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We describe and model experimental results on the dynamics of a ‘ludion’ – a neutrally
buoyant body – immersed in a layer of stably stratified salt water. By oscillating a piston
inside a cylinder communicating with a narrow (in one of its horizontal dimensions)
vessel containing the stably stratified layer of salt water, it is easy to periodically vary
the hydrostatic pressure of the fluid. The ludion or Cartesian diver, initially positioned at
its equilibrium height and free to move horizontally, can then oscillate vertically when
forced by the pressure oscillations. Depending on the ratio of the forcing frequency to
the Brunt–Väisälä frequency of the stratified fluid, the ludion can emit its own internal
gravity waves that we measure by a classical particle image velocimetry technique. Our
experimental results describe first the resonance of the vertical motions of the ludion
when excited at different frequencies. A theoretical oscillator model is then derived taking
into account added mass and added friction coefficients and its predictions are compared
with the experimental data. Then, for the larger oscillation amplitudes, we observe and
describe a bifurcation towards free horizontal motions. Although the internal gravity wave
frequencies are affected by the Doppler shift induced by the horizontal displacement
velocities, it seems that, contrary to surface waves associated with Couder walkers (Couder
et al. Nature, vol. 437, 2005, p. 238) they are not the cause of the horizontal swimming.
This does not, however, exclude possible interactions between the ludion and internal
gravity waves and possible hydrodynamic quantum analogies to be explored in the future.

Key words: bifurcation, low-dimensional models, stratified flows

1. Introduction

Inspired by the bouncing drops of Couder (Couder et al. 2005), we propose here (the
first to our knowledge) experimental results on the dynamics of a Cartesian diver forced
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to oscillate in a layer of stably stratified fluid. In addition to studying this original
dynamical system, the final goal of our investigations will be to explore new possibilities
of hydrodynamical quantum analogues since, as we will see, our system associates a free
moving particle and its own wave field.

The Cartesian diver (also called ‘ludion’ in French) is a small object denser than the
water in which it is immersed but which encloses a pocket of air. By decreasing the
pressure in the water, this air pocket expands, increasing the buoyancy force that opposes
the weight of the diver that rises accordingly. In contrast, if the pressure increases, the air
compresses, causing the diver to sink. The first reference to such an object dates from 1648,
when Raffaello Magiotti published his work on the resistance of water to compression
(Magiotti 1648). In this historical publication, we can find the very first drawings of a
ludion, credited to Magiotti. The notes that Magiotti had accumulated were destroyed
during the great plague that raged in Rome in 1656 and of which he died. Later, in the
first half of the 18th century, John Theophilus Desaguliers, a French-born philosopher,
became a curator of the experiments of the Royal Society in London. Desaguliers wrote a
book on experimental philosophy, in two volumes (1734 and 1744), in which he presented
the ludion (Desaguliers 1744). We will keep in the following both appellations: the ludion
and the diver. However, it is not known how the names ‘Cartesian diver’ or ‘Cartesian
devil’ appeared and were popularized (Ackerson (2020) and references therein). Unlike
the case of a homogeneous fluid, in which the diver has an unstable equilibrium position
except in a small window of perturbation amplitudes (Güémez, Fiolhais & Fiolhais 2002),
if the diver is immersed in a stably stratified fluid it possesses a linearly stable equilibrium
position, as can be observed on figure 1.

If the pressure is varied sinusoidally, the diver oscillates vertically around its stable
position and behaves as an oscillator which can experience a resonance when the driving
frequency is tuned. The first part of this study (§ 2) is devoted to the presentation of
the experimental set-up and to the measuring devices. Then the analysis of the ludion
dynamics in the neighbourhood of this resonance is presented in § 3. These calculations
describe the main characteristics of the ludion dynamics including its added mass and
friction coefficients. A series of experiments whose results are described in § 4 are devoted
to the determination of the resonance which is compared with the analytic prediction.
If the forcing frequency is lower than the Brunt–Väisälä frequency, the diver generates
internal gravity waves that we characterize by particle image velocimetry (PIV) (Thielicke
& Stamhuis 2014) and present in § 5. At a high amplitude response to the periodic forcing,
i.e. when the forcing frequency is close to the resonant frequency, the ludion dynamics
shows a bifurcation to free horizontal locomotion in a similar way to the vertically flapping
wing of Vandenberghe, Zhang & Childress (2004) or, more recently, to the oscillating
spheroids simulated by Deng & Caulfield (2018). As soon as the oscillation amplitude is
sufficiently large, this horizontal swimming appears regardless of the value of the forcing
frequency, i.e. with or without the presence of internal gravity waves. The description
of the bifurcation to this free dynamics is given in § 6. Finally, in the last section, some
perspectives of this work for future research will be given. In particular, we mention the
possible interaction of the ludion trajectories with its own internal gravity waves, which is
reminiscent of the drops that bounce on the free surface of a vibrating liquid (Couder et al.
2005; Perrard et al. 2014; Bush 2015).

