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Abstract
The paper proposes a novel method to detect graspable handles for picking objects from a confined and cluttered
space, such as the bins of a rack in a retail warehouse. The proposed method combines color and depth curvature
information to create a Gaussian mixture model that can segment the target object from its background and imposes
the geometrical constraints of a two-finger gripper to localize the graspable regions. This helps in overcoming the
limitations of a poorly trained deep network object detector and provides a simple and efficient method for grasp
pose detection that does not require a priori knowledge about object geometry and can be implemented online with
near real-time performance. The efficacy of the proposed approach is demonstrated through simulation as well as
real-world experiment.

1. Introduction

A robot capable of manipulating its environment is more useful than one that can only perceive it. Such
robots will be able to carry out many of our daily chores, thereby relieving humans for more creative
pursuits. For this to happen, the robots are required to have human-like manipulation and grasping
abilities. While the manipulation abilities of robots have matured over the years, grasping still remains
a difficult problem which has attracted a lot of attention in the recent past due to the increasing demand
of such manipulative robots in almost all sphere of human activities. A number of methods exist in
literature that attempt to solve this grasping problem [1]. Our focus is primarily restricted to vision-
based methods that aim at finding or detecting graspable handles using visual sensor data as input.
Some of these methods use visual features in 2D images to localize graspable regions, [2, 3] while
others use range or depth data for this purpose [4, 5, 6, 7, 8], the latter becoming more popular owing
to the availability of low-cost RGBD sensors. Recently, the deep learning-based methods are becoming
increasingly popular for detecting graspable regions [9, 10, 11, 12, 13]. Most of the existing methods for
vision-based grasping can be broadly classified into two categories: one that relies on the availability of
accurate geometric information about the object (or a CAD model) [14, 15, 16] making them impractical
in several real-world use cases, and the other that computes grasping affordances directly from a RGBD
point cloud by harnessing local geometric features without knowing the object identity or its accurate
3D geometry [6, 17, 18, 19].

This paper looks into the problem of grasp pose detection (GPD) which concerns itself with finding
suitable graspable affordances for a given object in a cluttered environment with application to ware-
house robotics as specified by the Amazon Picking Challenge [8, 20, 21]. Specifically, it is expected
that an articulated robotic system should be able to automatically pick objects from a rack to a tote
and vice versa using an on-board vision system. The grasping problem is challenging in this case as
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Figure 1. Input and output of the proposed system. Input is a RGBD image obtained from a robot
camera. The output is the detection of suitable graspable affordances with their corresponding grasp
poses.

the robot has to identify an object within a confined and cluttered space of a bin of the rack. This is
different from other cases where people either consider isolated objects as in ref. [6] or table top cases
as in refs. [22, 7]. The problem is challenging due to several factors like partial occlusion, poor illumi-
nation, change of shape and size of deformable objects, scaling as well as restricted field of view for the
rack bins. Contrary to the existing methods that separate the grasping from object recognition problem
[18, 6], an attempt is made here to combine these two aspects to improve the accuracy of GPD and find
suitable graspable affordances necessary for picking objects by a robot manipulator. The object recogni-
tion is carried out by training a deep learning network like RCNN [23] which requires a large number of
training examples generated through laborious manual effort. The objective of this work is to reduce the
training requirement for the object detector while improving the accuracy of GPD through the inclusion
of object identity in the process of computing graspable affordances. This is achieved using a Gaussian
mixture model (GMM) [24] that combines color and curvature information to segment the surfaces of
the target object from its background within the bounding box provided by the object recognizer. This
allows us to use a weakly trained object recognizer for obtaining same level of GPD performance. In
other words, the inaccuracy of object recognition module is compensated by using a GMM that seg-
ments the target from the background clutter within the bounding box. The GMM for the target can be
trained using a few images from the training set used by the object recognition module and hence does
not require any additional information or a priori knowledge of object shape or CAD model. The overall
method of GPD involves the following four steps: (1) obtain a bounding box around the target object
using a RCNN object detector, (2) create surface segments within the bounding box using a region
growing algorithm [25] that exploits the continuity of surface normals [26, 27] and then remove the
background clutter using a GMM model of the target, (3) apply a set of empirical rules on the remaining
surface segments to identify primitive shapes of the object and (4) apply a modified version of curve-
fitting algorithm [18, 19] to localize the grasping handles for a two-finger gripper. The working of the
resulting GPD pipeline is shown in Fig. 1. The input to the proposed method is an RGBD image, shown
in the left image, obtained from a kinect camera mounted on the robot wrist and the output is a set of
graspable handles along with their corresponding grasp poses as shown in the right image.

