow chamber (Chang, Bewley & Bodenschatz
2012). Uniform magnetic field forcing has so far been used primarily in studies on
the global evolution of laminar and transitional flows (Altmeyer et al. 2010; Reindl
& Odenbach 2011).

Another investigative route being followed is the study of the energy transfer in
flows with long chained polymers. An influence on the smallest scales can be observed
while the spatial isotropy does not appear to be modified in such flows (Ouellette, Xu
& Bodenschatz 2009).

2. Experimental set-up
The design of the experiment was driven by several considerations and constraints.

First, a flow was sought that exhibits strong and preferably isotropic turbulence with
statistically stationary behaviour. Next, the shape of the flow cell had to be sufficiently
compact so as to limit the size of the magnetic field-generating coils. Furthermore,
a recirculating arrangement was preferred because it could reduce the amount of
magnetic fluid required. Finally, the magnetic fluid had to have a sufficiently strong
field response (i.e. saturation magnetisation), a low bulk viscosity and the ability to
form particle chains as the primary source of induced anisotropy on the molecular
scale.

The following sections present a brief overview of the experimental set-up with
further technical details provided in the appendices.

2.1. Flow cell and magnetic field
We create a highly turbulent flow in a cylindrical container driven by two counter-
rotating discs. The container has an inner radius of R=5 cm and is mounted vertically.
The discs are spaced 10 cm apart and are fitted with 8 straight blades (figure 1). This
flow topology, known as von Kármán flow, is widely used in experiments on turbulent
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FIGURE 2. (Colour online) Axial magnetic field component generated by three coils,
(a) along the axis, (b) transverse at mid-height. The solid line shows the modelled
magnetic field. Vertical dashed lines indicate the boundaries of the test cell.

Dynamic viscosity η0 3 mPa s
Density ρf 1014.4 kg m−3

Saturation magnetisation MS 1.1 kA m−1

Solid content c 25 mg ml−1

Particle diameter D 320.6 nm
Polydispersity index 0.194

TABLE 1. Properties of ferrofluid composed of spherical magnetic silica particles.

flows (Douady, Couder & Brachet 1991; Maurer, Tabeling & Zocchi 1994; Voth et al.
2002; Ravelet et al. 2004). The flow is globally non-isotropic, and homogeneity
applies only in the centre of the flow cell. Due to topological symmetry there
is isotropy in the transverse directions, the plane in which we apply the uniform
magnetic field. The coordinate system in the flow cell is defined such that the x1–x2

plane is in the transverse direction and x3 defines the axial direction.
The magnetic field is applied in the direction of x1. It is very homogeneous over

the volume of the flow cell (figure 2). We modelled the field using the formulas of
Conway (2006) and compared it with the measured values. As the results compare
well with the measured magnetic field, the model can be used to estimate the field
homogeneity over the whole flow cell, and the field is found to be uniform to within
1B/Bcentre = 1500 ppm.

2.2. Magnetic fluid

The experiments were conducted with an aqueous ferrofluid whose properties are
summarised in table 1.

Under zero magnetic field, the fluid behaves as purely Newtonian with density
ρf = 1.0144 g cm−3 and viscosity η0 = 3 mPa s, values that are similar to those of
water. Under the influence of an external magnetic field, the particles in the fluid
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FIGURE 3. (a) Dynamic viscosity of the ferrofluid as a function of shear rate at different
external magnetic field magnitudes and (b) as a function of external magnetic field
magnitude for a shear rate γ̇ = 100 s−1.

form short linear chains which are preferentially aligned in the field direction. The
resulting anisotropic response to shearing motions and its impact on the flow can be
conceptualised by a direction dependent viscosity (Ericksen 1960; Leslie 1966; Ilg &
Kröger 2002).

We measured the viscosity using a parallel-plate rheometer with the magnetic field
perpendicular to the shearing motion. The fluid viscosity is a function of shear rate
(figure 3a) and magnetic field (figure 3b). The increase in viscosity with magnetic
field has been investigated thoroughly (Odenbach 2004). In figure 3(b) we show this
increase for a shear rate of 100 s−1, which is considerably lower than in the actual
experiments. According to simulations (Sreekumari & Ilg 2015) and experiments
(Linke & Odenbach 2015) of similar chain-forming fluids this viscosity effect is
truly anisotropic. The viscosity decrease with increasing shear rate, known as shear
thinning, is caused by shear forces that limit the chain length.