2. Experimental set-up and methods

All of the following experimental developments were realized in the Physics Department
of UNAM in Mexico. For our experiments, a transparent acrylic rectangular container
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Figure 1. (a) Picture of the container with the stratified layer of salt water and the ludion at its stable height.
(b) Drawing of the container with its filling tube and piston cylinder. Because of the density stratification,
the ludion floats at an equilibrium position z = 0 around which it is forced to oscillate vertically when the
pressure is periodically changed by moving the piston. (c) Sketch of the piston inside the pipe that illustrates
the pressure oscillating terms coming from the hydrostatic pressure and from the Laplace capillary pressure
induced by the curved air water interface in the 1 mm gap between the piston and the pipe. In the sketch, the
piston is descending. The reverse situation occurs when the piston is rising, with an interface curved inversely.
(d) Close-up of the ludion with the air–water interface.

with dimensions 33 cm × 33 cm × 6 cm is filled with salt water (kitchen salt – NaCl) using
the double bucket technique (Oster 1965) to create the desired density stratification. The
smallest dimension of this chamber is in the horizontal plane. Then a small hollow glass
cylinder (the diver or ludion) (35 mm high for a diameter D = 12.5 mm) is introduced with
care in order to preserve the density stratification. This diver (including its air pocket) was
prepared to have a mean density intermediate between the minimum and maximum density
of the fluid, and thus after its dropping it slowly sinks in the stratified layer and finds
an equilibrium position. The fluid density vertical profile is measured by an Anton Paar
MD 35 densimeter with an accuracy of 10−4. An example of such density stratifications
is presented in the Appendix. It is worth mentioning that, as can be seen on the figure,
the two density profiles measured before and after the experiments collapse nicely on a
single curve proving that no mixing occurs in the experimental chamber. The stratification
is characterized by its Brunt–Väisälä frequency N = √−(g/ρ0)(dρ/dz) where z is the
vertical coordinate, g the gravity and ρ the density of the fluid at level z. Here ρ0 is the
density of the fluid at position z = 0, chosen at the ludion equilibrium position. As shown
in figure 14, a linear fit of the density measurements leads to the determination of N with
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an accuracy of a few per cent. Before filling the container with stratified salt water, some
micrometre-sized PIV particles were added to the fluid. A 5 cm thick homogeneous dense
layer of salt water is kept at the bottom of the container and a 10 cm thick layer of fresh
water at the top. With the exception of a 50 mm inner diameter open pipe at its top wall
(see figure 1a,b), the container is completely closed so that its pressure can be controlled
by moving a piston (having a diameter of 48 mm) inside this pipe, which as a consequence
modifies the vertical level of the free surface of water inside the pipe and thus the pressure
in the container. At the outlet of the pipe, is inserted a porous material to prevent any flow
at this outlet. The absence of flow entering the working area has been verified by PIV.
In all of the experiments, the piston is translated sinusoidally in its cylinder at a chosen
frequency by a precise stepper motor (NEMA 34 from Kollmorgen with 25 000 steps per
rotation), causing a rise or a descent of the water surface inside the piston cylinder. This
change in pressure is a priori measured by the amplitude of the free surface oscillations
which is in all the cases presented here equal to 1.4 cm. In fact, this pressure oscillation
needs to be supplemented by a surface tension contribution that is added when comparing
the theory with the experimental data. A sketch of the piston inside the pipe is presented
in figure 1(c) and illustrates the presence of a Laplace capillary pressure term due to the
narrow gap between the piston and the cylinder. The size of this small gap is of the order
of 1 mm and the surface tension pressure is calculated to be of the same magnitude of
the hydrostatic pressure. Thus, the total change in pressure is in fact twice the 140 Pa
estimated first. To complement the description of the experimental set-up, a close-up of
the ludion is also presented in figure 1(d). The forcing frequency is varied from 0.3 to
2.5 rad s−1 and each run is recorded for several minutes by a video camera (JVC Everio
GZ-RY980) at a rate of 60 images per second. The video images have a resolution of
1920 × 1080 pixels. The position of the ludion is then calculated by a specially designed
tracking software based on the brightness of the image, as the ludion reflects the laser
light more intensively that the fluid background. Thus the accuracy of the spatial detection
is one pixel, that represents in our case 0.1 mm. Note that the constant vertical gradient
of the optical index of refraction due to the density gradient induces no image distortion
of the ludion and thus no effect on the determination of its displacement. Moreover, if
we estimate this effect for the determination by PIV of the fluid velocity in the gravity
wave field (see Sutherland et al. 1999), the deviation of the optical rays through the layer
is calculated to be less than 0.2 pixel, an effect that has been neglected in the following.
Several dozen stratifications were realized and the ludion dynamics investigated. However,
only some of them have been exhaustively analysed. In the following, we will focus on
two of them (N = 1.6 and N = 2.3 rad s−1) having more than 20 different experimental
forcing frequency values each and permitting accurate description on the same data sets
the ludion resonance and its bifurcation to swimming.

3. The forced damped oscillator model

From the theoretical point of view, it is straightforward to write down the equation of
motion of the ludion from the momentum conservation equation. In fact, this question has
already been addressed in the past in the context of oceanography. Larsen (1969) was the
first to study the damped oscillations of a neutrally buoyant sphere in a stratified layer.
He explicitly calculated the loss of power due to the radiation of internal gravity waves,
neglecting the viscous friction. His results show that this radiative damping stops any small
oscillations in a few periods of oscillations. However, Larsen’s calculation was criticized
by Winant (1974) who reconsidered the problem in the light of experiments performed by
Cairns, Munk & Winant (1979) on the descent of neutrally buoyant floats in the ocean.
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Swimming of a ludion in a stratified sea

Winant (1974) considered for his analysis a quadratic drag law as opposed to the linear law
used by Larsen (1969) that takes into account the gravity wave radiation. The conclusion
drawn by Winant (1974) and observed in the experiments, was that at small displacements
of the sphere, the damping term is due to internal gravity waves as predicted by Larsen
(1969), whereas one needs to incorporate in the equation of motion the quadratic drag term
at large displacements as encountered in float descents from the sea surface.

In our experiments, the glass cylinder itself (of density ρg) occupies a volume Vg. Its
mass is thus M = Vgρg. The buoyancy force that opposes its weight is FB = gρ(z)(Va +
Vg), where ρ(z) is the density of the fluid surrounding the ludion at position z and Va is the
volume of the air bubble entrapped in the cylinder. Therefore, at equilibrium, supposed at
z = 0 and fluid density ρ0, we have M = ρ0(Va + Vg). When changing the pressure in the
container of stratified salt water by oscillating the piston up and down in its pipe, the initial
volume of the air bubble Va0 varies following a process that we suppose to be adiabatic:
Va(t, z) = Va0(P0/P(t, z))1/γ , where γ is the ratio of specific heats of air. This hypothesis
can be justified by the fact that the period of oscillation of the ludion will be around three
seconds, i.e. smaller than the heat diffusion time in the air bubble of the order of five
seconds. Let us also remark that supposing an isothermal process will only imply to take
the value of γ equal to unity.

