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LIE ALGEBRA MODULES WHICH ARE LOCALLY FINITE AND
WITH FINITE MULTIPLICITIES OVER THE SEMISIMPLE PART

VOLODYMYR MAZORCHUK and RAFAEL MRÐEN

Abstract. For a finite-dimensional Lie algebra L over C with a fixed Levi

decomposition L = g� r, where g is semisimple, we investigate L-modules

which decompose, as g-modules, into a direct sum of simple finite-dimensional

g-modules with finite multiplicities. We call such modules g-Harish-Chandra

modules. We give a complete classification of simple g-Harish-Chandra modules

for the Takiff Lie algebra associated to g = sl2, and for the Schrödinger

Lie algebra, and obtain some partial results in other cases. An adapted

version of Enright’s and Arkhipov’s completion functors plays a crucial role

in our arguments. Moreover, we calculate the first extension groups of infinite-

dimensional simple g-Harish-Chandra modules and their annihilators in the

universal enveloping algebra, for the Takiff sl2 and the Schrödinger Lie algebra.

In the general case, we give a sufficient condition for the existence of infinite-

dimensional simple g-Harish-Chandra modules.
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§1. Introduction and description of the results

Construction and classification of modules are two fundamental problems in representa-

tion theory. In most of the cases, the problem of classification of all modules is known to

be very hard (i.e., wild), so one is naturally forced to consider special classes of modules,

for example, simple modules. Classification of simple modules is also quite hard in most

of the cases. For example, for complex semisimple Lie algebras, classification of all simple

modules is only known, in some sense, for the algebra sl2 (see [8]). At the same time,

numerous families of simple modules for semisimple Lie algebras are very well understood,
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for example, simple highest weight modules (see [31], [49]), Whittaker modules (see [5],

[37]), weight modules with finite-dimensional weight spaces (see [41]), and Gelfand–Zeitlin

modules (see [18], [21], [51] and references therein).

There are two natural generalizations of semisimple Lie algebras: semisimple Lie super-

algebras and nonsemisimple Lie algebras. For semisimple Lie superalgebras, a significant

progress in classification of simple modules was recently made in [13], [14]. Basically, for a

large class of Lie superalgebras, the results of [13], [14] reduce the problem of classification

of simple modules to a similar problem for the even part of the superalgebra, which is a

reductive Lie algebra. In contrast to this situation, for nonsemisimple Lie algebras, very

little is known. Apart from the main result of [8], which, in addition to sl2, classifies simple

modules over the Borel subalgebra of sl2, several special classes of simple modules were

studied for various specific nonsemisimple Lie algebras (see, e.g., [6], [7], [10], [11], [20], [39],

[43], [52] and references therein). We now look at some of these and some other results in

more detail.

It seems that the so-called current Lie algebras are the ones which are most studied and

best understood. These are defined as tensor product of a reductive Lie algebra with a

commutative unital associate algebra. For current Lie algebras, there is a full classification

of simple weight modules with finite-dimensional weight spaces (see [39]). Moreover, the

highest weight theory for the truncated polynomial version of these Lie algebras is developed

in [52]. Moreover, the center of the universal enveloping algebras of such Lie algebras whose

semisimple part is of type A is described explicitly in [45].

A special family of truncated current Lie algebras is formed by the so-called Takiff

Lie algebras, studied originally in [48], which correspond to the case when one tensors

a reductive Lie algebra with the associative algebra of dual numbers. The Takiff sl2 is

also known as the complexification of the Lie algebra of the Euclidean group E(3), the

Lie group of orientation-preserving isometries of the three-dimensional Euclidean space. It

belongs to the family of conformal Galilei algebras (see, e.g., [40]). Category O for Takiff

sl2 was recently studied in [43], and simple weight modules were classified in [6].

The Schrödinger Lie algebra (see Section 5) is also an important and intensively studied

example of a nonreductive Lie algebra. Its category O was studied in detail in [20], lowest

weight modules were classified in [17], and simple weight modules were classified in [7], [19].

A slight modification of the Schrödinger Lie algebra, called the centerless Schrödinger

Lie algebra, belongs to the family of conformal Galilei algebras (see Section 7). As their

names suggest, the Schrödinger Lie algebra and conformal Galilei algebras are of great

importance in theoretical physics and seem to have originated from there. For example, the

Schrödinger Lie algebra comes from the Schrödinger Lie group, the group of symmetries of

the free particle Schrödinger equation (see [17], [46]). Conformal Galilei algebras are related

to the nonrelativistic version of the AdS/CFT correspondence (see [4]).

Several papers studied a generalization of Whittaker modules (originally defined in [37]

for semisimple Lie algebras), in the setup of conformal Galilei algebras and the Schrödinger

Lie algebra (see [10]–[12], [40]). Quasi-Whittaker modules are modules on which the radical

of the Lie algebra acts locally finitely.

In the present paper, we initiate the study of modules over (nonsemisimple) Lie algebras

on which the action of the semisimple part of the Lie algebra is locally finite, that is, which

are locally finite over the semisimple part. This condition is, in a sense, the opposite to

the condition defining quasi-Whittaker modules. The obvious examples of modules that
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are locally finite over the semisimple part are simple finite-dimensional modules over the

semisimple part on which the radical of our Lie algebra acts trivially. However, we observe

that, for many Lie algebras, there exist simple infinite-dimensional modules that are locally

finite over the semisimple part. This motivates the problem of classification of such modules,

and we show that this problem can be completely answered for the Takiff Lie algebra of sl2
and for the Schrödinger Lie algebra. Moreover, the answer is both nontrivial and interesting.

To the best of our knowledge, such modules have not been studied before in the general

case (however, for the Schrödinger Lie algebra and the Takiff sl2, they belong to a larger

family of weight modules studied in detail in [6], [7]). Let us now describe the content of

the paper in more detail.

If L is any finite-dimensional Lie algebra and g ⊆ L its semisimple Levi subalgebra,

we study L-modules whose restriction to g decomposes into a direct sum of simple finite-

dimensional g-modules with finite multiplicities, and call them g-Harish-Chandra modules.

To justify the name, we note that there is an obvious analogy with the classical theory

of (g,K)-modules as in [50], coming from the setup of real reductive Lie groups. In the

classical theory, any (g,K)-module splits as a direct sum of finite-dimensional modules over

the compact group K, and moreover, the multiplicities are finite if the corresponding group

representation is irreducible and unitary (a result by Harish-Chandra). In our setup, there

is no such automatic splitting, so we pretend that g is compact, that is, we consider only

those L-modules that split as g-modules into a direct sum of finite-dimensional g-modules

with finite multiplicities. Hopefully, this analogy could be used to transfer parts of the

Langlands classification, or the theory of minimal K -types into our nonreductive algebraic

setup. There is another analogy of our setup with integrable modules over a Kac–Moody

algebra (see [33]).

In Section 2, we introduce the basic setup that we work in. In Section 3, we roughly

describe universal g-Harish-Chandra modules for Takiff Lie algebras. In particular, we show

that such Lie algebras do indeed always have simple infinite-dimensional g-Harish-Chandra

modules (see Corollary 9).

In Sections 4 and 5, we prove our most concrete results: Theorem 31 provides a complete

classification of simple g-Harish-Chandra modules for the Takiff sl2, and Theorem 54

gives such a classification for the Schrödinger Lie algebra. These two answers have both

clear similarities and differences. In both cases, we crucially use the highest weight theory

for corresponding algebras and appropriate analogues of completions functors. Moreover,

in both cases, we can consider semisimple g-Harish-Chandra modules as a monoidal

representation of the monoidal category of finite-dimensional sl2-modules. We found it

surprising that the combinatorial properties of the corresponding monoidal representation

in the Takiff sl2 and the Schrödinger cases are rather different.

In case of the Takiff sl2, we obtain a family of modules V (n,χ) which are naturally

parameterized by n∈Z and χ∈C\{0}. However, we show that this family has a redundancy

via nontrivial isomorphisms V (n,χ)∼= V (−n,−χ). Roughly speaking, |n| is the minimal g-

type, and χ2 is the purely radical part of the central character. This classifies all simple

infinite-dimensional g-Harish-Chandra modules.

In case of the Schrödinger Lie algebra, we obtain a similar family of modules V (n,χ)

parameterized by n ∈ Z≥0 and χ ∈ C \ {0}, However, in contrast to the Takiff case, this

family is irredundant.
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The modules mentioned above are very explicitly described. In both cases, we, moreover,

show that all groups of first self-extensions of these modules are one-dimensional (see

Theorems 32 and 56). Moreover, we prove that the annihilators of all the above modules in

the universal enveloping algebra are centrally generated (see Theorems 38 and Corollary 58).

Classification results in Sections 4 and 5 are deducible (with nontrivial effort) from more

general results of [6], [7]; however, we provide a completely different, less computational,

and more conceptual approach.

For comparison, it is easy to see that the centerless Schrödinger Lie algebra does not

admit simple infinite-dimensional g-Harish-Chandra modules. The reason for this is, roughly

speaking, the fact that its purely radical part of the center is trivial (see Remark 55 for

details).

We would like to point out that the methods we utilize for our classification go far

beyond direct calculations. We use various functorial constructions, which include, in

particular, an appropriate adjustment of Enright’s completion functor (based on Arkhipov’s

twisting functor) [2], [3], [15], [22], [34], [36]. Further development of both, highest weight

theory and properties of various Lie theoretic functors as in [44], for nonsemisimple Lie

algebras, should provide an opportunity for generalization of the results of this paper

to, in the first step, other Takiff Lie algebras and, further, general finite-dimensional Lie

algebras.

In the most general case of an arbitrary finite-dimensional complex Lie algebra L and

a nontrivial Levi subalgebra g, it is clear that simple g-Harish-Chandra modules always

exist. Namely, the finite-dimensional L-modules are, of course, g-Harish-Chandra modules.

In Theorem 61 of Section 6, we give a general sufficient condition for existence of infinite-

dimensional simple g-Harish-Chandra modules. The sufficient condition, as we formulate

it, requires that the nilradical of L intersects the centralizer in L of the Cartan subalgebra

of g. In this case, we manage to use highest weight theory for L, combined with various

versions of twisting functors, to construct infinite-dimensional simple g-Harish-Chandra

modules. We also provide an example showing that our sufficient condition is not necessary,

in general: the semidirect product of sl2 and its four-dimensional simple module does

not satisfy our sufficient condition and has trivial highest weight theory in the sense

that its simple highest weight modules coincide with simple highest weight sl2-modules.

However, using various combinatorial tricks from [27], we show that this Lie algebra does

admit simple infinite-dimensional g-Harish-Chandra modules. This result can be found in

Section 7.2.

Finally, in Section 7.3, in particular Theorem 68, we classify a class of sl2-Harish-Chandra

modules that are connected to highest weight modules, for the semidirect product of sl2
with its simple five-dimensional module. The corresponding category of semisimple g-

Harish-Chandra modules is, again, a monoidal representation of the monoidal category

of finite-dimensional sl2-modules. But the combinatorics of this monoidal representation is

completely different from the ones which we get in the Takiff and the Schrödinger cases

(see Remark 75). In particular, contrary to the previous cases, in this case, we obtain an

example of two simple g-Harish-Chandra modules with different sets of g-types, but with

the same minimal g-type.

Comparison of the results of [28] with Lemmata 11 and 41 suggests a possibility of

an interesting connection between g-Harish-Chandra modules and higher-spin algebras

from [47].
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§2. Notation and preliminaries

We work over the complex numbers C. For a Lie algebra a, we denote by U(a) the

universal enveloping algebra of a.

Fix a finite-dimensional Lie algebra L over C, and fix its Levi decomposition L ∼= g� r.

This is a semidirect product, where g is a maximal semisimple Lie subalgebra, unique up to

conjugation, and r=RadL is the radical of L, that is, the unique maximal solvable ideal.

Definition 1. An L-module V is called a g-Harish-Chandra module, if the restriction

of V to g decomposes as a direct sum of simple finite-dimensional g-modules, and

moreover, each isomorphism class of simple finite-dimensional g-modules occurs with a

finite multiplicity in V.

A simple g-submodule of a g-Harish-Chandra module V is called a g-type of V. The sum

of all g-submodules of V isomorphic to a given g-type is called the g-isotypic component of

V determined by this g-type.

Fix a Cartan subalgebra h⊆ g. Every g-Harish-Chandra module is a weight module with

respect to h. However, infinite-dimensional g-Harish-Chandra modules might have infinite-

dimensional weight spaces.

Remark 2. Note that the notion of a g-Harish-Chandra module is different from the

notion of Harish-Chandra module from [39]. In the latter paper, Harish-Chandra modules

are weight modules with finite-dimensional weight spaces. It would be natural to call the

modules from [39] h-Harish-Chandra modules.

Denote by Nrad(L) the nilradical of L, by which we mean the intersection of kernels of

all finite-dimensional simple modules of L. It is a nilpotent ideal, but not necessarily equal

to the maximal nilpotent ideal. It is well known that Nrad(L) = [L,L]∩ r= [L,r], and L is

reductive if and only if Nrad(L) = 0. Moreover, Nrad(L) is the minimal ideal in L for which

the quotientL
/
Nrad(L) is reductive. For proofs, see, for example, [9, Chapter I, Section

5.3].

Example 3. If L = g� r is a reductive Lie algebra, then r is precisely the center of

L. If V is a simple g-Harish-Chandra module for L, then, by Schur’s lemma, r acts by

scalars on V. It follows that V is just a simple finite-dimensional L-module. So, the notion

of g-Harish-Chandra modules is not very interesting for reductive Lie algebras.

