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SUMMARY
In this paper, we propose a decentralized robust control
algorithm for modular and reconfigurable robots (MRRs)
based on Lyapunov’s stability analysis and backstepping
techniques. In using decentralized control schemes with ro-
bot manipulators, each joint is considered as an independent
subsystem, and the dynamical effects from the other links and
joints are treated as disturbance. However, there exist many
uncertainties due to unmodeled dynamics, varying payloads,
harmonic drive (HD) compliance, HD complex gear meshing
mechanisms, etc. Also, while the reconfigurability of MRRs
is advantageous, modifying the configuration will result
in changes to the robot dynamics parameters, thereby
making it challenging to tune the control system. All of the
above mentioned disturbances in addition to reconfigurability
present a challenge in controlling MRRs. The proposed
controller is well suited for MRR applications because of its
simple structure that does not require the exact knowledge
of the dynamic parameters of the configurations. Desired
tracking performance can be achieved via tuning a limited
set of parameters of the robust controller. If the numbers of
degrees of freedom are held constant, these parameters are
shown to be relatively independent of the configuration, and
can be held constant between changes in configuration. This
strategy is novel compared to existing MRR control methods.
In order to validate the controller performance, experimental
setup and results are also presented.

KEYWORDS: Modular and reconfigurable robot; Robust;
Decentralized; Lyapunov; Backstepping.

1. Introduction
Robot manipulators have served the manufacturing industry
for many years. But due to the fast growth of the economy,
the conventional fixed-anatomy robots will not satisfy the
requirements of a transition from mass to customer-oriented
production. To respond to rapid changes of product design,
manufacturers need a more flexible fabrication system. A
commonly used method is to use programmable robots
that are expensive, and limited by hardware constraints. In
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recent years, modular and reconfigurable robots (MRRs)1,2

were proposed to fulfill the requirements for the flexible
production system. The majority of the associated research
is geared towards self-reconfigurable robots.3,4 At present,
the application of reconfigurable robots in manufacturing
is quite limited. However, recent technology and research
advances are very promising. As an extension of the concept
of a modular robot system, the MRR system is referred to
the entire manipulator system that includes not only the
modular mechanical hardware, but also modular electrical
hardware, control algorithms, and software.2 In ref. [5], an
MRR system is defined as a collection of individual link and
joint components that can be easily assembled into a variety
of configurations and different geometries. In ref. [6], the
author states that in the near future the MRR system will
mostly replace current fixed configuration industrial robots.

Except for reconfigurability requirements, lighter
manipulators that can handle heavier payloads have brought
more attention to both robot designers and industrial
manufacturers. To achieve this, harmonic drives (HDs)
have been widely used in robotic system design due
to their compact size, zero back-lash, light weight, and
high torque transmission.1,2,7 Unfortunately they exhibit
drawbacks including the flexspline elasticity, and complex
meshing mechanisms between the flexspline and circular
spline. MRRs with HDs have more uncertainties in the
mechanical system. Therefore, to control such a system is
more challenging. The selection of the control law not only
depends on the robot mechanical design, i.e., rotary joint
robot and Cartesian manipulator, but also relies on the model
used. Based on the assumption made on the manipulator’s
joints, links, and control signal, six manipulator models are
commonly encountered in the literature: (1) torque level
rigid link rigid joint (TLRLRJ)8–10; (2) electrically driven
rigid link rigid joint (EDRLRJ)11; (3) torque level rigid link
flexible joint (TLRLFJ)12–14; (4) electrically driven rigid
link flexible joint (EDRLFJ)15; and (5) flexible manipulator
(FM).16 A considerable number of control techniques and
methodologies have been created and applied to the control
of manipulators. In this paper, the controller development for
MRR systems is based on TLRLFJ.

Joint flexibility is a major source of oscillatory behavior
of the manipulator, and considerably affects robot’s
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performance. A widely acceptable TLRLFJ model was
introduced in ref. [17], where the robot was modeled as two
second-order differential equations under the assumptions:
(1) the joints are purely rotary; and (2) the rotor/gear inertia
is symmetric about the rotation axis. This dynamic model was
shown to be globally linearizable and a nonlinear control was
provided based on a singular perturbation formulation of the
equations of motion and the concept of integral manifold, but
the author did not prove the stability of the system. Based
on the same theories, a composite control algorithm with
detailed stability analysis was proposed in ref. [14], which
consists of a fast control and a slow control. In ref. [18], a
fuzzy supervisor was added to decrease the fast controller
bandwidth at critical occasions, i.e., near saturation point
which could cause instability.