There are several advantages of this approach. For instance, it does not require any computationally
intensive training phase to compute GPD unlike other deep learning methods that attempt to process
RGB or RGBD images directly [11, 12, 13, 28, 29] and in some cases, make use of simulators like
Graspit! [14] to produce examples required for training. This allows us to carry out GPD on the
fly in near real-time once the target item has been localized in the image view frame. Since most
of the vision-based robotic applications for grasping use an object detector for locating the target
object, including object identity can greatly simplify the process of GPD without any significant

https://doi.org/10.1017/S0263574721000503 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000503


Robotica 449

increase in the computational requirement. Further simplification in GPD is achieved by identifying the
closest primitive shape, rather than the actual shape of the object. This is adequate for grasping most
objects using a two-finger gripper commonly used in industries [30]. By imposing the constraints of a
two-finger gripper and approximating the exact shape by its closest primitive, the 6-dimensional grasp
pose search problem is reduced to a 1D search problem. Finally, the proposed method can efficiently
detect grasp poses for box-type objects which is considered to be a difficult problem compared to other
shapes like spheres or cylinders [17]. Unlike the existing methods that primarily rely on curvature
information for computing these affordances, the proposed work makes use of surfaces normals and
their directions to create multiple surface segments which are later combined together using empirical
rules to identify shape primitives. This allows us to grasp rectangular box-type objects more efficiently
compared to the above approaches. This also allows us to take into account the presence of neighboring
objects which could render the affordances unusable by the robot.

In short, the main contributions made in this paper are as follows:

• A novel method for GPD is proposed that incorporates object identity to simplify the process of finding
grasping handles for objects in a clutter from RGBD point clouds. The proposed method is computa-
tionally efficient and can be implemented online with near real-time performance and does not require
any a priori knowledge about the object geometry or shape.

• The proposed approach uses a novel GMM based on color and curvature to segment surfaces belonging
to the target object from those in the background. This allows one to work with a weakly trained object
recognizer needing less amount of training data.

• The proposed method identifies primitive shapes from the surface segments allowing us to effectively
grasp box-type objects thereby overcoming the limitations of existing methods that primarily rely on
curve-fitting algorithms to find grasp handles.

• The efficacy of the proposed method is established through rigorous experiments with a large number
of household objects which are picked by a UR-10 robotic arm with an RG2 gripper from a vertical
shelf.

The rest of this paper is organized as follows. The proposed method is explained in Section 2. The
analysis of various simulation and experimental results are provided in Section 3 followed by conclusion
in Section 4.

2. Proposed method

As described earlier, the objective of this work is to detect graspable handles for an object in a clutter by
directly processing the RGBD point cloud without making use any a priori knowledge about the object
geometry. The flow diagram depicting the steps involved is shown in Fig. 2. The proposed method con-
sists of the following four modules. The first module is the object recognition module that uses a deep
learning-based algorithm (Faster R-CNN) [23] to detect the target object in the workspace. A bounding
box with maximum likelihood (score) is returned by this module for a given query object. A bounding
box is a rectangular region on the image frame defined by a tuple (x, y, w, h), where (x, y) is the pixel
coordinate of the left-bottom corner of the box and (w, h) are its width and height, respectively. The
object detection module returns this bounding box for the target object, thereby specifying its location
within the image frame. Depending on the accuracy of the detection algorithm, this bounding box could
be bigger including other objects in the vicinity of the target object. The second module, called surface
extraction module, processes the RGBD point cloud data within this bounding box to extract surfaces
by applying region growing algorithm to the surface normal attribute of each pixel. The region growing
algorithm may not always provide perfect boundary of the target object due to over or under segmen-
tation. This problem is remedied using a GMM to segment the target object from its background. The
third module, called shape-fitting module, recognizes the primitive shape for the segmented target using
principal component analysis (PCA) and empirical geometric rules. The fourth module, called grasp
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Figure 2. Flow diagram of our proposed method. The pipeline consists of four major modules: (1)
RCNN-based object recognition module, (2) surface segmentation module, (3) shape fitting module and
(4) grasp localization module.

localization module, detects the grasping handles by taking into account the geometry of two-finger
grippers and the symmetry of the primitive shape identified. The details of each individual module are
described next in this section.

