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growth and cycles that can account for two key features of the aggregate data: balanced
growth in the long run and business cycles in the short run. The model is built on
Schumpeter’s idea that economic development is the consequence of the periodic arrival
of innovations. There is growth because each subsequent innovation leads to a permanent
improvement in the production technology. Cycles arise because innovations trigger a
reallocation of resources between production and R&D. The quantitative implications of
the calibrated version of our model are very similar to those of Kydland and Prescott’s
(1982) model. Moreover, under some parameterizations, our model can correct two
shortcomings of RBC models: It can account for the persistence in output growth and the
asymmetry of growth within the business cycle.
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1. INTRODUCTION

This paper presents a computable general equilibrium model of endogenous
(stochastic) growth and cycles that can account for two key features of the aggre-
gate data: balanced growth in the long run and business cycles in the short run. The
model is built on Schumpeter’s idea that economic development is the consequence
of the periodic arrival of innovations. There is growth because each subsequent
innovation leads to a permanent improvement in the production technology. Cycles
arise because innovations trigger a reallocation of resources between production
and R&D.

It is generally accepted in the literature that innovations play an important
role in long-run economic growth.1 Empirical evidence also suggests that there
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is a link between R&D and business cycles. Kleinknecht (1987) reports that the
number of patents varies significantly over time. At the level of firms, Lach and
Schankerman (1989) find that R&D Granger-cause investment in physical capital
after a short lag. Lach and Rob (1996) report that a similar tendency is observed at
the level of industry. Geroski and Walters (1995) document a procyclical behavior
of innovations in the United Kingdom. In particular, Geroski and Walters (1995,
p. 927) conclude: “the procyclical variations in innovation which we observe are,
no doubt, an important contributor to the procyclical variation in productivity
growth which has been widely observed.”

The idea that both growth and cycles are an outcome of innovative activity has
been advocated in previous literature. The origins of growth and cycles have been
related to an extensive search for new technology and further refinement of old
technology [Jovanovic and Rob (1990)], to the discovery of new technology and
its subsequent diffusion [Andolfatto and MacDonald (1998)], and to the discovery
of new technology and a subsequent shift of resources from R&D to production
[Bental & Peled (1996), Freeman et al. (1999)].

The literature, however, explains long waves in economic activity but not short
waves. In particular, two models that are related to ours, presented by Andolfatto
and MacDonald (1998) and by Freeman et al. (1999), do not produce fluctuations
in business-cycle frequencies by construction. High-frequency fluctuations are
missing in Andolfatto and MacDonald (1998) because technology improvements
are large and rare, so that imitation is the main source of the economy’s dynam-
ics. To be more specific, their model is parameterized to account for six major
technology innovations in the United States during 1946–1994—for example, the
chemicals revolution and the electronics revolution. Freeman et al. (1999) interpret
innovations as infrastructural projects that require large amounts of investments
and long periods of development—for example, railroads or telegraph systems.
The model generates cycles of a constant shape and a constant (presumably long)
duration, which are not comparable to cycles in the data.

Our approach to modeling innovations differs from those presented in the lit-
erature in several aspects. First, in our model, the aggregate level of production
technology is determined by three factors: intensity of research effort, the current
level of technology and a random element that can be interpreted as luck. Be-
cause of the presence of aggregate uncertainty, our model is capable of producing
stochastic cycles that are similar to those generated by a typical real-business-
cycle (RBC) model. In contrast, the previous literature has no uncertainty at the
aggregate level, so that cycles are deterministic.2 Concerning our assumption of the
randomness of innovations, research projects clearly differ. Certain projects, such
as the construction of railroads or telegraph systems, can generally be planned from
the outset. Other projects may have highly uncertain outcomes, for example, the
development of a treatment for cancer. Furthermore, research in new directions is
typically preceded by trial and error, and many discoveries are purely accidental.3

Second, in our economy, technology increases in discrete increments of a fixed
size, so that the economy experiences switches in regime, between positive growth
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and no growth at all.4 Unlike the previous literature, we consider technological
improvements to be relatively small and frequent. In our view, the development
of a railroad system is not merely one great project, but rather a series of small
projects: Productivity does not increase very much after the entire railroad has
been constructed, but rather, productivity increases step-by-step as each phase of
the railroad is completed and put into operation. Likewise, we do not think that
either development or diffusion of the IBM PC-XT has led to an information
revolution. Rather, we believe that productivity has increased, step-by-step, after
the introduction of IBM’s PC-286, -386, -486, etc.5 As the consequence of frequent
innovation, we obtain short waves of economic activity.

Finally, we differ from the literature in our methodology for the numerical study.
To be specific, we do not try to distinguish from the data particular technology
shocks to parameterize the model, but calibrate the model to reproduce the selected
first moments of the aggregate series, as is typically done in RBC models. We
subsequently test the validity of the model’s predictions by looking at the second
moments of the simulated series.

The main implications of our analysis are as follows: By construction, the model
produces a balanced growth path, such that all the model’s variables (except that of
working hours) grow at the same constant rate in the long run. In the short run, the
model generates random cycles that resemble business-cycle fluctuations in actual
economies. The quantitative implications of the calibrated version of our model
are very similar to those of Kydland and Prescott’s (1982) model. Moreover, under
some parameterizations, our model can correct two shortcomings of RBC models:
it can account for the persistence in output growth and the asymmetry of growth
within the business cycle.

This paper is organized as follows: Section 2 describes the model, derives
the optimality conditions, and discusses some of the model’s implications for
growth and cycles. Section 3 outlines the calibration procedure and analyzes
the quantitative implications of the model. Section 4 concludes.The appendices
expose supplementary results. Appendix A decentralizes the planner’s economy.
Appendix B proves Proposition 1. Appendices C and D elaborate the calibration
and solution procedures, respectively.

2. THE MODEL

In this section, we formulate the model and discuss some of its implications. We
restrict our attention to a socially optimal economy. A competitive equilibrium
version is discussed in Appendix A.

2.1. The Growing Economy

Time is discrete and the horizon is infinite, t ∈ {0, 1, . . .}. Output is produced ac-
cording to the Cobb-Douglas production technology, Kα

t−1N
1−α
t , α ∈ (0, 1), where

the two inputs Kt−1 and Nt are physical capital and efficiency labor, respectively.
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The amount of efficiency labor is given by the product of the current labor pro-
ductivity, At , and the aggregate physical hours worked, nt ; that is, Nt = At · nt .

