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Let d ≥ 1 be an integer, Td the d-dimensional torus, and

F : T ∗Td
−→ T ∗Td

a twist map. These maps will be defined precisely in part 1; they are examples of
symplectic diffeomorphisms of T ∗Td . They are important because they represent (via
a symplectic change of coordinates) the dynamics of a generic symplectic diffeomorphism
of R2d near its elliptic periodic points (see for example [Go, p. 93]). In this article, we
assume that F is without conjugate points, which means that

for all (x, p) ∈ T ∗Td , for all n ∈ Z∗, V (Fn(x, p)) ∩ DFn(x, p) · V (x, p)= {0},

where V (x, p) denotes the vertical space at point (x, p). This is a strong assumption, and
we study here its consequences on the dynamics of F .

We first describe the periodic orbits of F . To state our result precisely, let

F : T ∗Rd
−→ T ∗Rd

be a lift of F to T ∗Rd (identified with Rd
× (Rd)∗). If ω ∈ T ∗Td is a periodic point of

F with period N ∈ N∗ and ω = (x, p) ∈ Rd
× (Rd)∗ a lift of ω, then for some r ∈ Zd

we have
F

N
(x, p)= (x + r, p).

Reciprocally, if this equality holds and ω is the projection of (x, p) on T ∗Td , then
F N (ω)= ω, which means that ω is a periodic point of F , and N is a period of the orbit.
So we may see the following result as a way to describe the periodic orbits of F .
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THEOREM 1. Let F be a twist map without conjugate points. For every N ∈ N∗, for every
r ∈ Zd , for every x ∈ Rd , there is a unique p ∈ (Rd)∗ such that F

N
(x, p)= (x + r, p).

Let x be a point on the torus Td . As a consequence of Theorem 1, F has a countable
number of periodic orbits intersecting T ∗x Td . Each of them is determined by an integer
N ≥ 1 (which is a period of the orbit) and a vector r ∈ Zd (we may call it the homotopy
class of the orbit).

We prove that if we fix N and r and let x vary in Td , the set

GN ,r = {(x, p) ∈ Td
× (Rd)∗ such that F

N
(x, p)= (x + r, p)}

is a lift to T ∗Rd of an invariant Lagrangian submanifold GN ,r of T ∗Td . So this gives rise
to a sequence of Lagrangian submanifolds, each of them being a union of periodic orbits
of F . It is natural to wonder if we can find other invariant Lagrangian submanifolds of
T ∗Td . It was suggested by Bialy in [Bi] that F is without conjugate points if and only
T ∗Td may be written as the union of F-invariant Lagrangian graphs.

Cheng and Sun showed that this holds true when d = 1: they proved in [Ch-Su] that F
is without conjugate points if and only if T ∗T1 is foliated by continuous, closed, invariant
curves that are not null-homotopic (a standard result due to Birkhoff states that these curves
must be graphs over T1). Here we generalize their result in any dimension as follows:

THEOREM 2. Let F : T ∗Td
−→ T ∗Td be a twist map. Then F is without conjugate

points if and only if there is a continuous foliation of T ∗Td by Lipschitz, Lagrangian
invariant graphs.

The techniques used by Cheng and Sun do not carry over to the higher dimensional
case. Our proof uses ideas coming from weak KAM and Aubry-Mather theory: each leaf
of the foliation is a dual Aubry set associated to some cohomology class. This strategy
was already used in [AABZ], where it is shown that a similar result holds for a class of
Hamiltonian flows. Note that in the case of a geodesic flow of a Riemannian metric on the
torus, this result was proved in 1994 by Heber (see [He]). However, many arguments used
in the continuous setting have no analogue in the discrete case. For example, there is no
useful numerical quantity (as the Hamiltonian in the continuous case) which is constant
along the orbit of F .

This article is organized as follows: we recall some basic facts in §1. The proof of
Theorem 1 is given in §2. In the four following sections, we show that the sets GN ,r

are invariant Lagrangian graphs of T ∗Td as well as dual Aubry sets associated to a
cohomology class. Finally, we give a proof of Theorem 2 in the last two sections.

1. Twist maps without conjugate points
Let d ≥ 1 be an integer. Denote by Td

= Rd/Zd the d-dimensional torus. Let T =
Rd
× Rd and let T ∗ = Rd

× (Rd)∗ be the cotangent space of Rd . Consider a generating
function, that is a map S : T −→ R of class C2 which satisfies the following two
conditions:
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(C1) for all r ∈ Zd , for all (x, y) ∈ T , S(x + r, y + r)= S(x, y);
(C2) (‘uniform twist condition’, see [Bi-McK]) There is a real number A > 0 for which

for all (x, y) ∈ T , for all ξ ∈ Rd ,
∑
i, j

∂2S(x, y)
∂xi∂y j

(x, y)ξiξ j ≤−A‖ξ‖2.

We may then define various notions of action. For example, the action of a finite
sequence γ = (x0, x1, . . . , xn) with values in Rd is

S(γ )= S(x0, x1, . . . , xn)=

n−1∑
k=0

S(xk, xk+1).

If we fix an integer n ≥ 2 and two points x0 and xn in Rd , we can define the ‘action with
fixed endpoints’ as the map

Sx0,xn ,n : (x1, . . . xn−1) ∈ (Rd)n−1
7−→ S(x0, x1, . . . , xn−1, xn) ∈ R.

Its critical points are the finite sequences (x1, . . . xn−1) for which

for all k ∈ {1, . . . , n − 1}, ∂2S(xk−1, xk)+ ∂1S(xk, xk+1)= 0.

The sequence (x0, x1, . . . , xn) will be called a finite extremal sequence. An (infinite)
sequence (xn)n∈Z with values in Rd is said to be extremal if it satisfies

for all n ∈ Z, ∂2S(xn−1, xn)+ ∂1S(xn, xn+1)= 0.

Condition (C2) implies (see [Go], Ch. 4) that for every x0 ∈ Rd and every y0 ∈ Rd , the
maps

x 7−→ ∂2S(x, y0) and y 7−→ ∂1S(x0, y)

are diffeomorphisms. As an immediate consequence, every finite extremal sequence may
be uniquely extended to an infinite extremal sequence. In particular, for every (x, y) ∈
T , there is a unique extremal sequence (xn)n∈Z for which x0 = x and x1 = y. We shall
denote by

σ : (x, y)= (x0, x1) ∈ T 7−→ (x1, x2) ∈ T
the corresponding shift diffeomorphism.

The generating function also gives rise to a symplectic diffeomorphism F of T ∗Td , the
cotangent bundle of Td . Let F : T ∗ −→ T ∗ be the diffeomorphism (twist map) implicitly
defined by

F(x, p)= (x ′, p′)⇐⇒ p =−∂1S(x, x ′) and p′ = ∂2S(x, x ′).