Robust control is a commonly used strategy to control
complex systems, especially for robot manipulators.
Reference [19] presents a summary of robust control
method before 1997 in the categories of linear, passivity-
based, Lyapunov-based, sliding mode, nonlinear and robust
adaptive control schemes. Reference [20] provides detailed
design procedure of centralized Lyapunov-based robust
control for an n-DOF (degree of freedom) manipulator
under joint flexibility. Reference [21] standardizes some
robust controller, such as saturation type controller and
passivity controller. For decoupled joint controller, each
joint is considered as a single input single output (SISO)
subsystem. A general form of decentralized sliding mode
robust control law is proposed in ref. [23] for any mechanical
system described by Euler–Lagrange equation and involving
high-order interconnections. In ref. [24], another simple
decentralized nonlinear control algorithm was developed.
This controller had three integral terms in the tracking error,
and a systematic method for controller parameters selection
is also provided. But those controllers23,24 were designed
for TLRLRJ. In ref. [22], a linear PD/PID compensator
has been designed by considering actuator saturation
and transmission flexibility. Other controllers, such as
PD/PID with gravitational compensation and intelligent
fuzzy controller, can be found in refs. [25–29].

To the best of our knowledge, there exists very
limited research dedicated to control of MRRs. This is
most likely because a new configuration of the robot
results in a new set of robot dynamic parameters. In
ref. [30], an MRR control approach is proposed that
focuses on the “high-level” analysis of the feasibility of
a decentralized strategy that handles serial arms as a
group of 1-DOF defective joints. Unlike the approach
in ref. [30], this paper presents a decentralized robust
controller for MRRs with HD that uses Lyapunov-
based method and backstepping techniques. Furthermore,
unlike the control software presented in ref. [31] which
requires configuration dependent parameters, our proposed
controller is configuration independent. Therefore, the
proposed controller will enable fast reconfigurability of the
manipulator as well as the control strategy to achieve precise
position tracking in the task space of the manipulator.

The organization of the paper is as follows: Section 2
introduces the dynamic model. Section 3 describes the
controller design. Section 4 provides the experiments

setup and results. The conclusions are documented in
Section 5.

2. MRR Single Joint Model
A commonly used model for an n-DOF of TLRLFJ model is
introduced in ref. [17] in the form of:

D(q1)q̈1 + C(q1, q̇1) + k(q1 − q2) = 0 (1)

J q̈2 − k(q1 − q2) = u (2)

where, D(q1) is an n × n symmetric, positive definite inertial
matrix. The vector C(q1, q̇1) contains coriolis, centripetal,
frictional, and gravitational forces and torques. k and J are
the n × n diagonal stiffness coefficients and motor inertial
matrix, respectively. For the development of the decentralized
control scheme, most papers12,25 are based on the above two
equations and consider the inertial coupling term, the coriolis,
centrifugal, friction, and gravity terms in (1), as a disturbance
torque. In this paper, a decentralized controller is designed
based on single joint dynamics including friction, gravity,
and compliance.

A single joint with HD can be modeled as a mass-spring
system with three subsystems: (1) motor and wave-generator
(input) subsystem; (2) flexspline (transmission) subsystem;
and (3) link and load (output) subsystem.

By applying Euler–Lagrange theorem, three equations can
be derived for each subsystem (see Appendix):

Jmwq̈2 + Fmdq̇2 + Fms sign(q̇2) + Nτf = τ (3)

Ks1(Nq2 − q1) +Ks2(Nq2 − q1)3 = τf (4)

Jlq̈1 + mgl sign(q̇1) + (Fld q̇1 + Fls sign(q̇1)) + τd − τf = 0.

(5)

In this model, the HD flexspline compliance is modeled as a
nonlinear cubic function32,33 as shown in (4). Substituting (4)
into (3) and (5) yields two equations representing the single
joint dynamics

τ = Jmwq̈2 + Fmdq̇2 + Fms sign(q̇2)

+ NKs1(Nq2 − q1) + NKs2(Nq2 − q1)3 (6)

0 = Jlq̈1 + mgl sin(q1) + Fld q̇1 + Fls sign(q̇1)

− Ks1(Nq2 − q1) − Ks2(Nq2 − q1)3 + τd. (7)

Notations used in (6) and (7) are as follows:

Jmw – motor rotor and HD wave-generator inertial
Fmd, Fms – input dynamic and static friction coefficients
Ks1, Ks2 – flexspline stiffness coefficients
q2, q̇2, q̈2 – motor position, velocity, and acceleration

N – HD gear reduction ratio
τ – motor input torque
Jl – output side inertia (link and load)
m – link mass
l – link length

Fld, Fls – output side dynamic and static friction
coefficients
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Fig. 1. System block diagram.