In the following, to obtain the equation of motion for the ludion that moves along
the vertical axis of a distance ξ versus the equilibrium position z = 0, we will suppose
that the change in volume of the air bubble trapped inside the diver affects only the
buoyancy force. This is equivalent to the classical Boussinesq simplification of buoyant
flows. The equilibrium pressure P0 is modified by the addition of a small perturbation
dp = ρ0g dh cos(ωt) created by moving the piston up and down in the pipe, inducing,
respectively, a decrease or an increase of the water level in the pipe of a quantity dh. The
motion of the ludion is then described by the following equation:

M
d2ξ

dt2
= −Mg + FB + FA + FH − μ

dξ

dt
, (3.1)

where FA is a hydrodynamical force that originates from the motion of water entrained by
the displacement of the ludion. This force is classically written as

FA = −Re

(
CAM

d2ξ

dt2

)
, (3.2)

with CA a complex added mass coefficient: CA = CAr + iCAi. When the motion is periodic
with an angular frequency ω, FA can be split into two terms (Lai & Lee 1981; Ermanyuk
& Gavrilov 2003; Voisin 2007) that represent the added mass and the added friction to
be incorporated into the equation of motion. Both coefficients CAr and CAi depend on the
frequency ω:

FA = −CArM
d2ξ

dt2
+ ωCAiM

dξ

dt
. (3.3)

Therefore, the first term of FA will be added to the inertial term of (3.3) and the second
term will be a new dissipative term that complements the friction term μ(dξ/dt) supposed
to be for the simplification of the Stokes type because of the relatively low value of the
Reynolds number of the flows, as we will see later. We should note, however, that the
study of the motions of bodies and of their drag in stratified layers has been the subject of
intense research (see the review by Magnaudet & Mercier (2020)) and it is today admitted
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that a supplementary drag (versus the drag exerted by the homogeneous fluid) originates
in the buoyancy of the fluid entrained with the body (Yick et al. 2009). Let us mention,
for instance, the calculation of Motygin & Sturova (2002) of the added mass and friction
terms for an oscillating cylinder that radiates planar interfacial waves in a two-layer fluid
system.

Here, FH is the history force, or the Basset force that appears when the motion is
accelerated (Boussinesq 1885; Basset 1888). Very often, this term is omitted in the
determination of the drag forces applied to moving bodies, in particular when the fluid is
stratified; the reason being that the motions are generally considered quasistatic (Yick et al.
2009). This memory force has been, however, explicitly calculated by Candelier, Mehaddi
& Vauquelin (2014) in the case of a sphere and in the limit of small Reynolds and Péclet
numbers. This memory term also has two origins: the first is due to the retroaction of the
emitted waves on the motion of the ludion via the pressure field as it was calculated by
Larsen (1969) in the time domain, or by Lai & Lee (1981) in the frequency domain (for
more explanations, see appendix A of the article of Ermanyuk & Gavrilov (2002)); and
the second that represents the usual viscous diffusion of vorticity in the boundary layers
surrounding the body. This term is classically written as

FH = −Re

(
η

∫ t

−∞
d2ξ/dτ 2
√

t − τ
dτ

)
, (3.4)

where η is a complex coefficient η = ηr + iηi.
In the same way we did for FA, FH can be split into two terms thanks to the periodicity

of the motion that starts at t = 0, as follows:

FH = −ηr

∫ t

0

d2ξ/dτ 2
√

t − τ
dτ − ωηi

∫ t

0

dξ/dτ√
t − τ

dτ. (3.5)

With an appropriate change of variables, the analytical expression of FH shows the
appearance of the transcendental Fresnel integrals. However, if we study the behaviour of
the ludion at large time, i.e. after tens of periods of oscillation, we can consider the limits
of the integrals as time goes to ∞ which are finite and known quantities, and FH simplifies
to

FH = −
√

π

2ω

(
ηr + ωηi

ω2
d2ξ

dt2
+ ηr − ωηi

ω

dξ

dt

)
. (3.6)

Therefore, as can be seen in (3.6), this memory or history force FH can be incorporated
in the already existing added mass and added friction terms. This result was also used by
Abad & Souhar (2004) in the case of an oscillating sphere in a homogeneous fluid. In
order not to overload the notation, we will keep the coefficients CAr and CAi knowing that
they come from both the added mass force and the history force. Anyway, our experiments
will not be able to disentangle the different origins of these terms.

To calculate FB, we will expand its expression at first order in ξ and dp taking into
account the variation of density along the vertical axis and the change in volume due to
the change in pressure, as follows:

ρ(z) = ρ0 + ξ
dρ

dz

∣∣∣∣
0
, (3.7)

Va(z, t) = Va0 + ξ
∂Va

∂z

∣∣∣∣
0
+ dp

∂Va

∂p

∣∣∣∣
0
. (3.8)
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At first order, we obtain the following expression of the buoyancy force:

FB = gρ0(Va0 + Vg) + ξ

(
g(Va0 + Vg)

dρ

dz

∣∣∣∣
0
+ gρ0

∂Va

∂z

∣∣∣∣
0

)
+ gρ0 dp

∂Va

∂p

∣∣∣∣
0
. (3.9)

The first term in the expression of FB will disappear as it is opposed to the weight of the
ludion, and the equation of motion at first order reads

(1 + CAr)
d2ξ

dt2
= ξ

(
g
ρ0

dρ

dz

∣∣∣∣
0
+ g

Va0 + Vg

∂Va

∂z

∣∣∣∣
0

)
+ g dp

Va0 + Vg

∂Va

∂p

∣∣∣∣
0

−
(μ

M
+ ωCAi

) dξ

dt
. (3.10)

The first term on the right-hand side of (3.10) is simply equal to −N2ξ . The derivative
of the volume in the second term can be rewritten as a function of the pressure, using the
fact that the process is supposed to be adiabatic, i.e.