It turns out that F and σ are conjugated: the map

L : (x, y) ∈ T 7−→ (x,−∂1S(x, y)) ∈ T ∗

is a diffeomorphism for which F = L ◦ σ ◦ L−1. The diffeomorphism F is exact
symplectic, which means that F

∗
α − α = d S, where α =

∑d
i=1 xi dqi is the Liouville

1-form on T ∗Rd . Note that condition (C1) implies that F is the lift to T ∗ of a symplectic
diffeomorphism F of T ∗Td . In this article, we are interested in the dynamics of F , and
we will use S as a useful tool for our study.

As a matter of fact, condition (C2) has strong consequences on the behaviour of S. For
example, the following result may be shown (see [Go, p. 105] or [McK-Me-St, p. 568] for
a proof).
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LEMMA 1.1. There exists α ∈ R, β ∈ R and γ > 0 such that

for all (x, y) ∈ T , S(x, y)≥ α + β‖x − y‖ + γ ‖x − y‖2.

As an immediate consequence, we can construct extremal sequences going through two
arbitrary points in Rd .

LEMMA 1.2. For every (x, y) ∈ T , for every integer N ≥ 1, there exists an extremal
sequence (xn)n∈Z for which x0 = x and xN = y.

Proof. We already know that this is the case when N = 1. When N ≥ 2, it suffices to
show that the map Sx,y,N has a critical point. In view of Lemma 1.1, Sx,y,N is coercive
and therefore achieves its minimum at a point (x1, . . . , xN−1). We then extend the
finite extremal sequence (x0 = x, x1, . . . , xN−1, xN = y) to an infinite extremal sequence
(xn)n∈Z. �

Let us show that this extremal sequence is unique if we assume that F is without
conjugate points. Let π : (x, p) ∈ T ∗Td

7−→ x ∈ Td be the canonical projection. For
every (x, p) ∈ T ∗Td , the vertical space at (x, p) is

V (x, p)= Ker(Dπ|T(x,p)T ∗Td ).

Definition 1.3. F is without conjugate points if

for all (x, p) ∈ T ∗Td , for all n ∈ Z∗, V (Fn(x, p)) ∩ DFn(x, p) · V (x, p)= {0}.

PROPOSITION 1.4. If F is without conjugate points, then for every (x, y) ∈ T and for
every integer N ≥ 2, the map Sx,y,N has a unique critical point; and at that point, Sx,y,N

achieves its minimum.

Proof. For the ‘existence’ part, we refer to the proof of Lemma 1.2. Now assume by
contradiction that Sx,y,N has (at least) two distinct critical points. It is shown in [Bi-McK]
that if F is without conjugate points, then every critical point of Sx,y,N is in fact a strict
local minimum. Sx,y,N is then a coercive C2 map with two distinct strict local minima. We
can apply an existence theorem for saddle points in finite dimension (see [St, Theorem 1.1,
p. 74]). It says that Sx,y,N possesses a third critical point which is not a local minimum of
Sx,y,N . This is a contradiction. �

COROLLARY 1.5. If F is without conjugate points, then for every (x, y) ∈ T and every
integer N ≥ 1, there is a unique extremal sequence (xn)n∈Z with x0 = x and xN = y.

Remark 1.6. Assume that F is without conjugate points. Let (xn)n∈Z be an extremal
sequence, and let k and l be two integers with l − k ≥ 2. It follows from Proposition 1.4
that

for all (yk+1, . . . , yl−1) ∈ (Rd)l−k−1,

S(xk, xk+1, . . . , xl−1, xl)≤ S(xk, yk+1, . . . , xk+1, xl).

Equality holds if and only if yi = xi for every i ∈ {k + 1, . . . , l − 1}. This means that an
extremal sequence minimizes the action with fixed endpoints between any two of its points.

https://doi.org/10.1017/etds.2019.49 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2019.49


52 M. Arcostanzo

2. Construction of periodic orbits
In this section, we prove Theorem 1. Let us fix r ∈ Zd and N ∈ N∗. We have to show
that for every x ∈ Rd , there is a unique p ∈ (Rd)∗ for which F

N
(x, p)= (x + r, p). The

change of variable (x, y)= L−1(x, p) and the relation F = L ◦ σ ◦ L−1 lead to

F
N
(x, p)= (x + r, p)⇐⇒ σ N (x, y)= (x + r, y + r).

According to the results of the previous part, the only y ∈ Rd for which we may have
σ N (x, y)= (x + r, y + r) is y = x1, where (xn)n∈Z is the unique extremal sequence
satisfying x0 = x and xN = x + r . And for this y, we have σ N (x, y)= (x + r, y + r)
if and only if xN+1 = x1 + r . It turns out that this equality holds, as it is a special case of
the following general result.

PROPOSITION 2.1. Let r ∈ Zd and N ∈ N∗. If (xn)n∈Z is an extremal sequence such that
xN = x0 + r , then xn+N = xn + r for all n ∈ Z.

For the proof, we shall use a technique of metric geometry introduced by Busemann
(see [Bu, §32]) when he was studying G-spaces without conjugate points.

For every (x, y) ∈ T and for every integer N ∈ N∗, we denote by AN (x, y) the
minimum of the function Sx,y,N when N ≥ 2, and S(x, y) if N = 1. As the minimum
is attained at a single point, AN is a continuous function. We clearly have AN (x + r,
y + r)=AN (x, y) for every (x, y) ∈ T and every r ∈ Zd .

LEMMA 2.2. For every x, y, z in Rd , for every N, N ′ in N∗, the following triangular
inequality holds:

AN+N ′(x, z)≤AN (x, y)+AN ′(y, z).

Moreover, one has equality if and only if y = wN , where (wn) is the extremal sequence for
which w0 = x and wN+N ′ = z.

Proof. Let (xn) be the extremal sequence with x0 = x and xN = y, and (yn) the extremal
sequence with yN = y and yN+N ′ = z. So we have

AN (x, y)= S(x0, x1, . . . , xN ) and AN ′(y, z)= S(yN , yN+1, . . . , yN+N ′).

Let (zn) be the sequence defined by

zn =

{
xn for n ≤ N ,

yn for n ≥ N .

As we have z0 = x0 = x and zN+N ′ = yN+N ′ = z, the definition of AN+N ′(x, z) implies
that

AN+N ′(x, z)≤ S(z0, z1, . . . , zN+N ′)= S(x0, x1, . . . , xN )+ S(yN , yN+1, . . . , yN+N ′),

whence the inequality AN+N ′(x, z)≤AN (x, y)+AN ′(y, z).
If equality holds, then Sx,z,N+N ′ achieves its minimum at (z1, z2, . . . , zN+N ′−1). But

Sx,z,N+N ′ achieves its minimum at a unique point, namely (w1, w2, . . . , wN+N ′−1). So
we must have zN = wN , and therefore y = wN . �
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Consider the function

f : x ∈ Rd
7−→AN (x, x + r) ∈ R.