Fix a positive part Δ+(g,h) in the root system Δ(g,h), and a nondegenerate invariant

symmetric bilinear form 〈−,−〉 on h∗. We have the classical triangular decomposition g=

n−⊕h⊕n+. Furthermore, fix a weight δ ∈ h∗ such that 〈δ,α〉 > 0 for all α ∈Δ+(g,h) and

such that 〈δ,α〉= 0, for an integral weight α, implies α= 0. Since L is a finite-dimensional

g-module with respect to the adjoint action, it decomposes as a direct sum of its weight

spaces Lμ, where μ varies over the set of integral weights in h∗. Consider the following Lie

subalgebras of L:

ñ− :=
⊕

〈μ,δ〉<0

Lμ, h̃ :=
⊕

〈μ,δ〉=0

Lμ ñ+ :=
⊕

〈μ,δ〉>0

Lμ.(1)

Note that this decomposition heavily depends on the choice of δ and not only on the choice of

Δ+(g,h). However, for example, for truncated current Lie algebras (which include Takiff Lie

algebras), the Schrödinger Lie algebra and conformal Galilei algebras, the decomposition (1)
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only depends on the choice of Δ+(g,h). From the construction, it is clear that ñ±∩g= n±,

and h̃∩ g = h. Moreover, from the condition prescribed on δ, it follows that h̃ is precisely

the centralizer of h in L. The decomposition L= ñ−⊕ h̃⊕ ñ+ does not satisfy, in general, all

the axioms in [52, Section 2], since we do not require existence of any analogue of Chevalley

involution (and even the dimensions of ñ− and ñ+ might be different). However, it is good

enough to define Verma modules with reasonable properties.

For an element λ ∈ h̃∗, denote the one-dimensional b̃ := h̃⊕ ñ+-module where h̃ acts as λ

and ñ+ acts trivially, by Cλ. The Verma module with highest weight λ is defined as

Δ(λ) := IndL
b̃
Cλ = U(L) ⊗

U(b̃)

Cλ
∼= U(ñ−)⊗

C

Cλ.(2)

Let Δ±(L,h) denote the set of all μ such that Lμ 
= 0 and ±〈μ,δ〉 > 0. We also set

Γ± = Z≥0Δ
±(L,h). Recall that the support of a weight module is the set of all weights

for which the corresponding weight spaces are nonzero. By the standard arguments using

PBW theorem (cf. [31]), we have:

Proposition 4. The Verma module Δ(λ) is an h-weight module, whose h-support is

λ|h+Γ−. The λ|h-weight space is one-dimensional, and Δ(λ) is generated by this weight

vector, so any nontrivial quotient of Δ(λ) also has one-dimensional λ|h-weight space.

Moreover, Δ(λ) has a unique simple quotient, which we denote by L(λ).

For λ ∈ h∗, we denote by Δg(λ) the classical Verma module for g with highest weight λ

with respect to Δ+(g,h), and by L(λ) the unique simple quotient of Δg(λ).

§3. g-Harish-Chandra modules for Takiff Lie algebras

3.1 Setup

Fix a finite-dimensional semisimple Lie algebra g over C. Define the associated Takiff Lie

algebra T as

T := g⊗D,

where D= C[x]/(x2) is the algebra of dual numbers. The Lie bracket of T is defined in the

following way:

[v⊗xi,w⊗xj ] := [v,w]⊗xi+j .

We identify g with the subalgebra g⊗ 1 ⊆ T, and denote by ḡ = g⊗x ⊆ T. Then, ḡ is a

commutative ideal in T, and T∼= g� ḡ (the semidirect product given by the adjoint action

of g on ḡ). For v ∈ g, we denote by v̄ = v⊗x ∈ ḡ.

Observe that the nilradical of T is Nrad(T) = [T, ḡ] = ḡ. This means that ḡ must

necessarily annihilate any simple finite-dimensional T-module.

In the triangular decomposition (1) for T, we have h̃= h⊕ h̄ and ñ± = n±⊕ n̄±. We want

to note that this is also a triangular decomposition in the sense of [52]. A simplicity criterion

for Verma modules over T can be found in [52, Theorem 7.1].

3.2 Purely Takiff part of the center

The universal enveloping algebra U(T) is free as a module over its center Z(T) (see [23]–

[25]). In case g is of type A, algebraically independent generators of the center are given

explicitly in [45].
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Proposition 5. There is an isomorphism of algebras

Z(g)∼= Z(T)∩U(ḡ).(3)

Proof. This is clear since U(g)∼= U(ḡ) as g-modules with respect to the adjoint action.

By taking g-invariants, we get (3).

It is easy to see that the isomorphism can be obtained by putting bars on all Lie algebra

elements that appear in an expression in a fixed PBW-basis of elements from Z(g). Hence,

we denote the right-hand side of (3) by Z(g). This will be referred to as the purely Takiff

part of the center Z(T). The full center Z(T) is, in general, bigger than Z(g) (see [45]).

3.3 Universal modules

Fix a weight λ∈ h∗ which is dominant (i.e., 〈λ,α〉 ≥ 0 for all positive roots α) and integral

(i.e., 〈λ,α〉 ∈ Z for all positive roots α). Note that by these conventions, λ is automatically

regular with respect to the dot-action. These conditions are sufficient and necessary for the

simple highest weight g-module L(λ) to be finite-dimensional (cf. [30, Chapter VI]). Define

Q(λ) := IndTg L(λ) = U(T) ⊗
U(g)

L(λ)∼= U(ḡ)⊗
C

L(λ).

The following fact is known, but for convenience of the reader, we provide a proof.

Proposition 6 [35, Proposition 6.5]. We have

Q(λ)∼=Q(0)⊗
C

L(λ),(4)

where we consider L(λ) as a T-module with the trivial ḡ-action, and the tensor product is

that of T-modules.

Proof. For any T-module X, we have

HomT (Q(λ),X)∼=HomT

(
IndTg L(λ),X

)
∼=Homg (L(λ),X)

∼=Homg (L(0),HomC (L(λ),X))

∼=HomT

(
IndTg L(0),HomC (L(λ),X)

)
∼=HomT

(
Q(0)⊗

C

L(λ),X

)
,

where we have used the fact that the induction is left adjoint to the forgetful functor, as

well as the standard hom-tensor duality for Lie algebra modules. This finishes the proof.

Proposition 7. We have the following isomorphism of algebras:

End(Q(0))∼= Z(g).

Proof. The module Q(0) is generated by 1⊗ 1 by construction, so any endomorphism

of Q(0) is uniquely determined by the image of 1⊗1. Denote this image by u⊗1, for some

u ∈ U(ḡ). The element u⊗1 generates the trivial g-submodule (since 1⊗1 does), so u must

commute with g. Of course, u commutes with ḡ. Hence, u ∈ Z(T)∩U(ḡ) = Z(g).

Conversely, any u ∈ Z(g), being central, defines an endomorphism of Q(0). This

endomorphism maps 1⊗1 to u⊗1. The claim follows.
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For an algebra homomorphism χ : Z(g)→C, consider the corresponding universal module

Q(λ,χ) :=Q(λ)
/
mχQ(λ) ,

where mχ is the maximal ideal in Z(g) corresponding to χ. On Q(λ,χ), the purely Takiff

part of the center acts via the scalars prescribed by χ. Observe that from (4) and the right

exactness of tensor product, we have

Q(λ,χ)∼=Q(0,χ)⊗L(λ).(5)

For finite-dimensional simple g-modules L(μ), L(ν), and L(λ), denote by lμν,λ the

Littlewood–Richardson coefficient, that is, the multiplicity of L(μ) in L(ν)⊗L(λ).

Proposition 8.

(a) Let λ, χ be as before. The module Q(λ,χ) is a g-Harish-Chandra module, and the

multiplicities are given as follows:

[Q(λ,χ) : L(μ)] =
∑
ν

dimL(ν)0 · lμν,λ <∞.(6)

(b) Let V be any simple T-module that has some finite-dimensional L(λ) as a simple g-

submodule. Then, V is a quotient of Q(λ,χ) for a unique χ. In particular, V is a

g-Harish-Chandra module, and (6) gives an upper bound for the multiplicities of its

g-types.

Proof.

(a) Suppose first that λ= 0. Then, as a g-module, Q(0) is isomorphic to U(g) with respect

to the adjoint action. Taking the χ-component of Q(0) corresponds to factoring U(g)

by the ideal generated by the corresponding central character of Z(g). From Kostant’s

theorem (see [32, Section 3.1]), it follows that Q(0) decomposes as direct sum of

finite-dimensional g-submodules, and that [Q(0,χ) : L(μ)] = dimL(μ)0. The general

statement now follows from (5).

Note that the value in (6) is finite, since, for fixed μ and λ, the value lμν,λ is nonzero

only for finitely many ν.

(b) This follows from Schur’s Lemma by adjunction.

Corollary 9. Given χ, there exists a unique simple T-module V which contains L(0)

as a g-submodule and has the Takiff part of the central character equal to χ. Moreover, V is

a g-Harish-Chandra module. Furthermore, if χ does not correspond to the trivial T-module,

then V is infinite-dimensional.

Proof. By Proposition 8, the module Q(0,χ) has a unique occurrence of L(0), and is

generated by it. Therefore, the sum all its submodules not containing L(0) as a composition

factor is the unique maximal submodule; denote it by N. It follows that V :=Q(0,χ)/N is

the unique simple quotient of Q(0,χ).

Suppose now that V is finite-dimensional. The nilradical ḡ must act trivially on it.

Because of simplicity, we must have V = L(0), which is a contradiction.

Conjecture 10. For a generic χ, the module Q(0,χ) is simple.
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We will prove this conjecture for the Takiff sl2 case in Section 4. We will also prove it for

the Schrödinger Lie algebra in Section 5 (but, strictly speaking, it is not a special instance

of the above conjecture). This is the starting point in our classification of g-Harish-Chandra

modules for these Lie algebras.

§4. sl2-Harish-Chandra modules for the Takiff sl2

4.1 Setup

For this section, we fix the Takiff Lie algebra associated to g := sl2:

T= sl2⊗D= sl2� sl2.

We use the usual notation f,h,e for the standard basis elements of sl2, and f̄ , h̄, ē for their

counterparts in the ideal sl2.

Our classification of simple g-Harish-Chandra modules for the Takiff sl2 should be, of

course, deducible from the classification of all simple weight modules given in [6]. However,

our approach is completely different and, unlike the approach of [6], has clear potential for

generalization to other Lie algebras. Moreover, our description of simple g-Harish-Chandra

modules is much more explicit, and it provides a connection to highest weight theory for T

and utilizes the use of analogues of projective functors for T.

The center Z(T) is a polynomial algebra generated by two algebraically independent

elements (see [45]):

C = h̄h+2f̄ e+2ēf,

C̄ = h̄2+4f̄ ē.(7)

The purely Takiff part of the center is, of course, Z(g) = C[C̄]. So, a homomorphism

χ : Z(g)→C is uniquely determined by the value χ(C̄), which can be an arbitrary complex

number. In the remainder, we write χ for χ(C̄), for the sake of brevity.

4.2 Universal modules

We can describe Q(0,χ) very explicitly.

Lemma 11.

(a) As T-modules, we have Q(0)∼= U(ḡ) and Q(0,χ)∼= U(ḡ)
/
(C̄−χ) , where g acts by the

adjoint action, and ḡ by the left multiplication.

(b) The set
{
f̄ ih̄εēj : i, j ≥ 0, ε ∈ {0,1}

}
is a basis for Q(0,χ).

(c) As a g-module, Q(0,χ) ∼=
⊕

k≥0L(2k). Moreover, ēk is the highest weight vector in

L(2k).

(d) C acts as zero on Q(0) and on every Q(0,χ).

Proof. The first claim is clear. The second one follows from the PBW basis in U(g) and

the relation h̄2 =−4f̄ ē+χ in the quotient.

The decomposition in the third claim is given by Kostant’s theorem (see [32, Section

3.1]). Since ēk is of weight 2k and annihilated by e, it must be a highest weight vector of a

g-submodule isomorphic to L(2k), which, we know, occurs uniquely in Q(0,χ).

The last claim follows from the definitions by a direct calculation.

The action of T on U(ḡ) and its quotients will be denoted by ◦, in order not to confuse

it with the multiplication · in the enveloping algebra. These coincide for ḡ but not for g,
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where the action is adjoint. Note that U(ḡ) is not closed under the left multiplication with

the whole T.

Theorem 12. The module Q(0,χ) is simple if and only if χ 
= 0.

The module Q(0,0) has infinite length, and a T-filtration whose composition factors are

L(0),L(2),L(4) . . . with the trivial action of ḡ.

Proof. Assume χ 
= 0, and let V ⊆ Q(0,χ) be nonzero submodule. Take k to be the

smallest nonnegative integer such that L(2k) ⊆ V . If k = 0, then V = Q(0,χ), since L(0)

generates Q(0,χ), and we are done. So, let us assume now k ≥ 1. We have ēk ∈ V , so if we

find an element from U(T) that maps ēk ∈ V to ēk−1, we will get a contradiction. That

element can be taken as 1
kχ(4kf̄ − h̄f), namely:

(4kf̄ − h̄f)◦ ēk = 4kf̄ ēk− h̄[f, ēk]

= 4kf̄ ēk+kh̄2ēk−1

= 4kf̄ ēk+k(−4f̄ ē+χ)ēk−1

= kχēk−1.

We conclude that Q(0,χ) is simple.

For the converse, assume χ = 0. We will show that for any k ≥ 0, the subspace Qk :=

⊕t≥kL(2t) is a submodule. From this, the theorem will follow.

Let us first prove that L(2k) is equal to the span of
{
f̄ ih̄εēj : ε ∈ {0,1}, i+ ε+ j = k

}
.

This set contains ēk, so it is enough to see that it is stable under f. We calculate the two

cases whether ε is 0 or 1 separately:

f ◦ f̄ iēj = f̄ i[f, ēj ] =−jf̄ ih̄ēj−1,

f ◦ f̄ ih̄ēj = f̄ i[f, h̄]ēj + f̄ ih̄[f, ēj ]

= 2f̄ i+1ēj − jf̄ ih̄2ēj−1

= 2f̄ i+1ēj +4jf̄ i+1ēj

= (4j+2)f̄ i+1ēj .

From this description of L(2k), one easily checks that f̄ , h̄, ē map L(2k) to L(2k+2).

From this, it follows that Qk is a submodule.

Remark 13 (Sketch of an alternative proof of simplicity of Q(0,χ)). Assume χ 
=0, and

suppose V is a T-submodule of Q(0,χ) containing L(2k), with k > 0 minimal. By applying

ē, we see that, as a g-module, V ∼= L(2k)⊕L(2k+2)⊕ . . .. This implies that the quotient

Q(0,χ)/V ∼= L(0)⊕L(2)⊕·· ·⊕L(2k−2)

is simple as a T-module and is finite-dimensional. Since C̄ consists of elements from the

nilradical of T, it must act as zero on this quotient. This is a contradiction with χ 
= 0.