2.1. Object recognition module

The advent of deep learning [31] has transformed the field of object recognition and detection in com-
puter vision. Particularly, the deep convolutional neural networks (CNNs) were shown to provide double
digit improvement over traditional methods in the ImageNet challenge [32]. Since then a number of deep
networks have been developed to recognize and detect objects. Some of these models are RCNN, Faster-
RCNN [23], YOLO [33], R-FCN [34]. Many researchers have explored scene segmentation network such
as PSPNet [35] for object segmentation. [36, 37]. Researchers have also applied deep learning for rec-
ognizing objects directly in RGBD point clouds.[38, 39, 40]. In general, deep learning-based methods
require large amount of data for training the detection or recognition models. Many of these datasets
are generated through laborious manual effort requiring thousands of man-hours. Additionally, process-
ing RGBD datasets are computationally more expensive compared to processing only RGB images.
Considering all these factors, a middle path is taken that combines a simple deep learning-based object
recognition module with a traditional feature-based post-processing module to obtain the grasping han-
dles for objects in a clutter. A lightly trained Faster-RCNN [23] is used to recognize objects which
returns multiple bounding boxes for a given object with varying likelihood score. The bounding box
with a maximum score is usually taken for the further processing.

2.2. Surface extraction module

It is the second module in our pipeline that takes the bounding box obtained from the object recognition
module as the input and processes the RGBD point cloud within this bounding box to extract surfaces
which will be used for identifying primitive shapes in the next step. It consists of two steps – first,
applying region growing algorithm to create surface segments and then use GMM-based models to
remove background clutter. These are explained in the following two sub-sections.
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Figure 3. Creating surface segments using region growing algorithm: (a) the RCNN bounding box
(marked with red color) obtained from the object recognition module, (b) the patches of surface segments
obtained after applying the first iteration of region growing algorithm and (c) the surface segments
obtained after merging neighboring patches. Each color represents a different surface.

2.2.1. Creating surface segments using region growing algorithm
Inside each window given by faster RCNN, the corresponding depth data are cropped and considered for
further processing. The main idea is to group the points which belong to same surface. For instance, it
is desirable to have different surface segments, one for each face of a box. Similarly, there should be two
surface segments for a cylinder – one curved surface on the side and one planar top surface (depending on
the view). This goal is achieved by applying region growing algorithm [27] that uses the angle between
surface normals as the smoothness criterion to decide whether the neighboring pixels belong to the
same surface or not. The algorithm first considers a seed point, and then the surface normal between
the point and neighborhood points is, compared. If the angle between them is less than a threshold,
then it is considered that the point belongs to the current region. Otherwise, it is considered as a new
seed point. This process is repeated until all points are checked. The implementation of region growing
algorithm available with PCL [41] is used for this work. The above process may result in multiple
patches for a given surface. These patches are further merged with the neighboring patches if they have
very similar average surface normals. The similarity is checked by taking the dot product between the
average surface normals of two neighboring patches. If the dot product is above a certain threshold, the
neighboring patches are considered to be the parts of the same surface. The output of the region growing
algorithm is shown in Fig. 3. The first figure shows the bounding box around the target object obtained
from the object recognition module. The surface segments created using region growing algorithm based
on smooth of surface normals are shown in the second image. The effect of second stage of smoothing
is shown in the last figure which shows more contiguous segments for each side of the box.

2.2.2. GMM-based segmentation using color and curvature
The bounding box returned by the object detection module may not exactly enclose the object. It may
also include other background objects inside it. The surface segments for the target object created using
region growing may include points from other objects within the target bounding box. This happens
because the surface normal information is itself quite noisy and may not be adequate to detect subtle
changes in direction at object boundaries. This limitation is shown in Fig. 4(b) where the surface seg-
ment belonging to the target object is shown in red color and the background points are shown in blue
color. The background objects lying close to the target object become a part of the target surface when
region growing is applied to the surface normals. To solve this problem, the foreground target object is
modeled using a GMM that uses color and depth curvature attribute of the RGBD point cloud. The hue
and saturation component of the HSV color space is utilized instead of RGB color information. The V
channel is discarded to remove the illumination effect. The depth curvature is obtained using the Taubin
Fitting method [18] described in the next section. The GMM model is trained using the templates for
each target object. Since the identity of the object is known from the object recognition module, the
corresponding GMM model could be used to localize it in the RGBD point cloud within the bounding
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Figure 4. Gaussian mixture model is used to segment the target object from its background. (a) The
bounding box obtained using RCNN object recognition module; (b) the surface segments obtained using
region growing module. The surface segment with red color includes points from background object: (c)
the target surface after applying GMM model. It clearly segments the target object from its background
within the bounding box. Red color denotes the points that belong to the target and the blue points
correspond to other background objects.