As f is continuous and Zd -periodic, there exist two points a and b in Rd with f (a)=
minRd f and f (b)=maxRd f . We first establish Proposition 2.1 for a particular extremal
sequence.

LEMMA 2.3. The extremal sequence (xn) for which x0 = b and xN = x0 + r satisfies

for all n ∈ Z, xn+N = xn + r.

Proof. Using the periodicity of A2N and the triangular inequality, we get

A2N (x0, x2N )=A2N (x0 + r, x2N + r)≤AN (x0 + r, x2N )+AN (x2N , x2N + r),

so that
A2N (x0, x2N )≤AN (xN , x2N )+ f (x2N ).

As extremal sequences are action-minimizing (see Remark 1.6), we also have

A2N (x0, x2N )=AN (x0, xN )+AN (xN , x2N )= f (b)+AN (xN , x2N ),

so that the last inequality yields

A2N (x0, x2N )≤A2N (x0, x2N )− f (b)+ f (x2N )≤A2N (x0, x2N ),

because f achieves its maximum at b. This implies that equality holds in all the previous
inequalities. Lemma 2.2 then tells us that x2N = yN , where (yn) is the unique extremal
sequence with y0 = x0 + r and y2N = x2N + r .

As the extremal sequences (yn) and (xn + r) are equal at n = 0 and n = 2N ,
Corollary 1.5 implies that they are equal for all n. So we have yN = xN + r , and therefore
x2N = yN = xN + r . Now the two extremal sequences (xn+N ) and (xn + r) are equal at
n = 0 and n = N , so they are equal. �

LEMMA 2.4. The function f is constant.

Proof. We only need to show that maxRd f = f (b)≤ f (a)=minRd f . From the
preceding lemma, we have xnN = x0 + nr = b + nr for all integer n, so that

for all n ≥ 1, AnN (b, b + nr)= nAN (b, b + r)= n f (b).

On the other hand, the triangular inequality implies that for every n ≥ 3,

AnN (b, b + nr)≤AN (b, a + r)

+

n−2∑
i=1

AN (a + ir, a + (i + 1)r)+AN (a + (n − 1)r, b + nr).

These two relations and the fact that AN is Zd -invariant lead to

n f (b)≤AN (b, a + r)+ (n − 2) f (a)+AN (a, b + r).

When we divide by n and let n go to infinity, we obtain f (b)≤ f (a). �
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As the function f achieves its maximum at every point, the conclusion of Lemma 2.3
holds for every b ∈ Rd . This ends the proof of Proposition 2.1 and the proof of Theorem 1.

COROLLARY 2.5. If F is without conjugate points, then we have:
(i) every constant sequence is an extremal sequence;
(ii) every extremal sequence is either injective or constant;
(iii) for every r ∈ Zd , the quantity S(x, x + r) does not depend on x.

Proof. Let x ∈ Rd , and (xn)n∈Z the extremal sequence for which x0 = x1 = x . Using
Proposition 2.1 with N = 1 and r = 0, we may conclude that (xn) is a constant sequence,
which proves (i). Let (xn)n∈Z be extremal and not injective. We may assume that x0 = xN

with N ∈ N∗. The constant sequence equal to x0 is extremal, so Corollary 1.5 tells us
that (xn) is a constant sequence, which proves (ii). For all x ∈ Rd and r ∈ Zd , we have
S(x, x + r)=A1(x, x + r)= f (x), and according to Lemma 2.4 this quantity does not
depend on x , which proves (iii). �

3. The Green bundles
In this section, we introduce two Lagrangian bundles that we will make use of later. In
the context of twist maps, they were first studied in [Bi-McK]. We fix some set of
symplectic coordinates (x1, . . . , xd , p1, . . . , pd) on T ∗Td . Every Lagrangian vector
space L⊂ T(x,p)T ∗Td transverse to V (x, p) is then the graph of a symmetric matrix
S, with L= {v such that dp(v)= Sdx(v)}. So there is a partial ordering between
these vector spaces: if L1 and L2 are two of them, we say that L2 is above L1 (L1 ≤ L2)
if the symmetric matrix S2 − S1 is non-negative; and L2 is strictly above L1 (L1 < L2) if
S2 − S1 is positive definite.

For every (x, p) ∈ T ∗Td and for every integer n 6= 0, we define

Gn(x, p)= DFn(V (F−n(x, p)))⊂ T(x,p)T ∗Td .

This is a family of Lagrangian vector spaces, all of them being transverse to the vertical
V (x, p) since F does not have conjugate points. It is proved in [Bi-McK] (see [Ar],
Proposition 7 for a slightly different proof) that for all integers n ≥ 2 and k ≥ 2, one has

G−1(x, p) < G−k(x, p) < G−(k+1)(x, p) < Gn+1(x, p) < Gn(x, p) < G1(x, p).

This implies that the sequences (Gn(x, p))n≥1 and (G−n(x, p))n≥1 converge. Their limits

G+(x, p)= lim
n→∞

Gn(x, p) and G−(x, p)= lim
n→−∞

Gn(x, p)

are two Lagrangian vector spaces, called the positive and negative Green subspaces at
(x, p). They are transverse to the vertical, with G−(x, p)≤ G+(x, p). By letting (x, p)
vary over T ∗Td , we obtain two (measurable) Lagrangian bundles. Both of them are clearly
F-invariant.

The following dynamical criterion will be used in the next section to establish that some
vectors tangent to T ∗Td belong to the Green bundles. Both the statement and the proof are
due to Marie-Claude Arnaud.
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PROPOSITION 3.1. Endow T ∗Td with a Riemannian metric. Assume that the orbit of
(x, p) is relatively compact. Then, for every v ∈ T(x,p)T ∗Td ,

v /∈ G−(x, p) H⇒ lim
n→−∞

‖D(x,p)(π ◦ Fn)(v)‖ = +∞

and
v /∈ G+(x, p) H⇒ lim

n→∞
‖D(x,p)(π ◦ Fn)(v)‖ = +∞.