q1, q̇1, q̈1 – link position, velocity, and acceleration
τd – disturbance torque

3. Controller Design
We can use two cascaded subsystems representing motor
dynamics (6) and robot dynamics (7), respectively, as shown
in Fig. 1. The first subsystem of motor dynamics has the
input τ , the motor control torque, and outputs, q2, q̇2, and
q̈2, the motor states. The motor position q2 is considered as
the input to the second subsystem of robot dynamics which
outputs q1, q̇1, and q̈1, the link states. The robot control
signal q2 is not the control signal that is sent to the system.
In this situation, the backstepping34 method is to be used,
and the robot input signal q2 is called the fictitious control
signal.20 The motor or system input signal τ is called the
system control signal. In order to design the system control
signal τ , the fictitious control signal needs to be selected first
then stepped back to the system control signal. Both fictitious
control and system control signal are designed based on the
Lyapunov direct method. The proposed control law consists
of two terms: (1) a linear PD control, and (2) a nonlinear term
to compensate for disturbances to the system.

To develop the controller, we introduce the following
preliminary definitions20 made on parameters in Eqs. (6) and
(7).

Inertia : 0 < J < J̃ (8)

Friction : ‖Fs(q̇) + Fdq̇‖ ≤ F1 + F2‖q̇‖ (9)

Flexibility : 0 < Ki < K̃i (10)

Disturbance : 0 < ‖τ‖ < τ̃ (11)

where J̃ and K̃i present the largest motor/link inertia and the
largest stiffness coefficients of the MRR, respectively, and τ̃

is the maximum disturbance.

3.1. Fictitious control law selection
Suppose that the manipulator joint is required to track
a desired joint angle qd

1 which has at least third-order
differentiability so that the desired velocity q̇d

1 and desired
acceleration q̈d

1 exist and can be derived from the derivative
of qd

1 . The link error dynamics are calculated by adding Jlq̈
d
1

on both sides of (7), and after some manipulation, the link
error dynamics can be formed as

ë1 = q̈d
1 + (J1)−1[Fld q̇1 + Flssign(q̇1) + mgl sin(q1)

+ Ks1q1 − Ks2(Nq2 − q1)3 + τd − Ks1Nq2] (12)

Let

f (q̇1, q1, q2) =Fld q̇1 + Flssign(q̇1) + mgl sin(q1) + Ks1q1

− Ks2(Nq2 − q1)3 + τd . (13)

So Eq. (12) can be simplified as

ë1 = q̈d
1 + (J1)−1[f (q̇1, q1, q2) − Ks1Nq2]. (14)

The function f (q̇1, q1, q2) includes all the uncertainties of the
link dynamics, i.e., friction, stiffness, and load disturbance.
Based on assumptions made in Eqs. (9)–(11), the bounded
uncertainty can be calculated

f (q̇1, q1, q2) = Flssign(q̇1) + mgl sin(q1) + τd + Ks1q1

+ Fld q̇1 − Ks2(Nq2 − q1)3

≤ Fls + mgl + τd + Ks1q1 + Fld q̇1

− Ks2(Nq2 − q1)3

= K10 + K11q1 + K12q̇1 − K13(Nq2 − q1)3

≡ �f (15)

‖�f ‖ ≤ K10 + K11‖q1‖ + K12‖q̇1‖
+ K13‖(Nq2 − q1)3‖ ≡ ρ. (16)

The fictitious control signal q2 in (14) can be chosen in the
following form20:

q2 = Jl

Ks1N

(
q̈d

1 + K1e1 + K2ė1
) + 1

Ks1N
ur (17)

where Ks1 �= 0, K1 > 0, and K2 > 0 are linear PD control
gains, and ur is an additional term designed to compensate
the nonlinear uncertainties. Substitute (17) into (14), and the
closed-loop link error dynamics are

ë1 = −K1e1 − K2ė1 + (J1)−1(f (q̇1, q1, q2) − ur ). (18)

To find the nonlinear term ur , the following Lyapunov
function candidate is considered20

V̇ ′
1 = 1

2
K1e

2
1 + 1

2
ė2

1. (19)

Clearly, it is positive definite, and K1 is the same PD control
gain as shown in (17). Take the derivative on both sides and
substitute (18) into it, we can have

V̇ ′
1 = K1e1ė1 + ė1ë1

= K1e1ė1 + ė1(−K1e1 − K2ė1 + (J1)−1(f − ur ))

= −K2 ‖ė1‖2 + (J1)−1ė1(f − ur )

≤ −K2 ‖ė1‖2 + (J1)−1ė1(�f − ur ). (20)
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If we select ur = �f , then V̇ ′
1 ≤ 0 is guaranteed.

Therefore, the fictitious control law is

q2 = Jl

Ks1N

(
q̈d

1 + K1e1 + K2ė1
) + 1

Ks1N
�f ≡ φ. (21)

Equation (21) represents the fictitious control law, which
is a saturation type control21 because the nonlinear term �f

is bounded.