∂Va

∂z

∣∣∣∣
0

= −Va0

γ P0

∂Pa

∂z

∣∣∣∣
0
, (3.11)

that finally leads to (when using the hydrostatic pressure expression)

g
Va0 + Vg

∂Va

∂z

∣∣∣∣
0

= δ
g2ρ0

γ P0
= ω2

0, (3.12)

with δ = 1 − ρ0/ρg and ω2
0 = δ(g2ρ0/γ P0), P0 being the reference pressure of the air

pocket entrapped inside the ludion when this one is at its equilibrium position. The forcing
term of (3.10) is the third term on the right-hand side and is equal to −δω2

0dh cos(ωt) if the
free surface position is periodically changed by an amplitude dh by the piston oscillations.

Finally, the equation of motion of the ludion along the vertical axis takes the form at
first order of a damped forced harmonic oscillator, as follows:

(1 + CAr)
d2ξ

dt2
= ξ(−N2 + ω2

0) − ω2
0 dh cos(ωt) −

(μ

M
+ ωCAi

) dξ

dt
. (3.13)

The eigenfrequency is proportional to
√

N2 − ω2
0. We see that in a non-stratified fluid,

i.e. when N = 0, we recover the fact that the equilibrium position of the ludion in a pure
fluid is unstable at the first order of the expansion. In fact, Güémez et al. (2002) have
shown that when the ludion is close to the air–water interface, the nonlinear terms induce
a saddle-node bifurcation in a limited domain of height and pressure perturbations (a fold
catastrophe to take the terminology used by Güémez et al. (2002)). This effect will be
ignored in the following as the density stratification (if large enough) of the fluid makes
our system stable at first order. It is then traditional to rename the damping coefficient by
2λ, so that

2λ =
μ

M
+ ωCAi

1 + CAr
. (3.14)
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Figure 2. Tracking of the ludion by video image analysis for three forcing frequencies with a Brunt–Väisälä
frequency N = 1.6 rad s−1: (a,c,e) vertical oscillations versus time; (b,d, f ) horizontal excursion versus time.
Red stars are the minimum and the maximum horizontal coordinates of the ludion. The red solid line between
the stars is used to calculate the mean horizontal velocity between the stars.

4. Experimental observation of the resonance

As already explained, the ludion is then carefully immersed in the stratified fluid layer that
is illuminated with a green laser sheet in order to record with a video camera (60 frames
per second) the ludion oscillations as well as the PIV particle motions in itsneighbourhood.

Figure 2 presents three examples of the dynamics of the ludion. We will be first
interested in the amplitude of the vertical motions along the Z axis which are illustrated
in the left-hand column of the figure. The horizontal motions (along the X axis) will be
studied later in § 6. As can be observed, the amplitude A of the vertical excursions is a
function of the forcing frequency as expected by the resonant response of a damped forced
oscillator. Figure 3 shows this behaviour. We observe also that the maximum amplitude is
reached for a frequency slightly smaller than N as expected from the model.

In order to get a comparison between our ludion oscillator model and the experimental
data, we need to compute the different coefficients of (3.13). First, the mass of the ludion
is determined by measuring its weight, but it appears that this mass needs to be completed
by the mass of the water entrapped under the air pocket and transported with the glass
cylinder. From the picture of the ludion we can guess that air and water are approximately
of equal volume inside the diver. Note that this mass of water is considered to be constant
as the relative change of volume of the air pocket is calculated to be of the order of
2 × 10−3 inducing a displacement of the air–water interface not detectable on the video
images. This will lead to an effective glass density (mean density of the non-compressible
part constituted by glass and entrapped water in the cylinder) of 1445 kg m−3, i.e. smaller
than the real glass density. The second term to be estimated is the real pressure changes
experienced by the ludion. This was first estimated by the rise and fall of the water level
in the piston pipe. But as already mentioned, the changes in the water level need to be
completed by a surface tension term equal to 140 Pa. Therefore, we will use a value of
2.8 cm that will lead to a good comparison with the experimental data. Then we can
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Figure 3. Resonant curve of the ludion with a Brunt–Väisälä frequency N = 1.6 rad s−1. The data points
(squares) are the vertical oscillation amplitudes A collected from the experimental trajectories. The red solid
line is the result of the analytical expression of the resonance of the oscillator that takes into account the added
mass and added friction coefficients interpolated from the transient measurements, whereas the forcing free
surface elevation dh is chosen equal to 2.8 cm and the effective glass density as defined in the text, measured to
be equal to 1445 kg m−3. There are no free coefficients in the theoretical model. There are no error bar drawn
on this plot as the accuracy of the oscillation amplitude measurement is better than the size of the symbols.

measure the added mass and friction coefficients by the study of the ludion damped
oscillations after the forcing is stopped. This technique was already used by Ermanyuk
(2000) and we will use directly the analytical relations derived in their work. The first step
to evaluate CAr and CAi, is to determine the damping coefficient λ from a best fit of the
temporal evolutions. Figure 4 shows two examples of the damped oscillations of the ludion
when the forcing is stopped. Note that contrary to the power-law decaying oscillations
observed by Biró et al. (2008), an exponential damping law properly fits our experimental
data at least on the rather limited number of periods of oscillation that we measured.