Proof. For any integer k, let (xk, pk)= Fk(x, p). Equip each T(xk ,pk )T
∗Td with the

standard symplectic basis B = (e1, . . . , ed , f1, . . . , fd) induced by the coordinates. The
vector space spanned by (e1, . . . , ed) is called the horizontal space. For any integer k, the
matrix representation of D(x,p)Fn with respect to the basis B is

Mn(x, p)=
(

An(x, p) Bn(x, p)
Cn(x, p) Dn(x, p)

)
,

where An , Bn , Cn and Dn are square matrices of order d. Let Sn(xk, pk) be
the symmetric matrix associated to the Lagrangian vector space Gn(xk, pk). Since
DFn(x, p)(V (x, p))= Gn(xn, pn) and DFn(x, p)(G−n(x, p))= V (xn, pn), we get

Dn(x, p)= Sn(xn, pn)Bn(x, p) and An(x, p)=−Bn(x, p)S−n(x, p)

and therefore

Mn(x, p)=
(
−Bn(x, p)S−n(x, p) Bn(x, p)

Cn(x, p) Sn(xn, pn)Bn(x, p)

)
.

Let us consider another symplectic basis: B′ = (e′1, . . . , e′d , f1, . . . , fd) in
T(xk ,pk )T

∗Td , with e′i = ei + S−(xk, pk)ei for all i , so that the horizontal space spanned
by (e′1, . . . , e′d) is now G−(xk, pk). In this new basis, the matrix of D(x,p)Fn becomes

M ′n(x, p)=
(

Id Od

−S−(xn, pn) Id

)
×

(
−Bn(xn, pn)S−n(x, p) Bn(x, p)

Cn(x, p) Sn(xn, pn)Bn(x, p)

)
×

(
Id Od

S−(x, p) Id

)
and therefore

M ′n(x, p)=
(

Bn(x, p)[S−(x, p)− S−n(x, p)] Bn(x, p)
Od [Sn(xn, pn)− S−(xn, pn)]Bn(x, p)

)
.

Take v ∈ T(x,p)T ∗Td and write v = v1 + v2 with v1 ∈ G−(x, p) and v2 ∈ V (x, p). We
assume v /∈ G−(x, p), so that v2 6= 0. Let v′n = DFn(x, p) · v and write v′n = v

′

n,1 + v
′

n,2,
with v′n,1 ∈ G−(xn, pn) and v′n,2 ∈ V (xn, pn). Then Dπ(v′n)= Dπ(v′n,1), with

v′n,1 = Bn(x, p)[(S−(x, p)− S−n(x, p)) · v1 + v2].

Since G−1(xn, pn)≤ G−(xn, pn)≤ G1(xn, pn) for all n and the (xn, pn) remain in
a compact set, there exists a constant C > 0 such that ‖Dπ(v′n,1)‖ ≥ C‖v′n,1‖ for all n.
Hence

‖Dπ(v′n,1)‖ ≥ C‖v′n,1‖ ≥ C Nn(x, p) ‖v2 + εn‖,
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where εn = (S−(x, p)− S−n(x, p)) · v1 is a vector whose norm converges to 0 and
Nn(x, p) is the conorm of Bn(x, p). So it only remains to show that Nn(x, p)→∞
when n→∞.

The matrix of DFn(x, p) being symplectic, we have
t
[(Sk(xk)− S−(xk))Bk]Bk(S− − S−k)= Id ,

and therefore
(S− − S−k)

t Bk(Sk(xk)− S−(xk))Bk = Id ,

so that
t Bk(Sk(xk)− S−(xk))Bk = (S− − S−k)

−1.

It follows that for every v ∈ Rd , one has

〈(Sk(xk)− S−(xk))Bkv, Bkv〉 = 〈(S− − S−k)
−1v, v〉. (∗)

Let Mk be the smallest eigenvalue of (S− − S−k)
−1. It goes to infinity with k because

S− − S−k is positive definite and converges to Od . So the right-hand side of (∗) is
≥Mk‖v‖

2. Now using that Sk(xk)− S−(xk)≤ S1(xk)− S−1(xk), the left-hand side of (∗)
is ≤〈[S1(xk)− S−1(xk)]Bk(v), Bk(v)〉. As the orbit is precompact, S1(xk)− S−1(xk)≤ S
for some fixed symmetric positive definite matrix S, and therefore there is an M > 0
(independent of k) such that the left-hand side is ≤ M‖Bk(v)‖

2. Combining the two
inequalities we obtain ‖Bk(v)‖

2
≥ (Mk/M)‖v‖2, with Mk→∞. This implies the result

on the conorm. �

4. Some invariant Lagrangian submanifolds of T ∗Td

In this section, we shall see how the translation-invariant orbits of F may be used to
construct invariant Lagrangian graphs in T ∗Td . We first introduce some notations. For
every r ∈ Zd and every N ∈ N∗, we consider the following sets:

GN ,r = {(x, y) ∈ T , x ∈ Rd and σ N (x, y)= (x + r, y + r)} and G∗N ,r = L(GN ,r ).

They are closely related to the extremal sequences studied in the preceding section. As
a matter of fact, if (x, y) ∈ GN ,r , then the extremal sequence (xn)n∈Z for which x0 = x and
x1 = y satisfies xN = x0 + r (and hence xn+N = xn + r for every n by Proposition 2.1).
Reciprocally, if (xn) is an extremal sequence for which xN = x0 + r , then (x0, x1) ∈ GN ,r .
As for G∗N ,r , it contains all the (x, p) ∈ Td

× (Rd)∗ given by Theorem 1 if we fix N and r
and let x vary in Rd .

According to the results of the last section, there exists for every x ∈ Rd a unique y ∈ Rd

for which (x, y) ∈ GN ,r . This implies that GN ,r (and hence G∗N ,r as well) is a graph.
Moreover GN ,r is clearly invariant by σ , whereas G∗N ,r is invariant by F . Note that as a
consequence of Corollary 2.5, GN ,0 = {(x, x), x ∈ Rd

}.
Now consider G∗N ,r , the projection of G∗N ,r on T ∗Td . It turns out that this set has many

interesting properties:

PROPOSITION 4.1. The set G∗N ,r satisfies:
(i) it is a graph which is F-invariant;
(ii) for all ω ∈ G∗N ,r , F N (ω)= ω;
(iii) it is a Lagrangian submanifold of T ∗Td .
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Proof. Let x ∈ Rd and let be p the unique element of (Rd)∗ for which (x, p) ∈ G∗N ,r .
Condition (C1) implies that if F(x, p)= (x ′, p′), then F(x + s, p)= (x ′ + s, p′) for
every s ∈ Zd . Therefore (x + s, p) ∈ G∗N ,r for every s ∈ Zd . They all have the same
projection on T ∗Td , so G∗N ,r is a graph. It is F-invariant as G∗N ,r is F-invariant. This proves

(i). It follows from the definitions that if (x, p) ∈ G∗N ,r , then F
N
(x, p)= (x + r, p). This

readily implies property (ii).
We now prove that G∗N ,r (and therefore G∗N ,r as well) is a smooth manifold. The main

difficulty is to check that we can apply the implicit function theorem to

F : (x, p) ∈ T ∗ 7−→ π(F
N
(x, p))− (x + r) ∈ Rd .