3.2. Backstepping
The fictitious control law has been selected, but it needs to be
backstepped to the side of the motor dynamics subsystem. To
do so, we can add and subtract (Jl)−1Ks1Nφ to the right-hand
side of (14), where φ denotes the fictitious control variable

ë1 = q̈d
1 + (J1)−1(f − Ks1Nφ) − (J1)−1Ks1N(q2 − φ).

(22)

Equations (22) and (6) form the new dynamics of the single
joint. If q2 − φ = 0, then Eq. (22) is stable since φ is a
robust controller, as shown above. Therefore, our goal is to
design robust control law τ in Eq. (6) such that q2 − φ either
converges to zero or at least is bounded by a small constant.
The following Lyapunov candidate for the overall system is
used20:

V = V1 + V2 + V3

=
[

1

2
K1e

2
1 + 1

2
(ė1)2

]
+

[
1

2
K3e

2
2 + 1

2
(ė2)2

]

+ 1

2
(q2 − φ)2 (23)

where, K3 > 0 is another PD controller gain which will be
defined later. Replacing ë1 by new error dynamics (22) and
substituting the fictitious control φ yields

V̇1 = K1e1ė1 + ė1ë1

= K1e1ė1 + ė1
(
q̈d

1 + (Jl)
−1[f − Ks1Nφ]

− (Jl)
−1Ks1N(q2 − φ)

)

= K1e1ė1 + ė1

{
q̈d

1 + (J1)−1

[
f − Ks1N

×
(

Jl

Ks1N

(
q̈d

1 + K1e1 + K2ė1
) + 1

Ks1N
�f

)]}

− (Jl)
−1Ks1Nė1(q2 − φ)

= K1e1ė1 + ė1(−K1e1 − K2ė1) + (Jl)
−1ė1(f − �f )

− (Jl)
−1Ks1Nė1(q2 − φ)

≤ −K2 ‖ė1‖2 − (Jl)
−1Ks1Nė1(q2 − φ). (24)

In order to calculate the derivative of V2, the motor error
dynamics need to be formed. Add Jmwq̈d

2 to both sides of (6)

and perform some simple manipulation, we have

Jmw

(
q̈d

2 − q̈2
) = Jmwq̈d

2 + Fmdq̇2 + Fmssign(q̇2)

+ NKs1(Nq2 − q1) + NKs2(Nq2 − q1)3 − τ

ë2 = q̈d
2 + J−1

mw[g(q̇2, q2, q1) − τ ]. (25)

Similar tof (q̇1, q1, q2) in (16), g(q̇2, q2, q1) contains all the
uncertainties of the motor dynamic subsystem, i.e., motor
rotor friction and flexspline compliance, and the upper-
bounded function is defined as

g(q̇2, q2, q1) = Fmdq̇2 + Fmssign(q̇2) + NKs1(Nq2 − q1)

+ NKs2(Nq2 − q1)3 (26)

‖g(q̇2, q2, q1)‖ ≤ K20 + K21‖q̇2‖ + K22‖(Nq2 − q1)‖
+ K23‖(Nq2 − q1)3‖ ≡ β. (27)

Similar to the fictitious control law in (17), the control signal
τ can be chosen as20

τ = Jmw

(
q̈d

2 + K3e2 + K4ė2
) + u1 (28)

where K3 > 0 and K4 > 0 are the linear PD gains, and u1 is
a nonlinear term to guarantee V̇ ≤ 0 while not V̇2 ≤ 0 itself.
Take the derivative of V2 and substitute (25), (26), and (28),
we have

V̇2 = K3e2ė2 + ė2ë2

= K3e2ė2 + ė2
(
q̈d

2 + J−1
mw(g − τ )

)
= K3e2ė2 + ė2

{
q̈d

2 + J−1
mw

[
g − Jmw

(
q̈d

2

+K3e2 + K4ė2
) − u1

]}
.

≤ K3e2ė2 + ė2(−K3e2 − K4ė2) + J−1
mwė2(β − u1)

= −K4 ‖ė2‖2 + J−1
mwė2(β − u1). (29)

Finding V̇3 is not a straightforward task because V̇3 in (23) is
a function of the fictitious control law φ. As shown in (21), φ
is a function of desired link acceleration, link position error,
link velocity error, and bounded function ρ. Therefore, the
derivative of V3 introduces link acceleration error which can
be very difficult to measure. The following calculation is
targeted at eliminating the link acceleration error term.