The observed shear thinning has an influence on the achievable viscosity anisotropy.
Since the time scales of the turbulent flow are much shorter than the relaxation time
scale of chain formation (Borin et al. 2011), the chain length is ultimately determined
by the maximum shear rate in the flow cell which is reached near the rotating discs
rather than the local shear rate values.

As the fluid is non-conducting there is no magnetic induction and hence no
additional bulk force acting on the fluid. A similar rheological anisotropy can be
created in some types of liquid crystals, whose flow behaviour is well understood.
However, for viscosity-induced effects in liquid crystals, much higher magnetic fields
are required as compared to ferrofluids and the higher viscosity makes the creation
of a turbulent flow more difficult.

2.3. Flow velocimetry
Since ferrofluids are opaque at optical wavelengths, the flow velocities were measured
using ultrasound velocimetry techniques.

As we are primarily interested in the influence of anisotropic small scales on
the turbulence cascade, we have to use a measurement technique capable of fully
resolving all scales of turbulent motion. Standard ultrasound Doppler velocity profiling
(UVP) based on a pulse-echo technique is not suitable because of the highly transient
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Rλ urms ε η τη TL TK
TL

τη

τη

1t
(m s−1) (m2 s−3) (µm) (ms) (ms) (ms)

120 0.15 0.17 113 4.2 63 199 14.8 8

TABLE 2. Basic parameters of the turbulent flow for a disc rotation rate of 3 Hz: Rλ is
the Taylor microscale Reynolds number, urms=√〈uiui〉/3 is the r.m.s. velocity, ε≈−〈uiai〉
is an estimate of the energy dissipation rate, η and τη are the Kolmogorov length and time
scales, TL is the Lagrangian integral time scale as given by the autocorrelation function,
TK ≡ (1/2)〈uiui〉/ε is the turbulence time scale, and 1t is the effective time resolution of
the frequency tracking algorithm.

nature of the turbulent flow that has to be sampled with sufficient temporal resolution.
The flow fluctuates on time scales down to the Kolmogorov time τη = 4.2 ms.

In addition to UVP we thus use a technique based on continuous ultrasound
recording, similar to the one developed by Mordant et al. (2005). This is a time
resolved measurement technique that tracks the continuous Doppler-shifted scattering
signals of tracers moving in the observation volume. Since single tracer particles are
being followed in the flow, the technique belongs to the class of Lagrangian particle
tracking methods.

The fluid is seeded with a small number of spherical polystyrene particles with a
diameter of d = 250 µm and a density of ρp = 1.04 g cm−3. As the particle size is
not much larger than the Kolmogorov microscale (d/η = 2.2), tracer-like behaviour
can be expected (Brown, Warhaft & Voth 2009). Magnetophoretic forces on the tracer
particles are negligible due to the very small magnetic field gradients in the flow cell.

Even though not universally applicable for resolved turbulence measurements, UVP
can still provide valuable information about the flow in the test cell. Profiles of the
velocity component along different observation directions were recorded with such a
system, providing data on the ‘slow’ spatial modes developing in the flow cell and
changing under the action of the magnetic field.

3. Flow characterisation in the field-free case
As both the measurement technique and the fluid are not used in a standard fashion,

we first investigate the flow properties without magnetic field and a disc rotation rate
of f = 3 Hz to show that the fluid behaves in a Newtonian manner and that the
flow exhibits proper statistical features. The integral Reynolds number, defined as
Re = 2πf R2/ν ' 1.6 × 104, is well above the transitional Reynolds number, and the
flow is in the fully turbulent state (Ravelet, Chiffaudel & Daviaud 2008). Table 2
summarises the basic parameters of our flow. These parameters are further discussed
in the following sections.

3.1. Velocity probability distribution
Figure 4 shows the probability density function of the 3 Lagrangian velocity
components in the field-free case. The transverse components exhibit similar statistics
as expected from symmetry. The transverse components show a larger standard
deviation than the axial component. The probability density functions are close to
Gaussian with a kurtosis of 2.7 for the transverse components and 3.7 for the axial
component. The kurtosis of the transverse components is in agreement with Voth
et al. (2002), while for the axial component the kurtosis is slightly larger.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

91
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.91


Turbulent flow of a fluid with anisotropic viscosity 257

100

10–1

10–2

10–3

0–0.2–0.4–0.6 0.2 0.4 0.6

u 

P
 (

u)

FIGURE 4. The velocity PDF at zero field. u1 and u2 are two orthogonal transverse
velocity components and u3 is the axial velocity component.