This will imply that the map sending x ∈ Rd to the unique p ∈ (Rd)∗ for which (x, p) ∈
T ∗ is smooth, and hence the smoothness of G∗N ,r .

So all we need to do is to verify that at every point in T ∗, the differential of F with
respect to p is invertible. Let (x0, p0) ∈ T ∗, (x1, p1)= F

N
(x0, p0), and x2 = F(x0, p0).

Let
i : p ∈ (Rd)∗ 7−→ (x0, p) ∈ T ∗

be the canonical injection. The differential of F with respect to p at the point (x0, p0) is

DpF(x0, p0) : v ∈ Tp0(R
d)∗ 7−→ Dπ(x1, p1) ◦ DF

N
(x0, p0) ◦ Di(p0) · v ∈ Tx2R

d .

Let v belong to the kernel of DpF(x0, p0). Then DF
N
(x0, p0) ◦ Di(p0) · v ∈ V (x1, p1).

As Di(p0) · v ∈ V (x0, p0), we have Di(p0) · v = 0 (because F is without conjugate
points), hence v = 0.

We finally show that G∗N ,r is Lagrangian. Let (x, p) ∈ G∗N ,r and v ∈ T(x,p)G∗N ,r . As a
consequence of (ii), the restriction of F N to G∗N ,r is the identity map, and the same is true
for all F−nN if n ∈ Z. Passing to the differential, we get DF−nN (x, p) · v = v, and hence
D(π ◦ F−nN )(x, p) · v = Dπ(x, p) · v is of constant norm. Using Proposition 3.1, this
implies that v ∈ G(x,p). Hence T(x,p)G∗N ,r ⊂ G(x,p), and these two vector spaces have the
same dimension, so they coincide. �

5. Some results in discrete weak KAM theory
Weak KAM theory was initially developed by Mather, Mané and Fathi to study the
dynamics of some special Hamiltonian flows. This theory was adapted to the twist maps
by Garibaldi and Thieullen. We briefly recall the facts we shall make use of in the rest of
this paper. We refer to [Ga-Th] for the proofs.

To every generating function S one can associate a real S̃ (called ‘minimizing holonomic
value’). It is defined as

S̃ = Inf
{

lim inf
n→+∞

1
n

S(x0, . . . , xn)

}
,

with the infimum taken over all sequences (xn)n∈N with values in Rd . One also has

S̃ = Infn≥1

{
1
n

S(x0, . . . , xn), x0, . . . , xn ∈ Rd with xn − x0 ∈ Zd
}
.
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One usually normalizes the generating function, using S − S̃ instead of S. The action
of a finite sequence (x0, . . . xn) is then

S̃(x0, . . . xn)= S(x0, . . . , xn)− nS̃.

Let us note that we now have S̃(x0, . . . , xn)≥ 0 as soon as xn − x0 ∈ Zd , and S̃ is the
smallest real number with this property.

The Mané potential is a function φ : T −→ R defined as follows: for every (x, y) ∈ T ,

φ(x, y)= Infn≥1{S̃(x0, . . . , xn), x0, . . . , xn ∈ Rd with x0 = x and xn − y ∈ Zd
}.

It is a continuous function. It is Zd -periodic with respect to each variable. It satisfies the
triangular inequality φ(x, z)≤ φ(x, y)+ φ(y, z).

A function u : Rd
−→ R is called a sub-action if it is Zd -periodic and if

for all x ∈ Rd , for all y ∈ Rd , u(y)− u(x)≤ φ(x, y).

As a consequence of the triangular inequality for φ, the maps φ(x0, ·) and −φ(·, x0) are
sub-actions for every x0 ∈ Rd .

One can associate to S a subset A of T called the Aubry set : (x, y) ∈ T belongs to A
if for every ε > 0 there exists an integer n ≥ 1 and a finite sequence (x0, x1, . . . , xn) with
values in Rd for which

xn − x0 ∈ Zd , ‖x − x0‖< ε, ‖y − x1‖< ε, and S̃(x0, x1 . . . , xn) < ε.

The Aubry set is non-empty and closed. It is invariant by the action of Zd : if (x, y) ∈A,
then (x + r, y + r) ∈A for all r ∈ Zd . It is also invariant by σ . An important property
of A is that it is a Lipschitz graph. This means that the projection on the first factor
pr1 :A−→ Rd is injective (hence for every x ∈ pr1(A), there exists a unique y ∈ Rd for
which (x, y) ∈A), and that the map x ∈ pr1(A) 7−→ y ∈ Rd is Lipschitz.

There is a simple link between pr1(A) and the Mané potential φ: a point x ∈ Rd belongs
to pr1(A) if and only if φ(x, x)= 0. If this is the case, the unique element y ∈ Rd for
which (x, y) ∈A is characterized by the relations

φ(x, y)= S̃(x, y)= S(x, y)− S̃ and φ(x, y)+ φ(y, x)= 0.

We also consider the dual Aubry set A∗ = L(A)⊂ T ∗. It is a Lipschitz graph, invariant
by F . It can be interpreted as the set of differentials of sub-actions, thanks to the following
result: every sub-action u : Rd

−→ R is differentiable at every point x ∈ pr1(A), the
differential being Dx u = L(x, y) ∈A∗, where y ∈ Rd is the unique element for which
(x, y) ∈A. Finally, if (x, p) ∈A∗, then (x + s, p) ∈A∗ for every s ∈ Zd , so that we can
project A∗ on T ∗Td ; the result is an F-invariant Lipschitz graph denoted by A∗.

In order to construct the foliation alluded to in Theorem 2, we shall consider a family
of Aubry sets, parameterized by a cohomology class c ∈ H1(Td , R). This is how they are
defined: let ω be a closed 1-form and ω̃ a lift to Rd . Let us denote by u : Rd

−→ R a
primitive of the exact 1-form ω̃. It is easy to check that the map

Su : (x, y) ∈ T 7−→ S(x, y)+ u(x)− u(y) ∈ R

is a generating function.
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When we replace S with Su , some mathematical objects associated to S will be altered,
while others remain unchanged. For example, S and Su clearly have the same extremal
sequences, so that σu = σ . On the other hand, L becomes Lu = T−1

u ◦ L, where Tu is the
translation

Tu : (x, p) ∈ T ∗ 7−→ (x, p + Du(x)) ∈ T ∗.

As for F , it is changed into Fu = T−1
u ◦ F ◦ Tu . So if F is without conjugate points, the

same is true for Fu . One may check that the real S̃u only depends on the cohomology
class c of ω, so that it can be denoted by S̃c. This gives rise to the α-Mather function
α : c ∈ H1(Td , R) 7−→−S̃c ∈ R, which is both convex and superlinear.

