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Abstract

Some normal logic programs under the answer set (or stable model) semantics lack the

appealing property of ‘cautious monotonicity.’ That is, augmenting a program with one of

its consequences may cause it to lose another of its consequences. The syntactic condition of

‘order-consistency’ was shown by Fages to guarantee existence of an answer set. This note

establishes that order-consistent programs are not only consistent, but cautiously monotonic.

From this it follows that they are also ‘cumulative’. That is, augmenting an order-consistent

program with some of its consequences does not alter its consequences. In fact, as we show,

its answer sets remain unchanged.
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1 Introduction

The answer set (or stable model) semantics of normal logic programs (Gelfond and

Lifschitz, 1988, 1991) does not satisfy cautious monotonicity. That is, even if atoms a

and c are among the consequences of a program P , a may fail to be a consequence

of the program P ∪ {c←}. Here is an example due to Dix (1991), who has published

many studies of such properties for various logic programming semantics.

a← not b

b← c, not a

c← a

This program has only one answer set {a, c}, and so has a and c among its

consequences. When augmented with the rule c← the program gains a second

answer set {b, c}, and loses consequence a.

A syntactic condition known as ‘order-consistency’ (Sato, 1990) was shown by

Fages (1994) to guarantee consistency of normal programs under the answer set

semantics. In this note we establish that order-consistency guarantees another nice

property: cautious monotonicity.
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Theorem 1 (Cautious Monotonicity Theorem)

If P is an order-consistent program and atom a belongs to every answer set for P ,

then every answer set for program P ∪ {a←} is an answer set for P .

All normal programs under the answer set semantics have a property complemen-

tary to cautious monotonicity, commonly called ‘cut’: augmenting a program with

one of its consequences cannot cause it to gain a consequence. This is immediate,

given the following easily proved fact.

Fact 1

If an atom a belongs to an answer set X for a program P , then X is an answer set

for program P ∪ {a←}.
Cut and cautious monotonicity together imply another nice property, called ‘cu-

mulativity’: augmenting a program with one of its consequences does not alter

its consequences. Corresponding to this, we have the following result for order-

consistent programs.

Corollary 1 (Cumulativity Corollary)

If an atom a belongs to every answer set for an order-consistent program P , then

programs P and P ∪ {a←} have the same answer sets.

Semantic properties such as cumulativity, cut and cautious monotonicity were

originally formulated more generally for analysis of consequence relations lacking

the classic monotonicity property (Gabbay, 1985; Makinson, 1989; Kraus et al.,

1990). Makinson’s (1993) handbook article includes a survey of such properties for

nonmonotonic logics used in AI, among them logic programming under the stable

model (answer set) semantics.

The remainder of this note is devoted to a proof of the Cautious Monotonicity

Theorem (and also, of course, to recalling the definitions involved in its statement).

Here is a preliminary sketch. We first observe that adding a consequence to a

‘signed’ program does not alter its answer sets. (This follows from results due to

Dung (1992) and Schlipf.) We then recall a result from Lifschitz and Turner (1994)

that characterizes the answer sets X for an order-consistent program P in terms of

families of signed programs whose answer sets correspond to a partition of X. In the

proof we establish in addition that if an atom a is a consequence of order-consistent

program P , then a is a consequence of the corresponding member of each of the

families of signed programs. It follows that adding rule a← to P , and so to the

corresponding member of each of the families of signed programs, does not affect

the answer sets for the members of the families of signed programs. We can then

conclude, by the Splitting Sequence Theorem of Lifschitz and Turner (1994), that

each answer set for P ∪ {a←} is an answer set for P .

2 Normal logic programs

Begin with a set of symbols called atoms. A rule consists of three parts: an atom

called the head, and two finite sets of atoms—the set of positive subgoals and the set
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of negated subgoals. The rule with head a, positive subgoals b1, . . . , bm and negated

subgoals c1, . . . , cn is typically written

a← b1, . . . , bm, not c1, . . . , not cn.

We denote the three parts of a rule r by head (r), pos(r) and neg(r); atoms(r) stands

for {head (r)} ∪ pos(r) ∪ neg(r).

A program is a set of rules. For any program P , by atoms(P ) we denote the union

of the sets atoms(r) for all r ∈ P ; the atoms in this set are said to occur in P .

A program P is positive if, for every rule r ∈ P , neg(r) = ∅. The notion of an

answer set is first defined for positive programs, as follows. A set X of atoms is

closed under a positive program P if, for every rule r ∈ P such that pos(r) ⊆ X ,

head (r) ∈ X. The answer set for a positive program P is the least set of atoms closed

under P .