We can consider the simple form of V̇3

V̇3 = (q2 − φ)(q̇2 − φ̇). (30)

V̇ can be formed by combining (29), (30), and (24), that is,

V̇ ≤ −K2‖ė1‖2 − (Jl)
−1Ks1Nė1(q2 − φ) − K4‖ė2‖2

+ J−1
mwė2(β − u1) + (q2 − φ)(q̇2 − φ̇)

= −K2‖ė1‖2 − K4‖ė2‖2 + (q2 − φ)(q̇2 − φ̇

− (Jl)
−1Ks1Nė1) + J−1

mwė2β − J−1
mwė2u1

≤ −K2‖ė1‖2 − K4‖ė2‖2 + ‖q2 − φ‖(‖q̇2‖ + ‖φ̇‖
+ (Jl)

−1Ks1N‖ė1‖) + J−1
mw‖ė2‖β − J−1

mwė2u1. (31)
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To find u1, φ̇ needs to be calculated first from (21)

φ̇ = Jl

Ks1N

(
qd

1

(3) + K1ė1 + K2ë1
) + 1

Ks1N
�ḟ . (32)

From (15) we can calculate �ḟ

�ḟ = K11q̇1 + K12q̈1 − 3K13(Nq2 − q1)2(Nq̇2 − q̇1).
(33)

Substituting (33) into (32), we get

φ̇ = Jl

Ks1N

(
qd (3)

1 + K1ė1 + K2ë1
) + 1

Ks1N
[K11q̇1

+ K12q̈1 − 3K13(Nq2 − q1)2(Nq̇2 − q̇1)]

= Jl

Ks1N

(
qd (3)

1 + K1ė1 + K2ë1
) + 1

Ks1N
K11q̇1

+ 1

Ks1N
K12q̈1 − 3

Ks1N
K13(Nq2 − q1)2(Nq̇2 − q̇1)

= Jl

Ks1N

(
qd (3)

1 + K1ė1 + K2ë1
) + 1

Ks1N
K11q̇

d
1

− 1

Ks1N
K11ė1 + 1

Ks1N
K12q̈

d
1 − 1

Ks1N
K12ë1

− 3

Ks1N
K13(Nq2 − q1)2(Nq̇2 − q̇1)

= Jl

Ks1N
qd (3)

1 + 1

Ks1N
K12q̈

d
1 + 1

Ks1N
K11q̇

d
1

− 3

Ks1N
K13(Nq2 − q1)2(Nq̇2 − q̇1)

+ 1

Ks1N
(JlK1 − K11)ė1 + 1

Ks1N
(JlK2 − K12)ë1. (34)

Therefore,

‖φ̇‖ ≤ Jl

Ks1N

∥∥qd (3)

1

∥∥ + 1

Ks1N

[
K12‖q̈d

1 ‖ + K11

∥∥q̇d
1

∥∥]

+ 3

Ks1N
K13(Nq2 − q1)2‖Nq̇2 − q̇1‖

+ 1

Ks1N
‖JlK1 − K11‖‖ė1‖

+ 1

Ks1N
‖JlK2 − K12‖‖ë1‖

≤ Jl

Ks1N
sup
t≥0

∥∥qd (3)

1

∥∥ + 1

Ks1N
K12 sup

t≥0

∥∥q̈d
1

∥∥

+ 1

Ks1N
K11 sup

t≥0

∥∥q̇d
1

∥∥

+ 3

Ks1N
K13(Nq2 − q1)2‖Nq̇2 − q̇1‖

+ 1

Ks1N
‖JlK1 − K11‖‖ė1‖

+ 1

Ks1N
‖JlK2 − K12‖‖ë1‖. (35)

The following observations can be made

• If JlK2 − K12 = 0 is satisfied by choosing K2 = K12
Jl

, ë1

can be eliminated.
• Because the flexspline elastic displacement is very small

(e.g., in 10−4 rad range), and can be determined by
experiments, we can therefore assume 3

Ks1N
K13(Nq2 −

q1)2‖Nq̇2 − q̇1‖ is small and bounded. Let

K30 ≥ 1

Ks1N

[
Jl sup

t≥0

∥∥qd (3)

1

∥∥
+ K12 sup

t≥0

∥∥q̈d
1

∥∥ + K11 sup
t≥0

∥∥q̇d
1

∥∥]

+ 3

Ks1N
K13(Nq2 − q1)2

∥∥Nq̇2 − q̇1

∥∥.

• Let

K31 ≥ 1

Ks1N
‖JlK1 − K11‖ .