To classify simple g-Harish-Chandra modules, by (5) and Proposition 8(b), we should

find all simple quotients of all tensor products of Q(0,χ) with finite-dimensional g-modules.

It is not easy to do this directly, so we establish a connection with Verma modules, and

perform calculations there.
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4.3 Verma modules

Verma modules for the Takiff sl2 are studied in detail in [43]. Recall (2) and Proposition 4.

Moreover, recall that h̃= h⊕ h̄ and ñ± = n±⊕ n̄±. For a weight λ ∈ h̃∗ = h∗⊕ h̄∗, we denote

λ1 := λ(h) and λ2 := λ(h̄).

Proposition 14 ([43, Proposition 1] or [52, Theorem 7.1]). The Verma module Δ(λ)

is simple if and only if λ2 
= 0.

The generators of the center C and C̄ act on the Verma module Δ(λ) as the scalars

λ2(λ1+2) and λ2
2, respectively (see (7)). Therefore, with our convection, χ= λ2

2.

Lemma 15. Nonisomorphic Verma modules Δ(λ) and Δ(λ′) have the same central

character if and only if either λ′
2 = λ2 = 0, or λ′

2 =−λ2 
= 0 and λ′
1 =−λ1−4.

Proof. From the explicit description of generators of the center, we get a system of

equations {
λ2(λ1+2) = λ′

2(λ
′
1+2)

λ2
2 = (λ′

2)
2

,

which is easily solved.

Denote by Δg(μ) = U(g)⊗U(b)Cμ the classical Verma module for g with highest weight

μ ∈ C, and by P g(μ) its indecomposable projective cover in the category O for g. Recall

that, if μ ∈ Z≥0, P
g(−μ− 2) is the unique nontrivial extension of Δg(−μ− 2) by Δg(μ),

and that there are no extensions between other Δg’s (inside category O).

Lemma 16. As a g-module, Δ(λ) has a filtration with subquotients isomorphic to the

g-Verma modules Δg(λ1−2k), k = 0,1,2, . . ..

If λ2 = 0 or λ1 
∈ Z≥0, then, as a g-module, we have

Δ(λ)∼=
⊕
k≥0

Δg(λ1−2k).

Otherwise (i.e., if λ2 
= 0 and λ1 ∈ Z≥0), we have, as g-modules,

Δ(λ)∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ1
2 +1⊕
k=1

P g(−2k)⊕
⊕
k≥2

Δg(−λ1−2k) : λ1 even,

Δg(−1)⊕
λ1+1

2⊕
k=1

P g(−2k−1)⊕
⊕
k≥2

Δg(−λ1−2k) : λ1 odd.

Proof. Denote by vλ a basis element of Cλ. Then, Δ(λ) has a basis of weight vectors

{f if̄ jvλ : i, j ≥ 0}. A direct computation (with help of [30, Lemma 21.2] and its Takiff

analogue, alternatively use [12, Lemma 2.1]) shows that

e ·f if̄ jvλ = [e,f i]f̄ jvλ+f i[e, f̄ j ]vλ(8)

= i(λ1− i−2j+1)f i−1f̄ jvλ+ jλ2f
if̄ j−1vλ.

This implies that the required filtration is given by the degree of f̄ . The subquotients are

given by the span of {f if̄kvλ : i≥ 0}, which is clearly isomorphic to Δg(λ1−2k).
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If λ2 =0, it is clear that the span of {f if̄kvλ : i≥ 0}, k fixed, is a g-submodule. If λ1 
∈Z≥0,

then there are no possible nontrivial extensions between Δg(λ1− 2k), k ≥ 0; hence Δ(λ)

splits as a direct sum of these.

Suppose now λ2 
= 0 and λ1 ∈ Z≥0. Fix μ ∈ {0,1, . . . ,λ1} of the same parity as λ1. It is

enough to show that Δg(−μ− 2) is not a g-submodule of Δ(λ). Suppose it is. Its highest

weight vector v−μ−2 must be a nontrivial linear combination of f if̄ jvλ with i+ j = λ1+μ
2 +

1 =: t, with a nonzero coefficient by f̄ tvλ.

From (8), it follows that the matrix of e in bases f if̄ t−ivλ, i= 0, . . . , t, and f if̄ t−1−ivλ,

i= 0, . . . , t−1, has the form ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 . . . 0 0 0

0 ∗ ∗ . . . 0 0 0

0 0 ∗ . . .
...

...
...

...
...

...
. . . ∗ 0 0

0 0 0 . . . ∗ ∗ 0

0 0 0 . . . 0 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with all ∗ nonzero, except the one on the position (μ+1,μ+2), where we have zero (because

the bracket in (8) is zero for fμ+1f̄(
λ1−μ

2 )vλ). From this, it follows that e cannot annihilate

v−μ−2, a contradiction.

Lemma 17. For λ2 
= 0 and μ ∈ Z≥0, there is an isomorphism of T-modules

Δ(λ)⊗L(μ)∼=Δ(λ1+μ,λ2)⊕Δ(λ1+μ−2,λ2)⊕·· ·⊕Δ(λ1−μ,λ2).

Proof. In the same way as for the semisimple case (see, e.g., [31, Section 6.3]), one sees

that the left-hand side has a filtration with subquotients equal to the summands on the

right-hand side. But these subquotients have different central characters, which follows from

Lemma 15, so they split.

4.4 Enright–Arkhipov completion

Here, we show that g-Harish-Chandra modules naturally occur in a certain completion

(or localization) of Verma modules. We consider a combination of two of such constructions,

originally given by Enright in [22], and Arkhipov in [3]. See also [2], [15], [34], [36]. To ease

the notation a little bit, we will write U instead of U(T) for the rest of this section.

Fix an ad-nilpotent element x ∈ T (e.g., f, e, or ē, which we will use), and denote by U(x)

the localization of the algebra U by the multiplicative set generated by x. This localization

satisfies the Ore conditions by [41, Lemma 4.2], but this is also visible from the proof of

Lemma 33. Since U has no zero divisors, the canonical map U → U(x) is injective. Hence,

we may consider the U –U -bimodule

Sx := U(x) /U .

Lemma 18.

(a) Suppose {x,x1, . . . ,x5} is a basis for T. The set of all monomials

{xkxk1
1 . . .xk5

5 : k ∈ Z, k1, . . . ,k5 ∈ Z≥0}

is a basis for U(x).

(b) The analogous set, but with k ∈ Z<0, is a basis for the quotient Sx.
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Proof. The set in the first claim is a generating set for U(x), which follows from PBW

and the properties of Ore localization. But this set is also linearly independent, since for

its any finite subset, the multiplication from the left by xm for some large m produces

a linearly independent set in U ≤ U(x). This proves the first claim, and the second claim

follows from it.

Denote by j : M → U(x)⊗U M the canonical map. By using the right exactness of the

tensor product, we can identify

Sx⊗
U
M ∼=

(
U(x)⊗

U
M

)/
j(M) .(9)

Moreover, if M is a T-module on which x acts injectively, then the canonical map j is

injective. In particular, this is true if M is a Verma module Δ(λ) and x= f .

Lemma 19 ([2], [15]). Fix x ∈ {f,e, f̄ , ē}, and let M be T-module and L a finite-

dimensional T-module. Then, there is a natural isomorphism of T-modules

Sx⊗
U
(M ⊗L)∼=

(
Sx⊗

U
M

)
⊗L.

Proof. There is an isomorphism U(x)⊗U (M ⊗L)→ (U(x)⊗U M)⊗L given by

x−n⊗ (m⊗v) �→
∑
k≥0

(−1)k
(
n+k−1

k

)
(x−n−k⊗m)⊗xkv,

with the inverse given by (x−n⊗m)⊗v �→ x−ar⊗
∑

k≥0

(
ar
k

)
(xar−n−km⊗xkv), where r,a ∈

Z>0 are chosen, so that xr annihilates L and (r−1)a≥ n. This is proved in [15, Theorem

3.1] and [2, Theorem 3.2] for the semisimple case, but the proof is analogous in general.

In proving that these maps compose to the identity, the following combinatorial formula is

helpful:
∑n

k=0(−1)k
(

a
n−k

)(
b+k
k

)
=

(
a−b−1

n

)
.

One can check that these isomorphisms preserve the canonical images of M ⊗L in both

sides (see (9)), so they induce the required isomorphisms on the quotients.

For a T-module M, we write xM for the set of all elements m ∈M for which the action

of x is locally finite, in the sense that dimC[x]m < ∞. Note that this is a variant of the

Zuckerman functor.

Lemma 20. For a T-module M, xM is a T-submodule. Moreover, the assignment M �→
xM is a left-exact functor in the obvious way.

Proof. Since x is assumed to be ad-nilpotent, the claim follows from the formula in [30,

Lemma 21.4].

Definition 21. For a T-module M, define

EA(M) := e

(
Sf ⊗

U
M

)
.(10)

This is a functor on the category of T-modules in the obvious way, which we call Enright–

Arkhipov’s completion functor.

Proposition 22. The functor EA commutes with tensoring with a finite-dimensional

T-module. More precisely, let M be a T-module and L a finite-dimensional T-module. Then,
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there is a natural isomorphism of T-modules

EA(M ⊗L)∼=EA(M)⊗L.

Proof. Because of Lemma 19, it is enough to show that e(M ⊗L) = (eM)⊗L for g-

modules M and L with L= L(μ) simple finite-dimensional. This is proved in [15, Corollary

3.2], but we also give a proof for the sake of completeness.

The inclusion (eM)⊗L ⊆ e(M ⊗L) is trivial. For the converse, denote by v the lowest

weight vector of L. Then, v,ev, . . . ,eμv is a basis for L. Take a general elementm=
∑μ

i=0mi⊗
eiv ∈ e(M ⊗L), and observe that for n > μ, we have

en ·m=

μ∑
i=0

μ−i∑
j=0

(
n

j

)
en−jmi⊗ei+jv

=

μ∑
i=0

⎛
⎝enmi+

i−1∑
j=0

(
n

i− j

)
en+j−imj

⎞
⎠⊗eiv.

For a fixed i, the vectors inside the big brackets must span a finite-dimensional space when

n varies. From this, and an induction on i, it follows that enmi span a finite-dimensional

space, hence m ∈ (eM)⊗L.

Example 23. Let us consider Δg(μ), with μ∈C. From Lemma 18, it follows that the set

{f−kvμ : k > 0} is a basis for Sf ⊗U Δg(μ) (and from an argument for linear independence

very similar to the one in the proof of Lemma 18). One can easily prove by induction the

following commutation relations (similar to [42, Section 3.5]):

[h,f−k] = 2kf−k,(11)

[e,f−k] =−kf−k−1(h+k+1).

From this, it is not hard to see that

EA(Δg(μ))∼=
{
L(−μ−2) : μ ∈ Z and μ≤−2,

0 : otherwise.

Similarly, one sees that EA(P g(μ)) = 0 for μ ∈ Z and μ ≤ −2 (or using the fact that big

projective modules can be obtained by tensoring dominant Verma modules with finite-

dimensional modules, together with Proposition 22).

Recall that we use notation λ= (λ1,λ2) ∈ h̃∗, with λ1 = λ(h) and λ2 = λ(h̄).

Theorem 24. Take λ with λ1 ∈ Z and λ2 
= 0. Then, EA(Δ(λ)) is a simple g-Harish-

Chandra module. As a g-module, it decomposes as follows:

EA(Δ(λ))∼=
⊕
k≥0

L(|λ1+2|+2k).(12)

Proof. Lemma 16, the fact that the functor EA commutes with the forgetful functor

from T-modules to g-modules, and Example 23 imply (12).

From Lemma 18, we have a basis for Sf ⊗
U
Δ(λ) consisting of f−if̄ jvλ, for i ≥ 1 and

j ≥ 0. Since the lowest weight vector of a g-type L(μ) (μ of the same parity as λ1) inside
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EA(Δ(λ)) must be annihilated by f, it must be (up to scalar) equal to f−1f̄ tvλ, where

t= μ+λ1

2 +1.

Now, we will prove that EA(Δ(λ)) is simple. Let V be its nonzero submodule, and

suppose it contains L(μ) for some μ from (12). By applying f̄ on f−1f̄ tvλ, we get that

L(μ+2k)⊆ V , for all k ≥ 0.

To prove that V =EA(Δ(λ)), it is enough to assume μ > |λ1+2| and to find an element

in U(T) that maps f−1f̄ tvλ to f−1f̄ t−1vλ.

In addition to (11), we will use the following commutation relations, whose proofs are

analogous to the ones for (11):

[h̄,f−k] = 2kf−k−1f̄ ,(13)

[ē, f−k] =−kf−k−1h̄−k(k+1)f−k−2f̄ .

From this, we have:

e ·f−1f̄ tvλ = [e,f−1]f̄ tvλ+f−1[e, f̄ t]vλ

=−f−2(h+2)f̄ tvλ+ tλ2f
−1f̄ t−1vλ

= μf−2f̄ tvλ+ tλ2f
−1f̄ t−1vλ,

h̄e ·f−1f̄ tvλ = μh̄f−2f̄ tvλ+ tλ2h̄f
−1f̄ t−1vλ

= μ[h̄,f−2]f̄ tvλ+μλ2f
−2f̄ tvλ+ tλ2[h̄,f

−1]f̄ t−1vλ+ tλ2
2f

−1f̄ t−1vλ

= 4μf−3f̄ t+1vλ+(λ1+2μ+2)λ2f
−2f̄ tvλ+ tλ2

2f
−1f̄ t−1vλ,

2μē ·f−1f̄ tvλ = 2μ[ē, f−1]f̄ tvλ

=−4μf−3f̄ t+1vλ−2μλ2f
−2f̄ tvλ.

From this, it follows that

(h̄e−2μē) ·f−1f̄ tvλ = (λ1+2)λ2f
−2f̄ tvλ+ tλ2

2f
−1f̄ t−1vλ.

Now, we claim that a nontrivial linear combination of e and (h̄e−2μē) will map f−1f̄ tvλ
to f−1f̄ t−1vλ. This is true, because the determinant∣∣∣∣ μ (λ1+2)λ2

tλ2 tλ2
2

∣∣∣∣= λ2
2(μ+λ1+2)(μ−λ1−2) 
= 0.

