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Abstract

Background. Depressive episodes experienced in unipolar (UD) and bipolar (BD) disorders
are characterized by anhedonia and have been associated with abnormalities in reward pro-
cesses related to reward valuation and error prediction. It remains however unclear whether
these deficits are associated with familial vulnerability to mood disorders.
Methods. In a functional magnetic resonance imaging study, we evaluated differences in the
expected value (EV) and reward prediction error (RPE) signals in ventral striatum (VS) and
prefrontal cortex between three groups of monozygotic twins: affected twins in remission for
either UD or BD (n = 53), their high-risk unaffected co-twins (n = 34), and low-risk twins
with no family history of mood disorders (n = 25).
Results. Compared to low-risk twins, affected twins showed lower EV signal bilaterally in the
frontal poles and lower RPE signal bilaterally in the VS, left frontal pole and superior frontal
gyrus. The high-risk group did not show a significant change in the EV or RPE signals in fron-
tostriatal regions, yet both reward signals were consistently lower compared with low-risk
twins in all regions where the affected twins showed significant reductions.
Conclusion. Our findings strengthen the notion that reduced valuation of expected rewards
and reduced error-dependent reward learning may underpin core symptom of depression
such as loss of interest in rewarding activities. The trend reduction in reward-related signals
in unaffected co-twins warrants further investigation of this effect in larger samples and pro-
spective follow-up to confirm possible association with increased familial vulnerability to
mood disorders.

Background

Anhedonia is a core symptom of unipolar (UD) and bipolar (BD) depression referring to the
inability to experience pleasure or reduced motivation and is associated with dysfunctions of
the brain reward system (Hasler & Northoff, 2011; Treadway & Zald, 2011). Converging
neurobiological and behavioral evidence has attributed these symptoms to deficits in discrete
reward-related processes, including reduction of attentional bias toward positive stimuli
(Joormann & Gotlib, 2007), of positive affect in response to pleasant stimuli (Berenbaum &
Oltmanns, 1992), and of reward responsiveness (Pizzagalli, Iosifescu, Hallett, Ratner, &
Fava, 2008). The available neuroimaging data have revealed numerous functional and struc-
tural changes in the neural system subserving these processes in both patients with UD and
BD (Bracht, Linden, & Keedwell, 2015; Diener et al., 2012; Hamilton, Chen, & Gotlib, 2013;
Houenou et al., 2011; Wise et al., 2017) and never-depressed first-degree relatives
(Macoveanu et al., 2014, 2016a, 2016b, 2018; Olino et al., 2014; Singh et al., 2014).
However, it remains unclear how distinct components of reward processing are affected in
UD and BD and whether or not some of these changes are also present in unaffected relatives
who are at increased risk for mood disorders (Oquendo et al., 2013). Since UD and BD aggre-
gates in families, neural changes present in both affected patients and their unaffected relatives
may provide a neural mechanism for the observed familial risk and can potentially be targeted
by novel treatments and aid earlier diagnosis.
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The expected reward value (EV) and reward prediction error
(RPE) signals have been highlighted as two discrete functions of
reward processing associated with the anticipatory and the con-
summatory phases respectively (Rolls, McCabe, & Redoute,
2008). The EV denotes the appropriate representation of an
expected reward associated with a stimulus as a consequence of
reward learning and relies on a coordinated frontostriatal network
including the ventral striatum (VS) and orbitofrontal cortex as key
nodes (Jia et al., 2016; O’Doherty, Buchanan, Seymour, & Dolan,
2006; Stalnaker, Liu, Takahashi, & Schoenbaum, 2018; Yacubian
et al., 2006). The RPE represents the difference between expected
and actual received reward that support an error-dependent
update of value estimates for better prediction of future rewards.
In humans, RPE signal was found to be encoded by VS (Abler,
Walter, Erk, Kammerer, & Spitzer, 2006; Berns, McClure,
Pagnoni, & Montague, 2001; McClure, Berns, & Montague,
2003), and is likely complemented and enhanced by striatum–
amygdala interactions (Ernst et al., 2005; Watanabe, Sakagami,
& Haruno, 2013).