By applying the above observations to (35), we have

‖φ̇‖ ≤ K30 + K31‖ė1‖. (36)

Substitute (36) into (31), and consider‖q̇2‖ ≤ ‖q̇d
2 ‖ + ‖ė2‖,

we have

V̇ ≤ −K2‖ė1‖2 − K4‖ė2‖2 + J−1
mw‖ė2‖‖β‖ − J−1

mwė2u1

+ ‖q2 − φ‖{∥∥q̇d
2

∥∥ + ‖ė2‖ + K30 + K31‖ė1‖
+ (Jl)

−1Ks1N‖ė1‖
}

≤ −K2‖ė1‖2 − K4‖ė2‖2 + J−1
mw‖ė2‖‖β‖ − J−1

mwė2u1

+ ‖q2 − φ‖
{(

sup
t≥0

∥∥q̇d
2

∥∥ + K30

)

+ (K31 + (Jl)
−1Ks1N)‖ė1‖ + ‖ė2‖

}
. (37)

Ideally, ‖ė1‖ = N‖ė2‖, therefore we can find a K ′
31 to satisfy

K ′
31‖ė2‖ ≥ Jmw{(K31 + (Jl)

−1Ks1N)‖ė1‖ + ‖ė2‖}. (38)

Let

K ′
30 ≥ Jmw

(
sup
t≥0

‖q̇2‖ + K30

)
. (39)

Equation (37) can be simplified to

V̇ ≤ −K2 ‖ė1‖2 − K4 ‖ė2‖2 + J−1
mw ‖q2 − φ‖

× (K ′
30 + K ′

31 ‖e2‖) + J−1
mw ‖ė2‖ ‖β‖ − J−1

mwė2u1

= −K2 ‖ė1‖2 − K4 ‖ė2‖2 + J−1
mwK ′

30 ‖q2 − φ‖
+ J−1

mwK ′
31‖q2 − φ‖‖ė2‖ + J−1

mw‖ė2‖‖β‖ − J−1
mwė2u1.

(40)
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We can choose nonlinear term u1 in the form of

u1 = K33ė2

‖ė2‖ + K32
(K ′

30‖q2 − φ‖ + K ′
31‖q2 − φ‖ + ‖β‖).

(41)
Substitute (41) into (40), the final V̇ is

V̇ ≤ −K2‖ė1‖2 − K4‖ė2‖2

+ J−1
mwK ′

30‖q2 − φ‖
(

1 − K33‖ė2‖2

‖ė2‖ + K32

)

+ J−1
mw

(
‖ė2‖ − K33‖ė2‖2

‖ė2‖ + K32

)
(K ′

31‖q2 − φ‖ + ‖β‖).

In order to satisfy the above inequality, let K33 > 0 and
−‖ė2‖ <K32 < 0. And

V̇ ≤ −K2‖ė1‖2 − K4‖ė2‖2

+ J−1
mwK ′

30‖q2 − φ‖
(‖ė2‖ + K32 − K33‖ė2‖2

‖ė2‖ + K32

)

+ J−1
mw

(‖ė2‖2 + K32‖ė2‖ − K33‖ė2‖2

‖ė2‖ + K32

)

× (K ′
31‖q2 − φ‖ + ‖β‖). (42)

Because K32 and K33 are control parameters, we can choose
suitable values to ensure

K33‖ė2‖2 ≥ ‖ė2‖ + K32

K33‖ė2‖2 ≥ ‖ė2‖2 + K32‖ė2‖.

Therefore, we can achieve V̇ ≤ 0. This implies uniformly ul-
timate bounded stability given the fact that K33 increases as e2

decreases. Substitute (41) into (28), the final control torque is

τ = Jmw

(
q̈d

2 + K3e2 + K4ė2
) + K33ė2

‖ė2‖ + K32
(K ′

30‖q2 − φ‖

+ K ′
31‖q2 − φ‖ + ‖β‖). (43)

For MRR, the configuration change presents a new set of
robot dynamic parameters. Hence, decentralized control is
a suitable strategy to handle motion tracking of MRR. In
decentralized control, every joint is treated as a SISO system
plus a disturbance torque representing all uncertainties of
the robot. In Eq. (43), K33 and K32 are control parameters;
K ′

30, K31, and β are determined based on the upper bound on
the link/motor dynamics. Therefore, (43) does not directly
depends on the link parameters and will require minimal (or
no) change of control parameters when robot is reconfigured.
The proposed control law is a saturation type controller
because of the bounded nonlinear term u1.

4. Experiment
The performance of the proposed robust controller was
evaluated using a 3-DOF MRR controlled by a MSK2812
digital signal processing (DSP) kit. For every DOF, joint

Fig. 2. Block diagram of MRR.

parameter identification was performed according to the
procedure described in ref. [35]. Two different configurations
with and without load were set up. For each case, the MRR
was controlled to follow sinusoidal trajectories in joint space
using the same set of control parameters. The experimental
setup and results are presented in this section.