box. The proposed architecture uses two mixture models: one is trained to estimate the probability of
the foreground pixels and the other learns the background pixels from the given image. The predictions
are then compared to decide the category of a pixel. The GMMs are designed as follows:

Given the dataset Dv = {[h, s, d, cv]N
j=1}Di=1, where v= {target, background}1; h, s, d represent the

hue, saturation and depth curvature and cv is the class of the corresponding pixel, N is the total number
of pixels in the patch and D is the total number of training images, the joint probability distribution of
the dataset is given by:

Pv(h, s, d, cv|θ)=
K∑

k=1

Pv(k)Pv(h, s, d, cv|k), (1)

where K is the number of Gaussians in the mixture model, Pv(k) is termed as the prior and
Pv(h, s, d, cv|k) is the conditional probability density function which is given by

Pv(h, s, d, cv|k)=Gk
v
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where μk
v and �k

v are the mean and covariance matrix, respectively, of the k-th Gaussian. The posterior
Pv(cv|h, s, d) gives the probability of the class v. Therefore, the probability of the target pixel belonging
to class v (= target) is

Ptarget = Pv(cv=target|h, s, d)
Pv(cv=target|h, s, d)+ Pv(cv=background |h, s, d)

(3)

A pixel is considered to be a part of the target object if this probability Ptarget > 0.5, otherwise it
is considered as a part of the background. All the pixels inside the bounding box are subjected to this
test. Figure 4(c) shows the performance of the proposed GMM-based segmentation. It can be observed
that the proposed technique is able to successfully identify the true background pixels and segregate the
pixels from the target object (shown in red).

The performance of segmentation depends on the quality of training. It is also important to select
a right number of clusters which can be determined empirically through several trials. An incremental
clustering method is used to arrive at the optimal number of clusters required for the GMM model.
The pseudocode of the algorithm is provided in Algorithm 1 below. It takes the RGBD point cloud as
input and returns the number of clusters K and their cluster centers {μk}, k = 1, 2, . . . , K as output.
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Algorithm 1 Incremental Clustering for Gaussian Mixture Model

Require: Input data points pi(h, s, d), i= 1, .., N ; {h = Hue, s = Saturation, d = Depth Curvature}
1: Initialize the number of clusters: K← 0
2: for i= 0 to i=N do
3: if K = 0 then
4: Add a cluster μK← pi
5: K←K + 1, Cluster Size SK← 1
6: else
7: Compute the distance of the point pi from all clusters μk , k = 1, 2, . . . , K: dik = ‖pi −μk‖
8: Compute the cluster label cmin with minimum distance dmin: cmin= arg mink dik and dmin =

mink dik
9: if dmin < θ {θ is a user-defined threshold} then

10: Assign the point pi to the cluster cmin
11: Update its cluster center: μc min← Sc minμc min+pi

Sc min+1
12: Increment its cluster size Sc min← Sc min + 1
13: else
14: Create a new cluster: K←K + 1; μK← pi; SK← 1
15: end if
16: end if
17: end for
18: return K , μk , k = 1, 2, . . . , K

(a) (b)

Figure 5. Precision-recall curve for detecting two types of objects – (a) cylinder and (b) box, using
Gaussian mixture model based on color, curvature and combination of both. It shows that combining
color with depth curvature information provides better discrimination compared to using either color
or curvature alone.

As mentioned before, each point is represented by three attributes of hue (h), saturation (s) and depth
curvature (d).