Now let P be an arbitrary program and X a set of atoms. For each rule r ∈ P
such that neg(r) ∩X = ∅, let r′ be the rule defined by

head (r′) = head (r) , pos(r′) = pos(r) , neg(r′) = ∅ .
The positive program consisting of all rules r′ obtained in this way is the reduct

of P relative to X, denoted by PX . We say X is an answer set for P if X is the

answer set for PX .

A program is consistent if it has an answer set. An atom is a consequence of a

program P if it belongs to all answer sets for P . We write Cn(P ) to denote the set

of all consequences of P .

We’ll want an auxiliary notion, related to the well-founded semantics of logic

programs (Van Gelder, Ross and Schlipf, 1991). For any program P , let ΓP be the

operator that maps a set X of atoms to the answer set for PX . Clearly, the answer

sets for P are exactly the fixpoints of ΓP . It is well-known that Γ2
P is a monotone

operator whose least fixpoint, which we’ll denote by WF (P ), is exactly the set of

atoms true in the well-founded model of P .

3 Signed programs are cautiously monotonic

A program P is cautiously monotonic if, for all a ∈ Cn(P ),

Cn(P ) ⊆ Cn(P ∪ {a←}) .
A program P is cumulative if, for all a ∈ Cn(P ),

Cn(P ) = Cn(P ∪ {a←}) .
We are interested in a stronger property: for all a ∈ Cn(P ), programs P and

P ∪ {a←} have the same answer sets.

To see that this is indeed a stronger property, notice that adding the rule a← to

program {a← not a} changes its answer sets, but not its consequences.

The notion of a ‘signing’ of a program is due to Kunen (1989). A program P is

signed if there is a set S of atoms such that, for every rule r ∈ P ,

• if head (r) ∈ S then pos(r) ⊆ S and neg(r) ∩ S = ∅ ,
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• if head (r) /∈ S then pos(r) ∩ S = ∅ and neg(r) ⊆ S .

The following program P1 is signed.

a← not b

b← not a

Take S = {a}, for instance.

Lemma 2 (Signing Lemma)
For any signed program P and a ∈ Cn(P ), programs P and P ∪ {a←} have the

same answer sets.

This is immediate, given the following two results.

Proposition 1
(Dung, 1992) For any signed program P , Cn(P ) = WF (P ).

Proposition 2
(Schlipf, personal communication) For any program P and a ∈WF (P ), programs P

and P ∪ {a←} have the same answer sets.

Proposition 1 follows from a stronger result in Dung (1992). Proposition 2 is

apparently widely known, and plays a significant role in automated systems for

answer set programming.

4 Order-consistent programs

For any program P and atom a, P+
a and P−a are the smallest sets of atoms such

that a ∈ P+
a and, for every rule r ∈ P ,

• if head (r) ∈ P+
a then pos(r) ⊆ P+

a and neg(r) ⊆ P−a ,
• if head (r) ∈ P−a then pos(r) ⊆ P−a and neg(r) ⊆ P+

a .

Intuitively, P+
a is the set of atoms on which atom a depends positively in P , and P−a

is the set of atoms on which atom a depends negatively in P .

A level mapping is a function from atoms to ordinals.

A program P is order-consistent if there is a level mapping λ such that λ(b) < λ(a)

whenever b ∈ P+
a ∩ P−a . That is, if a depends both positively and negatively on b,

then b is mapped to a lower stratum.

Theorem 2 (Fages’ Theorem)
(Fages, 1994) Order-consistent programs are consistent.

The following program P2 is order-consistent.

a← not b

b← not a

c← a

c← b

Consider, for example, the level mapping λ(a) = λ(b) = 0, λ(c) = 1.

Clearly every signed program is order-consistent. As program P2 illustrates, the

converse does not hold.
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5 Call-consistent programs are not cautiously monotonic

For finite programs, order-consistency is equivalent to a well-known, simpler condi-

tion: a program P is call-consistent if for all a ∈ atoms(P ), a /∈ P−a . That is, no atom

depends negatively on itself.

The following (infinite) program is call-consistent, but not order-consistent.

am ← not c, not an (0 6 m < n)

This program has no answer set, so c and a0 are among its consequences. Adding

the rule c← produces a single answer set {c} and thus eliminates consequence a0.

This shows that not all call-consistent programs are cautiously monotonic.