This finishes the proof of simplicity.

Remark 25 (Sketch of an alternative proof of simplicity of EA(Δ(λ))). Assume λ1 ∈Z

and λ2 
= 0, and suppose that V is a submodule of EA(Δ(λ)) having L(μ), μ > |λ1+2|
minimal. By applying f̄ , we see that as a g-module, V ∼= L(μ)⊕L(μ+2)⊕ . . .. This implies

that the quotient EA(Δ(λ))/V ∼= L(|λ1+2|)⊕L(|λ1+2|+2)⊕·· ·⊕L(μ−2) is simple as a

T-module and finite-dimensional. Since C̄ consists of elements from the nilradical of T, it

must act as zero on this quotient. But C̄ is central, so it still acts as λ2
2 on the localization,

a contradiction.

4.5 Classification

In this subsection, we use the relation with highest weight theory established above to

classify all simple g-Harish-Chandra modules for T. It will be more convenient to shift the

notation for the first parameter in our modules by −2.
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Figure 1.

Construction of simple g-Harish Chandra modules for the Takiff sl2.

Definition 26. For n ∈ Z and λ2 
= 0, denote

V (n,λ2) :=EA(Δ(n−2,λ2)).

Corollary 27. The module V (n,λ2) is a simple g-Harish-Chandra module, it has g-

types L(|n|),L(|n|+2),L(|n|+4) . . ., and each of these occurs with multiplicity 1.

If V (n,λ2)∼= V (n′,λ′
2), then (n′,λ′

2) = (n,λ2) or (−n,−λ2).

Proof. The first statement follows from Theorem 24.

It is clear that the functor EA preserves central character. So, the generators of the

center C and C̄ act as the scalars nλ2 and λ2
2, respectively. From this, the second statement

follows.

We are going to see later in this subsection that the modules V (n,λ2) exhaust all infinite-

dimensional simple g-Harish-Chandra modules.

On Figure 1, we present several V (n,λ2)’s, and how they are constructed. The gray area

on the left-hand side is the Verma module, decomposed into rows according to Lemma 16,

and furthermore, into weight spaces. The remaining bullets represent Sf tensored with the

Verma module. The arrows represent nonzero action of e, and the light-gray area on the

right-hand side contains vectors not having a finite e-orbit. The remaining (not shaded)

part is our V (n,λ2), with its g-types clearly visible.

From Corollary 9, Theorem 12, and Corollary 27, we have the following consequence:

Corollary 28. For λ2 
= 0, we have V (0,λ2)∼= V (0,−λ2)∼=Q(0,λ2
2).

From Lemma 17, Proposition 22, and the definition of V (n,λ2), we have:
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Proposition 29. For n ∈ Z, λ2 
= 0, and μ ∈ Z≥0, we have the following isomorphism

of T-modules:

V (n,λ2)⊗L(μ)∼= V (n+μ,λ2)⊕V (n+μ−2,λ2)⊕·· ·⊕V (n−μ,λ2).

Now, we can completely describe the universal modules:

Proposition 30. For n ∈ Z≥0 and χ 
= 0, choose any square root λ2 of χ. Then,

Q(n,χ)∼= V (n,λ2)⊕V (n−2,λ2)⊕·· ·⊕V (−n,λ2).

Moreover, V (n,λ2)∼= V (−n,−λ2).

Proof. The first claim follows from Proposition 29, Corollary 28, and (5). The second

claim follows from the first one by comparing both choices ±λ2 and central characters of

the summands.

Theorem 31. Let V be a simple g-Harish-Chandra module for T. Denote by χ= χ(C̄)

the purely Takiff part of the central character, and suppose L(n), n ∈ Z≥0, is the minimal

g-type of V.

• If χ 
= 0, then V ∼= V (n,λ2), for a square root λ2 of χ.

• If χ= 0, then V ∼= L(n) with the trivial ḡ-action.

In other words, V (n,λ2), n ∈ Z, λ2 ∈ C \ {0}, together with the finite-dimensional simple

g-modules constitute a complete list of simple g-Harish-Chandra modules for T. The only

isomorphisms between different members of the list are V (n,λ2)∼= V (−n,−λ2).

Proof. By Proposition 8(b), V is a quotient of Q(n,χ).

If χ 
= 0, from Proposition 30 and Corollary 27, we see that the only possible choices with

the correct minimal g-type are V (n,λ2) or V (n,−λ2).

If χ=0, by the second part of Theorem 12, we see that the only possible simple quotients

of Q(n,0) ∼=Q(0,0)⊗L(n) are just finite-dimensional simple g-modules with the trivial ḡ-

action.

4.6 Extensions

Here, we calculate the first extension groups of simple g-Harish-Chandra modules,

restricting to the infinite-dimensional cases, that is, a nontrivial central character. Since

in that case nonisomorphic g-Harish-Chandra modules have different central characters,

there are no nontrivial extensions between them. So, it only makes sense to calculate the

self-extensions.

Theorem 32. For an infinite-dimensional simple g-Harish-Chandra module V, we have

Ext1(V,V )∼= C.

Proof. Assume first that V = Q(0,χ) for χ 
= 0, and suppose we have a nonsplit short

exact sequence 0 → V
i
↪→ M

p
� V → 0. Denote by 1 ∈ V the generator from L(0) and set

w= i(1) ∈M . We can find v ∈M such that p(v) = 1 and, in addition, such that v generates

a trivial g-submodule inM (note that the sequence must split in the category of g-modules).

By the universal property, there is a T-homomorphism f : Q(0)→M , and the triangle below
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commutes:

Q(0)

f

�� ���
��

��
��

�

0 �� V � � �� M �� �� V �� 0.

The map f must be surjective, since otherwise its image would define a splitting of the

short exact sequence. So, there is an element in Q(0) that maps to w via f ; by Lemma 11

and Proposition 7, such an element is necessarily of the form p(C̄) for some polynomial p.

Since the triangle above commutes, we must have p(χ) = 0. Since [M : L(0)] = 2, we can

take p(C̄) = C̄ −χ. From this, one can see that Kerf is generated by (C̄ −χ)2, that is,

M ∼= U(ḡ)
/
(C̄−χ)2 . This uniquely determines M. Conversely, one sees directly that such

M defines a nonsplit self-extension of Q(0,χ).

The general statement is obtained from this by translation functors, that is, tensoring

extensions of Q(0,χ) by L(n) and then taking the component with the correct central

character (see Proposition 29). This functor defines a homomorphism of abelian groups

Ext1(V (0,λ2),V (0,λ2))→ Ext1(V (n,λ2),V (n,λ2)).

In the same way, we get a homomorphism in the other direction. The fact that these

homomorphisms compose to the identities on the Ext1 groups is an easy application of the

5-lemma.

4.7 Annihilators

We will prove here that the infinite-dimensional simple g-Harish-Chandra modules have

the same annihilators in U = U(T) as the corresponding Verma modules. We start by

showing that, in the cases we are interested in, the localization does not decrease the

annihilator. Then, we construct a certain inverse of the functor EA, which will produce

Verma modules out of g-Harish-Chandra modules. This will be given by the localization by

ē, that is, tensoring with Sē over U.

Lemma 33. Let x be an ad-nilpotent element in T, and M a T-module on which x acts

injectively. Then, in U, we have

Ann(M) = Ann

(
U(x)⊗

U
M

)
⊆Ann

(
Sx⊗

U
M

)
.

Proof. The only nonobvious thing to prove is if u ∈Ann(M), then ux−n⊗m= 0, for all

n≥ 1 and m ∈M .

By assumption, for any u ∈ U , there exists k1 > 0 such that

0 = (ad(x))
k1 (u) =

k1∑
i=0

(−1)i
(
k1
i

)
xiuxk1−i,

so xk1u= u1x for u1 :=
∑k1−1

i=0 (−1)k1+i
(
k1

i

)
xiuxk1−i−1. If u ∈Ann(M), then so is u1, since

Ann(M) is a two-sided ideal. We can inductively apply the same procedure on u1 to get k2
such that xk2u1 = u2x, and so on. Repeating this n times, we get xknun−1 = un for some

un ∈Ann(M). From the construction, it follows that

xkn+···+k1 ·ux−n⊗m= un⊗m= 1⊗unm= 0.
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Since x acts injectively on M, the same is true for U(x) ⊗
U
M . From this, it follows that

ux−n⊗m= 0.

Proposition 34. Suppose n ∈ Z and λ2 
= 0.

(a) The element ē acts injectively on V (n,λ2).

(b) The module Sē ⊗
U
V (n,λ2) is isomorphic to the direct sum of Verma modules Δ(n−

2,λ2)⊕Δ(−n−2,−λ2).

Proof. The first claim follows from Lemma 11(b) for V (0,λ2) ∼= Q(0,λ2
2), and from

Proposition 30 for general V (n,λ2).

We prove the second claim also for n = 0, and again translate the result to the other

cases. From Lemma 11(b), we get a basis for W := Sē⊗
U
Q(0,λ2

2) consisting of

(ē)−kf̄ lh̄ε, for k > 0, l ≥ 0, ε ∈ {0,1},

where g acts by the adjoint action, and ḡ by the (commutative) multiplication. We denote

this action of T by ◦.
Consider the following two elements in W :

w± := (ē)−1± 1

λ2
(ē)−1h̄.

It is an easy calculation to see that e◦w± = ē◦w± =0, h◦w± =−2w±, and h̄◦w± =±λ2w±,

from which it follows by the universal property of Verma modules that each w± generates a

copy of Δ(−2,±λ2) in W. Because of their simplicity, these submodules can only intersect

trivially. By comparing the dimensions of weight spaces, we conclude that W cannot have

any other composition factor, that is,

W ∼=Δ(−2,λ2)⊕Δ(−2,−λ2).(14)

In general, we calculate Sē⊗
U
Q(n,λ2

2) in two ways and compare the results:

Sē⊗
U
Q(n,λ2

2)
∼= Sē⊗

U

(
Q(0,λ2

2)⊗L(n)

)
by (5),

∼=
(
Sē⊗

U
Q(0,λ2

2)

)
⊗L(n) by Lemma 19,

∼=
(
Δ(−2,λ2)⊕Δ(−2,−λ2)

)
⊗L(n) by (14),

∼=
n⊕

k=0

Δ(n−2−2k,λ2)⊕
n⊕

k=0

Δ(n−2−2k,−λ2) by Lemma 17.(15)

On the other hand, by Proposition 30, we have

Sē⊗
U
Q(n,λ2

2)
∼=

n⊕
k=0

Sē⊗
U
V (n−2k,λ2).(16)

By comparing the central characters (which are preserved under the localization) of the

direct summands in (15) and (16), the claim (b) follows.

From Lemma 33, Proposition 34, and the definition of V (n,λ2), we have:
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Corollary 35. Suppose n ∈ Z and λ2 
= 0. Then,

Ann(V (n,λ2)) = Ann(Δ(n−2,λ2)) = Ann(Δ(−n−2,−λ2)).

We want to prove that these annihilators are centrally generated. It is easier to do this

for Verma modules. This has already been proved in [6, Proposition 6.1]. We present a

different and a more direct proof, and along the way reveal some structure of the quotients

of U by the centrally generated ideals.

For this, we need to express elements of U modulo a maximal ideal in the center in a

convenient way. We describe this in the next two lemmas. We denote by U0 := U(T)0, the

zero-weight space of h in U.

Lemma 36. The subalgebra U0 of U is generated by S = {h, h̄,fe, f̄e,f ē, f̄ ē}.

Proof. We need to prove that any product x= x1x2 . . .xk, where each xi belongs to the

standard basis of T, with the property that the number of i ’s for which xi ∈ {f, f̄} is equal

to the number of j ’s for which xj ∈ {e, ē}, can be generated by elements in S. We prove this

by induction on k. If x1x2 . . .xk consists only of h and h̄, we are done. If not, chose some

xi ∈ {f, f̄} and xj ∈ {e, ē}, and assume without loss of generality i < j. We commute them

to the rightmost place:

x= (x1 . . . x̂i . . . x̂j . . .xk︸ ︷︷ ︸
x′

)(xixj︸︷︷︸
∈S

)+
∑
t

yt,

where the factors with hat are omitted. It is clear from the commutation relations that x′

and all yt are products of the basis elements with the same property, but shorter. We are

done by induction.

Lemma 37. Fix an algebra homomorphism χ : Z(T) → C. For any u ∈ U0
/
U0 ·Kerχ ,

there exists n ∈ Z≥0 such that (f̄ ē)n ·u is equal to a linear combination of monomials of the

form hk (fē)
l (
h̄
)m

for k, l,m ∈ Z≥0, modulo U0 ·Kerχ.

Proof. In the quotient above, by using (7), we can express f̄ ē as a linear combination of

h̄2 and 1, and also f̄ e as a linear combination of h̄h, h̄, fē, and 1. Using this with Lemma

36, we see that the generators in the quotient are just h, h̄, fe, and fē.

First, let us assume that u= x1x2 . . .xr, a product of these four generators in any order.

Since h commutes with everything here, we can ignore it. Denote by a = fe, b = fē, and

c= h̄, χ1 = χ(C) and χ2 = χ(C̄). One can check that we have the following relations in the

quotient:

[b,a] = ac−hb,(17)

[c,a] = 4b+hc+2c−χ1,(18)

[c,b] =
1

2
c2− 1

2
χ2,(19)

f̄ ē ·a=−b2−hc2− 3

2
c2−hbc−2bc+

χ1

2
b+

χ1

2
c+

χ2

2
.(20)

Suppose that x1 
= a, but some xi = a, and assume i is minimal. Using the relations (17)

and (18), we commute xi−1xi = xixi−1+[xi−1,xi]. In this way, u becomes a sum of several

monomials, each of which has either one a less, or have their most-left a one place closer
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to the most-left position. It follows that we can move this a to the most left part in a finite

number of steps, that is, we can express u as a finite sum u=
∑

ayt+
∑

wt, where yt is a

finite product of a’s, b’s, and c’s, but has at least one a less than the original expression of

u had, and wt is a finite product of b’s and c’s.