There is endogenous labor augmenting technological progress. In each period
t , depending on a random draw, labor productivity either increases by a factor
γ > 1; that is, At = At−1 · γ , or remains unchanged, At = At−1. The probability
of innovation, ϕt , is endogenous: It depends on the human capital stock, Ht−1,
and productivity, At−1.6 We assume that the probability function is homogeneous
of degree zero and, thus, can be written as ϕt = ϕ(Ht−1/At−1). Moreover, we
assume that ϕ(x) is strictly increasing and strictly concave for all x ≥ 0 and
satisfies ϕ(0) = 0 and limx→∞ ϕ(x) = 1. The assumption of strict concavity of
the probability function implies that there is a decreasing rate of return on human
capital (in terms of the probability of innovation) in a given period. Furthermore,
since the probability function is strictly decreasing in At−1, the rate of return on
human capital also decreases across periods, as the economy develops. Therefore,
to achieve continuous technological progress, human capital stock must grow at
an average rate that is not lower than that of labor productivity. As we will show,
under the assumption of a homogeneity of degree zero of the probability function,
the economy follows a balanced growth path such that not only human capital but
also output, consumption, and physical capital all grow at the same average rate
as labor productivity does.7

Note that, in our economy, human capital, Ht , is used exclusively for making
innovations, that is, for R&D activity. We interpret human capital stock as a
collection of all nonhuman and human resources that encourage innovation, that
is, computers and other lab equipment in the R&D sector, a stock of knowledge
of researchers, and all or a part of resources employed in the educational sector.
Furthermore, we assume that human capital is one of the uses of output, that
is, that it is produced by using the same technology as that used for producing
consumption and physical capital.

The planner maximizes the expected discounted lifetime utility of the represen-
tative consumer,

max
{Ct ,lt ,Kt ,Ht }∞t=0

E0

∞∑
t=0

δt {ln Ct + B ln lt } (1)

subject to

Ct + Kt + Ht = (1 − dk)Kt−1 + (1 − dh)Ht−1 + Kα
t−1(1 − lt )

1−αA1−α
t , (2)

At = At−1 · γt
Prob (γt = γ ) = ϕ(Ht−1/At−1),

Prob (γt = 1) = 1 − ϕ(Ht−1/At−1),
(3)

with initial condition (K−1,H−1, A−1) given. Here, E0 denotes the expectation,
conditional on the information set in the initial period, δ ∈ (0, 1) is the discount
factor, B is a positive constant, Ct and lt denote consumption and leisure, respec-
tively; the agent’s total time endowment is normalized to 1, that is, nt = 1 − lt ;
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and finally, dk ∈ (0, 1] and dh ∈ (0, 1] are the depreciation rates of physical and
human capital, respectively.

An equilibrium is defined as a sequence of contingency plans for an allocation
{Ct, lt , Kt ,Ht }∞t=0 that solves the utility maximization problem (1)–(3). All equi-
librium quantities are restricted to being nonnegative and, in addition, leisure is
assumed to satisfy lt ≤ 1 for all t .

2.2. Relation to Kydland and Prescott’s (1982) Model:
Exogenous Growth and Cycles

By appropriately redefining the process for innovations, we can cast the model
(1)–(3) into the standard neoclassical growth setup with exogenous growth and
cycles. Indeed, assume that labor productivity (technology) in our model, At , is
determined exogenously and does not depend on the human capital stock:

At = At−1 · γt
Prob (γt = γ ) = ϕ,

Prob (γt = 1) = 1 − ϕ,
(4)

where ϕ ∈ [0, 1] is a constant. Because the probability of innovation is now fixed,
both growth and cycles depend entirely on luck. Since human capital is useless
now, the optimal choice of the planner is Ht = 0 for all t , which takes us back to
the familiar Kydland and Prescott (1982) model. Hence, an “exogenous stochastic
growth and cycles” variant of the model (1)–(3) can be obtained by parameterizing
Kydland and Prescott’s (1982) model by the two-shock process (4).

To cast our model into the standard Kydland and Prescott’s (1982) setup, we
assume that growth is deterministic and cycles are stochastic by considering the
following process for technology:

At = θt · Xt, (5)

where θt is an exogenous technology shock following a first-order Markov process
ln θt = ρ ln θt−1 + εt with ρ ∈ [0, 1) and εt ∼ N(0, σ 2), and Xt is exogenous
labor-augmenting technological progress, Xt = X0γ

t
x with X0 ∈ R+ and γx ≥ 1.

2.3. The Stationary Economy

Although the model formulated in Section 2.1 is nonstationary, it can be converted
into a stationary model by using the appropriate change of variables. Let us
introduce ct ≡ Ct/At−1, kt−1 ≡ Kt−1/At−1, ht−1 ≡ Ht−1/At−1. In terms of these
variables, the problem (1)–(3) can be rewritten as follows:

max
{ct ,lt ,kt ,ht }∞t=0

E0

∞∑
t=0

δt {ln ct + B ln lt + ln At−1} (6)

subject to

ct = (1 − dk)kt−1 + (1 − dh)ht−1 + γ 1−α
t kα

t−1(1 − lt )
1−α − γt (kt + ht ), (7)
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Prob(γt = γ ) = ϕ(ht−1),

Prob(γt = 1) = 1 − ϕ(ht−1),
(8)

where At = At−1 · γt , and initial condition (k−1, h−1, A−1) is given.
The above transformation does not remove the growth completely: The growing-

over-time endogenous technology At−1 is still present in the objective function
(6).8 It turns out, however, that a Markov (recursive) equilibrium exists, such that
the corresponding optimal decision rules depend only on a current realization of
γt ∈ {1, γ }, but not on the growing term At−1. Moreover, such an equilibrium is
unique. These results are formally established in the proposition below.

PROPOSITION 1 (a). The optimal value function V for the problem (6)–(8) is
a solution to the Bellman equation

V (kt−1, ht−1, γt ) = max
lt ,kt ,ht

(
ln ct + B ln lt + δ

1 − δ
ln γt + δ{ϕ(ht )V (kt , ht , γ )

+ [1 − ϕ(ht )]V (kt , ht , 1)}
)

(9)

subject to (7), (8).
(b) The Bellman operator is a contraction mapping.

Proof. See Appendix B.