One may wonder at this point if all consistent call-consistent programs are

cautiously monotonic. Consider adding the following rules to the previous example.

c← a

a← not b

b← not a

The resulting program has a single answer set {a, c}. Adding the rule c← yields a

second answer set {b, c}.

6 Splitting sequences

To ‘decompose’ an order-consistent program into a family of signed programs and

reason about the result, we need some machinery. The definitions given in this section

and the next simplify (slightly) those from Lifschitz and Turner (1994), which applied

also to non-normal programs (with classical negation and disjunction).

A splitting set for a program P is any set U of atoms such that, for every

rule r ∈ P , if head (r) ∈ U then atoms(r) ⊆ U.

It is clear that for any program P , both ∅ and atoms(P ) are splitting sets. For

program P2 from Section 4, another splitting set is {a, b}.
Let U and X be sets of atoms and P a program. The set of rules r ∈ P such

that atoms(r) ⊆ U is denoted by bU(P ). For each rule r ∈ P \ bU(P ) such that

pos(r) ∩U ⊆ X and neg(r) ∩X = ∅, take the rule r′ defined by

head (r′) = head (r) , pos(r′) = pos(r) \U , neg(r′) = neg(r) \U .

The program consisting of all rules r′ obtained in this way is denoted by eU (P ,X).

For example, if U = {a, b} then bU(P2) is exactly the signed program P1 considered

previously, and eU(P2, {a}) = {c←} = eU(P2, {b}).
A (transfinite) sequence is a family whose index set is an initial segment of ordinals,

{α : α < µ}. A sequence 〈Uα〉α<µ of sets is monotone if Uα ⊆ Uβ whenever α < β, and

continuous if, for each limit ordinal α < µ, Uα =
⋃
γ<α Uγ .

A splitting sequence for a program P is a nonempty, monotone, continuous

sequence 〈Uα〉α<µ of splitting sets for P such that
⋃
α<µ Uα = atoms(P ).

For example, 〈{a, b}, {a, b, c}〉 is a splitting sequence for program P2.
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Let U = 〈Uα〉α<µ be a splitting sequence for a program P . A solution to P (with

respect to U) is a sequence 〈Xα〉α<µ of sets of atoms such that

• X0 is an answer set for bU0
(P ) ,

• for any α such that α+ 1 < µ, Xα+1 is an answer set for

eUα

(
bUα+1

(P ),
⋃
γ6α

Xγ

)
,

• for any limit ordinal α < µ, Xα = ∅ .

Notice, for example, that program P2 has two solutions with respect to splitting

sequence 〈{a, b}, {a, b, c}〉: 〈{a}, {c}〉 and 〈{b}, {c}〉. They correspond to the two

answer sets for P2, as described in the following general theorem.

Theorem 3 (Splitting Sequence Theorem)

(Lifschitz and Turner, 1994) Let U = 〈Uα〉α<µ be a splitting sequence for a pro-

gram P . A set X of atoms is an answer set for P if and only if

X =
⋃
α<µ

Xα

for some solution 〈Xα〉α<µ to P with respect to U.

Let U = 〈Uα〉α<µ be a splitting sequence for a program P . A sequence 〈Xα〉α<µ of

sets of atoms ‘decomposes’ P into the following family of programs.

bU0
(P ) (1)

eUα

(
bUα+1

(P ),
⋃
γ6α

Xγ

)
(α+ 1 < µ) (2)

Every atom occurring in (1) belongs to U0, and for every α+ 1 < µ, every atom

occurring in (2) belongs to Uα+1 \Uα. Consequently, the members of any solution

are answer sets for a family of programs no two of which have an atom in common.

7 Signed components of order-consistent programs

We are interested in the syntactic form of the programs (1) and (2) whose answer

sets can be members of a solution to an order-consistent program P . It is clear that

each rule of each of these programs is obtained from a rule of P by removing some

of its subgoals. A more specific claim can be made using the following terminology.

For any program P and set X of atoms, let rm(P ,X) be the program obtained

from P by removing from each of the rules of P all subgoals, both positive and

negated, that belong to X. For any program P and splitting sequence U = 〈Uα〉α<µ
for P , the programs

bU0
(P ) ,

rm
(
bUα+1

(P ) \ bUα
(P ), Uα

)
(α+ 1 < µ)

will be called the U-components of P .
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It is easy to see that, for any set X of atoms,

eUα
(bUα+1

(P ), X) ⊆ rm(bUα+1
(P ) \ bUα

(P ), Uα) .

Consequently, each of the programs (1) and (2) is a subset of the corresponding

U-component of P .