We performed this analysis for the whole range of forcing frequencies. Figure 5 shows
the evolution of λ as a function of ω. In particular, we recover the typical shape of the
damping coefficient evolution with its modification by the emission of gravity waves as it
is calculated theoretically (see Lai & Lee 1981; Ermanyuk & Gavrilov 2003; Voisin 2007).
We clearly see that when ω is larger than N, the damping is only due to the viscous effects
with a typical frequency estimated around μ/M = 0.16 s−1 that permits us to recover
ωCAi = 0 when ω is larger than N. From this experimental data, and using the formulae
given by Ermanyuk (2000), we can explicitly write the added mass and friction coefficients
as

CAr =
∥∥∥∥∥N2 − ω2

0
ω2 + λ2 − 1

∥∥∥∥∥ , (4.1)

ωCAi = 2λ
N2 − ω2

0
ω2 + λ2 − μ

M
. (4.2)

The experimental values of CAr and ωCAi are computed and plotted in figure 5. It is
remarkable that these experimental data points possess the same trends obtained by the
theoretical calculations of Lai & Lee (1981), Ermanyuk & Gavrilov (2003) and Voisin
(2007) for spheres and horizontal cylinders. Therefore, we were able to interpolate them by
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Figure 4. Transient vertical oscillations of the ludion when the forcing is stopped (N = 1.6 rad s−1). A linear
fit of the logarithm of ξ/ξmax, leads to the measurement of the damping coefficient. Here (a) λ = 0.27 s−1

when frequency ω = 1.38 rad s−1 and (b) λ = 0.16 s−1 when frequency ω = 2 rad s−1.

modifying the analytical expressions obtained by Voisin (2007) for a vertically oscillating
sphere (see Appendix A). In particular, we observe that CAr possesses a finite asymptotic
value when ω increases above N, in accordance with the classical observations made
on spheres or cylinders for which CAr approaches the values 1/2 and 1, respectively,
for spheres and cylinders oscillating in non-stratified fluids, which is equivalent to fast
oscillations in a stratified fluid layer. We also recover the known property that added mass
and friction coefficients are zero when ω = N, reflecting the resonance proximity where
the fluid moves in phase with the ludion, thus exerting no additional force on it. On the
contrary, when ω tends to zero, the added mass coefficient seems to diverge: fortunately
the acceleration of the ludion decreases too, making the added inertial term finite. These
interpolating curves are then used to recalculate the friction coefficient λ (called ‘analytical
λ’ in figure 5) to be used in the oscillator model in order to reproduce the resonant response
of the ludion. Note that this operation is not an adjustment procedure to obtain a best fit
of the resonant curve, but rather an interpolation method to give to the theoretical model
some realistic input functions describing properly the underlying physics. The fact that
our measures of λ, CAr and ωCAi are close to the theoretically expected trends is a proof
of the consistency of our analysis. Then, using these analytical expressions and values of
λ, CAr and ωCAi, the prediction of the model (red line) – i.e. the analytical expression
of the harmonic oscillator resonance – gives without any free coefficients a satisfactory
prediction of the experimental resonance curve as can be observed in figure 3. In particular,
the slight deviation of the resonant frequency versus the Brunt–Väisälä frequency N is
visible. Note also the presence of a ‘shoulder’ on the left-hand wing of the resonant curve,
which is reminiscent of the increase of the power loss by the radiation of internal gravity
waves.

5. A gravity wave generator

When the forcing frequency is less than the Brunt–Väisälä frequency, internal waves
accompany the diver in its oscillations. Seeding the salt water with micrometre-sized
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Figure 5. Evolution of the damping mass and friction coefficients with the reduced forcing frequency ω/N.
First the typical time scale of the damping is extracted from the exponential fits of the transients (black squares).
Then, using the formula explicitly derived by Ermanyuk (2000), we can calculate the real part CAr and the
imaginary part ωCAi of the complex added mass. The solid curves are then heuristic interpolations calculated
from a modified analytical formula given by Voisin (2007) for an oscillating sphere (see Appendix A).
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Figure 6. (a) The Saint Andrew’s cross of the internal gravity waves emitted by the ludion measured in
a vertical plane by PIV (forcing frequency ω = 1.38 and N = 1.6 rad s−1) 30 periods after the beginning
of the oscillation (Vertical velocity field). (b) The chessboard pattern after multireflections have occurred,
approximately 10 periods of oscillation later.

particles, it is possible to measure the fluid motions around the ludion using PIV (Thielicke
& Stamhuis 2014). Figure 6(a) shows in colour the vertical velocity field in a vertical
plane. A typical Saint Andrew’s cross is clearly visible for a forcing frequency ω equal
to 1.38 rad s−1 some 30 periods after the oscillations started. However, as shown in
figure 6(b), multireflections of the gravity waves on the lateral walls and on the density
gradients at the bottom and top homogeneous layer frontiers make the wave pattern to look
like a chessboard pattern reminiscent of an underlying eigenmode. In the present case, the
eigenfrequency of mode (nx = 4, ny = 1, nz = 2) where nj is the number of wavelengths
in direction j, is also equal to 1.38 rad s−1. Note, however, that this correspondence is
obviously frequency dependant and does not occur in general. Moreover, we did not find at
this point of our experimental work any correlation between the amplitude of the vertical
oscillations as described in § 4 and the possible excitation of a global eigenmode in the
container.

As it is well known, the arms of the Saint Andrew’s cross are wave conical isophase
surfaces. These cones can be observed in horizontal planes as presented by the horizontal
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Figure 7. The horizontal divergence of the velocity field in a horizontal plane 1 cm above the ludion (forcing
frequency ω = 1.26 and N = 1.6 rad s−1). The target pattern is centred on the ludion horizontal position.

divergence of the velocity field in figure 7 measured 1 cm above the highest position of the
ludion.