Functional magnetic resonance imaging (fMRI) studies in
mood disorders have observed abnormalities in reward anticipa-
tion and feedback including altered EV and RPE signals in key
frontostriatal regions, although the findings are not conclusive.
Compared to healthy participants the anticipatory response in
UD or BD patients was lower in VS (Pizzagalli et al., 2009;
Schreiter et al., 2016; Smoski et al., 2009) or found lower or higher
in prefrontal cortex (PFC) in regions such as orbitofrontal cortex
(Nusslock et al., 2012), middle frontal gyrus, the frontal poles and
anterior cingulate cortex (ACC) (Knutson, Bhanji, Cooney, Atlas,
& Gotlib, 2008; Smoski et al., 2009), ventrolateral PFC (Chase
et al., 2013, 2017), and dorsolateral PFC (Ubl et al., 2015).
However, the EV signal in particular was lower in the ACC in
BD and UD (Chase et al., 2013) and the RPE signal was lower
in UD in VS and midbrain (Gradin et al., 2011; Kumar et al.,
2018), and medial orbitofrontal cortex (Rothkirch, Tonn,
Köhler, & Sterzer, 2017). The extent of the reduction in RPE sig-
nal in VS was found to correlate with increased anhedonia sever-
ity in UD (Gradin et al., 2011). In addition, Greenberg et al.
(2015) showed a negative linear relationship between reward
anticipation and RPE related right VS reactivity in healthy parti-
cipants and that this linear relationship becomes positive UD
patients in proportion with anhedonia severity. However, no sig-
nificant differences in striatal RPE signal between UD and healthy
participants have also been reported (Chase et al., 2013; Rothkirch
et al., 2017; Rutledge et al., 2017). Altered EV and RPE signals
could result in a reduced salience attribution to rewarding cues
and dysfunctional reinforcement learning, which in turn may
explain anhedonia symptoms in mood disorders (Gradin et al.,
2011; Kumar et al., 2008; Vrieze et al., 2013).

Having a first-degree relative with an mood disorder is a strong
predictor of increased illness risk (Gottesman, Laursen, Bertelsen,
& Mortensen, 2010; Oquendo et al., 2013; Sullivan, Neale, &
Kendler, 2000; Vinberg, Miskowiak, & Kessing L, 2013).
Consequently, studies in healthy participants at familial risk are
crucial for identifying inherited neurophysiological changes, i.e.
endophenotypes, that may precede illness onset. In addition,
these studies are not confounded by medication, symptoms and
disorder progression. The few extant studies of reward anticipa-
tion in individuals at familial risk confirm reduced anticipatory
response in VS (Olino et al., 2014), consistent with findings in
UD and BD (Pizzagalli et al., 2009; Schreiter et al., 2016;
Smoski et al., 2009), and increased in lateral orbitofrontal cortex

(Singh et al., 2014). No other high-risk study to date has investi-
gated directly EV or RPE. However, in a probabilistic reversal
learning reward task performed by BD patients, high-risk rela-
tives, and healthy participants, Linke et al. (2012) found increased
amygdala and medial orbitofrontal activation in BD and their
relatives to negative feedback during rule reversal, which has
been interpreted as RPE signaling. In addition, first-degree rela-
tives of patients with UD who experience subclinical depressive
symptoms show blunted reward sensitivity and associated symp-
toms of anhedonia (Liu et al., 2016).

In this twin study, we collected and analyzed fMRI data from
112 monozygotic (MZ) twin individuals. Since MZ twins have the
same genetic make-up, comparing affected patients and their
unaffected high-risk co-twins with low-risk twins provides a
unique possibility to investigate endophenotypes associated with
familial risk. Periodic major depressive episodes are a common
feature of both UD and BD. Indeed, genetic epidemiological
and genome-wide linkage studies show consistent overlap
between genetic risk factors of both disorders (Liu et al., 2011).
Heritability rates in twin studies have been estimated to be up
to 49% for UD and 85% for BD with a genetic correlation between
BD and UD of 0.65 (Kendler, Ohlsson, Lichtenstein, Sundquist, &
Sundquist, 2018; McGuffin et al., 2003). We therefore combined
UD and BD patients in remission (affected) twins and their
unaffected co-twins (high-risk) to investigate reward signal abnor-
malities related to increased risk in a continuum of mood disor-
ders. Specifically, the primary aim was to clarify whether changes
in EV and RPE signals in the affected compared to low-risk twins
are also present in the high-risk twins (Macoveanu et al., 2018).
We further explored the relationship between EV and RPE signals
and hedonic ratings in our entire MZ twin sample. Based on the
literature, we hypothesized that affected twins would show
reduced EV and RPE signals in VS and PFC compared to the low-
risk group, with the high-risk group showing changes in the same
regions but to a lesser extent compared to the affected group.
Upon identified abnormalities in the affected twins we tested pos-
sible impact of diagnosis, gender and residual symptoms on the
findings.