We showed (Lifschitz and Turner, 1994) that a program is stratified if and only

if it has a splitting sequence U such that all U-components are positive. We also

established the following characterization of order-consistent programs.

Proposition 3

(Lifschitz and Turner, 1994) A program P is order-consistent if and only if it has a

splitting sequence U such that all U-components of P are signed.

For example, if U = 〈{a, b}, {a, b, c}〉, then the U-components of P2 are the signed

programs P1 and {c←}.
As discussed in Lifschitz and Turner (1994), Proposition 3 and the Splitting

Sequence Theorem can be used to derive Fages’ Theorem from a similar – and

easier – result for signed programs. Below they are used instead in the proof that

order-consistent programs are cautiously monotonic.

8 Proof of cautious monotonicity theorem

Restatement of Theorem 1. If P is an order-consistent program and a ∈ Cn(P ), then

every answer set for program P ∪ {a←} is an answer set for P .

Proof

Assume P is order-consistent and a ∈ Cn(P ). Let X be an answer set for P ∪{a←}.
Since P is order-consistent, so is P ∪ {a ←}. By Proposition 3, there is a splitting

sequence U = 〈Uα〉α<µ for P ∪ {a←} such that all U-components of P ∪ {a←} are

signed. Notice that U is also a splitting sequence for P , and that all U-components

of P are signed as well. By the Splitting Sequence Theorem, there is a solution

〈Xα〉α<µ to P ∪ {a ←} with respect to U such that X =
⋃
α<µ Xα. We complete the

proof by showing that 〈Xα〉α<µ is a solution to P with respect to U. (From this it

follows, again by the Splitting Sequence Theorem, that X is an answer set for P .)

Observe that any splitting sequence can be ‘extended’ by inserting ∅ at its be-

ginning. That is, since 〈Uα〉α<µ is a splitting sequence for P and P ∪ {a ←}, so is

〈U ′α〉α<µ+1, where

• U ′0 = ∅,
• for all natural numbers n such that n+ 1 < µ, U ′n+1 = Un,

• for all ordinals α such that ω 6 α < µ, U ′α = Uα,

• U ′µ = atoms(P ).

Notice that since all U-components of P and P ∪ {a ←} are signed, so are all

U ′-components. For convenience then, we will assume, without loss of generality,

that U0 = ∅. Under this assumption, any atom that occurs in P belongs to one of

the sets Uα+1 \Uα (for some α such that α+ 1 < µ).
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Let α be such that a ∈ Uα+1 \Uα. For all β + 1 < µ such that β 6= α,

eUβ

bUβ+1
(P ),

⋃
γ6β

Xγ

 = eUβ

bUβ+1
(P ∪ {a←}),⋃

γ6β

Xγ

 .

Hence, we can show that 〈Xα〉α<µ is a solution to P with respect to U simply by

showing that Xα+1 is an answer set for

eUα

(
bUα+1

(P ),
⋃
γ6α

Xγ

)
. (3)

We will do this by showing that (3) has the same answer sets as

eUα

(
bUα+1

(P ∪ {a←}),⋃
γ6α

Xγ

)
.

First, notice that the latter program is the same as

eUα

(
bUα+1

(P ),
⋃
γ6α

Xγ

)
∪ {a←} .

So it is enough to show that adding the rule a← to (3) does not affect its answer

sets. Since (3) is a signed program, we can use the Signing Lemma: it remains only

to show that atom a is among the consequences of (3).

Take V0 = Uα, V1 = Uα+1 and V2 = atoms(P ), The sequence V = 〈V0, V1, V2〉 is a

splitting sequence for P . We construct a solution to P with respect to V as follows.

Take Y0 =
⋃
γ6α Xγ . It is straightforward, using the Splitting Sequence Theorem, to

verify that Y0 is an answer set for bV0
(P ). Notice that eV0

(
bV1

(P ), Y0

)
is exactly the

program (3). Since (3) is signed, it is consistent. Let Y1 be one of its answer sets.

Since P is order-consistent, so is eV1
(bV2

(P ), Y0 ∪ Y1), and, by Fages’ Theorem, it too

is consistent. Let Y2 be one of its answer sets. By this construction, the sequence

〈Y0, Y1, Y2〉 is a solution to P with respect to V . By the Splitting Sequence Theorem,

Y = Y0 ∪ Y1 ∪ Y2 is an answer set for P . Since a ∈ Cn(P ), a ∈ Y . It follows that

a ∈ Y1. And since Y1 was an arbitrarily chosen answer set for (3), we conclude that

a is among its consequences. q
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