As a matter of fact, the Aubry set A(Su) also only depends on c, so it will be denoted by
Ac. Its dual counterpart Lu(Ac)= T−1

u (L(Ac)) is then invariant by Fu = T−1
u ◦ F ◦ Tu .

As we are more interested in F-invariant subsets of T ∗, it is natural to define the dual
Aubry set associated to the cohomology class c as A∗c = L(Ac). This is an F-invariant
Lipschitz graph. Its projection A∗c on T ∗Td is an F-invariant Lipschitz graph of T ∗Td .

We shall make use of the following notations: if c ∈ (Rd)∗ is a cohomology class, then
Sc : (x, y) ∈ T 7−→ S(x, y)+ c(x − y) ∈ R is its associated generating function and φc

the corresponding Mané potential.

6. From periodic orbits to Aubry sets
In this section, we show that if F is without conjugate points, then each of the Lagrangian
submanifolds G∗N ,r defined in §3 is in fact a dual Aubry set A∗c for a suitable cohomology
class c. This is the content of the following result:

PROPOSITION 6.1. Let N ≥ 1, r ∈ Zd and u : Rd
−→ R a smooth map such that G∗N ,r is

the graph of Du. Then G∗N ,r =A∗c , c being the cohomology class of the closed 1-form
induced by Du on Td .

We first establish some special properties of the sets A∗c and the Mané potential φc

when F is without conjugate points. As remarked earlier, the symplectic diffeomorphism
Fu = T−1

u ◦ F ◦ Tu is then free of conjugate points as well, so that we may use the results
obtained in §2, using Su instead of S.

LEMMA 6.2. If F is without conjugate points, then pr1(Ac)= Rd for every cohomology
class c.

Proof. We pick y ∈ Rd , and show that y ∈ pr1(Ac), i.e. φc(y, y)= 0. Let x ∈ pr1(Ac).
As φc(x, x)= 0, there exists for every ε > 0 a finite sequence (x0, . . . , xn) with x0 = x ,
xn = x0 + r and r ∈ Zd , and S̃c(x0, . . . , xn)≤ ε. We may assume that (x0, . . . , xn) is
an extremal sequence (see Remark 1.6). Then we have (with the notations introduced
in part 2) Sc(x0, . . . , xn)=An(x, x + r)= f (x). Lemma 2.4 tells us that the extremal
sequence (yn)n∈Z with y0 = y and yn = y0 + r satisfies S(y0, . . . , yn)= S(x0, . . . , xn).
Hence

Sc(y0, . . . , yn)= S(y0, . . . , yn)+ c(y0 − yn)

= S(x0, . . . , xn)+ c(x0 − xn)= Sc(x0, . . . , xn)
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and therefore S̃c(y0, . . . , yn)= S̃c(x0, . . . , xn)≤ ε. It follows that φc(y, y)≤ ε. This
holds for every ε > 0, so that φc(y, y)= 0. �

LEMMA 6.3. If F is without conjugate points, then φc is additive and antisymmetric for
every cohomology class c:

for all (x, y, z) ∈ (Rd)3, φc(x, z)= φc(x, y)+ φc(y, z) and

φc(x, y)+ φc(y, x)= 0.

Proof. Let us fix x et y in Rd . As explained in §4, the maps φc(x, ·) and φc(y, ·) are two
sub-actions, and are therefore differentiable at every z ∈ pr1(Ac), both differentials being
equal to Lc(z, z′), with (z, z′) ∈Ac. As we know that pr1(Ac)= Rd , we may conclude
that these two maps are differentiable everywhere, with the same differential. Hence they
are equal up to a constant:

there exists C ∈ R such that for all z ∈ Rd , φc(x, z)= φc(y, z)+ C.

Choosing z = y and then z = x , we get C = φc(x, y)=−φc(y, x). This yields the two
relations φc(x, y)+ φc(y, x)= 0 and φc(x, z)= φc(x, y)+ φc(y, z). �

Remark 6.4. When F is without conjugate points, the dual Aubry set A∗ is then the graph
of the differential of the maps φc(x0, ·), and the same is true for its projection on T ∗Td .
As for every c ∈ H1(Td , R), we have A∗c = L(Ac)= Tu ◦ Lu(Ac), the set A∗c is the graph
of a closed 1-form whose cohomology class is c.

We are now able to prove Proposition 6.1. Let us fix N ∈ N∗, r ∈ Zd , and u : Rd
−→ R

a smooth map for which G∗N ,r is the graph of Du. The projection of Du on Td is then a
closed 1-form with cohomology class c. We want to show that G∗N ,r =A∗c .

We first handle the case where c = 0, so that u is a Zd -periodic function. For every
x ∈ Rd , (x, Du(x)) ∈ G∗N ,r and this set is invariant by F , so we have F(x, Du(x))=
(y, Du(y)) for a (unique) y ∈ Rd , denoted by y = y(x). We shall make use of the
following result (see [Go] (Theorem 35.2, p. 128) or [McK-Me-St] (Theorem 1, p. 569)
for a proof):

LEMMA 6.5. Let u : Rd
−→ R be a C2 map and G∗ ⊂ T ∗ the graph of Du. Assume G∗ is

invariant by F and define G = L−1(G∗). Then there exists a real number C for which

for all (x, y) ∈ G, S(x, y)+ u(x)− u(y)= C. (∗)

More precisely, we have

for all (x, y) ∈ T , u(y)− u(x)≤ S(x, y)− C, (∗∗)

and equality holds if and only if (x, y) ∈ G.

Remark 6.6. It is straightforward from the proof of Lemma 6.5 that its conclusion holds if
u is assumed to be C1 with bounded differential. We shall make use of this later.
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Let x0 ∈ Rd , and (xk) the sequence defined by xk+1 = y(xk). Then (xk) is an extremal
sequence. As (x0, Du(x0)) ∈ G

∗

N ,r , we have (x0, x1) ∈ GN ,r and hence xN = x0 + r . As
a consequence of (∗), u(xk+1)− u(xk)= S(xk, xk+1)− C for every integer k. Summing
up these equalities, we get

N−1∑
k=0

S(xk, xk+1)− N × C = u(xN )− u(x0),

and the right-hand side vanishes because u is Zd -periodic. So we have C =
S(x0, . . . , xN )/N , and this implies C ≥ S̃ by definition of S̃. Applying inequality (∗∗),
we obtain

for all x ∈ Rd , for all y ∈ Rd , u(y)− u(x)≤ S(x, y)− S̃ = S̃(x, y),

and this means that u is a sub-action. As explained in §5, the differential of u at every
point of pr1(A) belongs to A∗. Since pr1(A)= Rd , the graph of Du (that is, G∗N ,r ) is then
included in A∗; as A∗ is also a graph, these two sets are the same.