4.1. MRR system
The MRR system block diagram is shown in Fig. 2. All three
joints are connected with DSP via controller area network
(CAN) communication bus, and the DSP is connected with a
PC through RS232. Each joint accepts the torque command
transmitted on the CAN based on its own ID, and sends
the motor and link position/velocity signals back to DSP for
both closed-loop control and data collection. This data can
be uploaded to a PC offline. Because of the limit of CAN
bus, the control frequency is less than standard 500 Hz. The
desired trajectory for each joint is in the form of

Traj = A sin

(
2π

T
∗

(
j

f

))
(44)

where, A= 90 deg is the trajectory amplitude, T = 7 s is the
trajectory period, f = 50 Hz is the control frequency, and
j = 0, 1, . . . is the control signal index. Figures 3 and 4 show
the desired trajectories of both configurations in the task
space. These trajectories map to sinusoidal trajectories for

Fig. 3. Configuration 1 end effector trajectory in workspace.
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Fig. 4. Configuration 2 end effector trajectory in work space.

Fig. 5. Configuration 1: with load.

each joint in joint space. Figures 5 and 6 show two different
MRR configurations. For each configuration, two tasks were
tested under load and no load conditions. The load is in the
form of a wrist assembly that weighs 20 lb as shown in Figs. 5
and 6.

4.2. Experiment results
Parameters of the proposed controller were tuned to reduce
the trajectory tracking error based on the first configuration
without load, while satisfying the constraints described in
Section 3. We first tuned PD gains, K3 and K4 in Eq. (43), to
achieve a desirable tracking performance. Then the nonlinear
term was added to compensate disturbances and tuned to
achieve the desired trajectory tracking performance. The
same set of parameters were then applied to all other
experiments, i.e., with load and for the second configuration.
The parameters are listed in Table I. kij, i = 1, 2 and

Fig. 6. Configuration 2: with load.

Table I. Robust controller parameters.

Linear parameters Nonlinear parameters

Joint K3 K4 K30 K31 K32 K33

#1 0.25 0.025 0.1 0.2 1 0.12
#2 0.15 0.005 0.1 0.1 1 0.8
#3 0.35 0.025 0.1 0.2 0.01 0.3

j = 1, 2, 3, 4, were not shown in this table, because they were
calculated from Eqs. (16) and (17), respectively. The mean
squared error (MSE) shown in Eq. (45) was used to evaluate
the MRR trajectory tracking performance. Equation (46)
was used to calculate the improvement of the proposed
robust controller compared to PID controller. The results
are summarized in Tables II and III for both configurations.

MSEi =
∑N

j=1

(
qaij

− Maij

)2

N
(45)

where N is the number of sampled data, i = 1, 2, 3 refers ith
joint, and qaij and Maij are the measured position errors and
mean of those errors of each joint, respectively.

Improvement = PID(MSE) − Robust(MSE)

PID(MSE)
× 100%.

(46)
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Table II. Configuration 1: PID vs. Robust.

No load (position MSE) Load 20 lb (position MSE)

Joint PID (deg2) Robust (deg2) Improve (%) PID (deg2) Robust (deg2) Improve (%)

#1 1.4445 0.8823 38.92 1.1562 0.9672 16.35
#2 1.8327 1.3025 28.93 2.7272 2.3202 14.92
#3 1.0856 0.7903 27.20 1.9009 1.8052 5.04

Table III. Configuration 2: PID vs. Robust.

No load (position MSE) Load 20 lb (position MSE)

Joint PID (deg2) Robust (deg2) Improve (%) PID (deg2) Robust (deg2) Improve (%)

#1 0.9900 0.8695 12.17 1.6999 1.5825 6.91
#2 1.9590 1.6409 16.24 3.8442 3.3910 11.79
#3 2.3647 1.2880 45.53 4.6938 3.4610 26.26

From Table II, it can be shown that for configuration 1
the proposed robust controller outperformed the well-tuned
linear controller for all 3-DOF. For the trajectory shown
in Figs. 3 and 4, the improvement in performance at no
load is 38.92 %, 8.93 %, and 27.20 % for joints 1, 2, and
3, respectively. For a payload of 20 lb in the form of an
end point wrist assembly, the improvement in performance
using the robust controller is 16.35 %, 14.92 %, and 5.04 %
for joints 1, 2, and 3, respectively. Under reconfiguration,
all control parameters in Table I were kept unchanged.
The robust control still outperformed the industrial linear
control for the configuration 2 shown in Fig. 6. For the
trajectory shown in Figs. 3 and 4, the robust control showed
an improvement in tracking performance of 12.17 % for
joint 1, 16.24 % for joint 2, and 45.53 % for joint 3 at
no load. With a 20 lb end point load, the improvement in
tracking performance is 6.91 % for joint 1, 11.79 % for joint
2, and 26.26 % for joint 3. The percentage improvements in
workspace tracking using the proposed controller compared
to PID controller for a 20 lb end point load are summarized in
Table IV.