The positive effect of combining color and depth curvature in GMM can be further corroborated
by analyzing Fig. 5 which shows the precision–recall curve for detecting two different kinds of objects
– cylindrical and box types using GMM models. The red line shows the performance of GMM mod-
els in detecting objects using only depth curvature attribute. The green line shows the performance of
GMM models that uses only hue and saturation color components to detect objects. The blue line shows
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Figure 6. Flow diagram of method for fitting three shape primitives – box, sphere and cylinder. Primitive
shapes are identified by applying empirical rules to geometrical attributes such as, radius of curvature
(ri), variance of surface normals (σi) and mean surface normal (n̂i).

the performance of GMM models that use both color (h,s) and depth curvature (d). The figure clearly
shows that the combination and color and curvature improves performance of detecting targets against
its background. By comparing the plot presented in Fig. 5(a) and (b), it can be concluded that it is easier
to detect curved objects compared to flat/box-type objects. The former produces a flatter P–R curve with
high precision compared to the latter where it bends quickly with higher recall.

2.3. Primitive shape fitting module

This is the third module of our proposed pipeline. It takes the surface segments obtained from the pre-
vious module as input and gives out the shape information about the object. While it is not absolutely
mandatory to detect shapes to find grasping handles, the knowledge of shape can be used for simplifying
the computation of graspable affordances for a given object. The use of a two-finger gripper further sim-
plifies the grasping problem by obviating the need for computing the exact shape information. In such
cases, the object can be approximated by its closest primitive shapes or a combination of such shapes.
The closest primitive shape for a given object is identified by applying empirical geometrical rules to
the surface segments obtained from the previous module. Without any loss of generality, the method
for identifying three primitive shapes, namely cuboidal (box-type), spherical and cylindrical shapes, is
demonstrated in this section. It is possible to derive similar rules to identify other primitive shapes as
well. The flow diagram of the method for identifying the above three primitive shapes is shown in Fig. 6.
It is assumed that M surface segments are obtained for a given target object from the previous module
(surface extraction module). The following three parameters are computed for each of these surface seg-
ments: (1) radius of curvature ri, (2) variance of surface normals σi and (3) mean surface normal n̂i. The
segments for which the radius of curvature is more than a certain threshold r1 and variance of surface
normals is below a threshold σ1 must represent flat surfaces belonging to a box-type cuboidal object. The
segments not satisfying this condition must represent curved surfaces belonging to either a cylindrical
or a spherical object. Additional conditions need to be applied to distinguish a spherical object from a
cylindrical one. The surface normals for a spherical surfaces will meet at a point when extended in the
direction opposite to surface normals as shown in Fig. 7(b). On the other hand, the surface normals for
a cylindrical object converge to a line as shown in Fig. 7(a). Similarly, additional constraints could be
applied to confirm box-type shapes. For instance, the surface normals for two adjacent surfaces will be
orthogonal to each other. These are shown as blue arrows in Fig. 7(c). One can also observe that one
of the other two major axes obtained using PCA for these two adjacent surfaces will be parallel to each
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a

b

(a) (b) (c)

Figure 7. Additional conditions to be applied to fit a shape primitive for three kinds of objects: (a)
cylinder, (b) sphere and (c) box. Surface normals for a sphere converge to a point. Surface normals
for a cylindrical object converge to a line. The surface normals of two adjacent surfaces of a box-type
object are orthogonal to each other.

other. The parallel axes are shown in red in this figure. Length along the parallel axis gives the length
of the box, while length of the segment along the other axis gives the height of the box. Through these
three examples, it is demonstrated that many of these rules are very simple to derive from observation
and can be utilized to resolve the ambiguities arising from the inaccuracies of previous modules. The
user-defined thresholds are also decided empirically through repeated experiments. The values used in
this paper are r1 = 0.1 m and σ1 = 0.1. The method for computing the curvature and variance attribute
of each surface is described next in this section.

2.3.1. Curvature estimation
The surface curvature is a reliable feature in determining the shape of a given 3D object. The Taubin
quadric fitting method provided in ref. [18] is used to find curvature for a given segment. The method
involves approximating a set of points in a Cartesian coordinates by fitting a quadratic surface to it in a
least square sense. Once this parametric surface is known, maximum curvature is computed for a set of
randomly sampled points from the local surface. The median of these maximum curvature is taken as
the final curvature of the segment under consideration.

2.3.2. Variance of surface normals
Sometimes the curvature alone is not adequate for deciding the shape of a given object. The variance
of the surface normals can be used to decide if a given surface is flat or curved. The variance of surface
normals will be less compared to a curved surface where the variance could be high. The variance of
surface normals for a given segment i is given by:

σ 2
i = E(n̂2

i )− [E(n̂i)]2; i= 1, 2, . . . , M (4)

where E(.) is the expected value computed over all points in a given surface i. The primitive shapes for
few objects computed using the above method are shown in Fig. 8. It also shows the three main axes for
a given surface. The blue axis represents the surface normal. The other two (major and minor) axes are
obtained using PCA and are shown in yellow and cyan colors. The knowledge of the object shape will
be utilized for computing a suitable grasping handle as explained in the next section.