From (20) and the relation 4f̄ ē = χ2 − c2, it follows that f̄ ē · u is a finite sum
∑

zt,

where each zt is a product of a’s, b’s, and c’s, but has at least one a less than the original

expression of u had. By induction, for some k, we get that (f̄ ē)k ·u is a finite sum of products

of b’s and c’s.

Now, observe that any product of b’s and c’s can be expressed as a linear combination

of standard monomials bicj , using the relation (19) and a very similar reasoning as before.

The point is that a does not appear in [c,b] in (19), so we will not end up in an infinite

loop.

Finally, note that the argument is essentially the same if we started from u equal to a

linear combination of products of the generators, instead of just one monomial.

Theorem 38. Suppose n∈Z and λ2 
= 0. The annihilators in Corollary 35 are centrally

generated. More precisely, they are equal to the ideal U ·Kerχ, where

χ : Z(T) = C[C,C̄]→ C

is a homomorphism of algebras defined on the generators by C �→ nλ2 and C̄ �→ λ2
2.

Proof. We prove this for the annihilator of the Verma module Δ := Δ(n− 2,λ2). This

is known from [6, Proposition 6.1], but we present here a different and a more direct proof.

The inclusion U ·Kerχ⊆Ann(Δ) is trivial. For the converse, recall that Ann(Δ) is stable

under the adjoint action, so it is generated by its U0 part. So, it is enough to prove

U0∩Ann(Δ)⊆ U0 ·Kerχ.

To prove this, for any nonzero elementu ∈ U0
/
U0 ·Kerχ , we want to find an element from

Δ which is not annihilated by u. Because of Lemma 37, we can assume without loss of

generality that

u=
∑

k,l,m≥0

αklmhk (fē)
l (
h̄
)m

,

with αklm ∈ C and only finitely many nonzero. Define a polynomial (with commutative

variables) by the same scalars: p(x,y,z) =
∑

k,l,m≥0αklmxkylzm ∈ C[x,y,z].

Denote by v the highest weight vector in Δ, by Δq the weight space in Δ of weight

n−2−2q, q ≥ 0, and recall that it has basis f if̄q−iv, for i= 0,1, . . . , q. Similarly to (8), one

can prove the following formulas for the action on Δ:

h ·f if̄q−iv = (n−2−2q)f if̄q−iv,

f ē ·f if̄q−iv = iλ2f
if̄q−iv− i(i−1)f i−1f̄q−i+1v,

h̄ ·f if̄q−iv = λ2f
if̄q−iv−2if i−1f̄q−i+1v.(21)

It follows that in this basis of Δq, the operator representing u is upper triangular, with

the diagonal entries p(n−2−2q, iλ2,λ2), i= 0, . . . , q. We would like to find a basis element

f if̄q−iv, for which p(n−2−2q, iλ2,λ2) 
=0. However, a problem arises if p(x,y,z) is divisible

by (z−λ2).
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We claim that we can decompose

p(x,y,z) = p̃(x,y,z) · (z−λ2)
r,(22)

for some r ≥ 0, such that p̃(n− 2− 2q, iλ2,λ2) is not identically zero for (q, i) ∈ D, where

D ⊆ C
2 is any Zariski dense subset.

To prove this claim, write p(x,y,z) =
∑m

j=0 pj(x,y)(z−λ2)
j . Suppose that this is zero

when evaluated on D×{λ2} for a Zariski dense set D ⊆C
2. It follows that p0(x,y) = 0 (on

C
2), so p(x,y,z) = p(1)(x,y,z)(z−λ2), for a polynomial p(1)(x,y,z) of a strictly smaller total

degree. If necessary, we continue to apply the same argument inductively on p(1)(x,y,z),

and so on, until we reach (22) with p̃(x,y,λ2) nonzero on some point in (x,y) ∈ D. The

number r is independent of D, since the set {(x,y) : p̃(x,y,λ2) 
= 0} is nonempty and Zariski

open, hence intersects any Zariski dense set in C
2.

The claim is now proved, because the map (q, i) �→ (n− 2− 2q, iλ2) is an algebraic

isomorphism C
2 → C

2. Here, it is crucial that λ2 
= 0.

Write p̃(x,y,z) =
∑

k,l,m≥0 α̃klmxkylzm, and define ũ =
∑

k,l,m≥0 α̃klmhk (fē)
l (
h̄
)m

.

Then, it is also true that

u= ũ · (h̄−λ2)
r,

since the monomials in u and ũ have h̄ on the most-right position, so no commuting of the

variables is necessary.

There exists a pair (q, i) from the cone {(q, i) ∈ Z×Z : q ≥ r, 0 ≤ i ≤ q− r} (which is

Zariski dense in C
2), such that p̃(n− 2− 2q, iλ2,λ2) 
= 0. Put w := f i+rf̄q−i−rv ∈ Δq. It

follows from (21) that (h̄−λ2)
r ·w = c ·f if̄q−i, for some constant c 
= 0. From this, we have

that

u ·w = c · ũ ·f if̄q−iv

= c · p̃(n−2−2q, iλ2,λ2) ·f if̄q−iv+

i−1∑
j=0

cjf
j f̄q−jv 
= 0.

This finishes the proof of the theorem.

4.8 The action of finite-dimensional sl2-modules

Denote by F the monoidal category of finite-dimensional sl2-modules. For a fixed nonzero

χ ∈C, denote by Hχ the category of semisimple g-Harish-Chandra T-modules on which the

action of the purely Takiff part of the center is given by χ.

Proposition 39. For each nonzero χ, the category Hχ is a simple module category

over the monoidal category F .

Proof. The fact that Hχ is a module category over F follows directly from Proposition

29. SinceHχ is semisimple by definition, to show that it is a simple module category over F ,

it is enough to show that, starting from any simple object of Hχ and tensoring it with finite-

dimensional sl2-modules, we can obtain any other simple object of Hχ as a direct summand,

up to isomorphism. This claim follows by combining Proposition 29 with Theorem 31.

We note that, by Proposition 29, the combinatorics of the F -module category Hχ does

not depend on χ.
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§5. sl2-Harish-Chandra modules for the Schrödinger Lie algebra

5.1 Setup

The Schrödinger Lie algebra s can be defined by basis {e,h,f,p,q,z} and the following

relations: in addition to the usual g := sl2 relations on e,h,f , we also have

[e,p] = 0, [h,p] = p, [f,p] = q,

[e,q] = p, [h,q] =−q, [f,q] = 0, [p,q] = z,

and z is declared to commute with all s. It is clear that s = g�H, where H is the ideal

spanned by p,q,z, and is isomorphic to the three-dimensional Heisenberg Lie algebra. As a

g-module, H is isomorphic to L(1)⊕L(0).

The nilradical of s is Nrad(s) = [s,H] =H. Recall that this means that H must necessarily

annihilate any simple finite-dimensional s-module.

There is also the centerless Schrödinger Lie algebra s̄ := s/Cz , which is isomorphic to

the semidirect product g�L(1).

The disclaimer from the previous section related to [6] applies to the present section with

respect to [7].

The algebra U(s) is free as a module over its center Z(s), and Z(s) is generated by two

algebraically independent generators (see, e.g., [20]):

C := (h2+h+4fe)z−2(fp2−eq2−hpq), and z.(23)

It is also clear that Z(s)∩U(H) = C[z], which we will refer to as the purely Schrödinger

part of the center. For a module with central character, the scalar by which z acts is usually

called the central charge of the module.

The theory we develop here for the Schrödinger Lie algebra is very similar to the Takiff

sl2 case. So we will omit most of the details, as they are usually analogous, but easier. One

reason for this is that the purely Schrödinger part of the center is generated by a degree 1

element, and for the Takiff sl2, we had a degree 2 element. However, a small complication

now is that the radical of s is not abelian anymore.

5.2 Universal modules

As before, the universal modules are induced from g, that is, for n ∈ Z≥0, set Q(n) :=

IndsgL(n) = U(s) ⊗
U(g)

L(n) ∼= U(H)⊗
C

L(n). Recall that Q(n) ∼= Q(0)⊗ L(n), where we

consider L(n) as an s-module with the trivial H-action.

Proposition 40. We have the following isomorphisms of algebras:

End(Q(0))∼= U(H)g = C[z],

where U(H)g denotes the invariants of the adjoint action of g on U(H).

Proof. The isomorphism End(Q(0))op ∼= U(H)g follows from the same argument as in

the proof of Proposition 7. The inclusion U(H)g ⊇ C[z] is obvious. The converse follows

easily from the following commutation relations:

[h,pmqn] = (m−n)pmqn,(24)

[e,pmqn] = npm+1qn−1− n(n−1)

2
pmqn−2z,

https://doi.org/10.1017/nmj.2021.8 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2021.8


LIE ALGEBRA MODULES WHICH ARE LOCALLY FINITE... 453

[f,pmqn] =mpm−1qn+1−m(m−1)

2
pm−2qnz,

which can be proved, for example, by induction.

Fix χ ∈ C, and denote by mχ the maximal ideal (z−χ)⊆ C[z]. As before, we define the

universal module as Q(n,χ) :=Q(n)
/
mχQ(n) . It clearly has central charge χ. As before,

we have Q(n,χ)∼=Q(0,χ)⊗L(n).

Lemma 41.

(a) As s-modules, Q(0) ∼= U(H) and Q(0,χ) ∼= U(H)
/
(z−χ) , where g acts by the adjoint

action, and H by the left multiplication. The set
{
piqj : i, j ≥ 0

}
is a basis for Q(0,χ).

(b) As a g-module, Q(0,χ)∼=
⊕

k≥0L(k). Moreover, pk is the highest weight vector in L(k).

(c) C acts as zero on Q(0) and every Q(0,χ).

Proof. The first claim is clear. We use it to prove the others.

For the second claim, note that pk generates a g-submodule isomorphic to L(k). Since

the action of g preserves Qn := span{piqj : i+ j ≤ n}, by counting dimensions, we see that

Qn ∼=⊕n
k=0L(k). The claim now follows by taking colimits.

The last claim can be checked directly (enough on the generator of Q(0)).

From the previous lemma, the Clebsch–Gordan coefficients for sl2, and the adjunction,

the following is not hard to deduce:

Proposition 42.

(a) Q(n,χ) is a g-Harish-Chandra module, and for k ≥ 0:

[Q(n,χ) : L(k)] = min{k+1,n+1}.(25)

(b) Let V be any simple s-module that has some L(n) as a simple g-submodule. Then, V is

a quotient of Q(n,χ) for a unique χ. In particular, V is a g-Harish-Chandra module,

and (25) gives an upper bound for the multiplicities of its g-types.

(c) For a fixed χ, there exists a unique simple s-module which contains L(0) as a g-

submodule and has central charge χ. Moreover, it is a g-Harish-Chandra module.

Theorem 43. The module Q(0,χ) is simple if and only if χ 
= 0.

The module Q(0,0) has infinite length, and an s-filtration whose composition factors are

L(0),L(1),L(2) . . . with the trivial action of H.

Proof. As before, the s-action on Q(0) and Q(0,χ) will be denoted by ◦.
Note that [q,pn] =−npn−1z and [p,qn] = nqn−1z. Using this and the equations (24), one

can check that

(pf −nq)◦pn =
n(n+1)

2
χ ·pn−1.

So, if χ 
= 0, the module Q(0,χ) is simple.

Alternatively, one can use a nilradical argument analogous to the one in Remark 13.

If χ= 0, then p and q commute in Q(0,χ), and g preserves the total degree of monomials

piqj . The rest of the proof is obvious.
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5.3 Verma modules

Verma modules for the Schrödinger Lie algebra are studied in detail in [20].

In the triangular decomposition (1), we have

ñ− = span{f,q}, h̃= span{h,z}, and ñ+ = span{e,p}.

For an element λ ∈ h̃∗, denote λ1 := λ(h) and λ2 := λ(z).

Proposition 44 [20, Proposition 5]. If λ2 
= 0, then the Verma module Δ(λ) is simple

for any λ1 ∈ Z.

It is easy to see that the central element C acts on the Verma module Δ(λ) as the scalar

(λ1+1)(λ1+2)λ2, and the central charge is χ := λ2 (see (23)). We will be concerned mostly

with nonzero central charge cases.

Lemma 45. Nonisomorphic Verma modules Δ(λ) and Δ(λ′) with the same nonzero

central charge have the same central character if and only if λ′
1 =−λ1−3.

Proof. This reduces to solving the equation (λ1+1)(λ1+2) = (λ′
1+1)(λ′

1+2).

Lemma 46. As a g-module, Δ(λ) has a filtration with subquotients isomorphic to the

g-Verma modules Δg(λ1−k), k = 0,1,2, . . ..

If λ2 = 0 or λ1 
∈ Z≥0, then as a g-module, we have Δ(λ)∼=
⊕

k≥0Δ
g(λ1−k). Otherwise

(λ2 
= 0 and λ1 ∈ Z≥0), we have as g-modules

Δ(λ)∼=Δg(−1)⊕
λ1+2⊕
k=2

P g(−k)⊕
⊕
k≥3

Δg(−λ1−k).

Proof. Denote by vλ a basis element of Cλ. Then, Δ(λ) has a basis of weight vectors

{f iqjvλ : i, j ≥ 0}. A direct computation shows that

e ·f iqjvλ = i(λ1− i− j+1)f i−1qjvλ+λ2
j(j−1)

2
f iqj−2vλ.

This implies that the required filtration is given by the degree of q. The subquotients are

given by the span of {f iqkvλ : i ≥ 0}, which is clearly isomorphic to Δg(λ1−k). The rest

can be proved in the same way as for Lemma 16.

Lemma 47. For λ1 ∈ Z, λ2 
= 0, and μ ∈ Z≥0, there is an isomorphism of s-modules

Δ(λ)⊗L(μ)∼=Δ(λ1+μ,λ2)⊕Δ(λ1+μ−2,λ2)⊕·· ·⊕Δ(λ1−μ,λ2).

Proof. The left-hand side has a filtration with subquotients equal to the summands on

the right-hand side. But these subquotients have different central characters by Lemma

45, since the first components of their highest weights have the same parity, so they must

split.

5.4 Enright–Arkhipov completion

Fix an ad-nilpotent element x ∈ s (e.g., f or p, which we will use), and denote by Sx :=
U(s)(x)

/
U(s) the localization of the algebra U(s) by x, modulo the canonical copy of U(s)

inside it. This is a U(s)-bimodule. For an s-module M, write

EA(M) := e

(
Sf ⊗

U(s)
M

)
.
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As before, one can check that this is a well-defined functor on the category of s-modules.