Methods and materials

Participants

One hundred and twelve eligible MZ twin individuals (53 diag-
nosed with either BD or UD, 34 high-risk, and 25 low-risk)
took part in the current study. This is the subgroup that under-
went fMRI which was part of a larger group of 215 MZ twins ini-
tially recruited (Ottesen et al., 2018). Eligible MZ twins were
identified by linking the nationwide record of the Danish Twin
Registry and the Danish Psychiatric Central Register. When
uncertain, monozygosity was confirmed using pair-wise DNA
tests (two pairs excluded following seven uncertain pairs tested).
Eligibility criteria were (i) a personal or co-twin history of an
affective spectrum diagnosis (i.e. ICD-10 codes F30-34.0 and
F38.0) or for low-risk twins neither a personal nor a co-twin his-
tory of affective spectrum diagnosis from January 1995 to June
2014, and (ii) age 18–50 years. Twins were excluded if their
birth weight was under 1.3 kg, had current severe somatic illness,
history of brain injury, current substance abuse, current mood
episode defined as scores >14 on either the Hamilton
Depression Rating Scale (HDRS; Hamilton, 1967) or the Young
Mania Rating Scale (YMRS; Young, Biggs, Ziegler, & Meyer,
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1978), were pregnant or were found to be dizygotic by pairwise
DNA tests. To ensure familial low-risk of major psychiatric disor-
ders, unaffected twin pairs were excluded if they reported other
first-degree relatives with organic mental disorder, schizophrenia
spectrum or mood disorders. Out of the initial group, 120 took
part in the fMRI investigation. Four of these participants were
subsequently excluded due to non-UD or BD diagnosis and
another four due to lost behavioral data of the fMRI task. All par-
ticipants gave informed consent to the study conducted according
to the Helsinki declaration. The study was approved by the local
ethics committee (H-3-2014-003) and the Danish data protection
agency (2014-331-0751).

Clinical assessment and rating instruments

Participants were invited to attend a 1-day assessment when they
underwent biological data sampling, clinical ratings of mood
symptoms, a diagnostic interview, neurocognitive testing, and
lastly, an fMRI investigation. Life-time diagnoses of psychiatric ill-
ness were assessed using the Schedules for Clinical Assessment in
Neuropsychiatry (Wing et al., 1990). All twins were grouped
according to personal and co-twin history of moderate to severe
UD or BD. If only one twin from a twin pair was included,
data from the Danish Central Research Register were used to
determine risk status. Discordant status of twin pairs was defined
as one twin with a life-time history of moderate to severe depres-
sion or BD and one twin without such history, assessed retro-
spectively with the SCAN interview. Objective rating
instruments included the Hamilton Depression Rating Scale 17
items (HDRS-17), and the Danish Adult Reading Task (DART;
Nelson & O’Connell, 1978) to estimate premorbid verbal intelli-
gence. We assessed participants’ hedonic tone on the self-reported
Snaith Hamilton Pleasure Scale (SHAPS; Snaith et al., 1995)
measuring sustained responsiveness to reward and the Temporal

Experience of Pleasure Scale (TEPS; Gard, Gard, Kring, & John,
2006) assessing consummatory and anticipatory pleasure. Mood
symptoms and subjective state were also collected using the Major
Depression Inventory (Bech, Rasmussen, Olsen, Noerholm, &
Abildgaard, 2001), a visual analog scale of current emotions and
the State-Trait Anxiety Inventory form Y (STAI; Spielberger,
1989). The Edinburgh 10-item Inventory (Oldfield, 1971) was
used to assess handedness. All assessors were blinded for partici-
pants’ group belonging.