3.2. Second-order structure function
The Lagrangian second-order structure function is defined as the variance of the
Lagrangian velocity increments:

D2(τ )≡ 〈[ui(t+ τ)− ui(t)]2〉, (3.1)

where ui(t) is one Lagrangian velocity component. The structure function of a
transverse velocity component for the field-free case is shown in figure 5(a). It
varies with τ 2 in the dissipation range and approaches a constant value for long time
lags. When scaled by ετ , this should show a plateau in the inertial subrange. Very
high Reynolds numbers are required to see this plateau so we can only see a peak.
Nevertheless we can take the maximum value C∗0 = max{D2(τ )/τε} and compare it
with published values for comparable Reynolds numbers. Our value is C∗0 = 3.5± 0.3,
which is somewhat smaller than reported values from numerical simulations with
C∗0 = 4.4 at Rλ = 140 (Yeung, Pope & Sawford 2006).

Higher-order moments of Lagrangian velocity increments are studied within the
scope of Lagrangian intermittency. As the scaling range in Lagrangian structure
functions is not established, the scaling of these structure functions is usually
investigated by plotting them against the second-order structure function (extended
self-similarity (Benzi et al. 1993)). To measure relative scaling exponents we fit
power laws to the structure functions in the range where the second-order structure
function shows a developing inertial range, in our case between 3τη and 6τη. Our
structure functions show scaling similar to the findings of Mordant et al. (2004b)
(figure 5b).

For a statistically stationary process the velocity autocorrelation function R(τ ) is
given through the second-order structure function D2(τ ) by

R(τ ) ≡ 〈u(t+ τ)u(t)〉/〈u2〉 (3.2)

= 1− D2(τ )

2〈u2〉 . (3.3)
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FIGURE 5. (Colour online) (a) Compensated Lagrangian second-order structure function
as a function of normalised time and (b) Scaling of relative scaling exponents ζ L

p /ζ
L
2 of

the structure functions with structure function order p. For comparison we show the data
of Mordant, Lévêque & Pinton (2004b) at Rλ= 810. The solid line shows the Kolmogorov
(1941) prediction.

The Lagrangian velocity autocorrelation function exhibits an exponential decay with
a finite curvature at the origin. This function can be modelled with a second-order
model (Sawford 1991) where TL is the Lagrangian integral time scale and T2 is a
time scale related to dissipation:

R(τ )= TL exp(−τ/TL)− T2 exp(−τ/T2)

TL − T2
. (3.4)

We fit this model between 0 and τ = 10τη and obtain the estimates for TL and T2
given in table 2. The velocity autocorrelation function is biased for large times as a
consequence of the finite measurement volume.

3.3. Accelerations
Accelerations are computed by convolving the velocity trajectories with a differentiated
and truncated Gaussian kernel (Mordant, Crawford & Bodenschatz 2004a). The kernel
width, which corresponds to the standard deviation of the Gaussian, is chosen as
τw = 0.25τη. This is a compromise between achievable noise reduction and preserved
signal bandwidth.

Figure 7(a) shows the probability density function of one transverse acceleration
component. It displays the well-known long tails. For comparison we show the
pressure gradient PDF measured in a DNS of Vedula & Yeung (1999) for a similar
Reynolds number. Our data follows their results very well.

The Heisenberg–Yaglom relation states

〈a2〉 = a0ε
3/2ν−1/2, (3.5)

with scaling constant a0. Using DNS and experimental data Sawford et al. (2003)
parametrised the constant a0 as a0= 1.9R0.135

λ /(1+ 85/R1.135
λ ). From our data we obtain

a0 = 2.7 ± 0.2 for one transverse acceleration component while the parametrisation
gives a value of 2.64 for the given value of Rλ.
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FIGURE 6. (Colour online) Lagrangian velocity autocorrelation function against normalised
time. The marks show every 10th data point and the solid line is a fit of Sawford’s second-
order model.
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FIGURE 7. (Colour online) (a) The PDF of one transverse acceleration component
normalised by its standard deviation. Accelerations are computed by convolving the
velocity with a differentiated Gaussian with standard deviation 0.25τη. For comparison the
PDF of pressure gradients measured in a DNS at Rλ = 140 (Vedula & Yeung 1999) is
shown. (b) The autocorrelation function of one acceleration component at zero field. The
time lag is normalised by the Kolmogorov time τη and the correlation drops below zero
around 2.2τη.