With interior equilibrium, a solution to the problem (9) satisfies first-order
conditions (FOCs):

(lt ): ct = (1 − α) · lt

B
γ 1−α

t kα
t−1(1 − lt )

−α, (10)

(kt ):
γt

δct

= ϕ(ht )

c
g

t+1

· [
1 − dk + αγ 1−αkα−1

t

(
1 − l

g

t+1

)1−α]

+ [1 − ϕ(ht )]

cb
t+1

· [
1 − dk + αkα−1

t

(
1 − lbt+1

)1−α]
, (11)

(ht ):
γt

δct

= (1 − dh)

[
ϕ(ht )

c
g

t+1

+ 1 − ϕ(ht )

cb
t+1

]

+ϕ′(ht ) [V (kt , ht , γ ) − V (kt , ht , 1)], (12)

where the superscripts {g, b} correspond to the states γt = γ and γt = 1, referred
to as “good” and “bad” states, respectively.

In our model, the FOCs regarding leisure and physical capital are similar to
the corresponding optimality conditions in the two-shock variant of Kydland and
Prescott’s (1982) model. However, in Kydland and Prescott’s (1982) setup, the
probabilities of states are determined exogenously by the assumed process for
shocks, whereas, in our case, they are determined endogenously by the FOC with
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respect to human capital. When human capital is chosen in our economy, the
planner takes into account that each additional unit of ht increases the probability
of technological advancement, which, if it occurs, increases the lifetime utility by
the amount V (kt , ht , γ ) − V (kt , ht , 1).

2.4. Endogenous Growth and Cycles

We have shown that, under the recursive formulation, a solution to the model with
growth, {Ct,Kt ,Ht }∞t=0, can be subdivided into two components: a growing-over-
time stochastic trend, {At }∞t=0; and a solution to the stationary model, {ct , kt , ht }∞t=0.
These two components can be interpreted as long-term growth and the short-
term cyclical fluctuations, respectively. In our model, growth and cycles are
endogenous in the sense that they depend not only on luck but also on the ac-
tions of the planner, that is, on the choice of human capital. [In Section 2.2, we
have argued that the “exogenous growth and cycles” variant of our model coin-
cides with Kydland and Prescott’s (1982) model parameterized by the two-shock
process (4)].

Fluctuations in our model take the form of cycles of a random length and
shape and occur because technology’s progress is stochastic. The cyclical nature
of fluctuations is a consequence of the existing trade-off between production on
the one hand and technological progress on the other. Specifically, a technological
advance increases the rate of return on physical capital relative to that on human
capital. This leads to a reallocation of resources from R&D to production and, as
a result, lowers the probability of technological advance during the next period. In
subsequent periods, the resources are gradually shifted back to R&D until the next
technological advance occurs, and so on. In Section 3, we plot cycles produced by
a calibrated version of the model.

The long-run growth is also due to technological progress. The model predicts
that the economy follows a balanced growth path such that consumption and both
capital stocks, {Ct,Kt ,Ht }∞t=0, grow at the same stochastic rate γt while labor,
{nt }∞t=0, and leisure, {lt }∞t=0, exhibit no long-run growth. The fact that the process
for {ht }∞t=0 is stationary implies that the processes for the probability of innovation
and the growth rate are also stationary. The expected growth rate in our economy
is

γ = E

[
At+1

At

]
= E [γt ] = E {γ · ϕ(ht ) + 1 · [1 − ϕ(ht )]}, (13)

where E is the unconditional expectation. Note that if parameters are chosen so
that the average growth rate γ in our model is equal to the deterministic growth
rate γx in Kydland and Prescott’s (1982) model under (5), both models imply a
similar balanced growth path. However, in our model, the time trend is stochastic,
whereas in Kydland and Prescott’s (1982) model, it is deterministic.
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3. QUANTITATIVE ANALYSIS

In this section, we outline the calibration procedure and discuss simulation results.
More details on the calibration procedure and the solution algorithm are provided
in Appendixes C and D, respectively.

3.1. Calibration

A distinctive feature of our endogenous-growth-and-cycles model is that it can
be calibrated in the standard way employed in the RBC literature. Specifically,
we choose the values of the parameters so that, in the steady state, the model
reproduces the following statistics for the U.S. economy: the capital share in
production α, physical-capital-to-output ratio πk , consumption-to-output ratio πc,
average working time n, and average growth rate γ .9 We take the model’s period
as one quarter. We choose the values of α, πk , and γ in line with the estimates
presented by Christiano and Eichenbaum (1992). We take the value of πc, which
is somewhat higher than it was in their paper, because our model does not contain
the government. We borrow the value of n from the micro study presented by
Juster and Stafford (1991). The above parameters are fixed for all simulations;
they also identify the parameter B in the utility function. Table 1 summarizes the
parameter choice.

We assume that the probability function is of the Poisson type

ϕ(ht ) = 1 − exp(−vht ), v > 0.

Furthermore, we assume that the depreciation rates of physical and human capital
are equal. Under the above assumptions, we can uniquely determine the rest
of the model’s parameters, {δ, dk, dh, γ , v}, by fixing a human-capital-to-output
ratio, πh. The empirical value of this ratio depends significantly on whether the
variable ht is interpreted only as a stock of R&D expenditure or as a stock
of both R&D and educational expenditure. During the period 1985–1995, the
expenditure on R&D in the United States, amounted to 2.5% of GDP, whereas
the expenditure on education was 6.7% and 5.4% of GDP in 1980 and 1996,

TABLE 1. Parameters com-
mon for all artificial model
economies

Parameter Value

πk 10.62
πc 0.67
n 0.31
γ 1.004
α 0.339
B 2.196

https://doi.org/10.1017/S1365100504040064 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100504040064


ENDOGENOUS GROWTH AND ENDOGENOUS BUSINESS CYCLES 567

TABLE 2. Model-specific parameters and selected steady-state values

Endogenous-growth-and-cycles model
Kydland and Prescott’s

Parameter (1982) model h/k = 0.3 h/k = 0.4 h/k = 0.5 h/k = 0.6

δ 0.9992 0.9921 0.9904 0.9890 0.9877
dk, dh 0.0271 0.0199 0.0182 0.0167 0.0154

γ 1.004 1.0046 1.0055 1.0083 1.0676
ν — 0.6141 0.2894 0.1176 0.0091

ih/y 0 0.0634 0.0773 0.0888 0.0983
ϕ(h) — 0.8707 0.7234 0.4795 0.0591

respectively.10 We consider four alternative values of the parameter πh, such that
πh/πk ≡ h/k ∈ {0.3, 0.4, 0.5, 0.6}. As is seen from Table 2, these values imply
the steady-state shares of human capital investment to output, ih/y, ranging from
6.34% to 9.83%, which is grossly consistent with the amount of expenditures on
R&D and education in the U.S. economy.11