2.4. Grasp localization module

This is the last module in our pipeline that computes the graspable handles for a given target object.
The knowledge of object shape is useful in finding a suitable grasp handle required for picking up the
object. The grasp handles are computed only for a two-finger parallel jaw gripper which is the most
common type of gripper used for most pick and place tasks in industries. Finding 6 degrees of freedom
(DOF) grasp pose for a general gripper is a difficult problem. We simplify this requirement by making
several assumptions about how the gripper will pick an object. This can be understood by studying Fig. 9

https://doi.org/10.1017/S0263574721000503 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000503


456 Olyvia Kundu et al.

Figure 8. Primitive shape fitting for few 3D objects – cylinder, sphere and a box.

Figure 9. Gripper parameters. Empty circle represents the target object to be picked by the gripper.
The blue circles are the obstacles. The condition g > h must be satisfied to avoid collision with other
objects.

which shows a top view of how a two-finger gripper will approach an object in a clutter. The maximum
clearance between the fingers, the maximum hand aperture, is denoted by D. The width of finger in
horizontal plane is denoted by h. It is assumed that the gripper will approach the object in a direction
opposite to the surface normal of the object in the view. If multiple surface normals are available, each
one will be evaluated for its suitable and validity as will be explained shortly. This approach direction is
shown by the blue arrow and carries a notation −n̂. The green arrow denoted by â is the minor axes of
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Figure 10. Search for a suitable grasp handle for different types of object: (a) cylindrical object, (b)
spherical object and (c) box-type object.

the surface segment and the red dot (vector pointing out of the paper plane) denoted by b̂ is the major
axes of the surface segment. The major and minor axes for a given surface are obtained using PCA as
explained earlier. If the object width is less than the maximum hand aperture D, the gripper can be used
to grasp the object. Additionally, it is also necessary to check if the gap between two objects g is greater
than the width of fingers h. This will avoid collision during grasping. Since the object shape is known,
the search for grasping handle is started at the geometric center of the surface segment as shown in
Fig. 10. Essentially, a surface patch of dimension D×w, where w is the depth of the finger, is searched
in the vertical plane (along the major axis b̂). If a patch is found that satisfies the gripper constraints
mentioned above, the centroid and the gripper pose are returned to the robot for execution. If the gripper
constraints are not satisfied, the search for another patch is carried out along the direction shown in
Fig. 10. For cylindrical and box-type objects, the search is continued along the major axis while for
spherical objects, the search is continued along the circumference by rotating the gripper handle about
the surface normal.

The output of the proposed pipeline for grasp handle detection in a clutter is shown in Fig. 11. The
primitive shapes for box, cylinder and spherical type of objects are shown in green, blue and red colors,
respectively. Only one grasping handle is shown for cylindrical and spherical objects, and one handle per
visible segment is shown in case of box-type objects. The blue line shows the direction of surface normal.
The grasp handles are shown in cyan color. The red line shows the minor axis here which aligns with
the gripper plane. It only shows the valid grasp handles which can be executed by a robot without any
collision with any other objects in the neighborhood. This is validated through a real-world experiment
as will be described in the next section.

3. Simulation and experimental results

This section provides details of several experiments carried out to evaluate the performance of the pro-
posed method for detecting grasping handles of objects in a clutter. This is described next in the following
subsections.

3.1. Datasets

The performance of the proposed pipeline for computing grasping handles is evaluated on two differ-
ent datasets comprising of various household objects. One of them is created by us and consists of 482
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Figure 11. Detecting grasping handles in a clutter. The three primitive shapes – boxes, spheres and
cylinders – are represented by green, red and blue colors, respectively. The handles are shown by cyan
color. For each handle, the dark blue line is the normal direction.

frames of RGBD images collected using a Kinect camera. This includes nearly 382 frames for 9 individ-
ual objects in multiple poses and about 100 frames having multiple objects in a clutter. This dataset is
being made available publicly for the convenience of readers [42]. The second dataset is a subset of the
BigBIRD dataset [43] comprising of nearly 4000 frames having about 26 different type of objects. This
dataset contains RGBD frames of only individual objects. The ground truth data for primitive shapes is
identified through visual inspection.