Demographic, clinical, and subjective state data analysis

Differences in demographic, clinical, subjective assessment
between affected, high- and low-risk groups were assessed in
SPSS 20 statistical software (IBM, Armonk, New York, United
States) using mixed models analysis of variance with group
(affected, high-risk, and low-risk) as fixed factor and twin pairs
as random factors. Error rates (missed responses) and response
time during the cards guessing paradigm were analyzed using
the same statistical model. Upon significant effects of group, pair-
wise tests between groups were performed to identify specific sig-
nificant group differences.

fMRI data analysis

The card guessing fMRI paradigm
The fMRI paradigm was a card guessing game adapted from
Chase et al. (2017) and designed to assess neural responses to
EV and RPE (Fig. 1). In short, each trial included (i) a choice
event where the participant guessed by button press if the value
of a card shown later will be higher or lower than 5, (ii) an antici-
pation event associated with either a possible gain or neutral out-
come, a possible loss or neutral outcome, a possible gain or loss,
or lastly no possible gain or loss, and (iii) a predetermined

Fig. 1. The fMRI card guessing paradigm. Figure is
adapted with permission from Chase et al. (2017).
(a) Trial structure demonstrating choice phase,
anticipation phase, numerical feedback, and out-
come (win, loss, and neutral). (b) Description of
the outcomes associated with each of the four stim-
uli (win, mixed, neutral, and loss, respectively).
Transition probabilities are 0.5 except for the neu-
tral stimulus.
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outcome event showing the amount gain or lost. Details regarding
the paradigm and MRI acquisition protocol can be found in the
online Supplementary Material.

Pre-processing and subject-level statistical analysis
The blood oxygen-level dependent (BOLD) fMRI analysis was
performed using FEAT (Woolrich, Ripley, Brady, & Smith,
2001), part of FMRIB Software Library (FSL) version 6.0.1
(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). The
standard pre-processing steps included non-brain removal, linear
and nonlinear registration to structural space, normalization to
the Montreal Neurological Institute (MNI) standard space, motion
correction and spatial smoothing using a Gaussian kernel of 5 mm
FWHM. Correction for geometric distortions related to the B0 field
was performed based on the acquired B0 field map. All partici-
pants’ registration to the MNI template was visually inspected.

A general linear model (GLM) was used for the subject-level
analysis which included three explanatory variables coupled with
the main three events of the card guessing game: choice, reward
anticipation, and feedback. The reward anticipation regressor was
weighted according to the EV (probability of the outcome ×
outcome value). The weights were set to +0.5 for the possible
win condition (50% chance of winning 6 Danish Krone (DKK)),
+0.125 for the mixed condition (50% chance of winning 6 DKK;
50% chance of losing 4.5 DKK), 0 for the neutral condition, and
−0.375 for the possible loss condition (50% chance of losing 4.5
DKK). The feedback event was weighted to reflect positive RPE
(actual outcome− EV). Accordingly, the highest weights were set
for the unexpected wins, and lowest for unexpected losses as fol-
lows: +0.875 for a win in the mixed condition (mixed-win), +0.5
for a win in the win–win condition, +0.375 for a no loss in a
loss–neutral condition, 0 in the neutral condition, −0.375 for a
loss in the loss–neutral condition, −0.5 for no win in the win–neu-
tral condition, and −0.875 for a loss in the mixed-loss condition.
The EV and RPE regressors were convolved with a double-gamma
hemodynamic response function. In addition, the subject-level
GLM included temporal derivatives of task regressors to model
slice-timing effects and confounding regressors to remove motion
artifacts.

Group-level analysis
The group-level analysis was implemented in FEAT using the
FLAME (FMRIB’s Local Analysis of Mixed Effects) estimation
method (Woolrich, Behrens, Beckmann, Jenkinson, & Smith,
2004). We first confirmed EV- and RPE-related activations in
the low-risk twins in one-sample t tests. To test our hypotheses,
we set up two GLM models for the EV and RPE signals respect-
ively. We assessed the changes in the high-risk and affected twins
compared to low-risk participants in an analysis of variance
model with one group factor with three levels (low-risk, high-risk,
and affected). We further investigated differences in EV and RPE
signals between UD and BD patients and between their unaffected
twin siblings grouped by the index diagnosis of their affected
co-twin (UD or BD) in separate two-sample t tests. Lastly, we per-
formed a correlation analysis across the entire sample testing lin-
ear trends between the EV and RPE signals and the SHAPS and
TEPS hedonic scores collected outside the scanner. Since our
sample contained twin pairs, all GLM models included a covariate
for each twin pair to model out their mean in order to account for
within-pair variance correlation. Based on our hypothesis, we first
estimated the statistical models with the search volume restricted
to the VS region-of-interest (ROI). Second, we explored for