6. The diver can also swim

As visible on the right-hand column plots of figure 2, in some of the experiments we
have observed that the ludion moves or swims along the permitted horizontal axis X. We
recall that in the other direction, the ludion is confined between two vertical walls distant
of 6 cm. To describe these motions, we have detected the maximum displacements of the
ludion along the horizontal axis during the recording time of the run. Then we calculated
the corresponding mean velocity represented by the slope of the red lines in figure 2.
We have analysed two sets of experiments with different density stratifications leading,
respectively, to N = 1.6 and N = 2.3 rad s−1. As already noted in the introduction, this
kind of horizontal locomotion associated with a vertically oscillating body has already
been observed, in particular for the vertically flapping wing of Vandenberghe et al. (2004),
or more recently for the oscillating spheroids simulated by Deng & Caulfield (2018) where
it is demonstrated that this horizontal propulsion is directly linked to a symmetry breaking
in the vortical flow pattern generated at each oscillation. These last studies follow in
fact the seminal experimental work of Tatsuno & Bearman (1990) on the flow generated
by horizontal oscillations of a cylinder in a homogeneous fluid. Tatsuno & Bearman
(1990) produced a classification of the different flows they observed as a function of
two non-dimensional parameters: the Keulegan–Carpenter number KC = 2πA/D and the
Stokes number β = ωD2/2πν, where ν is the kinematic viscosity of water. In particular,
these authors determined a transition between symmetric and asymmetric flows (called
Regime D in their article). It is this critical threshold that Deng & Caulfield (2018)
as well as other authors refer to as the transition towards propulsion. Therefore, even
if the ludion is a small vertical cylinder (and not a sphere), and even if all of these
previously cited experiments and calculations were realized in non-stratified fluids, we
will also refer to the curve of Tatsuno & Bearman (1990) in the following. Note, moreover,
that in the case of stratified fluids, the oscillating body is always attached in one way
or another to an oscillating device. This is the case for instance for the experiments of
Lin, Boyer & Fernando (1994) where a classification diagram is also presented in the
(KC, β) plane for a Froude number larger than 0.20 and compared with the results of
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Figure 8. The resonant curves in the (β, KC) plane for both N = 1.6 rad s−1 (red vertical line) and N =
2.3 rad s−1 (blue vertical line). The colours of the data points are functions of the horizontal velocity as given
in the colourbar. Dashed lines refer to instability thresholds given by constant values of flapping Reynolds
numbers determined on the bifurcation diagrams of figure 9.

Tatsuno & Bearman (1990). In particular, a critical threshold is found above which internal
gravity waves are emitted by the periodic oscillations of a sphere. The generation of
internal gravity waves by oscillating bodies in stratified fluids (see for instance Flynn, Onu
& Sutherland (2003)) has of course a long standing history starting from the description
of the ‘herring bone’ pattern by Mowbray & Rarity (1967) and Stevenson (1969). More
recently, Chashechkin & Prikhod’ko (2007) have also documented the flow patterns
(cumulative jets and wave beams) around oscillating spheres and their singular features
using a schlieren technique.

Using the non-dimensional parameters KC and β as defined above, we plot in figure 8 the
resonant curves for both Brunt–Väisälä frequencies N = 1.6 and N = 2.3 rad s−1. In both
cases, the Froude number defined as Fr = ωA/ND stays between 0.05 and 1. In this figure,
the data points are coloured following the intensity of the horizontal velocity experienced
by the ludion. As can be observed, the more intense vertical displacements lead to larger
horizontal velocities. We have also represented with dotted lines the estimated thresholds
for the apparition of horizontal excursions. By defining a flapping Reynolds number ReA =
βKC/2π we can describe the transition between oscillations with and without horizontal
motions. We observe in figure 8 that these thresholds are lower than the one detected
by Tatsuno & Bearman (1990). Therefore, we can conclude that density stratified flows
associated with vertical oscillations of a body seem to be more sensitive to flow symmetry
breaking and, as a consequence, to horizontal propulsion.

To compare with the numerical observations of Deng & Caulfield (2018), we have
calculated for each experiment the locomotion Reynolds number ReU = VHD/ν. As
described in figure 9, in both cases we observe pitchfork supercritical bifurcations with
the amplitude of the horizontal velocity VH (proportional to the locomotion Reynolds
number) varying as the square root of the distance to thresholds. Using the accuracy of
our spatial detection (±0.1 mm) at a rate of 60 Hz, we estimate the maximum relative error
on these Reynolds numbers of the order of 10−2, i.e. less than a unit at the considered
Reynolds numbers and thus not plotted on figure 9. A particular feature of our study is
the observation for both sets of experiments of two bifurcated branches having slightly
different threshold values. These branches seem not to be correlated with the left-hand or
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Figure 9. Pitchfork bifurcations towards horizontal motions of the ludion. We observe the different branches
that bifurcate at different threshold values. Here the horizontal velocities have been converted into locomotion
Reynolds numbers. For each experiment, two bifurcated branches are observed (solid symbols).

right-hand wing of the resonant curves and might correspond to different flow symmetries
as described in Deng et al. (2017). Note also that if the critical flapping Reynolds numbers
that we observe have similar values to those for the oscillating spheroids of Deng &
Caulfield (2018), the locomotion Reynolds numbers are several orders of magnitude lower
in our case, revealing the poor efficiency of our swimmer due to the high drag of the
ludion’s vertical cylindrical shape moving along a horizontal trajectory – a feature that
was obviously not optimized in our study.