Moreover, Proposition 22 is valid here, with the same proof.

Theorem 48. Take λ with λ1 ∈ Z and λ2 
= 0. Then, EA(Δ(λ)) is a simple g-Harish-

Chandra module, and decomposes as a g-module as

EA(Δ(λ))∼=
⊕
k≥0

L

(∣∣∣∣λ1+
3

2

∣∣∣∣− 1

2
+k

)
.(26)

Proof. Lemma 46, the fact that the functor EA commutes with the forgetful functor

from s-modules to g-modules, and (the Schrödinger analogue of) Example 23 imply the

decomposition (26).

Note that the lowest weight vector of a L(μ) in (26) is f−1qtvλ, where t := 2+λ1+μ.

To prove simplicity, it is enough for μ≥
∣∣λ1+

3
2

∣∣+ 1
2 to find an element in U(s) that maps

f−1qtvλ to f−1qt−1vλ. One can check by direct calculation that(
p− 1

μ
qe

)
·f−1qtvλ =

λ2t

2μ
(μ−λ1−1)f−1qt−1vλ.

The scalar on the right-hand side is nonzero because of the assumption on μ.

Alternatively, one can use a nilradical argument analogous to the one in Remark 25.

Theorem 48, Proposition 42(c), and Theorem 43 together give:

Corollary 49. For λ2 
= 0, we have

EA(Δ(−1,λ2))∼=EA(Δ(−2,λ2))∼=Q(0,λ2).

5.5 Classification

The Enright–Arkhipov completion of Verma modules again gives us a family of g-

Harish-Chandra modules. This construction gives all infinite-dimensional g-Harish-Chandra

modules, as we will see in this subsection.

Definition 50. For n ∈ Z and λ2 
= 0, denote

V (n,λ2) :=

{
EA(Δ(n−1,λ2)) : n≥ 0,

EA(Δ(n−2,λ2)) : n≤ 0.

From Corollary 49, we have that V (0,λ2) is well defined, and moreover isomorphic to

Q(0,λ2). Note that the central element C acts on V (n,λ2) as n(n+1)λ2 if n ≥ 0, and as

n(n−1)λ2 if n≤ 0.

Theorem 48 and Lemma 45 easily give:

Corollary 51. The module V (n,λ2) is a simple g-Harish-Chandra module, and has

g-types L(|n|),L(|n|+1),L(|n|+2) . . . with multiplicity 1.

If V (n,λ2)∼= V (n′,λ′
2), then λ′

2 = λ2 and n′ ∈ {n,−n}.

On Figure 2, we present several V (n,λ2)’s, and how they are constructed. It is interesting

to compare this to the Takiff sl2 case (cf. Figure 1).

Proposition 52. For n ∈ Z≥0 and λ2 
= 0, we have V (−n,λ2)∼= V (n,λ2). Moreover,

Q(n,λ2)∼= V (n,λ2)⊕V (n−1,λ2)⊕·· ·⊕V (0,λ2).
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Figure 2.

Construction of simple g-Harish Chandra modules for the Schrödinger Lie algebra.

Proof. We use induction over n. The basis is given in Corollary 49. Suppose the

proposition is true for all k = 0, . . . ,n− 1, where n ≥ 1 is fixed. Observe that, using (the

Schrödinger version of) Proposition 22 and Lemma 47, we have

Q(n,λ2)∼=Q(0,λ2)⊗L(n)∼=EA(Δ(−1,λ2))⊗L(n)(27)

∼=EA(Δ(n−1,λ2))⊕EA(Δ(n−3,λ2))⊕·· ·⊕EA(Δ(−n−1,λ2))

∼=V (n,λ2)⊕V (n−2,λ2)⊕·· ·⊕V (ε,λ2)⊕
⊕V (ε−1,λ2)⊕V (ε−3,λ2)⊕·· ·⊕V (−n+1,λ2),

where ε ∈ {0,1} is of the same parity as n. By inductive assumption, it follows that

Q(n,λ2)∼=V (n,λ2)⊕V (n−1,λ2)⊕·· ·⊕V (1,λ2)⊕V (0,λ2)

∼=V (n,λ2)⊕Q(n−1,λ2).

In the same way, but using Q(0,λ2) ∼= EA(Δ(−2,λ2)) in the first line (27), we can get

that Q(n,λ2)∼= V (−n,λ2)⊕Q(n−1,λ2). It follows that V (n,λ2)∼= V (−n,λ2).

Similarly, one can prove the following analogue of Proposition 29:

Proposition 53. Let n,k ∈ Z≥0 and λ2 
= 0. If k ≤ n, then

V (n,λ2)⊗L(k) = V (n−k,λ2)⊕V (n−k+2,λ2)⊕·· ·⊕V (n+k,λ2).

If k > n, then

V (n,λ2)⊗L(k) = V (0,λ2)⊕V (1,λ2)⊕·· ·⊕V (k−n−1,λ2)⊕

⊕V (k−n,λ2)⊕V (k−n+2,λ2)⊕·· ·⊕V (k+n,λ2).
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Since any simple g-Harish-Chandra module is a quotient of some Q(n,λ2), we have proved

the following theorem:

Theorem 54. Let V be a simple g-Harish-Chandra module for s. Denote by λ2 its

central charge, and suppose L(n), n ∈ Z≥0, is the minimal g-type of V.

• If λ2 
= 0, then V ∼= V (n,λ2)∼= V (−n,λ2).

• If λ2 = 0, then V ∼= L(n) with the trivial H-action.

In other words, V (n,λ2), n ∈ Z≥0, and λ2 ∈ C \ {0}, together with the finite-dimensional

simple g-modules, constitute a complete list of pairwise nonisomorphic simple g-Harish-

Chandra modules for s.

Remark 55. For the centerless Schrödinger Lie algebra s̄, infinite-dimensional simple

g-Harish-Chandra modules do not exist. All simple g-Harish-Chandra modules are given by

L(n), n ∈ Z≥0, with the trivial action of H̄ := H/Cz .

This follows from observing that the endomorphism ring of Inds̄g(L(0)) is only C (similarly

as in Proposition 40), and so all the universal modules have s̄-filtrations by simple finite-

dimensional modules (similarly as in Theorem 43 for χ= 0).

5.6 Extensions

Self-extensions of infinite-dimensional simple g-Harish-Chandra modules (i.e., the ones

having nonzero central charge) can be calculated in the same way as for the Takiff sl2 case

(Section 4.6):

Theorem 56. Let V be a simple infinite-dimensional g-Harish-Chandra module for s.

Then, Ext1(V,V )∼= C.

5.7 Annihilators

We show that simple infinite-dimensional g-Harish-Chandra modules again have the same

annihilators as the corresponding Verma modules. The fact that annihilators of Verma

modules for s are centrally generated is already known (see [20, Theorem 21]).

Proposition 57. Suppose n ∈ Z≥0 and λ2 
= 0.

(a) The element p acts injectively on V (n,λ2).

(b) The module Sp ⊗
U(s)

V (n,λ2) is isomorphic to the direct sum of Verma modules Δ(n−

1,λ2)⊕Δ(−n−2,λ2).

Proof. The proof is analogous to the proof of Proposition 34, but easier. So we will omit

it.

From (the Schrödinger version of) Lemma 33, Proposition 57, the definition of V (n,λ2),

and [20, Theorem 21], we have:

Corollary 58. Suppose n ∈ Z≥0 and λ2 
= 0. Then,

Ann(V (n,λ2)) = Ann(Δ(n−1,λ2)) = Ann(Δ(−n−2,λ2)),

and these annihilators are centrally generated.
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5.8 The action of finite-dimensional sl2-modules

Denote by F the monoidal category of finite-dimensional sl2-modules. For a fixed nonzero

χ ∈ C, denote by Kχ the category of semisimple g-Harish-Chandra s-modules of central

charge χ.

Proposition 59. For each nonero χ, the category Kχ is a simple module category over

the monoidal category F .

Proof. The fact that Kχ is a module category over F follows directly from Proposition

53. Since Kχ is semisimple by definition, to show that it is a simple module category over F ,

it is enough to show that, starting from any simple object of Kχ and tensoring it with finite-

dimensional sl2-modules, we can obtain any other simple object of Kχ as a direct summand,

up to isomorphism. This claim follows by combining Proposition 53 with Theorem 54.

We note that, by Proposition 53, the combinatorics of the F -module category Kχ does

not depend on χ. Furthermore, by comparing Propositions 29 and 53, we see that the

combinatorics of the F -module category Hχ is different from the combinatorics of the

F -module category Kχ.

§6. Some general results on g-Harish-Chandra modules

6.1 A sufficient condition for existence of simple infinite-dimensional

g-Harish-Chandra modules

Recall our general setup from Section 2, where L∼= g� r was arbitrary finite-dimensional

Lie algebra. Assume that a triangular decomposition (1) is fixed. Denote by r0 the zero-

weight space of r. Obviously, we have h̃= h⊕ r0.

To prove the main theorem in this section, we need to use another variant of Enright’s

and Arkhipov’s functors. It will be the same as EA from before, but without taking the

locally finite for the positive root vector. Fix a simple reflection s, and the corresponding

sl2-triple {f,h,e} ⊆ g. For an L-module M, set

Cs(M) := Sf ⊗
U(L)

M,

where, as before, Sf denotes the localized algebra U(L)(f) modulo U(L). This functor

commutes with the forgetful functor that forgets the r-action. Moreover, it preserves g-

central characters.

Remark 60. Note that if we would twist the action on Cs(M) by the inner

automorphism of L that corresponds to the simple reflection s, we would get exactly the

twisting functor Ts(M) from [2], [3]. We conclude that if M is from the category O for g,

then Cs(M) is also from the category O for g, but for another choice of Borel subalgebra.

Theorem 61. Suppose that [L,r]∩ r0 
= 0. Then, there exists an infinite-dimensional

simple g-Harish-Chandra module for L.

Proof. Fix an element c ∈ [L,r]∩ r0. Then, c ∈Nrad(L), so c must annihilate any simple

finite-dimensional L-module.

The idea is to start with the simple quotient of a Verma module for L, which has

finite multiplicities of its g-submodules (but possibly infinite-dimensional), and then use

the functors Cs to obtain an L-module that should have a finite-dimensional g-submodule.

Then, the image of the universal L-module in the constructed module should have only
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finite-dimensional g-submodules with finite multiplicities. The element c will insure infinite-

dimensionality.

Fix an antidominant, regular, and integral λ ∈ h∗, and extend it to λ̃ ∈ h̃∗ such that

λ̃(c) 
= 0. Consider the Verma module Δ(λ̃) as in (2), and its simple quotient L(λ̃).

By considering the h-weight spaces of Δ(λ̃) (Proposition 4), it follows that as a g-module,

L(λ̃) has a g-direct summand Δg(λ) generated by the highest weight vector v ∈ L(λ̃), and

this is the only g-composition factor of L(λ̃) of this g-central character.

From the fact that Δ(λ̃) and L(λ̃) have finite-dimensional weight spaces, it follows that,

when considered as g-modules, they contain any simple g-composition factor with at most

finite multiplicity. Moreover, from this, it follows that their components in any fixed g-

central character lie in the category O for g.

The element c acts on v ∈Δg(λ)⊆ L(λ̃) by the scalar λ̃(c) 
= 0.

Choose a reduced expression w0 = s1s2 . . . sk of the longest element in the Weyl group for

g, and set Cw0 =Cs1 ◦Cs2 ◦· · · ◦Csk .

Consider for a moment Δg(λ) as an L-module, by declaring that r acts trivially on it.

From Remark 60 and [2, Theorem 2.3], it follows that Cw0(Δ
g(λ)) is isomorphic to the dual

dominant g-Verma module for the opposite Borel subalgebra. From this, we can conclude

Cw0(Δ
g(λ)) contains the finite-dimensional g-submodule L(μ), where μ :=w0 ·λ is dominant

and integral. Moreover, by observing what is happening on the sl2-subalgebras of g, one

can conclude that the lowest weight vector in L(μ) is given by

f−1
1 f−1

2 . . .f−1
k v,(28)

where fi is the negative root vector corresponding to si.

It follows that M := Cw0(L(λ̃)) as a g-module has also L(μ) as a g-direct summand.

Moreover, from Remark 60, it follows that L(μ) appears in M precisely once, and that each

simple g-module appears with at most finite multiplicity.

Consider the L-module Q(μ) := IndLg (L(μ))
∼= U(L) ⊗U(g) L(μ). It has only finite-

dimensional g-composition factors, but possibly with infinite multiplicities.

By the universal property of the induction functor, we get a nonzero L-homomorphism

ϕ : Q(μ) → M , hitting the g-submodule L(μ) in M. Denote by N the image of this map.

It follows from the construction N is a g-Harish-Chandra module, generated by its unique

occurrence of the g-type L(μ).

Furthermore, N has a unique simple quotient V, which contains this g-type L(μ). Clearly,

V is a simple g-Harish-Chandra L-module.

But also, V is infinite-dimensional. To see this, it is enough to check that c does not

annihilate the vector (28). Observe that

c ·f−1
1 f−1

2 . . .f−1
k v = λ̃(c) ·f−1

1 f−1
2 . . .f−1

k v+
k∑

i=1

f−1
1 . . . [c,f−1

i ] . . .f−1
k v.

Since [c,f−1
i ] = f−1

i [fi, c]f
−1
i , each summand with [c,f−1

i ] 
= 0 will contain a factor from

Nrad(L). Therefore, these terms cannot cancel with λ̃(c) ·f−1
1 f−1

2 . . .f−1
k v, and so the total

result is nonzero.

We believe that the connection to the highest weight theory could be established in a

more general setup, at least for the Takiff Lie algebras. Using the notation from Section 3,

we formulate:
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Conjecture 62. Let T be a Takiff Lie algebra attached to a semisimple Lie algebra g.

For a generic χ : Z(g)→ C, there is λ ∈ h̄∗ such that EAw0(Δ(−2ρ,λ))∼=Q(0,χ).