significant effects in the PFC (see online Supplementary
Material). The significance level for clusters was set at p < 0.05
corrected for multiple comparisons subsequent a cluster-forming
threshold of z = 2.57 (p < 0.005). We report significant clusters
with peak MNI coordinates, number of voxels above threshold
in each cluster, and cerebral regions according to the
Harvard-Oxford Cortical and Subcortical Structural Atlas
(Desikan et al., 2006). Mean percent BOLD signal change was
extracted from significant clusters with the featquery tool in the
FSL package for illustrative purposes and post-hoc analyses per-
formed in SPSS 20. Upon significant findings in the primary ana-
lysis, we performed post-hoc analyses testing for differences
between patients with UD and BD, and between male and female
patients. For these analyses we adjusted the critical p value to
0.004 using Bonferroni correction for 12 comparisons (six regions
and two dependent variables). We also tested whether the signifi-
cant findings persisted after controlling for depression symptoms
by adding the HDRS-17 as covariate in the statistical model.

Results

Demographic, clinical, and subjective evaluations

The affected, high-risk, and low-risk groups were comparable in
terms of demographic variables related to age, sex, years of edu-
cation, handedness, and verbal IQ (Table 1). Compared to the
low-risk and high-risk groups, the affected group showed higher
residual depression symptoms according to HDRS-17 and MDI
scores as well as higher state and trait anxiety scores. There
were no differences in SHAPS and TEPS hedonic scores among
the three groups or between male or female participants, and
also no difference in error rates or response times for the card
guessing paradigm.

Analysis of the EV neural signal

EV-related task activations were confirmed in the low-risk twins
who showed a significant response in inferior frontal gyrus,
frontal pole, and ACC (Table 2). The EV signal in the VS was
not found significantly different between the three groups.
Exploratory PFC analysis showed a lower EV signal in the affected
compared with low-risk twins bilaterally in the frontal poles
extending into middle frontal gyrus (BA 10/46, Table 2,
Fig. 2a). The high-risk twins showed no significant change in
the EV signal compared to the low-risk group in the VS or PFC.

Analysis of the RPE neural signal

RPE-related task activations were also confirmed in the low-risk
twins who showed a significant response in the right VS and
left frontal pole within respective ROIs. The RPE signal in the
VS was lower in the affected v. the low-risk twins bilaterally.
Exploratory PFC analysis further showed a lower RPE signal in
the affected v. low-risk twins in the left frontal pole and superior
frontal gyrus (BA9 and 6, Table 2, Fig. 2b). The RPE signal did
not significantly change in the high-risk compared to the low-risk
group in the VS or PFC.

Post-hoc analyses of the EV and RPE neural signals

The reported regional decrease in cortico-striatal EV and RPE sig-
nals in the affected compared to low-risk twins persisted when
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adjusting for HDRS-17 scores. Furthermore, there were no signifi-
cant differences between male or female participants in the EV or
RPE signals in these regions, and no significant differences
between twins with UD or BD.

Correlation analysis between EV and RPE signals and hedonic
scores

The exploratory voxel-wise correlation analysis across all partici-
pants between the EV and RPE signals and the SHAPS and TEPS
hedonic scores revealed a region within dorsal ACC showing a
positive correlation between EV signal and decreased hedonic
tone (BA32, Table 2, Fig. 3). Explicitly, a higher EV signal in
dorsal ACC was associated with a lower hedonic response, as
reflected by both higher SHAPS scores and lower TEPS consum-
matory scores. The association between the EV signal in dorsal
ACC and TEPS consummatory scores was also significant in
affected twins only ( p = 0.01, r = −0.42).