To characterize the interaction between the ludion and the internal gravity waves it
emits, we calculate the space–time diagram along a horizontal line located just above
the diver using the PIV vorticity fields in the plane (X, Z). Figure 10 presents this diagram
where the propagation of the waves is visible on each side of the trajectory which is,
as expected, the source of the waves. On the figure, we have also reported in black the
trajectory of the ludion as determined by the tracking study presented in § 4. Except from
limited local defects which are due to spurious laser reflections on the glass cylinder and
thus a poor position determination by our tracking algorithm for these particular times,
the correspondence between the detected trajectory and the trace of the ludion on the PIV
map is good. As is expected from a wave emitter moving at a given velocity, the frequency
of the gravity waves should be shifted by a Doppler shift given by the product kxVH ,
where kx is the wavenumber of the gravity waves in the X direction and VH the horizontal
instantaneous locomotion velocity of the ludion. On the same figure, we have also drawn
four lines on each side of the trajectory. Between the solid red and blue lines the ludion
swims towards the left, whereas between the dashed red and blue line it swims towards the
right. The velocity VH between the solid lines is equal to approximately 0.8 mm s−1. Note
that this instantaneous velocity is larger than the mean velocity (equal to 0.23 mm s−1)
calculated on a longer period of time and reported in figure 8. The wavelength of the
gravity waves can also be estimated in figure 10 around 40 mm. This value corresponds
to a wavenumber equal to kx = 0.157 rad mm−1. These values give then a Doppler shift
equal to 0.12 rad s−1.

To check this prediction, we calculate the Fourier spectra of the vorticity along the
four lines of figure 10. They are represented on figure 11 keeping for each spectrum the
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Figure 10. Space–time diagram of the PIV vorticity field together with the ludion trajectory as calculated by
our tracking software (black line). Four lines are drawn ahead or behind the ludion, along which the Fourier
spectra of the vorticity fields are calculated and presented in figure 11.
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Figure 11. Fourier spectra of the vorticity field along the lines drawn in figure 10. As can be observed, the
angular frequency of the gravity waves ahead of the ludion is higher that of the waves behind, as expected by a
Doppler shift. In this example, ω = 1.50 and N = 1.60 rad s−1.

colour and line styles identical to those of figure 10. As can be observed, the angular
frequency of the waves emitted ahead of the trajectory (and crossing the red solid line and
the blue dashed line) are slightly larger than the frequency of the waves emitted behind
(and crossing the red dash line and the blue solid line). As can be checked on figure 11,
the separation between the maxima of the spectra is equal to 0.23 rad s−1, leading to a
shift of ±0.12 rad s−1 between the wave angular frequencies and the forcing frequency ω,
validating as expected the presence of a Doppler shift. Note, moreover, that associated
with this frequency shift there is also a slight increase of the wave amplitude behind the
ludion. We have at this stage of the study no interpretation of this effect.

7. Conclusions and perspectives

This work is the first step of the study of the swimming of a vertically oscillating but free
– in the horizontal plane – neutrally buoyant body (the ludion) in a density stratified fluid.
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All of the presented experiments were performed in a rectangular but narrow container in
order to constrain the horizontal displacements in a single direction. We have been able
to measure and model the resonance of the ludion taking into account the added mass
and added friction terms in the equation of motion. We have also shown that the Basset
(or memory) term can be incorporated in the added coefficients because the motion is
harmonic and supposed to last for a sufficiently long time. In particular, we have measured
the damping rate of the ludion oscillations during transients. As expected, the radiation of
internal gravity waves increases the energy loss and thus the damping term. This emission
of these gravity waves for forcing frequencies less than the Brunt–Väisälä frequency has
been characterized by PIV measurements. Then a bifurcation towards locomotion (the
swimming) is observed above a critical flapping Reynolds number measured at values
lower than what was expected from previous works performed in homogeneous fluids.
Finally, we showed that this swimming of the ludion is accompanied by a Doppler shift of
the wave frequency.

Our experiments on the swimming of the ludion in a stratified fluid are of course
reminiscent of the drops that bounce on the free surface of a vibrating liquid (Couder
et al. 2005; Bush 2015). Some differences between the bouncing drops and our system
should, however, be pointed out. First, the ludion experiences a forced resonance and as
a consequence its oscillation is not the result of a parametric instability as is the case for
the drops bouncing on a subcritical wave pattern of a Faraday instability. However, this
difference should not be so crucial as the surface waves are in fact also locally forced
by the bouncing droplets in the same way the ludion forces the internal gravity waves.
Moreover, in our system (and also in the case of the capillary surfers of Ho et al. (2021)),
the waves are continuously emitted and interacting with the body, which is not the case for
the drops as they leave the fluid surface. However, it appears that in our case the threshold
to locomotion is not caused by the waves as we observed horizontal displacements even
when the forcing frequency is higher than the Brunt–Väisälä frequency. This is different
from the walkers which start to move because of the presence of their waves. Another
important difference with Couder walkers is the propagating nature of the internal gravity
waves emitted by the ludion, whereas the Faraday surface waves induced by the bouncing
drops are stationary in a frame linked to the drops. Even if not the cause of swimming,
the gravity waves should interact with the ludion through the surface integral of the
pressure they exert on it. One of the results of the waves’ effect on the ludion motions
is the presence of some added mass and added friction terms evidenced in the equation
of motion and that we characterized through our experimental measurements. As it is
the case for the bouncing drops, history or memory terms exist but we were not able to
evaluate them as we cannot disentangle them from the added mass and friction terms. We
have, moreover, highlighted the presence of a Doppler shift on the gravity wave frequency
as they are emitted by a moving source. This will cause phase shifts between the waves
emitted by the front and by the rear sides of the diver, inducing pressure differentials
and horizontal forces that in their turn should modify the ludion motions. The feedback
loop, between the swimming of the ludion and the wave pattern it emits, is certainly quite
subtle.