In Table 2, we provide the values of the parameters {δ, dk, dh, γ , v} computed
by our calibration procedure for each considered value of h/k. The parameters
δ, dh, and dk decrease with πh, which can be seen from formulas (C.8) and (C.9)
in Appendix C. The regularities that γ increases with πh and that v decreases
with πh are more difficult to understand, because the calibration of the parameters
γ and v requires finding a numerical solution to a nonlinear equation (C.11) and
combining several conditions, such as (C.10), (C.12), and (C.13) (see Appendix C).
However, one can gain a simple intuition about the implied inverse relation be-
tween the frequency and size of the innovations by looking at formula (13). In
each of the cases considered, the model is calibrated to reproduce the average
growth rate of output in the U.S. economy, γ . The result is that if technology
improvements are small (large), they occur often (rarely). The quantitative ex-
pression of this effect is very significant: As the value of h/k rises from 0.3
to 0.6, the size of innovation, γ , increases from 1.0046 to 1.0676, while the
steady-state probability of innovation, ϕ(h), decreases from 0.8707 to 0.0591,
respectively.

To assess the effects associated with the assumption of endogenous growth
and cycles, we compare the quantitative implications of our model with those of
Kydland and Prescott’s (1982) model. We calibrate Kydland and Prescott’s (1982)
model to reproduce the same values of {α, πk, πc, n, γ } as our endogenous-growth-
and-cycles model does, and we set πh = 0. The obtained parameter values are
summarized in Tables 1 and 2. It turns out that the predictions of Kydland and
Prescott’s (1982) model under the two-shock parameterization (4) are very similar
to those under the standard AR(1) parameterization (5). We therefore restrict our
attention to the standard variant of Kydland and Prescott’s (1982) model where
the process (5) is parameterized by ρ = 0.95 and σ = 0.0085.
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FIGURE 1. Time-series solution to the model with h/k = 0.5.

3.2. Results

Figure 1 plots the simulated series produced by the model under h/k = 0.5.
The first column shows the series generated by the stationary model. The second
column plots the series after introducing the growth. In the last column, we show
the growing series that are logged and detrended by using the Hodrick-Prescott
filter with a smoothing parameter of 1600. The most important point here is that
the series produced by the model resemble those observed in real economies; that
is, they grow over time and exhibit cycles of random durations.

To illustrate how the properties of the simulated series depend on the value
of h/k, in Figure 2, we plot output series under h/k ∈ {0.3, 0.4, 0.5, 0.6}. The
introspection of the third column in Figure 2 allows us to appreciate pronounced
asymmetries of output growth within the business cycle under the two extreme
parameterizations. Specifically, when h/k is low (h/k = 0.3), output grows slowly
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FIGURE 2. Comparison of output series across models with different h/k ratios.

during expansions and declines sharply during contractions; that is, expansions
are flatter than contractions. When h/k is high (h/k = 0.6), then, on opposite,
expansions are steeper than contractions. Empirical evidence on the asymmetry of
output growth points to the former shape of cycles [see Freeman et al. (1999), for a
review of the related literature]. The result that our model can produce asymmetric
business cycles is of much interest, given that asymmetries of output growth are
difficult to obtain within RBC models that rely on the assumption of exogenous
shocks [see, e.g., Balke and Wynne (1995)]. Later in the section, we also provide
quantitative estimates of the asymmetries of output growth in our model.

Figure 3 presents impulse responses to the discovery of new technology in the
growing economy under h/k = 0.5. Prior to the shock, the economy has had no
technology improvements during a long period of time (100 periods) so that the
model’s variables have converged to constant values. As we can see, all of the
model’s variables, with the exception of those related to R&D activity, increase
after technology advances. In other words, just as in Kydland and Prescott’s (1982)
setup, our model predicts a procyclical behavior in consumption, working hours,
wage, interest rates, etc. This finding is not surprising since an innovation plays
the same role in our model as a positive exogenous shock to technology does in
RBC settings.

As is apparent from Figure 3, the R&D variables, such as human capital
investment, the human capital stock, and the probability of innovation move
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FIGURE 3. Impulse response function for the model with h/k = 0.5.

countercyclically. To capture the intuition behind this result, we note that a
discovery of new technology affects the level of production positively, but it
affects the following period’s probability of innovation negatively [recall that At

appears in the denominator in the probability function, ϕ(Ht/At)]. To restore
the probability after the technological advance, the human capital stock must
be increased proportionally. Doing it in just one period, however, is simply too
costly. Thus, the alternative strategy is used: The resources are first switched from
R&D to production to take advantage of the new technology and only then are
they gradually shifted back to R&D with the aim of increasing the probability of
future innovation. The reallocation of resources between innovative and productive
activities is precisely what accounts for the cyclical nature of the fluctuations in
our model.

The model’s implications for R&D and innovations are in agreement with
the findings presented in the empirical literature. First, in our model, a positive
relationship between the level of output and the discovery of new technology
is consistent with evidence that innovations move procyclically, as documented
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TABLE 3. Selected second moments for the U.S. and artificial economiesa

Kydland and Endogenous-growth-and-cycles model
Prescott’s U.S.