3.2. Software and hardware setup

The proposed pipeline is implemented in C/C++ using the point cloud library [41] on a GNU/Linux
system (Ubuntu 16.04) running on an i7 processor with 16 GB of RAM. This performance is further
corroborated through a real-world experiment using a 6 DOF UR10 robot manipulator with a RG2 two-
finger gripper [44]. The experimental setup is shown in Fig. 12(a). It uses a Kinect camera [45] mounted
on its end-effector to detect objects and finding grasp handles for each object. The intermediate steps
of the grasping pipeline are shown in Fig. 12(b)–(f). The video demonstrations [46], source codes [47]
and datasets [42] have been made available online for the convenience of readers. The object recognition
module makes use of a deep network (RCNN) module which returns a bounding box containing the target
object in the RGB image frame. This module is implemented using Caffe deep learning framework [48].
It is to be noted that the proposed approach can also be used with any other deep network model that
returns bounding box for the target object in the image frame.

3.3. Analysis of simulation results

The output for shape fitting algorithm for the above two datasets is shown in Tables I and II, respectively.
GMMs for each target object are trained using 150 frames per object. The average accuracy of our
algorithm in detecting shapes is 92.06% for the first dataset and 93.4% for the second dataset. The
performance of our algorithm in detecting grasping handles is shown in Table III. If one valid handle
can be detected for a given object, it is considered as a success. This table shows the performance
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Table I. Primitive shape detection results for the first dataset (our own) comprising of 382 RGBD frames
of individual objects [42]. The average accuracy is 92.06% over 9 different objects of three shape types.
The ground truth shape is decided through visual inspection.

S. No. Object Ground truth #frame #pose #cylin #sph #box %Correct

1 toothpaste Box 40 10 1 0 37 92.5
2 doveSoap Box 50 10 1 1 46 92
3 tissuePaper Box 40 10 2 0 34 85
4 garnetBulb Box 50 10 3 0 45 90
5 careMate Cylinder 60 5 57 0 3 95
6 deviCoffee Cylinder 50 5 46 0 4 92
7 fevicol Cylinder 32 5 48 0 0 96
8 blackBall Sphere 30 1 3 44 0 88
9 redGreenBall Sphere 30 1 1 49 0 98

Total # frames 382
Average accuracy 92.06

of detecting primitive shapes and handles for both individual objects and the objects in a clutter. As
one can see in this table, the performance of detecting handles is slightly lower than detecting shapes.
It is expected as a number of gripper-specific constraints are applied to detect valid grasp handles to
avoid collision with neighboring objects. Also, one can see that detecting handles for box-type objects
is comparatively difficult and hence results in lower accuracy compared to the cylindrical or spherical
shapes. Fig. 11 shows the output of the proposed algorithm for objects in a clutter. The primitive shape
identified is shown as a mesh superimposed on the actual object. The normal to each surface is shown
as a blue line. The detected grasping handle for each object is shown as a cyan color band. As one can
observe in this figure, the grasping handles (cyan band) are not shown for some of the objects even when
the object shapes are identified. This happens because of the constraints imposed by the gripper to avoid
collision with neighboring objects. We also compare the grasping performance of the proposed method
with that of an existing state-of-the-art approach that harnesses the geometrical attributes of point cloud
to compute grasping handles [5, 18]. This is shown in Table IV. As one can see, the baseline approach
performs reasonable well with the BigBird dataset which contains only individual objects. However, its
performance deteriorates significantly for our dataset that includes several rectangular type box objects
and several frames having multiple objects in clutter (see Fig. 11). In contrast, the proposed approach is
able to overcome these limitations providing superior performance.

4. Conclusion

This paper attempts to solve the vision-based grasping problem for a warehouse pick and place robot
where the robot has to pick and stow items from and to a bin of a rack. The problem is difficult as the robot
has to find a grasp pose as well as a suitable graspable affordance to pick the target object. The problem
becomes even more challenging when it has to pick the object from a clutter within the confined space
of a bin. The image bounding box obtained from the recognition module acts as the input to the grasping
module. The first step involves creating several surface segments in the RGBD point cloud using a region
growing algorithm that uses a similarity criterion based on surface normals to decide when to create
a new surface. These surface segments are then processed to segment the target object from the back-
ground clutter using a GMM that exploits the color and curvature attributes to model the target object.
This allows one to use a poorly trained object detection module returning larger bounding boxes for the
target object. Once the target object is segmented in the RGBD point cloud, a set of empirical rules based
on surface attributes is applied to identify basic primitive shapes such as a box, a cylinder or a sphere.
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Table II. Primitive shape detection results for BigBIRD dataset. Only a subset of the original dataset
comprising of 26 items is used for our evaluation. The average accuracy of shape detection for this
dataset is 93.4%. The ground truth shape is decided through visual inspection.