Discussion

This fMRI study including 112 MZ twin individuals explored
whether endophenotypes of mood disorders are related to EV
and RPE neural signals in reward processing. Specifically, we
investigated neural responses in three groups of MZ twins: low-
risk, high-risk, and remitted affected twins diagnosed with either
UD or BD, while they performed a card guessing fMRI paradigm.
Affected twins showed the relatively lowest RPE signals in the a
priori ROIs (VS). In addition, the affected twins had a signifi-
cantly lower prefrontal EV signal bilaterally in the left frontal
poles/middle frontal gyrus and lower RPE signal in the left frontal
pole and superior frontal gyrus compared to low-risk twins. Since
the affected twins have been in remission for an extensive period
of time (5 years in average), the reported findings between
affected and low-risk twins reflect trait changes rather than state
differences. The observed reductions in EV and RPE signals
were comparable between UD and BD twins. The high-risk
group did not show a significant reduction of the EV or RPE

Table 1. Demographic and clinical comparison of affected, high-risk and low-risk MZ twins (n = 112)

Affected (n = 53) High-risk (n = 34) Low-risk (n = 25) p

Demographic and clinical

Age, years (range) 37.6 (20.4–51.9) 35.9 (18.7–51.9) 39.2 (21.5–51.6) 0.37

Sex, % women 71.7 61.8 72 0.88

Education, years (range) 14.7 (3.5–20.0) 15.8 (10.0–26.5) 15.7 (11.0–19.5) 0.36

DART verbal IQ (range) 110.1 (112.1–123.9) 109.2 (109.7–125.5) 114.6 (104.7–123.9) 0.60

Left handedness, % LQ 18.9 26.5 4 0.10

Bipolar/bipolar risk, % 39.6 26.5 NA

Unipolar/unipolar risk, % 60.4 73.5 NA

History of psychosis, % 20.8 NA NA

Currently medicated 34 1 0

Months in remission (range) 59.7 (1–520) NA NA

Paired twins in sample 41 19 18

Symptoms (range)

HDRS-17 4.5 (0–12) 2.4 (0–12) 1.8 (0–10) <0.001a

YMRS 2.0 (0–9) 1.5 (0–4) 1.2 (0–5) 0.151

MDI 10.4 (0–31) 5.6 (0–25) 5.4 (0–16) <0.001a

State anxiety 30.0 (14–52) 27.3 (20–41) 26.6 (20–52) 0.011a

Trait anxiety 40.7 (27–60) 33.1 (26–47) 34.2 (26–50) <0.001a

Anhedonia-related scores (range)

SHAPS 21.9 (14–46) 22.0 (14–35) 20.3 (14–30) 0.65

TEPS anticipatory 38.2 (22–52) 39.0 (24–49) 38.9 (25–51) 0.79

TEPS consummatory 37.3 (27–47) 38.2 (25–46) 38.4 (28–46) 0.60

Card guessing paradigm

Error rates (%) 6.3 5.4 3.2 0.47

Reaction time (ms) 968.2 932.4 918.3 0.66

LQ, lateral quotient; NA, not applicable; HDRS-17, Hamilton Depression Rating Scale; YMRS, Young Mania Rating Scale; MDI, Major Depression Inventory; SHAPS, Snaith Hamilton Pleasure
Scale; TEPS, Temporal Experience of Pleasure Scale; Error rates, missed responses.
Descriptive variables are presented as group means with range in brackets estimated by a mixed model procedure accounting for within twin-pair dependence. Group comparisons of MZ
twins with mood disorder (affected), at risk of mood disorder (high-risk), or at low-risk of mood disorders (low-risk) are reported with p values for the effect of group and pairwise post-hoc
group comparisons upon significant effect of group.
aUncorrected p value represents significant effect of group. Pairwise group comparison showed significantly larger scores in affected compared to both high-risk and low-risk.
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signals, yet both reward signals were consistently lower compared
with low-risk twins in the regions where the affected twins
showed significant reductions. Self-reported hedonic scores were
not significantly different between the groups. Subsyndromal
depression and anxiety symptoms in the remitted affected twins
were in average somewhat higher than in the high-risk and low-
risk twin participants. However, this difference in subsyndromal
depressive symptoms was not associated with reported group dif-
ferences in the EV and RPE signals.