Here, ρ is the half-sum of all elements in Δ+(g,h), and EAw0 should be defined as the

composition EAs1 ◦EAs2 ◦· · · ◦EAsk , where w0 = s1s2 . . . sk is a fixed a reduced expression

of the longest element in the Weyl group for g. Each EAs should be defined as in Definition

21, that is, as EAs :=
e(Cs(−)) for the sl2-triple {f,h,e} corresponding to s. It is not a

priori clear that such EAw0 does not depend on the choice of a reduced expression.

Conjecture 62 was already proved for the Takiff sl2 case in Section 4. Analogous statement

is proved also for the Schrödinger Lie algebra in Section 5.

6.2 On classification of simple g-Harish-Chandra modules for generalized

Takiff Lie algebras

In this subsection, we consider a finite-dimensional Lie algebra L with a fixed Levi

decomposition L∼= g� r and assume that:

r is abelian.

It is reasonable to call such algebras generalized Takiff Lie algebras. In analogy to

Section 3.2, we consider the purely radical part Z(L) := Z(L)∩U(r) of the center Z(L)

of U(L). Since r is assumed to be abelian, it is obvious that Z(L) = U(r)g, the g-invariants

in U(r) ∼= Sym(r) with respect to the adjoint action. For brevity, algebra homomorphisms

χ : Z(L)→ C will be loosely called radical central characters.

For λ ∈ h∗ dominant and integral, we have the universal module

Q(λ) := IndLg L(λ) = U(L) ⊗
U(g)

L(λ)∼= U(r)⊗
C

L(λ)∼= Sym(r)⊗
C

L(λ).

Clearly, it is g-locally finite. Completely analogously to Proposition 7, one can show that

EndQ(0)∼= Z(L). Given also a radical central character χ : Z(L)→ C, we define

Q(λ,χ) :=Q(λ)
/
mχQ(λ) ,

where mχ := Kerχ is the maximal ideal in Z(L) corresponding to χ.

From [35, Proposition 6.5], we have Q(λ) ∼= Q(0)⊗ L(λ), and from this and right

exactness of tensor product, we conclude Q(λ,χ)∼=Q(0,χ)⊗L(λ). In these formulas, L(λ)

is considered to be an L-module with the trivial action of r.

By construction, the action of g on Q(0,χ) is locally finite, with the trivial module L(0)

having multiplicity exactly 1 in Q(0,χ). Since Q(0,χ) is generated by this unique copy of

L(0), it follows that Q(0,χ) has a unique simple quotient, which we denote by V (0,χ).

From Theorem 12, we know that Q(0,χ) = V (0,χ) when L is the Takiff sl2 and χ is not

the radical central character of the trivial module, but generally this fails, for example,

when r∼= L(4) as a g-module, as we will see in Section 7.3.

We will use the notion of Gelfand–Kirillov dimension, for the definition and basic

properties (see [13, Subsection 2.3] or [38]). The Gelfand–Kirillov dimension of a finitely

generated module M will be denoted by GK(M) and the Bernstein number by e(M).

Proposition 63. Fix a radical central character χ.

• V (0,χ) is the unique simple L-module having both radical central character χ and the

trivial g-module as one of g-types.
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• If [g,r] = r, then V (0,χ) is either the trivial L-module (precisely when χ is the radical

central character of the trivial L-module), or infinite-dimensional.

• V (0,χ) is a g-Harish-Chandra module.

Proof. The first claim follows from universal property of the induction functor.

For the second claim, recall that [g,r] = NradL is the intersection of all kernels of simple

finite-dimensional L-modules (see Section 2). Therefore, any simple finite-dimensional L-

module necessarily has the same radical central character as the trivial L-module. From the

uniqueness in the first part, it follows that V (0,χ) is either trivial or infinite-dimensional.

It remains to prove that V (0,χ) is a g-Harish-Chandra module. It is g-locally finite by

construction. Assume that [V (0,χ) : L] =∞ for some simple finite-dimensional g-module L.

The module V (0,χ)⊗L∗ is also g-locally finite and finitely generated. By [32, Lemma 8.8],

we have

GK(V (0,χ)⊗L∗) = GK(V (0,χ)) and e(V (0,χ)⊗L∗) = dimL · e(V (0,χ)).(29)

Moreover,

[V (0,χ)⊗L∗ : L(0)] = dimHomg (L(0),V (0,χ)⊗L∗)) =

= dimHomg (L(0)⊗L,V (0,χ)) = [V (0,χ) : L] =∞.

By uniqueness in the first part, it follows that V (0,χ) appears in V (0,χ)⊗L∗ infinitely

many times. This is a contradiction with (29) and [13, Lemma 8].

Remark 64. One can check that Gelfand–Kirillov dimensions of all infinite-dimensional

simple g-Harish-Chandra modules for the Takiff sl2 (Section 4) as well for the Schrödinger

Lie algebra (Section 5) are 2.

Proposition 65. Let χ be a radical central character and L a simple finite-dimensional

g-module. Then, L has a simple g-Harish-Chandra module with the radical central character

χ and having L as one of g-types.

Moreover, the number of (isomorphism classes of) simple g-Harish-Chandra modules with

the radical central character χ and having L as one of its g-types is at most∑
M

lLM,L[V (0,χ) :M ]<∞,(30)

where M runs through the set of isomorphism classes of simple finite-dimensional g-modules

and lLM,L is the Littlewood–Richardson coefficient, that is, the multiplicity of L in M ⊗L.

We note that only finitely many summands in (30) are nonzero, as lVM,V 
= 0 if and only

if M appears as a summand of V ⊗V ∗.

Proof. Since we know from Proposition 63 that V (0,χ) is a g-Harish-Chandra module

having L(0) as a g-type, it follows that L⊗V (0,χ) is also a g-Harish-Chandra module,

having L as one of g-types. This implies the first part of the proposition.

Conversely, let N be a simple g-Harish-Chandra module with the radical central character

χ and having L as one of g-types. Then, L∗⊗N is a g-Harish-Chandra module with the

radical central character χ and having L(0) as one of g-types, and therefore contains V (0,χ)

as a subquotient.

The above arguments, combined with the biadjunction (L⊗−,L∗⊗−), imply that any

simple g-Harish-Chandra module with the radical central character χ and having L as one
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of g-types is a subquotient of L⊗V (0,χ). The latter is a g-Harish-Chandra module in which

the multiplicity of L is bounded by the expression in (30) (see the proof of Proposition 8).

This implies the second part of the proposition.

§7. On sl2-Harish-Chandra modules for other conformal Galilei algebras

7.1 Conformal Galilei algebras

By a conformal Galilei algebra, we mean a semidirect product Ln := sl2�L(n), where

n ∈ Z≥0. Here, L(n) is an abelian ideal on which g := sl2 acts in the obvious way. For a

more general definition and various central extensions, see [1], [26], [40].

Note that we have L0 ∼= gl2, L
1 is the centerless Schrödinger Lie algebra, and L2 is the

Takiff sl2.

We have Nrad(Ln) = r= L(n), and so [Ln,r]∩ r0
∼= C if and only if n is even (i.e., L(n)

is odd-dimensional), otherwise [Ln,r]∩ r0 = 0.

Denote by vn,vn−2, . . . ,v−n a basis of L(n) such that each vi is a weight vector of weight

i, and [e,vn−2i] = (n− i+1)vn−2i+2, for i ∈ {1,2, . . . ,n}.

7.2 The Lie algebra L3 = sl2�L(3)

Since r=L(3) has trivial zero-weight space, the assumption in Theorem 61 is not satisfied.

Nevertheless, we will show that simple infinite-dimensional g-Harish-Chandra modules exist.

So, the converse of Theorem 61 is not true. This suggest that the highest weight theory is

not enough to obtain and classify g-Harish-Chandra modules for any Lie algebra.

From the classical invariant theory, it is well known that Sym(r)g is generated by only

one element C, homogeneous of degree 4, the so-called cubic discriminant (see, e.g., [29,

Lecture XVII]):

C = v2−1v
2
1 −27v2−3v

2
3 −4v3−1v3−4v−1v

3
3 +18v−3v−1v1v3.

This expression of C is just for the record; we will not use it in the computations. We

identify radical central characters with their value on C.

For χ ∈ C, we have the universal L3-module Q(0,χ) =Q(0)
/
(C−χ) .

Proposition 66. For χ 
=0, the module Q(0,χ) is g-Harish-Chandra. The multiplicities

of its g-types are given by [Q(0,χ) : L(k)] = k−2
⌊
k+2
3

⌋
+1.

Proof. From the main result of [23], it follows easily that Sym(r) is free as a module

over Sym(r)g = C[C]. This implies that the g-structure of Q(0,χ) does not depend on the

choice of χ. So, in particular, it is enough to prove the multiplicity statement for Q(0,0),

which is as a g-module isomorphic to Sym(r)
/
C ·Sym(r) .

But these are now graded modules, so we can subtract their graded characters. More

precisely, for d≥ 4 and k ≥ 0, we have

[Q(0,0)d : L(k)] = [Symd(r) : L(k)]− [Symd−4(r) : L(k)],(31)

where (−)d denotes the homogeneous part of degree d.

Using [27], one can calculate the right-hand side of (31). For nonnegative integers a,b,c,

let p(a,b,c) denote the number of partitions of c into at most b parts, and each part bounded

above by a. Denote N(a,b,c) := p(a,b,c)− p(a,b,c− 1) if c ≥ 1, and set N(a,b,0) := 1. By
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[27, Theorem 3.1], the multiplicity (31) is equal to 0 if k 
∈ {3d,3d−2,3d−4, . . .}, and to

N

(
d,3,

3d−k

2

)
−N

(
d−4,3,

3d−k

2
−6

)
(32)

otherwise. But the latter is also equal to 0 whenever k < d− 4, by using the formulas in

[27, Corollary 3.2]. It follows that any L(k) can appear in Q(0,0) in at most degree k+4,

hence only finitely many times.

Note that [Q(0,0) : L(k)] is equal to the sum of the expressions (32), where d ranges

from 0 to k+4. Now, using the same formulas in [27, Corollary 3.2], one can derive the

multiplicity formula from the statement of the proposition. We omit the details.

Either from Proposition 63, or from Proposition 66, we have:

Corollary 67. The unique simple quotient V (0,χ) of Q(0,χ) is g-Harish-Chandra. It

is infinite-dimensional if χ 
= 0.

We do not know whether Q(0,χ) = V (0,χ), that is, whether Q(0,χ) is already simple

(for χ 
= 0), as was in the Takiff sl2 and the Schrödinger cases.

7.3 The Lie algebra L4 = sl2�L(4)

Consider now the algebra L4. In this subsection, we classify simple g-Harish-Chandra

modules for L4 which appear in Enright–Arkhipov completions of simple highest weight

modules.

The algebra Sym(r)g is generated by two algebraically independent elements, homoge-

neous of degrees 2 and 3 (see, e.g., [29, Lecture XVIII]):

C2 = v20 −3v−2v2+12v−4v4,

C3 = v30 −
9

2
v−2v0v2+

27

2
v2−2v4+

27

2
v−4v

2
2 −36v−4v0v4.

Recall also, from [40, Theorem 4], the structure of simple highest weight L4-modules. Let

h̃ denote the (generalized) Cartan subalgebra of L4 spanned by h and v0. If λ ∈ h̃∗ is such

that λ(v0) = 0, then r annihilates the corresponding simple highest weight module L(λ).

If λ ∈ h̃∗ is such that λ(v0) 
= 0, then the restriction of L(λ) to g has a multiplicity free

Verma filtration with subquotients of the form Δg(λ−nα), where n ∈ Z≥0 and α is the

root corresponding to e ∈ g. Note that the elements C2 and C3 act on L(λ) as the scalars

λ(v0)
2 and λ(v0)

3, respectively.

Denote by F the semisimple additive category generated by simple subquotients of

Enright–Arkhipov completions of simple highest weight L4-modules. Note that all modules

in F are g-Harish-Chandra modules for L4. Our main result of this subsection is the

following theorem.

Theorem 68.

(a) For each λ̃∈C\{0} and for each i∈Z>0, there is a unique, up to isomorphism, simple

object V (i, λ̃) in F on which Cj, where j = 2,3, acts via λ̃j and which has g-types L(i),

L(i+2), L(i+4), . . . , all multiplicity free.

(b) For each λ̃ ∈C\{0}, there is a unique, up to isomorphism, simple object V ′(0, λ̃) in F
on which Cj, where j = 2,3, acts via λ̃j and which has g-types L(0), L(4), L(8), . . . , all

multiplicity free.
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(c) For each λ̃ ∈C\{0}, there is a unique, up to isomorphism, simple object V ′(2, λ̃) in F
on which Cj, where j = 2,3, acts via λ̃j and which has g-types L(2), L(6), L(10), . . . ,

all multiplicity free.

(d) The modules above provide a complete and irredundant list of representatives of

isomorphism classes of simple objects in F .

(e) Let V be a simple g-Harish-Chandra module on which Cj, where j = 2,3, acts via λ̃j,

for some λ̃ ∈ C\{0}. Then, V belongs to F .

To prove this result, we will need some preparation. The following lemma extends [27,

Corollary 3.5] (note that the case treated in the lemma below is referred to as complicated

in [27]).

Lemma 69. For every nonnegative integer k, we have

� 2k−1
4 	∑

s=0

(⌊
2k−4s−1

2

⌋
−
⌊
2k−4s−2

3

⌋)
−

k−2∑
s=0

(⌊s
2

⌋
−
⌊
s−1

3

⌋)
= 0.

Proof. Using computer, it is easy to check that the claim of the lemma is true for

small values of k (we checked this independently and by different methods using Scilab and

SageMath up to k = 200). After that, one can do induction on k with induction step 12.

So, we write k = 12a+r and consider each r separately. Let S(k) denote the left-hand side

of the formula. For k > 12, the value S(k)−S(k−12) can be written as a polynomial in a

(the polynomial itself depends on r) of degree at most 2.

From the original computation, it follows that S(k)−S(k−12) vanishes for enough values

of a to conclude that S(k)−S(k−12) is identically 0. The claim follows.