Figure 7(b) shows the autocorrelation function of one transverse acceleration
component. It has the typical shape with rapid decrease and negative values for long
time lags. The zero-crossing time τa is 2.2τη, consistent with Yeung & Pope (1989).

Estimating energy dissipation is difficult using only single-particle statistics.
Commonly one measures spatial second- or third-order velocity structure functions.
These show a clear scaling in the inertial range from which ε can be estimated.
Relying on the acceleration of the trajectories we can instead use the trace of the
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FIGURE 8. Lagrangian velocity and acceleration spectra normalised for unit area at
Rλ= 120. The frequency is normalised by the Kolmogorov scale ωη and τλ=

√
2〈u2〉/〈a2〉

is the Lagrangian time microscale (Tennekes 1975).

acceleration–velocity covariance tensor of the fluid particle trajectories:

ε=−〈uiai〉, (3.6)

which is valid for decaying, homogeneous turbulence (Ott & Mann 2005).

3.4. Spectra

The Lagrangian velocity spectrum EL(ω) and acceleration spectrum AL(ω) are given
by the cosine transform of the respective autocovariance function (Sawford & Yeung
2011).

EL(ω)= 2
π

∫ ∞
0
〈u(t+ τ)u(t)〉 cos(ωτ) dτ (3.7)

AL(ω)= 2
π

∫ ∞
0
〈a(t+ τ)a(t)〉 cos(ωτ) dτ . (3.8)

One may look at the frequency spectra to see if the scales are sufficiently separated
(figure 8). As it is a log–linear plot, we multiply the spectra by ω to depict the energy
at each scale. The acceleration spectrum peaks around the Lagrangian time microscale
τλ while the most energetic eddies are found at the turbulence time scale TK . From
the plot we conclude that there is a moderate overlap, representing neither a perfect
separation of scales nor a significant coupling.

4. Flow modification with viscosity-induced anisotropy
The principal objective of this work is the study of viscosity-induced anisotropy of

the flow. We present results again for a disc rotation rate of f = 3 Hz and external
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FIGURE 9. Transverse profiles of mean velocity parallel to the field (a) and perpendicular
(b) for magnetic field magnitudes from 0 to 50 mT.

B urms u A ε

(mT) (m s−1) (m s−1) (m2 s−3)

0 0.149 0.025 0.93 0.17
10 0.148 0.031 0.96 0.15
20 0.146 0.040 1.03 0.15
30 0.144 0.049 1.12 0.16
40 0.142 0.059 1.20 0.15
50 0.141 0.059 1.29 0.15
60 0.141 0.057 1.32 0.15
70 0.140 0.055 1.37 0.17
80 0.141 0.052 1.40 0.16
90 0.139 0.051 1.40 0.16

TABLE 3. Turbulence parameters for experiments with varying anisotropy. u is the mean
velocity and A= 〈u1u1〉1/2/〈u2u2〉1/2 is the ratio of the two transverse r.m.s. velocities.

magnetic field magnitudes ranging from 0 to 90 mT. Table 3 summarises some
flow parameters for each magnetic field magnitude. We sampled approximately
104 trajectories per magnetic field setting. Both the r.m.s. velocity fluctuations
and the energy dissipation remain approximately constant for all magnetic field
magnitudes.

We start our analysis with the Eulerian mean flow measurements as surveyed by the
UVP and then proceed down to the smallest scales using the Lagrangian time series
data.

4.1. Mean flow
Transverse mean velocity profiles in directions parallel and perpendicular to the field
are shown in figure 9. At zero magnetic field, the profiles appear similar with only a
small anisotropy. While the flow should be isotropic, this appears not to be unusual
(Chang et al. 2012). The anisotropy arises most probably from small asymmetries in
the flow cell.
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FIGURE 10. (Colour online) Mode selection in transverse velocity profiles. (a) Space–
time diagram of velocity at zero field, (b) velocity modes, (c) mode probability parallel
to magnetic field, and (d) mode probability perpendicular to magnetic field.

The profiles show the typical inward directed radial flow due to the poloidal
pumping mode of the large-scale motion in the cell. With increasing magnetic field,
this inflow is enhanced in the field-parallel direction but leads to a flow reversal in
the perpendicular direction.