Statistica (1982) model h/k = 0.3 h/k = 0.4 h/k = 0.5 h/k = 0.6 economy

σA/σ y — 1.139 1.099 1.030 0.982 —
(0.009) (0.008) (0.014) (0.018)

σϕ /σ y — 0.290 0.717 1.660 2.457 —
(0.023) (0.024) (0.030) (0.066)

σ c/σ y 0.302 0.444 0.462 0.534 0.559 0.511
(0.014) (0.009) (0.007) (0.007) (0.007)

σ i /σ y 2.507 2.205 2.206 2.165 2.129 2.864
(0.032) (0.015) (0.020) (0.034) (0.032)

σn/σ y 0.513 0.402 0.387 0.343 0.331 0.769
(0.005) (0.005) (0.005) (0.007) (0.005)

σw/σ y 0.505 0.610 0.622 0.668 0.685 0.611
(0.008) (0.006) (0.005) (0.005) (0.004)

σ y 1.636 0.184 0.301 0.492 1.619 1.676
(0.170) (0.023) (0.030) (0.053) (0.321)

corr(At, yt ) 0.999 0.999 0.998 0.984 0.971 —
(0.000) (0.004) (0.005) (0.006) (0.007)

corr(ϕt+1, yt ) — −0.983 −0.980 −0.959 −0.943 —
(0.018) (0.013) (0.009) (0.009)

corr(ct , yt ) 0.892 0.969 0.980 0.983 0.977 0.846
(0.018) (0.007) (0.007) (0.007) (0.005)

corr(it , yt ) 0.993 0.995 0.996 0.994 0.991 0.914
(0.002) (0.001) (0.001) (0.003) (0.003)

corr(nt , yt ) 0.983 0.982 0.986 0.980 0.968 0.899
(0.004) (0.004) (0.004) (0.005) (0.007)

corr(wt, yt ) 0.982 0.992 0.995 0.995 0.993 0.464
(0.004) (0.002) (0.002) (0.002) (0.002)

corr(wt, nt ) 0.931 0.951 0.963 0.953 0.930 0.219
(0.016) (0.011) (0.011) (0.014) (0.015)

a Statistics σx and corr(x, z) are the volatility of a variable x and the correlation coefficient between variables x and
z, respectively. The volatilities and the correlation coefficients of the models’ variables are sample averages across
500 simulations. Each simulation consists of 157 periods, as do the U.S. time series. Numbers in parentheses are the
sample standard deviations of the corresponding statistics. Before calculating any statistic, we log all the variables
for the U.S. and artificial economies and detrend them by using the Hodrick-Prescott filter with a penalty parameter
of 1600.

by Geroski and Walters (1995). Second, the countercyclical pattern of the R&D
activity produced by the model agrees with the findings of Lach and Schankerman
(1989) and Lach and Rob (1996), who show that an increase in R&D investment
precedes an expansion in physical capital investment.

In Tables 3 and 4, we provide selected second moments generated by our model.
To facilitate comparison, we also include the moments produced by Kydland and
Prescott’s (1982) model and the corresponding statistics for the U.S. economy.12
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TABLE 4. Autocorrelation coefficients for output and output growth and the
skewness coefficients for the first difference of output for the U.S. and artificial
economiesa

Kydland and Endogenous-growth-and cycles model
Prescott’s U.S.

Statistic (1982) model h/k = 0.3 h/k = 0.4 h/k = 0.5 h/k = 0.6 economy

corr(yt , yt−1) 0.696 0.682 0.723 0.787 0.810 0.867
(0.056) (0.063) (0.055) (0.043) (0.032)

corr(yt , yt−2) 0.446 0.441 0.464 0.499 0.513 0.681
(0.088) (0.094) (0.091) (0.088) (0.074)

corr(yt , yt−3) 0.245 0.242 0.257 0.271 0.275 0.470
(0.103) (0.105) (0.108) (0.107) (0.096)

corr(yt , yt−4) 0.082 0.083 0.092 0.091 0.090 0.258
(0.113) (0.110) (0.111) (0.115) (0.107)

corr(yt , yt−5) −0.044 −0.040 −0.033 −0.045 −0.049 0.042
(0.111) (0.106) (0.109) (0.115) (0.111)

skew(yt − yt−1) −0.0193 −1.8645 −0.6427 0.4768 3.7151 −0.1904
(0.1962) (0.3438) (0.2455) (0.2426) (0.8199)

corr(γ t ,γ t−1) −0.020 −0.044 0.049 0.261 0.356 0.290
(0.077) (0.078) (0.082) (0.072) (0.060)

corr(γ t ,γ t−2) −0.018 −0.001 −0.011 −0.019 −0.029 0.189
(0.074) (0.080) (0.079) (0.090) (0.087)

corr(γ t ,γ t−3) −0.017 −0.003 −0.003 −0.015 −0.020 0.084
(0.078) (0.081) (0.089) (0.090) (0.083)

corr(γ t ,γ t−4) −0.017 −0.004 −0.009 −0.014 −0.016 0.053
(0.079) (0.081) (0.082) (0.088) (0.091)

corr(γ t ,γ t−5) −0.019 −0.010 −0.008 −0.018 −0.016 −0.108
(0.078) (0.086) (0.083) (0.087) (0.090)

a Statistics corr(x, z) and skew(x) are the correlation coefficient between variables x and z, and the skewness
coefficient of a variable x, respectively. The correlation and skewness coefficients of the models’ variables are sample
averages across 500 simulations. Each simulation consists of 157 periods, as do the U.S. time series. Numbers in
parentheses are the sample standard deviations of the corresponding statistics. Before calculating any statistic, we
log all the variables for the U.S. and artificial economies and detrend them by using the Hodrick-Prescott filter with
a penalty parameter of 1600.

Before computing the second moments, we remove the growth in a way that is
standard in the RBC literature: We log all the variables for the U.S and artificial
economies and detrend them by using the Hodrick-Prescott filter with a penalty
parameter of 1600.13

The main findings in Table 3 are as follows: Overall, the relative volatilities and
contemporaneous correlations in our model are close to the respective statistics
in Kydland and Prescott’s (1982) setup. The volatility of output in our model is
determined by the size of technological advance and increases from 0.18 to 1.62
as the value of h/k rises from 0.3 to 0.6 (note that the volatility of output in the
latter case is comparable to the one in the data, 1.64). The correlation between the
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current output and the next period’s probability of innovation, ϕt+1 ≡ ϕ(Ht/At),
is negative and close to perfect (recall that a countercyclical movement of R&D
activity accounts for the cycles in our model).

As is seen from Table 4, our model is capable of delivering fluctuations in the
business-cycle frequency. Indeed, the autocorrelation coefficients of output at short
lags in our model are close to those of the U.S. economy and practically identical
to those presented in Kydland and Prescott’s (1982) model. A realistic persistence
of output in an RBC model is a consequence of assuming an exogenous AR(1)
technological shock with the required degree of serial correlation. In contrast, our
endogenous-growth-and-cycles model can produce an appropriate cyclical pattern
of output without having any exogenous source of technological persistence. This
finding is interesting since the existing models for endogenous cycles do not
produce business-cycle fluctuations [see Andolfatto and MacDonald (1998) and
Freeman et al. (1999)].