Remark 70. The results of [27] say that Lemma 69 is equivalent to the fact that,

for each k ≥ 0, the set Λ1 of all vectors (a,b,c,d,e) with nonnegative integer coefficients

satisfying a+b+c+d+e= k and 2a+b−d−2e= 1 has the same cardinality as the set Λ2

of all vectors (a,b,c,d,e) with nonnegative integer coefficients satisfying a+b+c+d+e= k

and 2a+ b−d− 2e = 2. We give here explicitly a bijection between these sets. First, note

that {(a,b,c,d,e) ∈ Λ1 : e 
= 0} maps bijectively to {(a′, b′, c′,d′, e′) ∈ Λ2 : d
′ 
= 0} by

(a,b,c,d,e) �→ (a,b,c,d+1, e−1).

The remainder {(a,b,c,d,0) ∈ Λ1} maps bijectively to {(a′, b′, c′,0, e′) ∈ Λ2} by the formula

(a,b,c,d,0) �→ (b,2a,c,0,d−a).

Lemma 71. Let V be a simple infinite-dimensional g-Harish-Chandra module for L4.

Then, each vi acts injectively on V.

Proof. Since the adjoint action of vi on L4 is locally nilpotent, the action of vi on each

simple L4-module is either injective or locally nilpotent (cf. [16, Section 3]). Note that the

action of both e and f on V is locally nilpotent by definition. Let x ∈ V be such that

vi ·x = 0, for some i 
= 4, and em · v = 0. Then, adm(vi)(e
m) ·x = 0, and it is easy to check

that this implies that vmi+2 ·x= 0. That is, the action of vi+2 is locally nilpotent. Applying

similar arguments using e and f, we get that the action of all vj ’s is locally nilpotent.

As all vj ’s commute, V must contain some nonzero x which is killed by all the vj ’s.

Since the adjoint action of e preserves the set of the vj ’s, we can even assume that e kills
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x. But then, this means that V is a highest weight module. Being also a g-Harish-Chandra

module, this implies that V must be finite-dimensional, a contradiction.

For χ2,χ3 ∈ C, we recall the universal L4-module

Q(0,χ2,χ3) =Q(0)
/
(C2−χ2,C3−χ3) ,

and its unique simple quotient V (0,χ2,χ3) containing L(0).

Proposition 72. Fix λ̃ ∈ C \ {0}. The module V (0, λ̃2, λ̃3) is a simple infinite-

dimensional g-Harish-Chandra module. Its g-types are L(0),L(4),L(8) . . ., each occurring

with multiplicity 1.

Proof. By [27, Theorem 3.1 and Corollary 3.4], the multiplicity of L(2) in Q(0) is given

by the left-hand side of the formula from Lemma 69. Therefore, by Lemma 69, L(2) does

not appear in Q(0).

Now, take λ such that λ(h) =−2 and λ(v0) = λ̃. Then, EA(L(λ)) is a g-Harish-Chandra

module having multiplicity-free g-types L(0), L(2), L(4), . . . . As v4 commutes with e, from

Lemma 71, it follows that v4 sends each nonzero highest weight vector of L(i) inside

EA(L(λ)) to a nonzero highest weight vector of L(i+4) inside EA(L(λ)). Note that all

simple subquotients of EA(L(λ)) must be infinite-dimensional as the central characters

of EA(L(λ)) is different, by construction, from the central characters of simple finite-

dimensional L4-modules.

By the universal property of Q(0), the inclusion of L(0) in EA(L(λ)) gives rise to a

nonzero homomorphism from Q(0) to EA(L(λ)). The image V of this homomorphism does

not contain L(2), as was established in the first paragraph of the proof. Therefore, from

Lemma 71, it follows that V has g-types L(0), L(4), L(8), . . . , and the quotient EA(L(λ))/V

has g-types L(2), L(6), L(10), . . . . In fact, from Lemma 71 and the above remark that all

simple subquotients of EA(L(λ)) must be infinite-dimensional, it follows that both V and

EA(L(λ))/V are simple modules.

This implies that V ∼= V (0, λ̃2, λ̃3), and the claim of the lemma follows.

Lemma 73. If λ(v0) 
= 0, then, in the category of h-weight L4-modules, we have the

vanishing Ext1(L(λ−α),L(λ)) = 0.

Proof. Let L(λ) ↪→M �L(λ−α) be a short exact sequence in the category of h-weight

L4-modules. Consider the vector space X :=Mλ⊕Mλ−α, and note that it is killed by v4.

Therefore, this vector space is a module over the polynomial algebra A in e and v2. The

space of first self-extensions for each simple A-module is two-dimensional. Since L(λ) is

simple, the submodule Y := L(λ)λ⊕L(λ)λ−α of X is indecomposable. Since L(λ)λ−α has

dimension 2, Y is the universal self-extension of the trivial A-module. This implies that,

in the category of A-modules, the first extension from L(λ−α)λ−α to Y coming from the

socle of Y vanishes. Consequently, M must have a nonzero vector of weight λ−α which is

killed by both e and v2. As the adjoint action of v0 leaves the span of e and v2 invariant,

it follows that M contains a highest weight vector of weight λ−α. Consequently, M splits,

proving the claim.

Now, we are ready to prove Theorem 68.

Proof of Theorem 68. We take λ such that λ(h) =−2 and λ(v0) = λ̃.
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The L4-module V ′(0, λ̃) := V (0, λ̃2, λ̃3) and the module V ′(2, λ̃) :=EA(L(λ))/V (cf. the

proof of Proposition 72) are already constructed. Note that the proof of Proposition 72

implies

Ext1(V ′(0, λ̃),V ′(2, λ̃)) = 0

in the category of g-Harish-Chandra modules. As usual, on the category of g-Harish-

Chandra modules, we have the restricted duality, which we denote by �. This duality maps⊕
iL(i)

⊕mi to
⊕

i(L(i)
∗)⊕mi . The fact that V ′(0, λ̃) is self-dual follows directly from its

uniqueness given by construction. Applying �, we obtain

Ext1(V ′(2, λ̃)�,V ′(0, λ̃)) = 0,

where the modules V ′(2, λ̃) and V ′(2, λ̃)� have the same g-types. If we assume that V ′(2, λ̃) 
∼=
V ′(2, λ̃)�, then, from Proposition 65, it follows that these are the only simple g-Harish-

Chandra modules having L(2) as a g-type.

Consider now the module L(2)⊗V ′(0, λ̃). By adjunction, this must have both V ′(2, λ̃) and

V ′(2, λ̃)� as simple subquotients, both with multiplicity 1. The remaining g-types are L(4),

L(8), L(10). . . . . If V is a subquotient of L(2)⊗V ′(0, λ̃) whose g-types form a subset of these

remaining g-types, then V, by adjunction, cannot be in the top or socle of L(2)⊗V ′(0, λ̃)

as L(2)⊗V does not have L(0) as a simple subquotient. This implies that L(2)⊗V ′(0, λ̃)

must have socle V ′(2, λ̃) and top V ′(2, λ̃)� or vice versa. However, since both V ′(0, λ̃) and

L(2) are self-dual, so is L(2)⊗V ′(0, λ̃), a contradiction. Therefore, V ′(2, λ̃)∼= V ′(2, λ̃)�, and

thus

EA(L(λ))∼= V ′(0, λ̃)⊕V ′(2, λ̃).(33)

Consider now the module L(1)⊗V ′(0, λ̃). It has g-types L(1), L(3), L(5), . . . , all with

multiplicity 1. We claim that L(1)⊗V ′(0, λ̃) is a simple g-module which we can declare to be

V (1, λ̃). Assume that L(1)⊗V ′(0, λ̃) is not simple, and let V be a submodule or a quotient

of L(1)⊗ V ′(0, λ̃) which does not have L(1) as its g-type. Using the self-adjointness of

L(1)⊗−, by adjunction, we have a nonzero homomorphism between V ′(0, λ̃) and L(1)⊗V .

However, the latter is not possible as L(0) is not a g-type of L(1)⊗V due to our definition

of V. This shows that L(1)⊗V ′(0, λ̃) is simple.

From Lemma 73, it follows that L(1)⊗L(λ)∼= L(λ− 1
2α)⊕L(λ+ 1

2α). As EA commutes

with L(1)⊗−, it follows that

L(1)⊗EA(L(λ))∼=EA(L(λ− 1

2
α))⊕EA(L(λ+

1

2
α)).

By comparing the g-types, we see that

EA(L(λ− 1

2
α))∼= V (1, λ̃) or EA(L(λ+

1

2
α))∼= V (1, λ̃).

Consider the first case, the second one is similar. By adjunction, we have

Hom(V (1, λ̃),L(1)⊗EA(L(λ)))∼=Hom(L(1)⊗V (1, λ̃),EA(L(λ))).

By the above, L(1)⊗V (1, λ̃) has EA(L(λ)) as a direct summand, and the endomorphism

of EA(L(λ)) has dimension 2. Consequently, Hom(V (1, λ̃),L(λ+ 1
2α)) must be nonzero,
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which implies

EA(L(λ+
1

2
α))∼= V (1, λ̃)

by comparing the g-types of these modules.

Using, inductively, arguments similar to the ones used above, we construct modules

V (i, λ̃)∼=EA(L(λ+
i

2
α)),

for i > 1. The proof of Theorem 68 is now completed easily using construction and

adjunction.

Remark 74 (Sketch of an alternative proof of the splitting (33)). Denote by b the

span of h and e, and consider the polynomials C[x] as (b�L(4))-module by declaring:

h ·xk = (−2−2k)xk, e acts as ∂
∂x , v4 and v2 annihilate everything, v0 multiplies by 3λ̃, v−2

multiplies by 6λ̃x, and v−2 multiplies by 3λ̃x2 (this is known as the Fock module). From [40,

Theorem 4(ii)], it follows that L(λ)∼= IndL
4

b�L(4)C[x] (recall that λ(h) =−2 and λ(v0) = λ̃).

From this, we have that EA(L(λ)) has g-types L(0),L(2),L(4), . . . , and the lowest weight

vector in each L(2k) is f−1⊗xk. By a long and tedious, but straightforward computation,

one can see that

v4f
−1⊗xk =

3λ̃

4(k+1)(k+2)(2k+1)(2k+3)
· e4f−1⊗xk+2

− 3λ̃

2(2k+3)(2k−1)
· e2f−1⊗xk

+
3λ̃k(k−1)

4(2k+1)(2k−1)
·f−1⊗xk−2.

From this formula, it follows easily that L4 maps L(k) to L(k+4)⊕L(k)⊕L(k−4) if k≥ 2,

and to L(k+2)⊕L(k), for k= 0,1, with nonzero projections to each summand. This proves

the claim.

Remark 75. From the proof of Theorem 68, the combinatorics of tensoring with L(1)

can be recorded as follows:

L(1)⊗V ′(0, λ̃) ∼= V (1, λ̃);

L(1)⊗V ′(2, λ̃) ∼= V (1, λ̃);

L(1)⊗V (1, λ̃) ∼= V ′(0, λ̃)⊕V ′(2, λ̃)⊕V (2, λ̃);

L(1)⊗V (i, λ̃) ∼= V (i−1, λ̃)⊕V (i+1, λ̃), i > 1.

In particular, the additive closure of V ′(0, λ̃), V ′(2, λ̃), and all V (i, λ̃) forms a simple F -

module category (cf. Propositions 39 and 59). From the above formulae, we see that the

combinatorics of this F -module category is different from the combinatorics of the F -

module categories described in Propositions 39 and 59.

We note that there might exist, potentially, other simple g-Harish-Chandra modules for

L4 which correspond to characters of Sym(r)g that do not occur in simple highest weight

modules. The problem here seems to be the absence, in case of L4, of an analogue of the

classical theorem by Harish-Chandra that, in case of reductive Lie algebras, any central

character is realizable on some highest weight module.
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7.4 Some speculations in case of the Lie algebras Ln = sl2�L(n) with n

even

For an even nonnegative integer n, consider the Lie algebra Ln = sl2 � L(n). The

algebra L0 is reductive, and hence all its sl2-Harish-Chandra modules are finite-dimensional.

Classification of all sl2-Harish-Chandra modules for the Takiff Lie algebra L2 is given

in Section 4. Note that all simple sl2-Harish-Chandra modules for L2 are connected to

highest weight L2-modules. For the Lie algebra L4, all sl2-Harish-Chandra modules that are

connected to highest weight L4-modules are classified in the previous subsection. Potentially,

these are not all sl2-Harish-Chandra modules for L4. As we see, the level of difficulty of the

problem increases drastically with n.

The highest weight theory for Ln is described in [40, Theorem 4]. As vector space, simple

highest weight Ln-modules look the same, independently of n. Therefore, we expect that the

problem of classification of simple sl2-Harish-Chandra modules for Ln that are connected

to highest weight Ln-modules via Enright–Arkhipov functor should be solvable. One of the

crucial missing ingredients, at the moment, seems to be an analogue of [27, Corollary 3.4]

for general n (i.e., for general k in the notation of [27]).

Of special interest is the question of what kind of a monoidal representation of the

monoidal category of finite-dimensional sl2-modules do the Ln-modules from the previous

paragraph form.
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[43] V. Mazorchuk and C. Söderberg, Category Ofor Takiff sl2, J. Math. Phys. 60 (2019), 111702.
[44] V. Mazorchuk and C. Stroppel, On functors associated to a simple root, J. Algebra 314 (2007), 97–128.
[45] A. Molev, “Casimir elements for certain polynomial current lie algebras”, in Group 21: Physical

Applications and Mathematical Aspects of Geometry, Groups, and Algebras (ed. H.-D. Doebner, P.
Nattermann, and W. Scherer), World Scientific, Singapore, 1997, 172–176.

[46] M. Perroud, Projective representations of the Schrödinger group, Helv. Phys. Acta 50 (1977), 233–252.

https://doi.org/10.1017/nmj.2021.8 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2021.8


470 V. MAZORCHUK AND R. MRÐEN

[47] C. N. Pope, L. J. Romans, and X. Shen, W∞ and the Racah–Wigner algebra, Nuclear Phys. B 339
(1990), 191–221.

[48] S. J. Takiff, Rings of invariant polynomials for a class of Lie algebras, Trans. Amer. Math. Soc. 160
(1971), 249–262.

[49] D.-N. Verma, Structure of certain induced representations of complex semisimple Lie algebras, Bull.
Amer. Math. Soc. 74 (1968), 160–166.

[50] D. A. Vogan, Representations of Real Reductive Lie Groups, Progr. Math. 15, Birkhäuser, Boston, MA,
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