Assume now that c 6= 0. Let Su : (x, y) 7−→ S(x, y)− u(x)+ u(y) be the generating
function and

Tu : (x, p) ∈ T ∗ 7−→ (x, p + Du(x)) ∈ T ∗

the translation. As S and Su have the same extremal sequences, the sets GN ,r (S) and
GN ,r (Su) are equal. Using this and the fact that Lu = T−1

u ◦ L, we get

G∗N ,r (Su)= Lu(GN ,r (Su))= T−1
u ◦ L(GN ,r (S))= T−1

u (G∗N ,r (S)).

The very definition of u implies that this set is the null section. We may then apply the
preceding case: the null section is in fact the dual Aubry set associated to Su , and this
means that G∗N ,r =A∗c .

7. Some supplementary results on Aubry sets
In this section, we establish some technical properties concerning Aubry sets. They will
be needed for the proof of Theorem 2. The main problem is the following: if (cn) is a
sequence of cohomological classes that converges to c, what can be said about the Aubry
sets A∗cn

and the Mané potentials φcn ? Do they converge in some sense to A∗c and φc? In
the Hamiltonian case, every Aubry set is contained in a level set of the Hamiltonian, so
that the A∗cn

may not explode as n goes to infinity. There is no such easy argument in the
discrete case, and therefore some new techniques are required. We state and prove four
results; only the last one requires F to be without conjugate points.

LEMMA 7.1. Let c be a cohomology class, let (x, y) ∈Ac and (y, z)= σ(x, y). Then

S̃c ≥ S(x, y)+ S(y, z)− S(x, z).

Proof. As Ac is invariant by σ , both (x, y) and (y, z) belong to Ac, so that

φc(x, y)= Sc(x, y)− S̃c and − φc(z, y)= φc(y, z)= Sc(y, z)− S̃c.

Summing up these two equalities and using the triangular inequality for φc, we get

Sc(x, y)+ Sc(y, z)− 2S̃c = φc(x, y)− φc(z, y)≤ φc(x, z).
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By definition of φc, one has φc(x, z)≤ Sc(x, z)− S̃c, whence

Sc(x, y)+ Sc(y, z)− 2S̃c ≤ Sc(x, z)− S̃c,

and therefore

S̃c ≥ Sc(x, y)+ Sc(y, z)− Sc(x, z)= S(x, y)+ S(y, z)− S(x, z). �

LEMMA 7.2. Let (cn) be a convergent sequence of cohomology classes, with cn −→ c.
Then for every ε > 0, one has

for all (x, y) ∈ T , there exists N0 ∈ N such that n ≥ N0 H⇒ φcn (x, y)≤ ε + φc(x, y).

Proof. Let ε > 0 and (x, y) ∈ T . By definition of φc(x, y), there exists an integer
N ≥ 1 and a finite sequence γ = (x0, . . . , xN ) with x0 = x , y − xN ∈ Zd , and S̃c(γ )≤

φc(x, y)+ ε. As

S̃c(γ )= S(γ )+ c · (x0 − xN )− N S̃c and S̃cn (γ )= S(γ )+ cn · (x0 − xN )− N S̃cn ,

this implies, as cn −→ c, that

lim
n→+∞

S̃cn (γ )= lim
n→+∞

(S(γ )+ cn · (x0 − xN )− N S̃cn )= S̃c(γ ).

So if n is large enough, one has S̃cn (γ )≤ S̃c(γ )+ ε, and hence S̃cn (γ )≤ φc(x, y)+ 2ε.
Since φcn (x, y)≤ S̃cn (γ ), we finally get φcn (x, y)≤ φc(x, y)+ 2ε. �

LEMMA 7.3. Let K be a compact set in H1(Td , R). There exists a constant M ≥ 0 such
that

for all c ∈ K , for all (x, y) ∈Ac, ‖y − x‖ ≤ M.

Proof. Here we use a proof by contradiction. If the conclusion was not true, we could find
a sequence (cn) in K and a sequence (xn, yn) in T with (xn, yn) ∈Acn for every n and
‖yn − xn‖ −→+∞. Since (xn, yn) ∈Acn , one has

for all n, φcn (xn, yn)= S̃cn (xn, yn)= S(xn, yn)− cn · (xn − yn)− S̃cn . (∗)

As the sequence (cn) is bounded, there exists a constant C ≥ 0 for which

for all n ∈ N, |S̃cn | ≤ C and |cn · (xn − yn)| ≤ C‖xn − yn‖.

Since S(xn, yn)≥ α + β‖xn − yn‖ + γ ‖xn − yn‖
2 (according to Lemma 1.1), the right-

hand side of (∗) is unbounded as n goes to infinity. We will now check that the left-hand
side remains bounded, and thus get a contradiction. Since φcn is Zd -periodic with respect
to each variable, one has

φcn (xn, yn)≤Max{φcn (x, y), (x, y) ∈ [0, 1]d × [0, 1]d}.

Now φcn (x, y)≤ S̃cn (x, y)= S(x, y)− cn · (x − y)− S̃cn , and this quantity is bounded
since the three variables x , y and cn belong to compact sets. �

LEMMA 7.4. Assume that F is without conjugate points. Let K be a compact set in
H1(Td , R), and let x ∈ Rd . Then the maps φc(x, ·) are uniformly Lipschitz.

Proof. The maps φc(x, ·) are Zd -periodic, and everywhere differentiable since F is
without conjugate points. So all we need to do is to check that the differentials Dyφc(x, y)
are uniformly bounded when c ∈ K and y ∈ [0, 1]d . For every such y, let y′ ∈ Rd with
(y, y′) ∈Ac. We then have Dyφc(x, y)= Lc(y, y′)= T−1

c ◦ L(y, y′). To conclude the
proof, simply note that c is bounded, as well as ‖y − y′‖, according Lemma 7.3. �
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8. A continuous foliation of T ∗Td

In this part, we give a proof of Theorem 2. We begin with the easy implication: we assume
that T ∗Td is a disjoint union of Lipschitz, Lagrangian F-invariant graphs and establish that
F is without conjugate points. First note that every orbit (xn, pn)n∈Z of F is minimizing.
For it is contained in the graph of a Du, with u : Rd

−→ R of class C1 with Du bounded.
We apply Remark 6.6: there is a constant C such that

for all k ∈ Z, u(xk+1)− u(xk)= S(xk, xk+1)− C,

and therefore S(x0, . . . , xn)= nC + u(xn)− u(x0) for every integer n ≥ 1. Moreover, if
(y0, . . . , yn) is any finite sequence in Rd with x0 = y0 and xn = yn , then by Lemma 6.5,
u(yk+1)− u(yk)≤ S(yk, yk+1)− C for all k, so that

S(y0, . . . , yn)≥ nC + u(yn)− u(y0)= S(x0, . . . , xn).