To quantify the asymmetries of output growth in our model, we compute the
skewness coefficient for the first difference of detrended output, as is suggested
by Sichel (1993). If expansions are steeper than contractions, then the sudden
decreases in the output series should be larger, but more rare, than the mild
increases in this series, so that the first difference of output should display negative
skewness. As we see from Table 4, the skewness coefficient that we obtained from
the U.S. output series is negative and equal to −0.19. In Kydland and Prescott’s
(1982) model, this coefficient is nearly zero, which means that the cycles are
symmetric. Our model is capable of generating a wide range for the skewness
coefficient from a large negative (−1.8645) under h/k = 0.3 to a large positive
(3.7151) under h/k = 0.6. In particular, it is clear that under some value of
h/k ∈ (0.4, 0.5), our model can generate the skewness coefficient that is equal to
the empirical counterpart.

We finally discuss the implications our model has for persistence in output
growth. It is a stylized fact that U.S. output growth displays significant positive
autocorrelations over short horizons and weak negative autocorrelations over long
horizons [see Cogley and Nason (1995) for a detailed discussion]. To illustrate
the quantitative expression of this tendency in our data set, in the last column of
Table 4, we provide the autocorrelations for output growth, γt ≡ yt/yt−1, at the
first five lags. Kydland and Prescott’s (1982) model cannot account for the above
stylized fact: It generates weak negative autocorrelations at the five lags considered
[see the first column of Table 4)].14 The failure of Kydland and Prescott’s (1982)
model in this dimension is explained by a weakness of the embodied propagation
mechanisms, which are capital accumulation and intertemporal substitution. In our
model, the presence of human capital gives rise to an additional propagation mech-
anism: A discovery of new technology triggers the reallocation of resources from
R&D activities to production, which increases the future output. As can be seen
from Table 4, under high values of h/k ∈ {0.5, 0.6}, this mechanism is so strong
that our model is able to generate the first-order autocorrelation of output growth,
which is close to the one observed in the U.S. data. Thus, our model of endogenous
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growth and cycles generates more realistic output dynamics than does the standard
RBC model.

4. CONCLUSION

Models with endogenous innovations have been previously applied in an attempt
to explain long waves in economic activity. The theoretical and empirical results
of this paper provide support for the hypothesis that innovations also play an
important role in business cycles. We construct an R&D-based general equilibrium
model in which both the long-run growth and the short-run cyclical fluctuations
arise endogenously because of continuous technological progress. In our economy,
three factors that affect the outcome of R&D activity are research efforts, the
existing stock of knowledge, and a random component. The calibrated version of
our endogenous-growth-and-cycles model has proved to be as good in reproducing
the business-cycle facts as the benchmark RBC setup by Kydland and Prescott
(1982). Furthermore, our model can account for two stylized facts that cannot be
reconciled within the typical RBC model, such as the asymmetry in the shape of
business cycles and the persistence in output growth.

NOTES

1. For example, this idea lies in the basis of the models developed by Aghion and Howitt (1992),
Grossman and Helpman (1991), Romer (1990), and Segerstrom (1991).

2. In Andolfatto and MacDonald (1998), there is idiosyncratic uncertainty but not aggregate un-
certainty; this is because a continuum of agents is assumed and thus the law of large numbers applies.
In Freeman et al. (1999), uncertainty is absent: innovation occurs with the probability 1 as soon as the
required amounts of R&D resources have been collected.

3. Jovanovic and Rob (1990) provide many examples of research projects that have had random
outcomes.

4. There is evidence that supports the two-regime process assumption. Hamilton (1989) finds that
the periodic shifts between positive and negative growth in output concur remarkably with the dates
of expansions and recessions in the U.S. economy.

5. A related idea appears in Jovanovic and Lach (1997, p. 7) in a context of a product-innovation
model: “ more important products are the embodiment of a larger number of innovations, so that, for
example, the computer embodies a large ‘bunch’ of smaller innovations.”

6. Thus, production technology follows a random-walk type of process. In At = ln At−1 +
ln γt , γt ∈ {γ , 1}, where the probabilities of the two states, ϕt and (1 − ϕt ), change over time.
The assumption of a random-walk process for innovations is in agreement with the data [see Geroski
and Walters (1995)].

7. Consequently, our model reproduces empirical evidence that indicates that real economies
constantly increase their spending on R&D, although their growth rates change relatively little. This
evidence is documented by Coe and Helpman (1995), Griliches (1988), Grossman and Helpman (1991,
Table 1.1), Jones (1995), and Kortum (1997), among others. Jones (1995) argues that such evidence
cannot be replicated under the assumption of constant returns to R&D activity that is standard for
R&D-based models; see, for example, Aghion and Howitt (1992), Grossman and Helpman (1991),
and Romer (1990).

8. The standard transformation for removing the growth in Kydland and Prescott’s (1982) model
is ct ≡ Ct/Xt and kt ≡ Kt/Xt . The objective function obtained after this transformation contains the
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growing term Xt . However, in contrast to our model, the growing term in this case is exogenous and
does not affect the equilibrium allocation.

9. Here, and further on in the text, z denotes the steady-state value of a variable zt .
10. World Bank’s Web site (http://www.worldbank.org/), Tables 5.15 and 2.9, respectively.
11. The estimates of McGrattan and Prescott (2000) offer an alternative justification for the assumed

range of h/k. This paper reports a ratio of approximately 0.6 between what they call unmeasured and
measured corporate capital, with the former kind of capital being defined as brand names, patents, and
firm-specific human capital.

12. See Maliar and Maliar (2003a) for a description of the U.S. time-series data that were used to
generate the empirical statistics in Tables 3 and 4.

13. We focus exclusively on the second-moments properties of the original nonstationary models.
The first moments (levels) generated by the supplementary stationary models are not reported because
such models have no clear economic interpretation.

14. Cogley and Nason (1995) show that other standard RBC models [e.g., Hansen’s (1985) model
with indivisible labor, Christiano and Eichenbaum’s (1992) model with government spending shocks)
also have difficulties in generating the appropriate dynamics of output growth.

15. We find that using a more accurate second-order polynomial approximation for the decision
rules instead of the first-order one affects the solution very little but raises the computational expenses
significantly.
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APPENDIX A: DECENTRALIZATION OF
THE PLANNER’S ECONOMY

A market economy consists of one production firm, one research firm, and a continuum of
homogeneous agents with the names on the unit interval [0, 1].