More detailed insights can be gained from an analysis of the data based on the
presumed existence of competing flow modes (Ravelet et al. 2004; de la Torre &
Burguete 2007). Using a k-means clustering approach, two distinct velocity patterns
can be identified for both the field parallel and perpendicular transverse velocity
profiles (figure 10a,b). The mode shapes appear quite similar in both directions, but
their occurrence is complementary. This is visualised in figure 10(c,d), where the
probability of each mode occurring is plotted against the magnetic field magnitude.
The probabilities were obtained by assigning each instantaneous profile to one of the
two modes and counting the occurrences. For each magnetic field magnitude, two
ensembles of 30 000 profiles were evaluated. In the field-free case these modes occur
with near equal probabilities. The field-induced mode selection is quite apparent while
the reason for the complementary behaviour requires a more detailed study. The effect
may be a direct consequence of bulk turbulence modification by anisotropy, but other
causes, e.g. changing wall boundary layers, cannot be excluded at present.
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FIGURE 11. Statistics of transverse velocity components parallel (circles) and
perpendicular (squares) to the magnetic field. (a) R.m.s. velocity, (b) velocity kurtosis,
(c) integral time scale, and (d) product of r.m.s. velocity and integral time scale.

4.2. Large scales: velocity statistics
To begin the analysis of the Lagrangian time series data we look at the influence of
the magnetic field on various large-scale quantities. Figure 11(a) shows the transverse
velocity fluctuations in dependence on the magnetic field magnitude. Clearly there is
an anisotropy in the r.m.s. velocities evolving with the magnetic field. The velocity
kurtosis changes as well (figure 11b) and confirms the change in the large-scale
structure of the flow.

With increasing magnetic field, the flow in the field direction is much longer
correlated than in the perpendicular to it (figure 11c). Similar behaviour was reported
by Shen & Yeung (1997) in shear turbulence of fluid particles. The shape of the
underlying autocorrelation remains similar – when normalised by the integral time
scale all curves collapse for long time lags (not shown).

The product of r.m.s. velocity and integral time scale urmsTL has the dimension of a
length and can be considered as an integral length scale of the flow. For the isotropic
case we found this length scale to be of order 10 mm independent of Reynolds
number. With applied magnetic field it appears that eddies are compressed in the
direction of the magnetic field (figure 11d).

From the stochastic approach of Sawford (1991) it follows that the Lagrangian time
microscale τλ is given as

τλ ∼ (TLT2)
1/2. (4.1)
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FIGURE 12. Taylor time scale τλ normalised by (TLT2)
1/2 against magnetic field for

directions parallel (circles) and perpendicular (squares).

We test if this also holds for the anisotropic case. Figure 12 shows the ratio of τλ
and (TLT2)

1/2 as a function of the applied magnetic field. Taking into account the
measurement uncertainty no clear trend is observable.

4.3. Inertial range: velocity differences
We may also evaluate the second-order structure functions of velocity components in
the direction of the magnetic field D2(τ )

‖ and perpendicular to it D2(τ )
⊥. Figure 13

shows the ratio D2(τ )
‖/D2(τ )

⊥ as a measure for anisotropy with time lag τ for
several magnetic field magnitudes. At zero field there is the already mentioned small
residual anisotropy that reduces at smaller scales. From the plot we conclude that
(i) the anisotropy is greater at larger scales, and (ii) more pronounced at higher
magnetic fields.

4.4. Velocity–acceleration covariance
We conclude our analysis by looking at the diagonal components of the velocity–
acceleration covariance tensor, whose sum we use as an estimate of the energy
dissipation rate in the flow (figure 14). While the axial component remains
independent of magnetic field, the transverse components diverge symmetrically with
increasing anisotropy. The transverse component perpendicular to the field 〈u2a2〉 also
approaches the value of the axial component. This behaviour reflects the change of
the flow topology which was seen in the Eulerian mean flow measurements.

The off-diagonal components in axial direction vanish (figure 14b) while the off-
diagonal components in the central plane are non-zero. They peak at a field around
20–30 mT and then return to the zero magnetic field values.