During experiments it was observed that the first joint is the
most rigid compared to others, and the third joint generated
more vibrations because of dynamic interactions with other
degrees of freedom joints. Figures 7–18 show the torque
signals of each joint of both configurations under different
tasks.

Table IV. Percentage improvement of tracking in workspace
coordinates.

Position (%) Rotation (%)
Load

Config. (lb) X Y Z X Y Z

20 25.97 15.57 12.28 −5.62 28.19 6.50
20 35.66 21.01 47.14 27.75 22.44 30.38

Fig. 7. Joint 1 torque (configuration 1 no load).

Fig. 8. Joint 2 torque (configuration 1 no load).
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Fig. 9. Joint 3 torque (configuration 1 no load).

Fig. 10. Joint 1 torque (configuration 1 with load).

Fig. 11. Joint 2 torque (configuration 1 with load).

Fig. 12. Joint 3 torque (configuration 1 with load).

Fig. 13. Joint 1 torque (configuration 2 no load).

Fig. 14. Joint 2 torque (configuration 2 no load).
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Fig. 15. Joint 3 torque (configuration 2 no load).

Fig. 16. Joint 1 torque (configuration 2 with load).

Fig. 17. Joint 2 torque (configuration 2 with load).

Fig. 18. Joint 3 torque (configuration 2 with load).

Fig. 19. Joint model.

5. Conclusion
In this paper, a decentralized robust controller is presented for
a MRR that uses a HD transmission system. The uncertainty
compensation and good position tracking performance is
achieved by fusing a linear PD controller with a saturated
type robust control law. In order to precisely control the
MRR, the nonlinear property of HD flexspline compliance
was introduced into the joint dynamics (6) and (7). The
important features of the controller are the simplicity in
computation compared with a centralized controller, and
greater disturbance tolerance which can be observed from the
successful position tracking during experimental analysis.
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Appendix: Single Joint Dynamic
The detailed derivations of the single joint dynamic Eqs. of
(3), (4), and (5) are shown here. The single joint with HD can
be modeled as a mass-spring system as shown in Fig. 19, and
it is considered as three subsystems: (1) input subsystem; (2)
transmission subsystem; and (3) output subsystem. All the
notations can be found in Section 2.

Input subsystem
The input subsystem consists of motor and HD wave-
generator; based on Euler–Lagrange equation, we have

• Kinetic energy: K = 1
2Jmwq̇2

2 .
• Potential energy: P = 0.
• Lagrangian: L = K − P = 1

2Jmwq̇2
2 .
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Therefore the resulting torque can be calculated as

τm = d

dt

∂L

∂q̇2
− ∂L

∂q2
= Jmwq̈2. (A 1)

The resulting torque τm is also related to motor input torque
τ , friction torque, and flexspline stiffness torque exerted on
the input side. The following equation is satisfied:

τm = τ − (Fmdq̇2 + Fmssign(q̇2)) − Nτf . (A 2)

Therefore, the input subsystem dynamic equation is

Jmwq̈2 + Fmdq̇2 + Fmssign(q̇2) + Nτf = τ. (A 3)

Transmission subsystem
The transmission subsystem refers to the flexible HD
flexspline which is usually run at low speed, and its mass
can be ignored. Two types of flexspline models are widely
used, piecewise linear37 and nonlinear.36 We have set up
experiments to calibrate the flexspline stiffness coefficients,
and found that a nonlinear model better represents the
flexspline dynamics. The experiments and results are out
of the scope of this paper. The flexspline dynamics is in the
following form:

τf = Ks1(Nq2 − q1) + Ks2(Nq2 − q1)3. (A 4)

Output subsystem.The link and load together form the output
subsystem. The link generates great effects on the robot

dynamics. In comparison with the unexpected load which
is exerted at the end of the link, the link mass is very small.
Therefore, we assume the link mass m is centered at the end
of the link as shown in Fig. 7. Based on the Euler–Lagrange
equation

• Kinetic energy: K = 1
2Jlq̇

2
1 .

• Potential energy: P = −mgl cos(q1).
• Lagrangian: L = K − P = 1

2Jlq̇
2
1 + mgl cos(q1).

The resulting torque is

τl = d

dt

∂L

∂q̇1
− ∂L

∂q1
= Jlq̈1 + mag sin(q1). (A 5)

The resulting torque τl comes from the torsional torque
applied by the flexspline, friction torque, and disturbance,
which can be expressed as

τl = τf − (Fld q̇1 + Flssign(q̇1)) − τd . (A 6)

So the output dynamics is

Jlq̈1 + mgl sign(q1) + (Fld q̇1 + Flssign(q̇1)) + τd + τf = 0.

(A 7)

Finally, we can rearrange (A3), (A4), and (A7) into
two equations representing single joint dynamics in (6)
and (7).
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