Effective reward processing is critical for successful behavioral
adaptation. Both behavioral and biological lines of research bring
strong evidence of deficient reward processing in mood disorders
(Pizzagalli et al., 2008). The majority of neuroimaging studies
investigating altered reward processing in UD and BD have
focused on measuring the neural response during anticipation
of rewards or either positive or negative feedback using monetary
incentives (e.g. Pizzagalli et al., 2009), emotional facial expressions
(e.g. Keedwell, Andrew, Williams, Brammer, & Phillips, 2005) or
affective words (e.g. Epstein et al., 2006). However, reward pro-
cessing involves a number of additional psychological functions,
such as elevated attention, valuation, salience attribution,
reinforcement learning, and arousal, which contribute to neural

activations measured during reward anticipation and feedback
(Jia et al., 2016). The EV and RPE signals are discrete functions
underlying an effective reward processing (Rolls et al., 2008).
Alteration in the frontostriatal encoding of EV and RPE signals
reported here may thus result in inappropriate reward valuation
and dysfunctional error-dependent updating of value estimates
and/or a reduced attribution of salience to rewarding events,
which in turn could mark a vulnerability to anhedonia symptoms
experienced during the active phase of mood disorders
(Gradin et al., 2011; Kumar et al., 2008; Vrieze et al., 2013).
Interestingly, a large study in adolescents demonstrated
anhedonia-specific dorsal striatum hypoactivation to reward
anticipation, independent of low mood and anxiety symptoms
(Pornpattananangkul, Leibenluft, Pine, & Stringaris, 2019).

Our findings support and extend previous findings in UD and
BD patients of reduced neural response to reward anticipation or
EV and RPE in frontostriatal regions. Several fMRI studies have
reported reduced anticipatory signals in striatum in UD and BD
(Pizzagalli et al., 2009; Schreiter et al., 2016; Smoski et al.,
2009). In particular, Gradin et al. (2011) showed no changes in
the EV signal and reduced RPE signal in the striatum and mid-
brain in UD patients, with the extent of signal reduction in the

Table 2. Group differences between the affected, high-risk, and low-risk MZ twins in EV and RPE in the cards guessing fMRI task

Region Hemisphere BA Size x y z z-stat p

Expected value

Low-risk > affected

Frontal pole L 10 686 −44 48 16 4.16 <0.0001

Frontal pole R 46 508 40 38 14 3.58 <0.0001

Low-risk

Inferior frontal gyrus L 45 788 −44 32 6 3.74 <0.0001

Frontal pole R 45 769 50 36 10 3.62 <0.0001

ACC L 24 330 −2 28 14 3.77 0.003

SHAPS correlation (all)

ACC R 32 274 0 20 30 3.88 0.014

TEPS consummatory correlation (all)

ACC R 32 466 4 10 38 3.84 0.0007

Frontal pole R 46 195 46 50 4 3.77 0.0484

Ventral striatum R 2 12 14 −8 2.72 0.0476

Reward prediction error

Low-risk > affected

Ventral striatum R 3 14 20 −8 2.8 0.0438

Ventral striatum L 3 −12 20 −4 2.71 0.0438

Frontal pole L 9 1393 −26 44 32 3.81 <0.0001

Superior frontal gyrus L 6 204 −4 12 56 4.29 0.0425

Low-risk

Ventral striatum R 2 14 20 −8 2.61 0.0472

Frontal pole L 46 435 −28 54 22 3.51 0.0012

SHAPS correlation (all)

Ventral striatum R 4 12 10 −10 2.86 0.0401

BA, Brodmann area, size, number of voxels in the significant cluster, x, y, z, MNI coordinates of peak voxel, z-stat, statistical z values for peak voxel in cluster, p, corrected p values of the
cluster within the PFC or the VS ROIs.
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bilateral caudate, VS and midbrain correlating with increased
anhedonia severity. In BD patients, Chase et al. (2013) reported
no changes in the EV or RPE signals in striatum. Our finding
of reduced VS RPE signal in affected v. low-risk twins may be
interpreted as impaired error-dependent reward learning as previ-
ously suggested in different psychiatric conditions (Gradin et al.,
2011; Kumar et al., 2018; White et al., 2013).