5. Discussion
The von Kármán flow geometry is known to exhibit multiple bifurcation phenomena.

Ravelet et al. (2004), Saint-Michel et al. (2013) report hysteresis effects in the flow
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FIGURE 14. Velocity–acceleration covariance against magnetic field magnitude,
(a) diagonal components and (b) off-diagonal components.

subject to asymmetric forcing conditions – discs rotating at different speeds or with
different torques. Their flow responds with a significant change of its topology to
small changes in the energy injection mechanism, but it remains unclear from where
this sensitivity originates.
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The present experiments show a similar behaviour, although with a few distinct
differences. While Saint-Michel et al. (2013) state that constant speed forcing – also
implemented here with exact counter-rotation – does always produce steady state
solutions, we observe such behaviour only for large values of the magnetic field. For
the other cases, intermittent changes appear between two flow modes that create a
superficially smooth change in the mean flow properties. At the same time, the only
changing property is a continuous increase in the viscosity’s anisotropy.

The question then arises whether this microscopic alteration does act directly
on the larger scales or whether there exists an indirect coupling to and from the
increasingly anisotropic small-scale turbulence. In that case, one would have to
distinguish furthermore between a possible overlap of the relevant length scales in
the inertial range and an extended multi-scale transfer mechanism.

One scenario for the observed flow modification might thus a be viscosity increase
due to the external magnetic field that also increases the Kolmogorov microscale. In
this case the anisotropic viscosity would directly act on all scales. For eddies with
length scale l in the inertial range, the typical time scale of the turbulence can be
estimated by

Tturb(l)=
(

l2

ε

)1/3

(5.1)

and the typical time scale associated with the viscosity is given by

Tvis(l)= l2

ν(l)
, (5.2)

where ν(l) is the kinematic viscosity which may depend on l in the present case. The
fluid viscosity can be modelled with a power-law relationship

ν(l)
ν0
=
(
γ̇

γ̇0

)−k

, (5.3)

where for the local shear rate γ̇ = 1/Tturb(l) is assumed. The exponent k is considered
independent from the magnetic field magnitude and is obtained from the data shown
in figure 3(a) and γ̇0 and ν0 are taken as reference values for a magnetic field
magnitude of 70 mT from figure 3(b). The turbulent advection dominates on scale l
when Tturb(l) < Tvis(l) and the viscosity dominates on scale l when Tvis(l) < Tturb(l).
Equating both time scales, Tturb(lvis)= Tvis(lvis), we obtain a length scale

lvis = 4−2k

√
ν3

0

γ̇ 3
0

(
γ̇ 3

0

ε

)k+1

(5.4)

analogous to the Kolmogorov microscale η. Using the experimental values from
figure 3(a) the model gives the Kolmogorov scales as

η= lvis = 0.63 mm τη = 13.3 ms. (5.5a,b)

This would indicate that the viscosity in the direction parallel to the field is changed
by a factor of 10, increasing the Taylor microscale by a factor of 3. We display this
estimate of the Kolmogorov microscale time scale for an external magnetic field
magnitude of 70 mT in figure 13. Since the plot indicates significant anisotropy
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FIGURE 15. Variance of acceleration components parallel (circles) and perpendicular
(squares) to the magnetic field as a function of magnetic field magnitude.

even at much larger times, it appears that the simple scenario of a direct effect of
anisotropic viscosity is not consistent with the data.

However, as already mentioned in § 2.2, the viscosity change in the magnetic fluid
depends on chain formation and will be effectively constant in the whole flow due to
the slow structure formation process. One may thus conclude that the defining shear
rate is determined by the highest value occurring in the flow cell and that the viscosity
increase is actually smaller than estimated above, leading to a somewhat smaller value
for the Kolmogorov scales.

An alternative argument can be based on the change of acceleration variance, which
scales according to (3.5) with 〈a2〉 ∼ ν−1/2. The data in figure 15 shows not only the
splitting of the acceleration variances in both transverse directions, but also a general
decrease with factor 75/105≈ 0.7. This corresponds to a moderate viscosity increase
by a factor of approximately 2.

These findings can be backed by looking at the spectra of the Lagrangian velocity
and acceleration (figure 16). We show the spectra for directions parallel (a) and
perpendicular (b) to the field and two magnetic field magnitudes. It is apparent that
the viscosity increase only leads to a small reduction of the scale separation and a
direct action of the anisotropic viscosity on all scales appears unlikely.

6. Conclusion
The aim of the present study was to investigate a possible dependency of turbulent

flow structure on the dissipation at the smallest scales. For this a magnetic fluid was
exposed to a spatially uniform magnetic field, producing a flow with an anisotropic,
i.e. direction dependent viscosity while avoiding the introduction of additional bulk
forces.