A research firm rents the human capital stock, accumulated by the agents. In ex-
change for the supplied human capital, Ht−1, an agent receives a new technology with
the probability ϕt = ϕ(Ht−1/At−1). Because all agents are identical, in the equilibrium,
the individual human capital stock coincides with the aggregate one. Thus, when the
new technology, At , is discovered, the research firm delivers it to all agents in the
economy.

Except for human capital, an agent accumulates physical capital and rents it to the
production firm at the interest rate, rt . Also, the agent supplies efficiency labor in exchange
for the wage, wt . The problem of the agent is

max
{Ct ,lt ,Kt ,Ht }∞t=0

E0

∞∑
t=0

δt {ln Ct + B ln lt }
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subject to

Ct + Kt + Ht = (1 − dk + rt )Kt−1 + (1 − dh)Ht−1 + wtAt (1 − lt ),

where At represents the efficiency of 1 hour worked, that is, the current level of technology.
The production firm maximizes period-by-period profit by choosing the demand for

physical capital and efficiency labor. In the equilibrium, the marginal product of each input
is equal to its rental price

rt = αKα−1
t−1 [At(1 − lt )]

1−α = αγ 1−α
t kα−1

t−1 (1 − lt )
1−α,

wt = (1 − α)Kα
t−1[At(1 − lt )]

−α = (1 − α)γ 1−α
t kα

t−1(1 − lt )
−α.

The fact that the planner’s economy and the market economy have an identical optimal
allocation follows from the equivalence of the optimality conditions.

APPENDIX B: PROOF OF PROPOSITION 1

(a) Let Wt be the value of lifetime utility in period t . From (6), we have

Wt = ln ct + B ln lt + ln At−1 + δEt

[ ∞∑
s=0

δs(ln ct+1+s + B ln lt+1+s + ln At+s )

]
.

The value function Wt varies with time as it depends on the growing-over-time technology
At−1. We guess that the function Wt can be represented as Wt = V (kt−1, ht−1, γt )+µ ln At−1,
where V is a time-invariant value function, which depends on the endogenous state variables
kt−1, ht−1 and the exogenous state variable γt . Then, we obtain

V (kt−1, ht−1, γt ) = Wt − µ ln At−1 = ln ct + B ln lt + ln At−1 − µ ln At−1

+ δEt

[ ∞∑
s=0

δs(ln ct+1+s + B ln lt+1+s + ln At+s )

]
= ln ct + B ln lt + δµ ln At

− δµ ln At + (1 − µ) ln At−1 + δEt

[ ∞∑
s=0

δs(ln ct+1+s + B ln lt+1+s + ln At+s )

]
.

By using the fact that ln At = ln At−1 + ln γt , we get

V (kt−1, ht−1, γt ) = ln ct + B ln lt + (1 − µ + δµ) ln At−1 + δµ ln γt

+ δEt

∞∑
s=0

[δs(ln ct+1+s + B ln lt+1+s + ln At+s ) − µ ln At ] = ln ct + B ln lt

+ (1 − µ + δµ) ln At−1 + δµ ln γt + δEt [(Wt+1 − µ ln At)] = ln ct + B ln lt

+ (1 − µ + δµ) ln At−1 + δµ ln γt + δEt [V (kt , ht , γt+1)] .
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In order V (kt , ht , γt+1) is time-invariant, the term ln At−1 should disappear from the last
equation. This implies that (1 − µ + δµ) = 0. Consequently, we have

V (kt−1, ht−1, γt ) = ln ct + B ln lt + δ

1 − δ
ln γt + δEt [V (kt , ht , γt+1)].

This functional equation is equivalent to the Bellman equation (9).
(b) We define the operator

TV = max
lt ,kt ,ht

{ut + δϕ(ht )V (kt , ht , γ ) + δ [1 − ϕ(ht )] V (kt , ht , 1)},

where ut = u(kt−1, ht−1, γt , kt , ht , lt ) represents the momentary utility of period t after
substituting consumption from budget constraint (7).

To show that T is a contraction, we verify that it satisfies Blackwell’s sufficiency
conditions.

First, suppose kt−1 ∈K≡ [kmin, kmax], ht−1 ∈H≡ [hmin, hmax] and lt ∈ [0, 1]. Con-
sider any two functions f and φ, defined on K×H× {γ , 1}. Assume that f (kt−1,

ht−1, γt ) ≥φ(kt−1, ht−1, γt ) for all kt−1 ∈K, ht−1 ∈H, γt ∈ {γ , 1}. Let (k
f
t , h

f
t , l

f
t ) and

(k
φ
t , h

φ
t , l

φ
t ) attain Tf and T φ, respectively, for any kt−1 ∈K, ht−1 ∈H, γt ∈ {γ , 1}. After

denoting u
f
t = u(kt−1, ht−1, γt , k

f
t , h

f
t , l

f
t ) and u

φ
t = u(kt−1, ht−1, γt , k

φ
t , h

φ
t , l

φ
t ), we have

Tf = u
f
t + δϕ

(
h

f
t

)
f
(
k

f
t , h

f
t , γ

)
+ δ

[
1 − ϕ

(
h

f
t

)]
f
(
k

f
t , h

f
t , 1

)
≥ u

φ
t + δϕ

(
h

φ
t

)
f
(
k

φ
t , h

φ
t , γ

)
+ δ

[
1 − ϕ

(
h

φ
t

)]
f
(
k

φ
t , h

φ
t , 1

)
≥ u

φ
t + δϕ

(
h

φ
t

)
φ
(
k

φ
t , h

φ
t , γ

)
+ δ

[
1 − ϕ

(
h

φ
t

)]
φ
(
k

φ
t , h

φ
t , 1

)
= T φ.

Therefore, T is monotone.
Second, for any positive constant m ≥ 0, we obtain

T (V + m) = max
lt ,kt ,ht

{ut + δϕ(ht ) [V (kt , ht , γ ) + m]

+ δ [1 − ϕ(ht )] · [V (kt , ht , 1) + m]} = TV + δm.

Therefore, T discounts.