As every minimizing orbit is free of conjugate points (see [Bi-McK] or [Ar] for a proof),
we may conclude that F (and F as well) does not have conjugate points.

We now assume that F is without conjugate points and check that the dual Aubry sets
A∗c , with c in H1(Td , R), are the leaves of a continuous foliation of T ∗Td . Let us establish
that the sets A∗c realize a partition of T ∗Td . We first prove that these sets are disjoint.

PROPOSITION 8.1. If c and d are two distinct cohomology classes, then A∗c ∩A∗d = Ø.

Proof. We assume that A∗c and A∗d are not disjoint, so that Ac and Ac intersect at some
point (x, x ′) ∈ T , and show that we then have Ac =Ad . This implies A∗c =A∗d and
therefore c = d (see Remark 6.4).

We first prove that S̃(c+d)/2 =
1
2 (S̃c + S̃d). Let (xn) be the extremal sequence for which

x0 = x and x1 = x ′. As the Aubry set Ac is invariant by σ , one has (xk, xk+1) ∈Ac

for every integer k, so that φc(xk, xk+1)= S̃c(xk, xk+1)= Sc(xk, xk+1)− S̃c for all k.
Summing up these equalities and using the fact that φc is additive, we get

n−1∑
k=0

Sc(xk, xk+1)= nS̃c + φc(x0, xn)= nS̃c + O(1),

as φc is bounded. A similar equality holds for the cohomology class d , so that

n−1∑
k=0

S(c+d)/2(xk, xk+1)=
1
2

n−1∑
k=0

Sc(xk, xk+1)+ Sc(xk, xk+1)= n
S̃c + S̃d

2
+ O(1).

This implies, by definition of S̃(c+d)/2, that S̃(c+d)/2 ≤
1
2 (S̃c + S̃d). On the other hand, the

map c 7−→ S̃c is concave, hence we have equality: S̃(c+d)/2 =
1
2 (S̃c + S̃d).

Let us see how to use this relation to prove that Ac =Ad . Pick (y, y′) ∈A(c+d)/2.
This means that for every ε > 0 there is a finite sequence (y0, . . . , yn) with ‖y − y0‖ ≤ ε,
‖y′ − y1‖ ≤ ε, yn − y0 ∈ Zd , and

S̃(c+d)/2(y0, y1, . . . , yn)=

n−1∑
k=0

S(c+d)/2(yk, yk+1)− nS̃(c+d)/2 ≤ ε.
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As S̃(c+d)/2 =
1
2 (S̃c + S̃d), this may be rewritten as 1

2 (6c +6d)≤ ε, where

6c =

n−1∑
k=0

Sc(yk, yk+1)− nS̃c and 6d =

n−1∑
k=0

Sd(yk, yk+1)− nS̃d .

As 6c and 6d are both non-negative quantities, each of them must be smaller than 2ε.
This implies that (x, x ′) belongs to Ac and to Ad . This proves that A(c+d)/2 ⊂Ac ∩Ad .
But these three Aubry sets are all graphs and their projections on the first factor is Rd , so
they are equal. �

Then we establish that the union of all these dual Aubry sets A∗c is equal to Td
× (Rd)∗,

and that they vary continuously with c.

PROPOSITION 8.2. For every x ∈ Rd , the map

Fx : c ∈ H1(Td , R) 7−→ p ∈ (Rd)∗ with (x, p) ∈A∗c ,

is a homeomorphism.

Proof. We first establish that Fx is coercive. Let K be a compact set in (Rd)∗, c ∈ F−1
x (K ),

p = Fx (c) (so that (x, p) ∈A∗c ), (x, x ′)= L−1(x, p) ∈Ac and (x ′, x ′′)= σ((x, x ′)) ∈
Ac. According to Lemma 7.1, we then have

S̃c ≥ S(x, x ′)+ S(x ′, x ′′)− S(x, x ′′).

As p ∈ K , x ′ and x ′′ remain in compact sets in Rd , so that the right-hand side is bounded
below. Since the map c 7−→−S̃c is convex and superlinear, one may conclude that c is
bounded.

We next show that F is continuous. Let (cn) be a sequence in H1(Td , R). Assume
that it converges to c. We have to prove that Fx (cn) goes to Fx (c). Let yn ∈ Rd with
(x, yn) ∈Acn for every n. We shall establish that the sequence (yn) is convergent (the limit
being some y∞ ∈ Rd ) and that (x, y∞) ∈Ac. According to Lemma 7.3, the sequence (yn)

is bounded. So we only need to show that if y∞ is a cluster point of the sequence (yn),
then (x, y∞) ∈Ac. This then implies that y∞ is unique (because Ac is a graph), and that
the sequence converges to y∞.

So let us consider a convergent subsequence of (yn) (it will still be denoted by (yn)

in order to keep notations as simple as possible), with limit y∞ ∈ Rd . As (x, yn) ∈Acn ,
one has

for all n ∈ N, φcn (x, yn)= S̃cn (x, yn)= S(x, yn)+ cn · (x − yn)− S̃cn .

When n goes to infinity, the right-hand side n converges to Sc(x, y∞)− S̃c. The left-hand
side may be rewritten as pcn (x, yn)= φc(x, y∞)+ un + vn , with

un = φcn (x, yn)− φcn (x, y∞) and vn = φcn (x, y∞)− φc(x, y∞).

According to Lemma 7.4, the maps φcn (x, ·) are uniformly Lipschitz, and hence
the sequence (un) converges to 0. Moreover, we already know that φcn (x, yn)−→

Sc(x, y∞)− S̃c ≥ φc(x, y∞), and hence the sequence (vn) is convergent, its limit ` being
non-negative. On the other hand, Lemma 7.2 tells us that for every ε > 0, one has

φcn (x, y∞)≤ ε + φc(x, y∞), so that vn ≤ ε,
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when n is large enough. This implies that ` has to be non-positive, and therefore that
lim vn = 0. So lim φcn (x, yn)= φc(x, y∞). From this we deduce that φc(x, y∞)=
Sc(x, y∞)− S̃c and hence that (x, y∞) ∈Ac.

To finish the proof, we use a topological argument: as Fx is a continuous and injective
map between two vector spaces of the same dimension, the invariance of domain (see [Do]
p. 567) states that Fx is an open map. On the other hand, Fx is a closed map, since
it is continuous and coercive. Hence Fx (H1(Td , R)) is both open and closed, so it has
to be equal to (Rd)∗. Hence Fx is bijective. As it is also continuous and open, it is a
homeomorphism. �

Another consequence of this proposition is that the map

F : (x, c) ∈ Td
× H1(Td , R) 7−→ Fx (c) ∈ T ∗Td

is continuous, and therefore the dual Aubry sets are the leaves of a continuous foliation of
T ∗Td .
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