The velocity statistics in the central region of the turbulent flow between two
counter-rotating discs were evaluated using a Lagrangian ultrasound particle tracking
technique with temporal resolution below the Kolmogorov time scale. Significant
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FIGURE 16. (Colour online) Lagrangian velocity (dashed) and acceleration (solid) spectra
normalised for unit area at zero field (black) and at a field of 70 mT (red). The frequency
is scaled by the zero field Kolmogorov scale ωη,0. Plots show component parallel to field
(a) and component perpendicular to field (b).

changes in the statistics could be observed, including a field-dependent change in
the velocity fluctuations and the modification of turbulence length scales with a
differentiation in the field parallel and perpendicular directions.

An additional measurement with a Doppler profiler revealed the existence of
competing flow modes in the test cell. In the field-free case, these modes proved to
be direction independent and occurred with near equal probabilities. With increasing
field magnitude, a clear bifurcation behaviour could be observed, with one mode being
favoured in the field-parallel direction whereas the second became dominant in the
perpendicular direction. Both measurement campaigns thus revealed a field dependent,
spatially anisotropic behaviour of the turbulent von Kármán flow established in the
test cell. The primary and presumably only cause for these modifications is the
anisotropic viscosity. The coexistence of effects both on the smaller turbulent flow
scales and the global flow patterns suggests a viscosity-induced coupling across all
scales.

At present, the detailed mechanism for this coupling remains ambiguous, with
possible scenarios including an inverse, cascade-like coupling from small to large
scales and forward coupling of the changing macroscopic flow onto the turbulence
structure. In the latter case, the reason for the mode splitting – which again would
be viscosity induced – requires further study.
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Appendix A. Magnetic fluid, flow cell and magnetic field
In the following, further details regarding the experimental set-up and some specific

technical information are provided.
The ferrofluid is composed of spherical magnetic silica particles suspended in de-

ionised water (sicastar-M 350, micromod Partikeltechnologie GmbH, Germany) and is
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used as delivered. The particles were produced by hydrolysis of orthosilicates in the
presence of magnetite. Multiple magnetite cores with crystallite sizes of 5–15 nm are
homogeneously distributed in a dense silica shell. Their mean diameter is 320.6 nm
and the size distribution is monomodal with a polydispersity index of less than 0.2.

Since the continuous ultrasonic Doppler technique records not only the tracer
backscatter signals but also internal reflections, care was taken to minimize the
echoes from the side walls and the rotating discs. The inner wall of the container
cell and the discs are coated with an anechoic absorbing material (Aptflex F36,
Precision Acoustics, UK) of 1 cm thickness. The top and bottom plates have internal
cooling loops that are connected to a temperature-controlled circulating water bath.
The temperature is controlled at 20.0(5) ◦C using a wall mounted PT100 resistance
thermometer located in the central measurement plane of the flow cell.

The magnetic field is generated by three water-cooled copper coils with one large
central coil and a smaller coil on each side (Caylar SAS, France) which are fed
with currents up to 400 A using bipolar power supplies of class 10 ppm ◦C−1 (MPU
±15 V 400A, Caylar SAS, France). The device is similar to a Maxwell coil but differs
in the distance of the smaller coils to the plane of the central coil which is reduced
in order to increase the achievable magnetic field magnitude. In this arrangement the
highest field homogeneity was achieved by setting the current through each of the
smaller coils to 0.75 of the central coil value. The flow apparatus was inserted so that
the magnetic field was in the transverse direction. A Hall probe was used to measure
the axial magnetic field component on the coil axis and transverse at mid-height.

We employed only non-magnetic materials for the construction of the flow apparatus.
The rotating discs are connected by belt loops to brushless DC motors which are
placed sufficiently far outside the magnetic field to eliminate interference.

Appendix B. Flow velocimetry

In the chosen velocimetry configuration an ultrasound transducer continuously
insonifies the measurement volume (figure 17). Tracer particles crossing the sound
beam scatter the sound with a frequency shift fd proportional to their velocity v:

fd = f0

c
(O − I) · v. (B 1)

This equation is valid for particle speeds much less than the speed of sound in the
fluid. The frequency shift depends on the velocity of the tracer particle v, the speed
of sound c, the frequency f0, the direction I of incoming ultrasound and the direction
O of the receiving transducer.