APPENDIX C: CALIBRATION
PROCEDURE

We calibrate the parameters of the model in the steady state. We define a steady state as
a situation in which all variables of the stationary economy (6)–(8) take constant values.
In the steady state, instead of switching between two different growth rates, γt ∈ {γ , 1}
and, consequently, two levels of labor productivity, γ 1−α

t ∈ {γ 1−α, 1}, the economy faces a
constant growth rate, γ , and a constant level of labor productivity, a, given by

γ = γ ϕ(h) + 1 − ϕ(h), (C.1)

a = γ 1−αϕ(h) + 1 − ϕ(h). (C.2)
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By evaluating FOCs (10)–(12) and constraint (7) in the steady state, we obtain, respectively,

c = (1 − α)l

B
a kαn−α, (C.3)

γ

δ
= 1 − dk + αa kα−1n1−α, (C.4)

γ

δ
= 1 − dh + v exp(−vh)cδ ln γ

1 − δ
, (C.5)

c + γ (k + h) = (1 − dk)k + (1 − dh)h + a kαn1−α, (C.6)

where n = 1 − l. In terms of the ratios πc, πk , and πh, conditions (C.3), (C.4), and (C.6)
can be rewritten as

B = πcn

(1 − n)(1 − α)
, (C.7)

δ = γ

1 − dk + α/πk

, (C.8)

dk = dh = 1 − γ + 1 − πc

πh + πk

. (C.9)

Equations (C.7)–(C.9) provide a basis for calibrating the parameters B, δ, dk , and dh.
We now calibrate the parameter γ . From (C.1) we have that exp(−vh) = 1 − ϕ(h) =

(γ − γ )/(γ − 1) and, consequently,

v = − 1

h
ln

(
γ − γ

γ − 1

)
. (C.10)

The last result allows us to rewrite condition (18) as follows:

γ

δ
= 1 − dh − πc

πh

(
γ − γ

γ − 1

)
ln

(
γ − γ

γ − 1

)
· δ ln γ

1 − δ
. (C.11)

By solving this equation numerically, we obtain the value of the parameter γ . Next, we
restore the technology by using (C.2)

a = γ 1−α

(
γ − 1

γ − 1

)
+

(
γ − γ

γ − 1

)
. (C.12)

Given the technology level, we compute the capital-to-labor ratio,

k

n
=

[
γ /δ − 1 + dk

αa

]1/(α−1)

, (C.13)

and find the steady-state level of output, y = an(k/n)α . Subsequently, we compute the
steady-state human capital stock, h = πhy, and calibrate the parameter v by using equa-
tion (23).

In sum, our calibration procedure identifies uniquely the model’s parameters
{B, δ, dk, dh, γ , v} so that the model reproduces {πc, πk, πh, n, γ }.

https://doi.org/10.1017/S1365100504040064 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100504040064


580 LILIA MALIAR AND SERGUEI MALIAR

The steady-state expression of the FOCs of Kydland and Prescott’s (1982) model coin-
cides with (C.7)–(C.9) under πh = 0. For given {πc, πk, n, γ }, these conditions identify the
values of B, δ, and dk .

APPENDIX D: SOLUTION PROCEDURE

To solve for equilibrium in the model, we employ a variant of the parameterized expectations
algorithm (PEA) by Den Haan and Marcet (1990). A further description of the PEA and
its applications can be found in Marcet and Lorenzoni (1999). To ensure the convergence
of the PEA, we bound the simulated series on initial iterations as described in Maliar and
Maliar (2003b).

Since there are two intertemporal FOCs, we must parameterize two conditional expec-
tations. We parameterize the right-hand side of FOC (11) as follows:15

γtct

δ
= exp(β1 + β2 ln kt−1 + β3 ln ht−1 + β4 ln γt ). (D.1)

The second intertemporal FOC may not be parameterized in this manner because there
would be two equations identifying consumption and no condition identifying physical and
human capital. To deal with this complication, we premultiply both sides of FOC (12) by
ht and parameterize the right-hand side of the resulting condition as follows:

γtct

δ
· ht = exp(λ1 + λ2 ln kt−1 + λ3 ln ht−1 + λ4 ln γt ). (D.2)

We approximate the optimal value function V (kt−1, ht−1, γt ) by a second-order polynomial

V(kt−1, ht−1, γt ) = η1 + η2 ln kt−1 + η3 ln ht−1 + η4 ln γt + η5 ln kt−1 ln ht−1

+ η6 ln kt−1 ln γt + η7 ln ht−1 ln γt + η8(ln kt−1)
2 + η9(ln ht−1)

2 + η10(ln γt )
2. (D.3)

We use the following iterative procedure:

• Step 1. Fix the initial coefficients {βi}4
i=1, {λi}4

i=1 and {ηi}10
i=1. Fix initial condition

(k−1, h−1). Draw a random series of numbers {ut }T
t=0 from a uniform distribution,

[0, 1], and fix it.
• Step 2. Given {βi}4

i=1 and {λi}4
i=1, use (7), (10), (27), and (28) to calculate recursively

{cg

t+1, c
b
t+1, l

g

t+1, l
b
t+1, kt , ht , γt }T

t=0. To determine a sequence of the economy’s states,
use the series {ut }T

t=0. Specifically, for each t , compute the probability ϕ(ht ) and
compare it with the random number ut . If ϕ(ht )≥ ut , then assume γt = γ ; otherwise,
take γt = 1.

• Step 3. Given {ηi}10
i=1 and {cg

t+1, c
b
t+1, l

g

t+1, l
b
t+1, kt , ht , γt }T

t=0, from the Bellman equa-
tion (9), compute the series of values of the value function in the two states,
{V (kt−1, ht−1, γt ), V (kt−1, ht−1, 1)}T

t=0. Restore the variables in the right-hand sides
of FOCs (11) and (12). Run the nonlinear least-square regressions of the correspond-
ing variables on the functional forms (D.1), (D.2), and (D.3). Use the reestimated
coefficients {βi}4

i=1, {λi}4
i=1 and {ηi}10

i=1 as input for next iteration.
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Iterate on the coefficients {βi}4
i=1, {λi}4

i=1, and {ηi}10
i=1 until a fixed point is found. To

solve for a fixed point, we use a built-in MATLAB gradient-descent procedure “f solve.”
The length of simulations was T = 5,000.

We also apply the PEA for calculating a solution to Kydland and Prescott’s (1982)
model. We parameterize the intertemporal condition of the stationary version of the model
as follows:

γ ct

δ
= exp(e1 + e2 ln kt−1 + e3 ln θt ).

We fix initial condition (k−1, θ−1) and the initial coefficients {ei}3
i=1. We draw a series of

technology shocks, {θt }T
t=1, and fix it. As above, we iterate on the coefficients {ei}3

i=1 until
we find a fixed point.
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