Consistent with our findings in PFC showing lower EV and
RPE signals in affected twins, Smoski et al.’s study (2009) showed
bilateral decreased in middle frontal gyrus and right frontal pole
response to reward anticipation in a Wheel of Fortune task in
UD v. control participants. In addition, the EV signal was also
found lower in UD and BD v. controls in ACC (Chase et al.,
2013) and medial orbitofrontal cortex (Rothkirch et al., 2017) in

Fig. 2. Neural responses to EV and RPE in affected, high-risk, and low-risk MZ twins (n = 112). The plots show group means with error bars representing the standard
error of the mean. Statistical maps thresholded at z > 2.57 with significant clusters overlaid on a standard MNI template. (a) Decreased frontal pole response to EV in
affected v. low-risk twins. (b) Decreased RPE response in affected v. low-risk twins in bilateral ventral striatum (VS), right frontal pole and superior frontal gyrus (SFG).
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unmedicated UD patients. Dorsal and middle frontal regions with
BA 46 and 9 in particular, have consistently been found to be
engaged in solving calculation tasks that implicate cognitive
resources (Arsalidou & Taylor, 2011). Reduced frontal poles/mid-
dle frontal gyrus recruitment may therefore reflect a lower neural
engagement in the computation of the EV in patients with mood
disorders, possibly resulting in a reduced valuation of the
expected rewards.

While UD and BD patients may show different patterns of
brain connectivity between regions involved in win/loss anticipa-
tion (Manelis et al., 2016), we were not able to detect any differ-
ence in the EV or RPE signals in the VS and PFC ROIs between
UD and BD patients. It is possible that the relatively long time in
remission in our affected group may wash out disorder-specific
changes.

To our knowledge, this is the first study specifically investigat-
ing EV and RPE signals in unaffected twin siblings (high-risk
group) of UD and BD and probands. We observed no statistically
significant difference in reward processing between the low- and
high-risk twins. Yet, the strength of the EV and RPE signals in
the frontostriatal regions, where the affected twins showed signifi-
cant reductions, was consistently lower in the high-risk compared
to the low-risk twins (but higher compared to the affected twins).
This finding suggests a subsyndromal reduction in reward-related
signals in VS and frontopolar regions in high-risk individuals,
which can advance increasing the vulnerability to disorder
onset. This interpretation is consistent with previous studies
that observed reduction in anticipatory and feedback signals in
striatum in high-risk compared to low-risk individuals (Gotlib
et al., 2010; Olino et al., 2014).

While there was a large inter-subject variability in hedonic rat-
ings, the mean hedonic response was not different between the
low-risk, high-risk, and affected groups. The correlation analysis
using the SHAPS and TEPS consummatory pleasure scores across
all twins revealed a common region in dorsal ACC (BA32) show-
ing increased EV signal in individuals with decreased hedonic
scores. Increased recruitment of ACC (BA32), together with
other frontostriatal regions, has previously been associated with
anticipatory anhedonia in a transdiagnostic meta-analysis in UD
and schizophrenia (Zhang et al., 2016). Our finding strengthens
the suggested link between hedonic tone and ACC reward-related

response, region that may be responsible for monitoring affective
conflict during anticipation of attainable gains and found hyper-
active in UD (Knutson et al., 2008).

One of the key strengths of the current fMRI study is the
nation-wide register-based recruitment which resulted in an
exceptionally large sample of MZ twins who were investigated
by assessors blinded to their risk status. Another key strength
is that most affected patients in the study had been in remission
for a long period up to the study which enabled the identification
of trait changes. As a limitation, our reference low-risk group did
not show a significant EV signal in VS. This may have precluded
the detection of possible reductions in the VS signal in the
affected twins. In addition, combining the UD and BD patients
in our primary analysis limits result interpretations regarding
diagnosis-specific abnormalities. This approach maximizes the
power to detect disease related changes and risk endophenotypes
shared between UD and BD patients or between their high-risk
twin siblings respectively. However, we also investigated differ-
ences between the UD and BD patients and their high-risk
twin siblings.

In conclusion, by showing a lower frontostriatal sensitivity to
signals representing EVs and RPEs, our findings strengthen the
notion of reduced valuation of expected rewards and decreased
error-dependent reward learning in mood disorders. These
changes may underpin a vulnerability to anhedonia symptoms
such as loss of interest and the decreased ability to feel pleasure
commonly experienced during depressive episodes. Our data
also show a trend reduction in reward-related signals in unaffected
co-twins in the same frontostriatal regions where their affected
co-twins showed significant changes. If this finding can be repli-
cated in larger cohorts, it may represent an endophenotypic trait
possibly indicating an increased risk for disorder onset.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291720000367.
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