To open perspectives on these works, we present in figure 12 two trajectories of the
ludion in a horizontal plane of a larger container, and using the same experimental
procedure as that described above for the experiments in the narrow container. In these
two examples, two ludions were immersed at different depths in the layer and we could
record from the top, long temporal series of swimming. In both cases, the ludion moves
along trajectories confined on one half of the container. In the first case, the trajectory
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Figure 12. Two examples of trajectories of the ludion in a larger container for N = 1.29 rad s−1 (a) nearly
2 h recording with ω = 1.23 rad s−1 and (b) 3/4 hour recording at ω = 1.20 rad s−1.

winds up along elliptic loops whereas in the second case the ludion describes loops close
to trefoils (Perrard et al. 2014) before slowing down, attracted to a motionless position.
In fact, it happened quite often during these first experiments in an extended geometry,
that the ludion was attracted by some fixed locations and stayed motionless at one of
them. These locations may correspond to suitable spatial positions inside an underlying
eigenmode, proving in a sense that the internal gravity waves can indeed interact with
the ludion and may drive some of its behaviours. This is the case for instance in the
experiments presented in figure 13(a) where after the introduction of three divers in the
stratified layer, they were all of them attracted to three places that, as can be observed
in figure 13(b), seem to correspond to trapped locations in an underlying eigenmode that
possesses an eigenfrequency very close to the forcing frequency. This particle trapping is
similar to what happens in the walker system where the bouncing drops are attracted and
pinned in a periodic wave pattern (Sungar et al. 2017). Note that an important constraint in
respect for this pinning is the identical phase difference between each ludion and the mode
itself as the three divers are locked at the same phase difference to the forced pressure
oscillations. As a consequence, there are quantized separations (i.e. integer numbers of
half-wavelengths in both directions) between the ludions that freely move to the locked
positions in the horizontal plane. This is of course reminiscent of the recent experiments
by Ramananarivo et al. (2016) on a pair of flapping wings in tandem. In this case, the
flying wings are observed to move naturally to some positions separated by an integer
number of wavelengths of the periodic vortex pattern of the wing wake. The same situation
is also encountered with capillary surfers (Ho et al. 2021) where two self-propelled
particles floating in a vibrating bath can travel together, separated by an integer number of
capillary wavelengths. This remarkable observation also opens up new perspectives for the
possible use of our experimental set-up to study the crystalline arrangements of groups of
self-propelled bodies (the so-called active matter) as often encountered in flocks of birds
and schools of fish.

Therefore, and even if at this stage of our study it is not yet possible to precisely
quantify the effect of the internal gravity waves on the motions and trajectories
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Figure 13. An example where three ludions were introduced in the experimental set-up. (a) A top view of
the container where after a transient the three ludions were trapped, motionless, in the horizontal plane.
These oscillate vertically in phase as they are forced with the pressure oscillation with ω = 2.136 and
N = 2.19 rad s−1. (b) Superimposed on the three ludions positions, the eigenmode at a frequency equal to
2.135 rad s−1 with half a wavelength in the vertical direction, three in the Y direction and six in the X direction.

of the ludion, our observations encourage us to continue the search for possible
hydrodynamics analogies with undulatory mechanics, in the quest for a new fluid
mechanics example of a wave–particle duality as already beautifully observed and
explored by Couder et al. (2005), Perrard et al. (2014) and Bush (2015) for the Couder
walkers.
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Appendix A

A.1. Density profile measurements
Figure 14 presents an example of the density profile measurements performed by
translating the inlet of our Anton Paar MD 35 densimeter along the vertical direction inside
the experimental chamber. The density is measured every 2 cm and as can be seen in the
figure, the profiles before and after the experimentations collapse nicely on a single curve
permitting us to determine by least squares interpolation, and outside the top and bottom
layers, the constant Brunt–Väisälä frequency of the fluid layer. This plot shows that no
mixing occurs by the density measurements themselves, neither by the introduction of the
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Figure 14. Density profile measurements before the introduction of the ludion in the stratified water layer and
after the experimentation for N = 1.60 rad s−1. The collapse within a few per cent of the two data sets shows
that no mixing occurs in the container.

ludion nor even by performing several dozens of runs, to describe the resonance curve as
presented in § 4.

A.2. Interpolation of the measured complex added mass coefficients
Figure 5 presents the evolution with the forcing frequency of the experimental values
of CAr and ωCAi that are calculated from the experimental values of ω and λ. As can
be checked on the theoretical calculations of Lai & Lee (1981), Ermanyuk & Gavrilov
(2003) and Voisin (2007), the general trends of these variations are largely recovered.
In these articles, it is shown in particular that CAr and ωCAi depend on the aspect ratio
of the considered oscillating body. As the ludion is a finite-size cylinder that oscillates
vertically along its axis – a case never considered theoretically – we will modify the
analytical expressions derived for the sphere by Voisin (2007) in order to interpolate our
experimental data points. These functions will then be used to calculate the ‘analytical
λ’ of figure 5 necessary to compute the resonant curve using the classical analytical
expression of the harmonic oscillator resonance. The complex added mass coefficient Cz
for a sphere oscillating vertically at frequency ω in a stratified fluid of Brunt–Väisälä
frequency N is (Voisin 2007)

Cz(ω/N) =
(

1 − N2

ω2

)
B(ω/N)

1 − B(ω/N)
, (A1)

with

B(ω/N) = (ω2/N2)

[
1 −

(
1 − N2

ω2

)1/2

arcsin(N/ω)

]
. (A2)

We will then defined heuristically the real and imaginary parts of CA by

(i) CAr = 10 Re(Cz)
1.4 and CAi = 1.44 Im(Cz)

0.6 + 0.22(ω/N)−2.4 − 0.16, if ω ≤ N;
(ii) CAr = 3.8 Re(Cz)

2.1 and CAi = Im(Cz), if ω ≥ N,

where the different coefficients have been determined by best fit trial and error method.
These analytical expressions are then used in the ludion oscillator model.
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