The scattered sound is received by 3 transducers to measure all 3 velocity
components of the tracer particle motion. Two receiving transducers are located
80◦ from the transmitter in a plane in the middle of the cell (figure 17b) and
a third transducer is slightly tilted to measure the velocity in the axial direction.
We use immersion type ultrasound transducers (Imasonic SAS, France), made of
a piezocomposite material for acoustic impedance matching, and driven with a
sine wave of frequency 2.01 MHz. The active transducer area has a diameter of
6 mm and is spherically convex in order to increase the beam divergence. The
measurement volume, defined by the intersection of transmitting and receiving beams,
is approximately 2 cm in diameter, a value of order of the integral length scale of
the flow.
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FIGURE 17. (Colour online) (a) Principle of the measurement technique and (b) sketch
of the mid-plane.

The signals from the receiving transducers are amplified by charge amplifiers
with a gain of 1 × 1013 V C−1 and bandpass filtered to allow only a small range
of frequencies around the emitting frequency to be sampled. Since the frequency
modulation is small compared to the carrier frequency the overall data rate is reduced
by undersampling the signals directly on the analogue-to-digital converters. For
sampling we use parallel Sigma-Delta 24 bit converters (ICS-1640, GE Intelligent
Platforms, Canada) with a sampling frequency of 15.596 kHz which is sufficiently
high to allow demodulation of the frequencies while retaining the rapid fluctuations
of the flow. The tracer particles are thus continuously tracked along their path through
the measurement volume.

From the acquisition we receive a frequency modulated signal wherein the velocity
of the tracer particles is encoded in the instantaneous frequency of the signal. The
carrier’s base frequency, which is the frequency of the emitted ultrasound, is shifted
by undersampling to approximately 1/4 of the sampling frequency, a value chosen to
preserve the full bandwidth of expected frequency shifts. There are still echoes coming
from the walls despite of the use of anechoic absorbing material. Since the walls are
not moving these echoes produce no frequency shift and can easily be filtered out
using a notch filter located at the carrier frequency.

Velocities up to 0.5 m s−1 correspond to peak frequency deviations up to 1000 Hz
which fluctuate on time scales as small as the Kolmogorov time scale, here
τη = 4.2 ms. According to the Gabor limit, it is not possible to resolve the frequency
with, say, 10 % on these small time scales using a Fourier transform. However, we
additionally have information about the structure of the signal: there are only echoes
from a small number of scattering particles, so the signal is composed of a small
number of complex exponentials in noise. There are a number of approaches which
incorporate such information. We chose the MUSIC (Multiple Signal Classification)
algorithm (Schmidt 1986).

The measured time series is divided into subwindows with a length of 16 samples
(corresponding to 0.24τη) and 50 % overlap. It is assumed that the signal does not
change over this short interval. The algorithm first identifies events by comparing the
signal amplitude with a threshold. For each event, the MUSIC algorithm estimates the
frequencies and stores them along with a time stamp. In case of several particles in
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Ultrasound frequency 2.25 MHz
Pulse repetition frequency 5263 Hz/3175 Hz
Burst length 4 cycles
Bursts per profile 100/50
Velocity resolution 1.5 mm s−1

Time resolution 22 ms
Longitudinal resolution 0.616 mm
Sampling volume:

Longitudinal size 1.314 mm
Lateral size 5–10 mm

Number of profiles 30 000

TABLE 4. UVP parameters used in the experiment. The pulse repetition frequency and
number of bursts per profile were adjusted for channel 2.

the measurement volume, several frequencies are associated with that time segment.
To assign these frequencies to a Lagrangian trajectory, they are tracked in the time–
frequency domain with a Kalman filter (Kalman 1960). As the accuracy decreases with
an increasing number of simultaneous events, the seeding density of tracer particles
was limited so that there is most of the time only a single tracer particle in the
measurement volume.

The effective time resolution 1t is given by the sampling frequency, the length of
the time window and the overlap. The measured frequencies are converted to velocities
using (B 1). The speed of sound in the ferrofluid was measured inside the flow with a
time-of-flight method and was found to be c= 1478.5 m s−1, independent of magnetic
field magnitude.

Appendix C. UVP
Table 4 gives an overview about the relevant parameters used with the UVP

instrument (DOP3010, Signal Processing SA, Switzerland). UVP uses a single
transducer for emitting the ultrasound and receiving the scattering signal. Hence
it measures the velocity component in the direction of the ultrasound beam. The
instrument was used with the same transducers as the Doppler tracking system, but
their location was adjusted to measure directly the velocity components parallel and
perpendicular to the magnetic field. It is apparent that especially the lateral size of
the sampling volume is too large for resolved turbulence measurements.
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