S. No. Object GT #Frames #cylin #sph #box %Correct

1 3mHighTackSprayAdhesive Cylinder 313 310 1 2 99
2 auntJemimaOriginalSyrup Cylinder 46 42 4 0 91
3 bai5SumatraDragonfruit Cylinder 278 278 0 0 100
4 bandAidClearStrips Box 117 8 0 109 93
5 bandAidSheerStrips Box 134 5 0 129 96
6 blueCloverBabyToy Box 30 13 5 12 43
7 campbellsChickenNoodleSoup Cylinder 228 214 12 2 94
8 campbellsSoupAtHandCreamy Cylinder 170 166 0 4 97
9 canonAckWE0Box Box 199 1 0 198 100
10 cheezItWhiteCheddar Box 166 0 0 166 100
11 chewyDippsChocolateChip Box 158 3 0 155 98
12 cholulaChipotleHotSauce Cylinder 127 110 17 0 87
13 cinnamonToastCrunch Box 136 3 0 133 98
14 clifCrunchChocolateChip Box 123 2 0 121 98
15 niceHoneyRoastedAlmonds Cylinder 248 240 0 8 97
16 clifCrunchWhiteChocolate Box 122 3 0 119 98
17 coffeeMateFrenchVanilla Cylinder 288 260 4 24 90
18 colgateCoolMint Cylinder 108 104 2 2 96
19 natureValleyCrunchyOatsNHoney Box 191 3 0 188 98
20 cupNoodlesShrimpPicante Box 84 21 0 63 75
21 eatingRightForHealthyLivingblue Box 170 1 0 169 100
22 haagenDazsButterPecan Cylinder 235 235 0 0 100
23 haagenDazsCookieDough Cylinder 233 232 1 0 100
24 hersheysCocoa Box 53 6 3 44 83
25 huntsPaste Cylinder 204 203 0 1 100
26 nutrigrainAppleCinnamon Box 142 3 0 139 98

Total # frames 4303

Average accuracy 93.42

Table III. Average accuracy (%) of detecting shape primitives (P) and grasping handles (H). The per-
formance of detecting graspable handles is slightly lower compared to detecting primitive shapes as the
former is a more difficult problem and a number of gripper specific constraints are applied to select
valid handles.

Box Cylinder Sphere

Scene P H P H P H

Single_Object 90 89.3 95 94.4 94 93
cluttered 84 83.6 92 91 91 90.2

The final step involves computation of a suitable grasping handle for the object using an improved curve
fitting method. These modifications allow us to grasp rectangular or box more successfully compared
to the previous work. It also allows us to account for neighboring objects that can obstruct grasping,
while computing a suitable affordance for the target object. The efficacy of the approach is demonstrated
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Table IV. Grasping performance comparison with a baseline approach. Compared to the state-of-the-
art baseline approach, our method provides much superior performance in detecting graspable handles.

S.No Dataset Proposed method (%) Baseline approach (%) [5]

1 BigBird [43] 92 85
2 Our own Dataset [42] 89 48

Figure 12. Experimental setup for testing the proposed grasping algorithm. It uses a hand-mounted
Kinect camera for perception and a RG2 two-finger gripper for grasping. (a) Experimental setup, (b)
object detection using RCNN, (c) surface segmentation within the ROI, (d) primitive shape identification
and pose detection, (e) robot motion for grasping and (f) dropping of object into a tote.

through rigorous simulation and real-world experiments. The proposed approach is shown to provide
significant improvement over an existing baseline approach on two different datasets. The datasets and
program source codes are being made available publicly for the convenience of readers.

There are a few limitations which form the scope for future investigation. Reducing the number of
examples required for training the GMM model will be one such direction. Secondly, an attempt will
be made to directly compute the grasping handles while bypassing the intermediate step to identify the
primitive shape of the object. This will make the pipeline simpler and faster.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/
S0263574721000503
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